
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2021

Data and resource management in wireless networks via data Data and resource management in wireless networks via data

compression, GPS-free dissemination, and learning compression, GPS-free dissemination, and learning

Xiaofei Cao

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Cao, Xiaofei, "Data and resource management in wireless networks via data compression, GPS-free
dissemination, and learning" (2021). Doctoral Dissertations. 3070.
https://scholarsmine.mst.edu/doctoral_dissertations/3070

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/3070?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DATA AND RESOURCE MANAGEMENT IN WIRELESS NETWORKS VIA DATA

COMPRESSION, GPS-FREE DISSEMINATION, AND LEARNING

by

XIAOFEI CAO

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2021

Approved by

Sanjay Madria, Advisor
Nan Cen
Sajal Das
Tony Luo

Maciej J. Zawodniok

Copyright 2021

XIAOFEI CAO

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the following seven articles, formatted in the style used

by Missouri University of Science and Technology:

Paper I: Pages 31-56 have been published in 2017 IEEE 37th International Confer-

ence on Distributed Computing Systems (ICDCS).

Paper II: Pages 57-113 have been published in the journal Distributed and Parallel

Databases 2019.

Paper III: Pages 114-148 have been published in 2019 IEEE 18th International

Symposium on Network Computing and Applications (NCA).

Paper IV: Pages 149-205 have been published in journal IEEE Transactions on

Sustainable Computing 2020.

Paper V: Pages 206-239 have been submitted to journal Peer-to-Peer Networking

and Applications 2020.

Paper VI: Pages 240-245 have been published in 2017 14th Annual IEEE Interna-

tional Conference on Sensing, Communication, and Networking (SECON).

Paper VII: Pages 246-255 have been published in 2019 38th IEEE Symposium on

Reliable Distributed Systems (SRDS).

iv

ABSTRACT

This research proposes several innovative approaches to collect data efficiently from

large scale WSNs. First, a Z-compression algorithm has been proposed which exploits the

temporal locality of the multi-dimensional sensing data and adapts the Z-order encoding

algorithm to map multi-dimensional data to a one-dimensional data stream. The extended

version of Z-compression adapts itself to working in low power WSNs running under low

power listening (LPL) mode, and comprehensively analyzes its performance compressing

both real-world and synthetic datasets. Second, it proposed an efficient geospatial based

data collection scheme for IoTs that reduces redundant rebroadcast of up to 95% by only

collecting the data of interest. As most of the low-cost wireless sensors won’t be equipped

with a GPSmodule, the virtual coordinates are used to estimate the locations. The proposed

work utilizes the anchor-based virtual coordinate system and DV-Hop (Distance vector of

hops to anchors) to estimate the relative location of nodes to anchors. Also, it uses circle

and hyperbola constraints to encode the position of interest (POI) and any user-defined

trajectory into a data request message which allows only the sensors in the POI and routing

trajectory to collect and route. It also provides location anonymity by avoiding using

and transmitting GPS location information. This has been extended also for heterogeneous

WSNs and refined the encoding algorithm by replacing the circle constraints with the ellipse

constraints. Last, it proposes a framework that predicts the trajectory of the moving object

using a Sequence-to-Sequence learning (Seq2Seq) model and only wakes-up the sensors

that fall within the predicted trajectory of the moving object with a specially designed

control packet. It reduces the computation time of encoding geospatial trajectory by more

than 90% and preserves the location anonymity for the local edge servers.

v

ACKNOWLEDGMENTS

Throughout the writing of this dissertation I have received a great deal of support

and assistance.

I would first like to thank my supervisor, Dr. Sanjay Madria, whose expertise was

invaluable in formulating the research questions andmethodology. Your insightful feedback

pushed me to sharpen my thinking and brought my work to a higher level.

I would like to thank my parents for their wise counsel and sympathetic ear. You

are always there for me. I would like to thank for my family for their strong support.

Finally, I could not have completed this dissertation without the support of my

friend, Azharul Islam, who provided algorithm discussions as well as happy distractions to

rest my mind outside of my research.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . xiv

LIST OF TABLES . xx

SECTION

1. INTRODUCTION. 1

1.1. APPLICATIONS AND CHALLENGES FOR WSNS . 2

1.1.1. Environmental Data Monitoring Applications with Static Nodes 2

1.1.2. Applications with Mobile Nodes . 4

1.1.3. Object Tracking in IoT Environment . 5

1.2. THE PROPOSED APPROACHES . 6

1.2.1. Sensor Data Compression . 7

1.2.2. Data Request and Data Routing in WSNs . 8

1.2.3. Object Prediction and Tracking in IoT Environment. 8

1.3. PERFORMANCE METRICS . 9

1.3.1. Compression Ratio . 10

1.3.2. Normalized Compression Overhead . 10

1.3.3. Average Delay . 10

1.3.4. Redundant Rebroadcast Ratio . 10

vii

1.3.5. Accuracy Metric for Trajectory Prediction Models . 11

2. LITERATURE REVIEW . 12

2.1. SENSOR DATA COMPRESSION ALGORITHMS . 12

2.1.1. Prefix Coding Based Lossless Compression Algorithm 12

2.1.2. Fast Efficiency Lossless Adaptive Compression Schema (FELACS) . 18

2.1.3. S-LZW Algorithm . 18

2.1.4. Other Compression Algorithms. 19

2.2. ENERGY EFFICIENT DATA BROADCAST AND ROUTING ALGO-
RITHMS . 19

2.2.1. Counter-based Broadcasting Schemes . 19

2.2.2. Energy Efficiency Routing Schemes . 21

2.2.3. Trajectory-based Routing and Virtual Coordinates . 23

2.3. ENERGY EFFICIENT DUTY CYCLE MECHANISMS . 25

2.4. SIMULATING WSNS . 26

2.4.1. Simulation System Properties of TOSSIM . 26

2.4.2. Energy Simulation and Energy Model . 27

2.5. TARGET TRACKING . 27

2.5.1. Trajectory Prediction in WSNs . 27

2.5.2. Cluster-based Object Tracking Algorithms. 28

2.5.3. Counter-based Broadcast . 30

PAPER

I. EFFICIENT Z-ORDER ENCODING BASED MULTI-MODALDATA COM-
PRESSION IN WSNS . 31

ABSTRACT . 31

1. INTRODUCTION . 32

2. BACKGROUND AND RELATED WORK . 34

viii

2.1. LEC, TINYPACK, AND ADAPTIVE LEC. 34

2.2. FAST EFFICIENCY LOSSLESS ADAPTIVE COMPRESSION
SCHEMA .. 35

3. PROPOSED Z-COMPRESSION APPROACH . 36

3.1. NAIVEMULTI-DIMENSIONALZ-COMPRESSION FOR SEN-
SOR VALUES . 37

3.2. OPTIMIZEDTWO-DIMENSIONALZ-COMPRESSIONALGO-
RITHM.. 39

3.3. SMALL CODE LIBRARY ADD-ON. 43

3.4. OPTIMIZEDN-DIMENSIONALZ-COMPRESSIONALGORITHM 44

3.5. LOSSLESS DATA CONCATENATING ALGORITHM 46

4. EXPERIMENTS AND EVALUATIONS . 48

4.1. EXPERIMENTAL SETUP AND CONFIGURATIONS 48

4.2. COMPRESSION PERFORMANCE COMPARISON 49

4.3. ENERGY USAGE COMPARISON . 50

4.4. APPROXIMATE MAXIMUM SAMPLING RATE 51

5. CONCLUSIONS AND FUTURE WORK . 52

REFERENCES . 54

II. MULTI-MODELZ-COMPRESSIONFORHIGHSPEEDDATASTREAMING
AND LOW POWER SENSOR NETWORKS . 57

ABSTRACT . 57

1. INTRODUCTION . 57

2. BACKGROUND AND RELATED WORK . 61

3. PROPOSED Z-COMPRESSION APPROACH . 64

3.1. NAIVEMULTI-DIMENSIONALZ-COMPRESSION FOR SEN-
SOR VALUES . 65

3.2. OPTIMIZEDTWO-DIMENSIONALZ-COMPRESSIONALGO-
RITHM.. 68

3.3. SMALL CODE LIBRARY ADD-ON. 72

ix

3.4. OPTIMIZEDN-DIMENSIONALZ-COMPRESSIONALGORITHM 73

3.5. LOSSLESS DATA CONCATENATING ALGORITHM 78

4. ENTROPY AND DATA DISTRIBUTION MODEL . 80

4.1. TEMPORAL AND SPATIAL DATA APPROXIMATION AND
REGRESSION . 80

4.2. PROBABILITY DISTRIBUTION OF ∆ OF THE SENSOR DATA . 81

4.3. PERFORMANCEEVALUATIONUSINGTEMPORALANDSPA-
TIAL DATA MODEL . 86

4.4. OBSERVATION. 88

5. Z-COMPRESSION IN HIGH STREAM RATE WSNS . 89

6. Z-COMPRESSION IN LOW-POWER LISTENING WSNS 90

7. EXPERIMENTAL EVALUATIONS. 94

7.1. Z-COMPRESSION IN HIGH STREAM RATE WSNS 94

7.1.1. Experimental Setup and Configurations. 94

7.1.2. Compression Performance Comparison . 95

7.1.3. Energy Usage Comparison. 98

7.1.4. Approximate Maximum Sampling Rate. 99

7.2. LOCAL BLOCK DATA COMPRESSION . 100

7.3. EXPERIMENTS AND EVALUATIONS . 104

8. CONCLUSION AND FUTURE WORK . 108

REFERENCES . 109

III. EFFICIENT GEOSPATIAL DATA COLLECTION IN IOT NETWORKS FOR
MOBILE EDGE COMPUTING . 114

ABSTRACT . 114

1. INTRODUCTION . 114

2. RELATED WORKS . 117

2.1. COUNTER-BASED BROADCASTING . 117

x

2.2. RING ROUTING AND NESTED ROUTING . 117

2.3. TRAJECTORY-BASED ROUTING AND VIRTUAL COORDI-
NATES . 118

3. PROPOSED DATA COLLECTION SCHEME . 118

3.1. SYSTEM OVERVIEW .. 119

3.2. ASSUMPTIONS . 120

3.3. DV-HOP BASED GEOSPATIAL ENCODING ALGORITHM 121

3.3.1. Find All Possible Shapes from Nshapes and Their Area
Areashape . 124

3.3.2. Compute the Effective Coverage Ratio (ECR) and Elect
the Best Shapes . 129

3.4. PAYLOAD DATA STRUCTURE OF ROUTING PACKET 131

3.5. ROUTING DECISION FOR WIRELESS SENSORS 131

3.6. SAMPLE ROUTING RESULT AND ANALYSIS . 133

4. ADAPTEDDV-HOPBASEDDATACOLLECTIONSCHEMEFORLOW-
POWER WSAN . 135

5. EXPERIMENTS AND RESULTS . 136

6. CONCLUSION AND FUTURE WORK . 146

REFERENCES . 147

IV. EFFICIENT DATA COLLECTION IN IOT NETWORKS USING TRAJEC-
TORY ENCODED WITH GEOMETRIC SHAPES . 149

ABSTRACT . 149

1. INTRODUCTION . 150

2. RELATED WORKS . 153

2.1. COUNTER-BASED BROADCASTING . 153

2.2. GRID-BASED ROUTING . 153

2.3. RING ROUTING AND NESTED ROUTING . 154

2.4. TRAJECTORY-BASEDROUTINGANDVIRTUALCOORDINATE154

xi

2.5. LOCATION PRIVACY IN WSN . 155

3. PROPOSED DATA COLLECTION SCHEME . 156

3.1. SYSTEM OVERVIEW .. 156

3.2. ASSUMPTIONS . 158

3.3. DV-HOP BASED GEOSPATIAL ENCODING ALGORITHM 159

3.3.1. Find All Possible Shapes from Nshapes and Their Area
Areashape . 163

3.3.2. Calculating the Area of the Shape Segments 164

3.4. CALCULATE THE OVERLAPPING AREA OF ELLIPSE AND
CIRCLE . 170

3.5. CALCULATE THE OVERLAPPING AREA OF HYPERBOLA
AND CIRCLE . 173

3.5.1. Compute the Effective Coverage Ratio (ECR) and Elect
the Best Shapes . 175

3.6. ROUTING DECISION FOR WIRELESS SENSORS 176

3.7. SAMPLE ROUTING RESULT AND ANALYSIS . 178

4. ADAPTEDDV-HOPBASEDDATACOLLECTIONSCHEMEFORLOW-
POWER WSN . 182

5. EXPERIMENTS AND RESULTS . 183

5.1. PERFORMANCE USING A WSN TEST-BED . 184

5.2. SIMULATION RESULTS . 188

6. CONCLUSION AND FUTURE WORK . 202

REFERENCES . 203

V. ANEFFICIENTMOVINGOBJECTTRACKINGFRAMEWORKFORWSNS
USING SEQUENCE-TO-SEQUENCE LEARNING MODEL 206

ABSTRACT . 206

1. INTRODUCTION . 207

2. RELATED WORK. 209

2.1. TRAJECTORY PREDICTION IN WSNS . 209

xii

2.2. CLUSTER-BASED OBJECT TRACKING ALGORITHMS 211

2.3. COUNTER-BASED BROADCAST. 212

2.4. DV-HOP BASED PACKET ROUTING PROTOCOL. 213

3. PROPOSED OBJECT TRACKING FRAMEWORK . 213

3.1. ASSUMPTION . 214

3.2. SYSTEM OVERVIEW .. 214

3.3. GRADIENT-BASED BROADCAST. 217

3.4. HYPERBOLACONSTRAINTS BASED CONTROL-MESSAGE
ROUTING . 218

4. SEQ2SEQ MODEL FOR CONSTRAINT PREDICTION . 220

5. SEQ2SEQ MODEL FOR PATH ENCODING . 222

6. TRAJECTORY PREDICTION USING SEQ2SEQ MODEL 223

6.1. TAXI DATASET AND TRAINING. 224

6.2. DATA GENERATING AND TRAINING FOR THE PATH EN-
CODING MODEL . 226

7. RESULTS . 227

7.1. HARDWARE, FRAMEWORK, AND TRAINING TIME 227

7.2. PREDICTION ACCURACY . 227

7.3. PREDICTION SPEED . 230

7.4. COMPARISON WITH PREVIOUS WORKS . 232

8. CONCLUSION AND FUTURE WORK . 236

REFERENCES . 236

VI. A WSN TESTBED FOR Z-ORDER ENCODING BASED MULTI-MODAL
SENSOR DATA COMPRESSION . 240

ABSTRACT . 240

1. INTRODUCTION AND PROBLEM STATEMENT . 240

2. SYSTEM ARCHITECTURE . 241

xiii

2.1. DATA COMPRESSION AND DECOMPRESSION 242

2.2. CONCATENATING COMPRESSED DATA. 242

3. SENSOR TESTBED IMPLEMENTATION. 243

3.1. SYSTEM SETUP . 243

3.2. DATA COLLECTION AND VISUALIZATION . 244

3.3. PERFORMANCE EVALUATION . 244

4. CONCLUSIONS . 245

REFERENCES . 245

VII. A TESTBED FOR DATA ROUTING IN LOW-POWER WSNS USING DV-
HOP BASED TRAJECTORY ENCODING ALGORITHM . 246

ABSTRACT . 246

1. INTRODUCTION AND PROBLEM STATEMENT . 246

2. SIMULATION AND TESTBED IMPLEMENTATION . 248

2.1. SIMULATION AND VISUALIZATION . 249

2.2. DEMO SHOWN.. 252

3. CONCLUSIONS . 254

REFERENCES . 254

SECTION

3. CONCLUSION AND FUTURE WORK . 256

3.1. RESEARCH OBJECTIVES ADDRESSED . 256

3.2. THE MAIN CONTRIBUTIONS . 257

3.3. THE FUTURE WORK . 259

REFERENCES . 261

VITA . 274

xiv

LIST OF ILLUSTRATIONS

Figure Page

SECTION

1.1. An example of the definition of Areacovered_by_constraints and AreaTra jectory 11

2.1. Huffman tree of input string "Huffman coding is awesome" . 14

2.2. Decoding example of Huffman coding algorithm" . 14

2.3. Huffman tree of the compression code of LEC and TinyPack . 15

2.4. Normalized compression overhead of LEC and TinyPack . 16

2.5. Single rotate and double rotate dictionary of adaptive LEC . 17

2.6. An encoding example of LEC and adaptive LEC. 17

2.7. An example of APCA and PWLH constant model . 20

2.8. An example of DV-Hop of a sensor node N . 24

2.9. Cluster-based Object tracking protocol . 28

PAPER I

1. Huffman tree of LEC and TinyPack initial code . 36

2. Normalized compression overhead of LEC and TinyPack . 37

3. Procedure of Z order encoding . 37

4. Normalized compression overhead compressing multi-dimensional data 38

5. An example of optimized Z-compression . 38

6. Normalized overhead in compressing two attributes where the largest at-
tribute’s data is 20 bits long. 41

7. Average overhead in compressing data with two attributes . 43

8. Compression ratio of real-time datasets . 50

9. Total packets after compression and concatenating for 20000 sample data 51

10. Energy consumption of real-time datasets . 53

xv

PAPER II

1. Huffman tree of the compression code of LEC and TinyPack . 62

2. Normalized compression overhead of LEC and TinyPack . 63

3. Procedure of Z order encoding . 65

4. Normalized compression overhead compressing multidimensional Data 67

5. Normalized overhead in compressing two attributes where the largest at-
tribute’s data is 20 bits long. 69

6. Average overhead in compressing data with two attributes . 72

7. System model Of optimized Z Compression. 74

8. An example of group algorithm . 75

9. Concatenate packets based on packets’ size. 79

10. Calculated PMF of the number of bits in the Intel lab data . 85

11. Average number of bits in the compressed data with different β and σ values
for optimal Z-Compression, LEC, and TinyPack. 87

12. Average number of bits of the compressed values against different ratio of stage
3 (n3) in the whole sensing period. Stage 1 and stage 2 has ratio n1 : n2 = 1 : 1,
σ = 5 . 88

13. Tree structure with R=3 . 91

14. Energy savings at intermediate nodes with different number of hops and chil-
dren when compressing ZebraNet data using Optimized Z-compression vs. no
compression . 92

15. Data collection in low power listening WSN using Z-compression along with
data concatenation. 93

16. Compression ratio of real-time datasets . 97

17. Total packets after compression and concatenating for 20,000 data samples. 99

18. Energy consumption of real-time datasets . 100

19. Compression ratio of different local datasets . 103

20. Energy consumption in compressing different datasets . 104

21. Energy usage of 990 node WSN in 10,000 seconds with 1250 sensing requests
with no compression . 106

xvi

22. Energy usage of 990 nodesWSN in 10,000 seconds with 1250 sensing requests
with optimal Z-compression along with data concatenation . 106

23. Energy usage of 2500 nodes WSN in 10,000 seconds with 1250 sensing
requests with no compression . 107

24. Energy usage of 2500 nodes WSN in 10,000 seconds with 1250 sensing
requests with optimal Z-compression along with data concatenation 107

PAPER III

1. Data collection in local edge network . 120

2. Example of a circular, and an arc trajectory represented with hop constraints 122

3. Example of a segment of line, and a hyperbola trajectory represented with hop
constraints . 123

4. A hyperbola segment’s area estimation example . 127

5. Example of a circular, and an arc trajectory represented with hop constraints
and the compressed trajectory using JPEG . 134

6. Example of the bridge on the edge adaption . 136

7. Property of taxi trajectory dataset . 138

8. The compression ratio of the proposed DV-Hop based trajectory encoding
algorithm for different trajectory sizes with different number of anchor nodes
in the same network protocol . 139

9. The compression ratio of the proposed DV-Hop based trajectory encoding
algorithm for different trajectory sizes with different number of anchor nodes . . . 139

10. Average redundant rebroadcast ratio . 140

11. Experiment of successful encoding rate with different number of Anchor nodes
and coverage threshold . 141

12. The reliability of DV-TE-R, DV-TE-BR, Ring routing, and Nested routing with
different number of neighbors . 141

13. The average delay of data reporting comparing with state-of-art schemes 142

14. Average delay from starting broadcast request till receiving all the data from
the POI . 143

15. Sample routing example . 144

16. Accumulated energy consumption in fetching the data from the POI 146

xvii

PAPER IV

1. Data collection in local edge network . 157

2. Example of a segment of line, and a hyperbola trajectory represented with hop
constraints . 160

3. Example of a segment of circle, and a ellipse segment. 160

4. A ellipse segment’s area estimation example . 165

5. A hyperbola segment’s area estimation example . 167

6. Ellipse and circle intersection cases . 168

7. Example of finding overlapping area of ellipse and circle . 169

8. Example encoding with the circle and the hyperbola constraints and the com-
pressed trajectory using JPEG . 179

9. Example Encoding of ellipse and hyperbola . 180

10. CPU time calculating area of all possible shapes . 180

11. GPU time finding the best shape . 181

12. Example of the bridge on the edge adaption . 183

13. Experimental WSN and routing trajectory . 184

14. Latency of multi-hop routing when disseminating data collection message
with proposed data forwarding approach and counter-based broadcast 186

15. Total number of nodes rebroadcastingwhen disseminating data collectionmes-
sage with proposed data forwarding approach through trajectory and counter-
based broadcast . 186

16. Latency of multi-hop routing when disseminating data collection messages
with proposed data forwarding approach and counter-based broadcast in LPL
WSN . 188

17. Find convex hull and theminimal surrounding rectangle for taxi trajectory with
60 GPS data points(left) and 189 GPS data points(right) and the trajectories
after pre-process . 190

18. Property of taxi trajectory dataset . 191

19. Compression ratio of the encoding without using an ellipse . 192

20. The compression ratio of the proposed DV-Hop based trajectory encoding
algorithm (with ellipse) for different trajectory sizes . 192

xviii

21. With 50% mobile nodes for each epoch, the changing of coverage for taxi
trajectory of Figure 17(a) . 193

22. Average correct coverage ratio . 194

23. Average redundant rebroadcast ratio . 194

24. Experiment of successful encoding rate with different number of anchor nodes
and coverage threshold . 195

25. The reliability of DV-TE-R, DV-TE-BR, Ring routing, and Nested routing with
different number of neighbors . 196

26. The average delay in data reporting compared with state-of-the-art schemes 198

27. Average delay from starting broadcast request till receiving all the data from
the POI . 199

28. Sample routing example . 200

29. Accumulated energy consumption in fetching the data from the POI 201

PAPER V

1. Cluster-based Object tracking protocol . 211

2. System Overview . 215

3. Sensor that detect the target report to the local edge server through a hop
gradient decreasing path. 218

4. Example of a hyperbola trajectory and its routing constraints . 219

5. Trajectory prediction Seq2Seq model . 221

6. Path encoding Seq2Seq model. 222

7. Translate road map to trajectories in a working area . 225

8. One-hot encoding for the hyperbola constraint . 226

9. An example of the definition of Areacovered_by_constraints and AreaTra jectory 228

10. Time consumption of encoding trajectories with 20 GPS points to hyperbola
constraints . 231

11. Delay in a sensor reporting detected target’s location to the local edge server
(in milliseconds). 233

12. Delay in local edge server sending control messages to the target’s predicted
trajectory (in milliseconds) . 234

xix

13. Accumulated energy consumption in tracking and reporting target’s location 235

PAPER VI

1. Layers of WSNs and the data flow. 241

2. System topology and real-world layout . 243

PAPER VII

1. The control box setting up the WSNs . 249

2. The visual effect of a sample WSN and the detail node information of a sensor. . 250

3. The routing visualization menu. 250

4. Example of an arc and hyperbola trajectory represented with hop constraints 251

5. Example of a circular and arc trajectory represented with hop constraints 252

6. Example of a encoded routing trajectory and simulated routing trajectory 253

xx

LIST OF TABLES

Table Page

SECTION

2.1. Weight table of input string "Huffman coding is awesome". 13

PAPER I

1. Initial small code library . 44

2. Fields of Experimental Dataset . 47

3. Maximum approximate sampling rate. 52

PAPER II

1. Initial small code library . 73

2. Fields of Experimental Dataset . 79

3. Maximum approximate sampling rate. 96

4. Sensors deployment parameters . 105

PAPER III

1. Payload data structure . 132

2. Encoding result for sample trajectory . 133

3. Parameters for the experiments . 137

PAPER IV

1. Payload data structure . 176

2. Encoding result for sample trajectories . 177

3. Parameters for the experiments . 189

PAPER V

1. Activate/Reset packet’s payload data structure. 223

2. Accuracy comparison for four different learning models. 229

3. Parameters for the experiments . 231

SECTION

1. INTRODUCTION

The Internet of Things (IoT) facilitates fast access, process, and utilization of the

big data created by the ’things’ surrounding many applications such as environmental data

monitoring, disaster management, or battlefield monitoring. As IoT is developed for a

plethora of emerging applications in a wide range of disciplines, there are roughly 9.5

billion connected IoT devices reported at the end of 2019. It is also expected that the

total number of connected IoT devices will reach 28 billion by 2025. Wireless sensor

networks (WSNs) as an important sensing organ of the IoT family, contribute most of the

increasing population due to its economic efficiency. Lots of WSNs applications gathering

researchers’ attention. For example, there are near real-time sensor cloud applications [1] to

perform multi-modal sensing tasks. Some military applications like tracking hostile objects

or monitoring intruders use multiple sensing units to provide precise location and speed by

applying multi-sensor data fusion. The unmanned vehicles [2] need GPS and accelerometer

to locate themselves, and to track distance and height of objects using the camera, laser range

meter, or radar. By fusing these multi-modal sensor data, they can also predict the moving

trajectory of the nearby objects. Similarly, the environmental monitoring applications [3]

[4] [5] need temperature, wind direction, humidity, CO2 levels, etc. Many of these multi-

modal sensor applications require data integrity (lossless data) as well as high-streaming

rate, and therefore, cannot tolerate high latency due to limited bandwidth of IoT sensing

networks. The WSNs can also responsible for content distribution, resources management,

or reflecting on physical world decisions made at software level. The following subsection

will introduce some applications usingWSNs in detail and list challenges these applications

face. Thereafter, we introduce our proposed data and resource management approaches,

2

which include efficient data collection framework, data compression algorithm, secure

object tracking framework, to counter the challenges those real-world WSNs applications

will encounter. At last, we briefly describe the performance metrics we used to evaluate the

effectiveness of the proposed data and resource management approaches.

1.1. APPLICATIONS AND CHALLENGES FORWSNS

There are many WSNs applications. We classify them into the following three cate-

gories: Environmental data monitoring applications, mobile sensor applications, and object

tracking applications. They have different features and challenges which are elaborated in

detail below.

1.1.1. Environmental Data Monitoring Applications with Static Nodes. Envi-

ronmental data monitoring is the most common application where WSNs are used for both

indoor and outdoor environmental data monitoring using static sensors and static sinks. For

example in [3], the researchers deployed five eZ430 wireless sensors sensing temperature

and humidity in a greenhouse. The authors found after 5 days, the battery capacity of

the sensors is lower than 80% which indicates after 30 days the sensors will run out of

battery. The experiments show that by reducing the number of communication between

sensors could improve the lifetime of the sensors. However, the trade-off is that the sensing

frequency needs to be lowered which may be affect accuracy of the data reported.

In another work [6], a real-time environmental monitoring cyber-infrastructure with

WSNswas proposed. It monitors the outdoor soil moisture with flexible spatial coverage and

resolution using wired and wireless sensors. It provides remote, near-real-time monitoring,

long-term, and autonomous publicly available web services for sensor data visualization

and dissemination. Besides, it achieves remote system monitoring and maintenance for

system development, debugging, and maintenance purposes. To save energy and prolong

the lifetime of the WSNs, a data aggregation method and a duty cycle approach are used to

reduce the communication load and redundant overhearing.

3

Another research in [7] proposed an indoor temperature monitoring and regulation

application. They use wireless sensors to monitor and control heating bodies, such as

central heating radiators, electric radiators, or fans, and air conditioners, which can be

based on a fan. The regulator can increase/decrease the cooling volume to reach a certain

temperature. Third, airflow, such as central airflow ventilationwhich can regulate the degree

of air circulation. Next, they also control window shutters, such as outside curtains. By

raising/lowering the curtains the influence of solar energy can be regulated. The wireless

sensors show their flexibility and easy deployment advantage in these applications.

These tiny low-cost wireless sensors suffer a lot of constraints including low com-

putational power, less memory and storage space, and less energy capacity. Since batteries

are the typical power source for wireless sensors, the limited energy budget is another pri-

mary constraint in the design of multi-modal WSNs. To address these problems and make

WSNs more energy-efficient and bandwidth-efficient as well as to meet the QoS (quality

of service) requirements, researchers studied the sensor’s power model and proposed algo-

rithms to optimize the WSNs from low-level (MAC) multimedia access control protocol

to high-level data collection schemes. Many research efforts, like [8] and [9], have shown

that radio communication, including data transmission and channel listening, is the pre-

dominant factor among all the energy consumption metrics of the WSNs. In a contentious

WSN, the network congestion caused by overwhelmed channel load is another challenge

that risks the QoS including throughput, delay, and data integrity [10]. Some carrier sense

multimedia access (CSMA) MAC protocols have poor performance under this condition

and their back-off mechanism will deplete the sensors’ battery faster than the time divisor

multimedia access (TDMA) MAC approaches do. Privacy is another challenge in WSNs.

Sensor nodes with computational power are vulnerable to eavesdropping, hijacking, and

can be easily compromised. The adversary could easily eavesdrop the communication of

the WSNs and get the privacy information like the location of the users.

4

1.1.2. Applications with Mobile Nodes. In many WSN applications, like wild

animal protection, mobile crowd-sourcing, and vehicluar network, the sensor nodes or

sinks may have mobility. For example, in the ZebraNet project [11], the sensors are collared

on zebras’ neck. It tracks the moving trajectory of a zebra herd using GPS sensors. The

sink is also mobile as any unguarded base-station or cellular station will attract the attention

of wild animals. As the project was for one year, energy was a critical challenge. The

bandwidth was also a challenge when the herd is far from the mobile sinks. However, the

latency was not a problem though the time-stamp was still needed to be attached to the data

packet.

In recent crowdsourcing applications [12] [13] [14], by utilizing the mobile devices’

GPS data, air pollution data can be gathered efficiently. Another interesting application in

Japan [15] uses garbage trucks to collect pollution data thus get a more accurate pollution

map. The researchers also Innovatively use the vibration of the garbage truck to estimate

the garbage volume of an area. Also, with the emerging of 5G techniques, researchers are

discovering possible applications in Vehicular ad-hoc networks (VANETs) [16] [17], and

[18].

An efficient message dissemination framework is the key factor in mobile WSNs

as it involves real-time identification of a secure routing path based on network topology,

the application’s requirements, and a user’s privacy preferences. However, three notable

challenges are unaddressed in this regard. First, the location privacy can be exposed when

messages are disseminated in an unsafe IoT network such as network containing third party

devices, eavesdroppers, and malicious adversaries. Second, to be generic and scalable, the

message dissemination framework must be able to virtualize and abstract spatial-temporal

message dissemination services, such as location encoding, router selection, and duty-cycle

management, from the physical routing infrastructures like cluster, grid, and table-based

routers. Third is the trade-off betweenQuality of Service (QoS) and energy efficiency, which

are two conflicting requirements, difficult to balance for applications that have dynamic

5

QoS requirements. For example, battlefield WSNs pose to conceal their radio footprint

while detecting enemy targets to avoid being detected by the adversary. Conversely, a

soldier requesting crucial data from a battlefield will give a much higher preference to the

confidentiality and less to latency at the cost of intense radio communication even though

it increases energy consumption, bandwidth usage, and risk of being detected. As such,

hard-coded routing rules can’t fit the diverse needs of real-world network security and QoS

features. Further, provisioning spatial-temporal message dissemination without GPS is

necessary but challenging for particular applications such as an underwater sonar network

that can’t access GPS signal and a battlefield WSN where GPS signal can be spoofed.

1.1.3. Object Tracking in IoT Environment. Moving object tracking is one of

the important applications of wireless sensor networks and is widely used in both civil,

research, agriculture, and military applications. For example, the military can use wireless

sensor networks to track military vehicles [19]. The smart city uses WSNs to fetch the

trajectory of every vehicle and use the information to guide other commuters or detect

abnormal driving behavior [20]. Underwater robot localization and tracking [21] is another

important application that could requires cooperation of multiple type of sensors.

In these target tracking applications, different sensors monitoring the targets con-

tinuously during their mobility and thus faces several challenges. First, not all sensors

contribute equally to target tracking. Unnecessary sensing by the sensors which are off

the targets could cause excessive energy consumption. Second, detecting targets with long

sensing period in aWSN could be a challenge due to limited battery power. Given low power

listening (LPL)[22] and other energy-efficient MAC protocols, most of the real-world WSN

applications can put the sensors into the wake/sleep cycle, and only wake up some of them

for a small period for sensing and communication. However, in LPLmode, sensors may face

a high risk of losing the target because of the low sensing and communication frequency.

Third, for some military applications, sensors also need to prevent being detected by other

enemy targets. For example, once the enemy targets detect the presence of nearby sensors

6

through the radio signals, they may perform some adverse actions which may increase the

detection difficulty. The enemy targets may also start jamming the radio transmissions in

the area [23]. Fourth, obtaining the enemy targets’ location is also a challenge. The sensors

detecting the target need to estimate the target’s location. However, due to the low cost of

the WSNs, most of the sensors have no GPS modules. Though virtual coordinates [24],[25]

and [26] could calculate the approximate location of sensors, fetching all the hop informa-

tion of the sensors in a large scale WSN and calculating the location centrally can cause

excessive energy consumption. Lastly, location anonymity is also a challenge as the sensors

are vulnerable to be eavesdropped and can be compromised, thus directly transmitting the

location information is not secure.

1.2. THE PROPOSED DATA AND RESOURCE MANAGEMENT APPROACHES

To address the energy and bandwidth challenge for static WSNs that affect the radio

communication QoS and network lifetime, the dissertation first proposes an efficient sensor

data compression algorithm [27] [28] that reduces the number of packets need to transmit

between the intermediate nodes of the WSNs. Thus, energy and bandwidth are saved and

the lifetime of the network is extended.

When disseminating data in mobile WSNs, reducing redundant data transmission

could not only save energy but also save bandwidth thus increase the throughput and reduce

delay when the channel is busy. This dissertation presents a novel data collection scheme

for mobile IoT edge networks [29] [30] that reduces the redundant re-transmission and save

both bandwidth and energy.

Last but not the least, to tackle the challenge of predicting and tracking object in

IoT environment, we proposed a sequence to sequence (Seq2Seq) model that takes the

target’s previous estimated locations as input and outputs a geometric constraint that allows

only the sensors within the predicted trajectory to wake up, detect and track the target

and report the results to the nearest local edge server. A set of these constraints creates

7

a path constraint that covers all the areas of the target’s previous and predicted trajectory.

The proposed framework directly predicts the routing constraints that cover the target’s

predicted trajectory. It is much faster than predicting the sequence of future target’s location

first and then encoding the predicted trajectory. Compared to the cluster-based target

tracking approach, the geometric constraints based routing protocol reduces the overhead

of cluster generation and maintenance. The location anonymity is preserved as no GPS

data are used and transmitted. The performance evaluations show the effectiveness of the

proposed scheme over other competitive schemes.

1.2.1. Sensor Data Compression. To further compress the collected data, we pro-

pose a Z-order [31] encoding based data compression scheme. The Z-order encoding called

Z-compression can compress multi-modal sensing data at each leaf node as well as at the

intermediate nodes efficiently in near real-time. The Z-compression algorithm can encode

multi-modal sensor data like precipitation, water level, and wind speed (needed to detect a

flood risk in a region) into a binary stream. It is a lossless compression algorithm, i.e., data

can be decompressed at the sink without any loss of accuracy. Using our Z-compression

algorithm in aWSNwith a hierarchical topology [32], the nodes with limited bandwidth can

tolerate higher-stream data rates coming from upstream nodes by concatenating compressed

sensor data into the reduced number of packets which may be as large as permissible by the

network protocol. The proposed Z-compression algorithm also uses temporal and spatial

data locality and delta encoding for better performance. Instead of using Huffman style

coding which requires extra bits for each delta values, we use Z-order encoding to compress

the delta values of all attributes of the input data into a binary stream. When decoding we

use the predefined decoding rules to decode the Z-values and extract all the values of at-

tributes. We also proposed an Optimized Z-compression algorithm which further increases

the performance when compressing multi-modal sensor datasets. In a tracking application,

longitude and latitude values of a vehicle equipped with GPS, Z-compression first transfer

8

data into delta values [33]; change between the current and previous sensed values. Then,

the delta values of longitude and latitude are further compressed using Z-order encoding

for better compression.

1.2.2. Data Request and Data Routing in WSNs. We propose a spatial data

collection scheme that has both low latency and less overhead of redundant broadcasting.

Instead of using the exact nodes’ location information from GPS as in [34][35][36], we use

a vector of the minimal distance of hops (DV-Hops) to all the anchor nodes selected by the

secure fog server as a dictionary or virtual coordinate. The area of the position of interest

(POI) can be represented as a list of hop constraints to the anchor nodes. Our routing

message only contains two basic geometric shapes: hyperbola and ellipse segments. Each

shape is encoded with simple hop constraints (e.g., size of the ellipse and the hyperbola

and the start and end of the segment). The sensor nodes could avoid complex geometric

computing, which makes it suitable for a WSN that have low-power and low-computing

resources. Besides, the proposed scheme provides location anonymity by avoiding using

and transmission of the GPS location information. To decode the POI of the client, the

adversary has to have the encodedmessage as well as the location of the anchor nodes, which

are stored in the secure fog server. To address the mobile nodes issues in heterogeneous

networks, we proposed a DV-Hop updating algorithm that updates the DV-Hop of the

moving nodes. We also address the broadcast storm issue by integrating the counter-based

broadcasting mechanism.

1.2.3. Object Prediction and Tracking in IoT Environment. Lastly, our study

will therefore focus on solving the following challenges. First, to locate and track the

moving target without using any GPS-based sensors. Second, to deliver the wake-up and

reset message to the area around the target’s path quickly and energy efficiently. Last but

not the least, to preserve the location anonymity of the sensors tracking objects.

9

In this thesis, a Seq2Seq learning model based trajectory prediction framework

is proposed. We offload the trajectory encoding task to the local edge server and add a

trajectory prediction functionality that predicts the moving event’s future trajectory based

on its previous locations. Instead of querying the remote cloud to predict the target’s

trajectory and to generate the data collection messages that cover the target’s trajectory, the

framework will choose the nearest local edge server to perform the trajectory prediction.

Thus, the multi-hop radio communication delay is decreased. Also, the Seq2Seq learning-

based encodingmodel accelerates the trajectory encoding algorithm bymore than 100 times.

This model will learn from the previous event moving patterns and directly predict the shape

constraints of the future trajectory from the location points of the previous trajectory. For

a large-scale IoT network, we divide it into small overlapped grid cells. We train the

trajectory prediction model for each grid cell based on their network topology and assign

these models to the local-edge-servers of each cell. The model-based trajectory prediction

framework allows the third party local-edge-servers to predict the target’s future trajectory

without leaking the location information of the anchors, the event’s trajectory, and the user’s

location.

1.3. PERFORMANCE METRICS

To evaluate the effectiveness of a compression algorithm and a trajectory-based

routing algorithm, we make comparisons between other schemes to understand certain

performance metrics. In the survey on data compression in WSNs [37] and survey of

counter-based broadcast protocol [38], the following metrics are commonly used and many

past proposals have used them to compare their contributions against other state-of-the-art

approaches. To evaluate the efficiency of the data dissemination in the WSNs, the average

delay and the redundant rebroadcast ratio are used. Lastly, to evaluate the effectiveness of

the proposed seq2seq model for trajectory prediction and encoding, two types of accuracy

metrics are defined which are discussed below.

10

1.3.1. Compression Ratio. The compression ratio CR in the performance metrics

is defined as the compressed data length over the size of uncompressed data as shown in

Equation 1.1. A base station is needed to collect all n compressed packets.
∑n

1 Lcompressed

is the compressed data size and
∑n

1 Loriginal is the original data size. For a compression

algorithm or a trajectory encoding algorithm, the higher the compression ratio the better

performance is.

CR =
∑n

1 Lengthoriginal∑n
1 Lengthcompressed

(1.1)

1.3.2. Normalized Compression Overhead. When comparing prefix encoding

based compression algorithms, the normalized overhead Overheadnorm is the ratio of the

prefix bits required to code the data to the actual data bits (binary format of the data value). It

can be represented as in Equation 1.2. For a prefix encoding based compression algorithm,

the normalized compression overhead changes when the length of the input data changes.

By analyzing the normalized compression overhead of a compression algorithm we can

estimate the overall compression performance with the input data distribution.

Overheadnorm =
len(Pre f ix)

len(DataValue)
(1.2)

1.3.3. Average Delay. Routing/broadcasting delay is an important metric measur-

ing the QoS of the WSNs. The average delay is the time when the sink receives the data

minus the time when the source reports the data. Routing hops, duty cycle, and waiting time

due to data aggregation or concatenation are three key factors that determine the average

delay.

1.3.4. Redundant Rebroadcast Ratio. In energy-efficient broadcast and routing

protocols, redundant rebroadcast is an important metric that determines their energy ef-

ficiency. As shown in Equation 1.3, Redundantrebroadcast is the ratio of the number of

11

rebroadcasting that happens outside of the position of interest (POI) over the total number

of the nodes in the POI.

Redundantrebroadcast =
NumBroadcastoutside

Nodesinside
(1.3)

1.3.5. AccuracyMetric forTrajectoryPredictionModels. Two types of accuracy

metrics are defined. One is called the valid coverage score (ACS) which is defined in

Equation 1.4. The other is called the false activation rate (FAR) which is defined in

Equation 1.5. As shown in Figure 1.1, AreaTra jectory is the area of the desired target

trajectory. Areacovered_by_constraints is the area calculated by testing every pixel of the

working area with the DV-Hop constraints. All the pixels valid for the hyperbola constraints

are counted. Therefore, the high ACS score means more areas of the target trajectory are

predicted and covered. The higher FAR rate means more false areas are predicted which

will incur redundant rebroadcast and waste sensors’ energy.

ACS =
Areacovered_by_constraints ∩ AreaTra jectory

AreaTra jectory
(1.4)

F AR =
Areacovered_by_constraints − AreaTra jectory

Areacovered_by_constraints
(1.5)

Figure 1.1. An example of the definition of Areacovered_by_constraints and AreaTra jectory

12

2. LITERATURE REVIEW

As we have discussed above that radio communication, including the data transmis-

sion and channel listening, is the predominant factor among all the energy consumption

metrics of the WSNs. The best strategy to save energy and bandwidth is to reduce the

redundant radio transmission by only collecting and transmitting compressed data in the

location of interest (trajectory). In this section, we will review some of the proposed works

related to sensor data compression, trajectory/geometric based routing, duty cycle protocol,

data aggregation, and simulation and data processing techniques used for this research.

2.1. SENSOR DATA COMPRESSION ALGORITHMS

In this section, we will discuss several popular sensor data compression algorithms

includingLEC,TinyPack, Huffman-coding, FELACS, S-LZW, andmany othermodel-based

compression algorithms.

2.1.1. Prefix Coding Based Lossless Compression Algorithm. Huffman coding

[39] is a classic prefix coding algorithm which is commonly used for lossless data com-

pression. It assigns shorter prefix code for higher frequency input data while assigns longer

prefix code to lower frequency input data. For example, suppose we have an input string

"Huffman coding is awesome" which has 15 distinct symbols. By counting each symbol’s

appearance frequency, we can create the weight table for these symbols as shown in the

Table 2.1.

Then we can build the Huffman coding tree from the input string as shown in the

Figure 2.1. where each edge represents a binary bit, each leaf node represents the distinct

symbol, and each internal node represents the sum of its children’s weight. Then, all the

distinct symbols can be represented with the bit code from root nodes to the leaf nodes. The

length of the encoded string is 97 bits.

13

Table 2.1. Weight table of input string "Huffman coding is awesome"

symbol frequency weight
space 3 0.12
a 2 0.08
c 1 0.04
d 1 0.04
e 2 0.08
f 2 0.08
g 1 0.04
H 1 0.04
i 2 0.08
m 2 0.08
n 2 0.08
o 2 0.08
s 2 0.08
u 1 0.04
w 1 0.04

A good Huffman coding algorithm should minimize the total number of bits of

the encoded data in less computational expenses. The above example using a priority

queue(heap) to greedily group pair of least weight nodes into an internal node, which

weights the sum of the two nodes, and pushed the internal node back to the priority queue.

Repeating the previous step until only one internal node left which if the root of the

Huffman tree. The time complexity of this Huffman tree building algorithm is O(n log(n))

and the memory complexity is O(n), where n is the number of distinct symbols. Based

on Shannon’s entropy Equation Entropy H(X) = −
∑

p(X) log p(X) [40], for the above

example, the theoretic average bits per symbol of the import string is 3.8137 bits. The

average number of bits for the encoded string is 3.88 bits.

The decompression procedure requires the decoder to have the Huffman tree/code

dictionary of the symbols. By mapping the key of the code dictionary, the decode speed

can be as fast as O(n) where is the number of bits in the encoded string. Figure 2.2 shows

an example of decoding the encoded string with a given Huffman tree.

14

Figure 2.1. Huffman tree of input string "Huffman coding is awesome"

The drawback of directly using Huffman coding in a wireless sensor network is

the overhead of creating and transmitting the Huffman coding tree. For WSNs, the distinct

symbols are the value of the sensing data which can vary from 0 to 2b where b is the length of

bits of the sensing attributes. Building and maintain the Huffman tree with such big symbol

pools is not practical in WSNs as sensors usually lack computation and memory resources.

Moreover, as the Huffman coding tree is required for decoding, it has to be transmitted along

with the encoded message. However, considering the sensing data is small, the overhead

Figure 2.2. Decoding example of Huffman coding algorithm"

15

of storing and transmitting the Huffman tree is bigger than the redundant bits the encoding

algorithm saves. To address these problems, many adapted Huffman coding algorithms for

WSNs are proposed like LEC [41], TinyPack [33].

LEC [41] and TinyPack [33] are both Huffman coding based compression algorithm.

First step in their adaption is to use delta value, which is the difference of two consequent

sensing value, as the input symbol rather than using the actually sensing values. In their

improved approaches to save memory and to make them computationally efficient, instead

of adapting Huffman coding to each symbol, LEC and TinyPack create the Huffman coding

for the length of the delta value in a predefined pattern that matches the frequency of the

data length group which they assume is decreasing when the length of delta value increases.

Thus, in both LEC and TinyPack, the length of Huffman coded prefix increases with the

increasing length of the delta values.

(a) Huffman tree of LEC code (b) Huffman tree of TinyPack’s code

Figure 2.3. Huffman tree of the compression code of LEC and TinyPack

The Huffman tree of LEC is shown in Figure 2.3-a and the TinyPack code is shown

in Figure 2.3-b. These two coding focused on the different distribution of the delta values of

the dataset. The TinyPack has better performance when majority of the input data are zeros

while LEC optimized the performance when most of the data are less than five bits long.

For example, if a dataset contains many data of only one-bit length, according to Figure 2.4,

16

TinyPack will have better compression ratio than LEC in terms of normalized compression

overhead (ratio of the extra bits required to code the delta value to the data bits) whereas,

for other delta values larger than 3, LEC will have better performance than TinyPack.

Figure 2.4. Normalized compression overhead of LEC and TinyPack

However, as we have discussed before, the distribution of the delta values can be

varied in different applications. Even in the same application at different time periods

or at different sensor nodes, the distribution may vary. Thus, in these situations, LEC

and TinyPack do not show good performances as they have fixed code. To solve this

problem, Adaptive-LEC [42] and TinyPack-DP(TP-DP)[33] can adapt the prefix code when

the length of the distribution of the frequency of the delta value changes. Figure 2.5 shows

the predefined rotating dictionary.

Adaptive-LEC will adapt its prefix code for every new data while the TP-DP only

changes its prefix code at the beginning of each new frame. They define the length of

delta value with the most frequency as the frequency center of data and define the length of

delta value with the minimum prefix code as the code center. When the current frequency

center of data is drifted from the previous code center, the prefix code will shift to meet

17

(a) Single rotate dictionary of the adaptive LEC (b) Double rotate dictionary of adaptive LEC

Figure 2.5. Single rotate and double rotate dictionary of adaptive LEC

the current frequency center of the data. For some datasets with the two frequency centers,

they proposed the double rotate initial code with the two code centers and two adaptive

segments where the prefix codes will be adapted independently based on the segments.

Figure 2.6. An encoding example of LEC and adaptive LEC

Figure 2.6 shows the procedure of encoding input data with two sensing attributes’

delta value using LEC and adaptive LEC. It showswhen the center is optimized, the adaptive

LEC could provide a better compression ratio than LEC. However, the drift correction (set

18

code center to be optimized), always behind the actual center drift, happens with a very

high delay. Thus, it reduces the performance of the compression algorithm. Also, different

sensor nodes may have different code centers in WSNs.

The adaptive TinyPack [43] algorithm takes advantage of spatial locality between

the two or more nodes and performs collaborative data compression. However, in WSNs,

sensors may be sensing multidimensional data independently, and waiting for other sensors

to dispatch their different attribute values will increase latency in processing and delays in

transmission in an intermittent environment. Thus, this approach trades the response time

for a better compression ratio.

2.1.2. Fast Efficiency Lossless Adaptive Compression Schema (FELACS).

FELACS [44] gives every compressing data a fixed b bits. Every value smaller than

2b will be filled with ’0’s at the front to reach b bits, added ’1’ bit at the front then directly

appended to the output stream. Every value larger than or equal to 2b will be cut into

two sections. The higher bits section is encoded using unary coding and is appended to

the output stream. The lower bits section has the length b directly appended to the output

stream. The fixed bits b is generated by calculating the average number of the input data.

FELACS adapts data packets by packets rather than sample by sample. It works

for a single sensing attribute only. Also, it needs to wait for more data to achieve better

compression performance as they have fixed indicator bits.

2.1.3. S-LZWAlgorithm. S-LZW [45] an extension of LZW [46] that compresses

data by encoding and representing a common sub-string with fewer bits used for the encoded

value. The encoded common sub-strings are stored in the dictionary and represented as

the dictionary index. The next subsequence of the encoding data are represented with the

index of the longest matching subsequence in the dictionary. However, the dictionary of

LZW is too large to store at sensor motes. Therefore, S-LZW sets the dictionary size to be

512 bytes, using a 32-byte mini-cache, and also, they tested the performance with a dataset

of 528 bytes; the size of each block of buffered data. The authors believed that before the

19

data can be compressed, the entry in the dictionary is a good representation of the data

being compressed. LZW and S-LZW usually need more data to create new words and

update their library before compressing, which causes long delays. The average waiting

time of S-LZW compression algorithm on compressing eight pages each with 256 bytes of

Intel Berkeley Lab sensor data is about 2.8 times the time interval between two consecutive

packets. Additionally, the average waiting time increases so LZW and S-LZW cannot be

used for real-time wireless sensor applications as shown in our earlier work also [33].

2.1.4. OtherCompressionAlgorithms. Themodel-based compression algorithms

[47] such as APCA[48], PWLH[49], and SF[50] also have good compression ratios. They

use the mathematic models to approximate a sequence of sensing data. For example the

constant model approach APCA [48] use a constant line model while PWLH [49] uses a

linear line model as shown in Figure 2.7. They can both present multiple data points with

few model parameters thus achieve a good compression ratio. However, they can not work

with applications requiring lossless data. The compressive sensing approaches like [51]

have the drawback that the data may lose integrity thus, are not suitable for multi-modal

lossless data compression.

2.2. ENERGY EFFICIENT DATA BROADCAST AND ROUTING ALGORITHMS

Efficient data dissemination protocol could not only reduce the delay but also save

energy. In this section, we will discuss some classic data dissemination protocols including

Counter-based broadcast, energy efficiency routing schemes, and trajectory-based routing

and virtual coordinates.

2.2.1. Counter-based Broadcasting Schemes. Broadcasting is the fastest way to

flood a message into the whole WSAN. However, limited bandwidth causes a delay in

broadcasting a sequence of messages into the network. After a node receives a given

packet, the counter-based broadcasting schemes [52][53][54][55] require a node to wait for

a short period to listen (random access delay) to its neighbors and count how many times

20

the given packet has been rebroadcast. If the broadcast count of the given packet reaches

the predefined threshold, it will drop the packet. Thus, only a few of the nodes in the

network will rebroadcast the given packet which saves bandwidth and thus, alleviates the

congestion. The predefined counter threshold (CTS) and the random access delay (RAD)

are two hyperparameters that determine the performance of the broadcast. Based on the

strategy of configuring these hyperparameters, we classify the counter-based broadcasting

approaches into the three categories as follows: (1) Neighborhood-aware counter-based

broadcast. (2) Topology-aware counter-based broadcast. (3) Energy residual aware counter-

based broadcast.

Figure 2.7. An example of APCA and PWLH constant model

Neighborhood-aware counter-based broadcast approaches, like [56], tweak the ran-

dom access delay (RAD) based on the number of neighbors of the receiver. The nodes with

less neighbors will has longer RAD that reduce the probability of been chosen to be the

rebroadcast nodes. In contrary, nodes with more neighbors is more likely to rebroadcast the

packets that could increase the overall coverage ratio of the broadcast.

RAD = rand[0, 1] × Tmax ×
(R2 − D2)

R2 (2.1)

21

Topology-aware counter-based broadcast approaches, like [53] and [54], set the

RAD based on the receiver’s location, network density, overlapping area. The approach

in [53] use the distance between the broadcaster and receiver as the control parameter as

shown in Equation 2.1 where R is the radio range, D is the distance between the broadcaster

and the receiver, andTmax is the maximum listening time for a sensor node. The idea behind

the Equation 2.1 is the father nodes will have high possibility to rebroadcast thus reduce the

total number of hops to broadcast a message to the whole network.

The Level-based approach [57] exploit the topology of the network and select

minimum nodes that cover the most of the network.

Energy residual aware counter-based broadcast considering the remaining battery

of the receiver as a factor of choosing the RAD values. For example in the hybrid RAD

decision Equation of [54], the battery factor is as shown in Equation 2.2 where Eresidual

is the energy residual of the receiver and Emax is the maximum energy of new battery.

The hot spot problem that some nodes deplete energy faster than others could be solved by

considering the energy residual of the receiver.

RADB = rand[0, 1] × (1 −
Eresidual

Emax
) (2.2)

2.2.2. Energy Efficiency Routing Schemes. Hierarchical grid-based routing is an

energy-efficientmethod for routing of data packets [58]. With themobile sink and predefined

virtual grid, packets could bypass the congestion area of the grid and route to the mobile sink

by fetching the updated mobile sink’s location from the cell-center. The grid-based routing

protocol can be classified into two categories, the query-based protocol (i.e. PANEL [59],

Grid-Based Coordinated Routing [60], GMCAR [61], etc.) and the event-based protocol

(i.t. TTDD [62], GMR [63], EAGER [64], etc.). For the query-based routing protocol,

sensor nodes only sending the sensing data on request, while event-based protocol sensors

will report events based on the pre-configuration of the event definition. Comparing to the

22

event-based routing protocol where each sensor report sensing data periodically, the query-

based routing protocol greatly reduces the overhead of unnecessary sensing and routing,

which saves both energy and bandwidth. However, efficiently disseminating the data request

packets in a WSN without GPS is a challenge for the query-based routing protocol. Some

works like [58] switches alternately grid-head states to overcome the energy and bandwidth

overhead of flooding control packets. The work [65] uses the location information of

the cell-header and their neighbors to forward the query towards the target cell and flood

message only in the target cell. Though these works reduce the broadcast overhead, the

grid-based routing still needs the GPS information and extra energy to maintain the grid

topology.

Ring routing and nested routing [66][67] are proposed to solve the problem of

routing packets to a mobile sink. The idea behind ring routing and nested routing is to

store the current mobile sink’s location in a ring or nested ring structure. The data source

needs to query the nodes in the ring/nested ring structure to fetch the updated location of

the mobile sink before routing the packets. Then the data source routes the packets to the

mobile sink using the updated sink location. Ring routing and nested routing achieve good

delay and energy performance because searching the ring structure is easier than searching

the whole network.

Ri = (1 − c ×
dmax − dbase

dmax − dmin
)R0 (2.3)

Some cluster based communication protocols like [68][69][70] could saves energy

by only let the cluster heads to broadcast. Thus eliminate the redundant rebroadcast as well

as broadcast storm effect. There are two major challenges for cluster based communication

protocols. One is the hot-spot issue which is addressed in HEED [69] protocol. It proposed

an adaptive clustering algorithm that elect a sensor node with high battery residual to the

cluster head thus improved the total life-time of the WSNs. Some clustering algorithms

tweaked the size of the clusters and also achieve good energy saving. For example in the

work [70], the authors proposed a novel clustering algorithm that group sensor nodes into

23

clusters with unequal size which radius is defined in Equation 2.3 where c, dmax , dmin, R0

are predefined parameters, dbase is the distance from that cluster head to the base station,

and Ri is the radius of the i’th cluster. By doing so, the hot spots near the base station can

be off load to more clusters. Second challenge is the overhead of maintaining the cluster

topology. As we have discussed above, to mitigate the hot spot issue of WSNs, cluster head

need to be re-elected if the current cluster head deplete too much energy. However, re-elect

a cluster head introduce redundant message exchange which contribute to both the energy

overhead and bandwidth overhead. It is a challenge to find a balance point that mitigate hot

spot problem but not incur too much cluster head re-election overhead. Suppose in each

round the WSN would re-select it’s cluster head (CH). If a round lasts too long, the CHs

will soon die. On the other hand, if a round is too short, the topology of the clusters will

change frequently and considerable energy shall be wasted in the setup phase instead of

spent on data communication. In [71], the author proposed a fuzzy interface system which

can determine the optimized round period for the current status of the WSN. Thus it achieve

a good energy saving compare to HEED.

2.2.3. Trajectory-basedRouting andVirtualCoordinates. Trajectory based rout-

ing [34][35] is a paradigm that only the nodes near the given routing trajectory will forward

the packets. It includes trajectory generating and encoding and the routing decision rules for

each sensor node. It has the following challenges: First, the trajectory encoding algorithm

should able to compress the trajectory as the encodedmessagewill be included in the routing

packets. Second, each compressed message should be able to route through the trajectory

to the sink reliably. Third, the overhead of routing caused by redundant rebroadcast should

be minimized. However, for low cost WSNs without GPS module, the additional challenge

is to route through a trajectory without using any GPS-based location information.

24

A virtual coordinate system is an option for IoTWSNs without GPS. It can use local

connectivity information such as the number of neighbors of each node and the perimeter

nodes’ locations as in [72]. It can also use the anchor nodes and the vector of minimum hop

distance (DV-Hop), which shown in Figure 2.8, to the anchor nodes to estimate the distance

between nodes.

Figure 2.8. An example of DV-Hop of a sensor node N

To route through a trajectory with virtual coordinates using DV-Hop rather than

GPS, the virtual coordinates should be able to reflect the sensors’ real location precisely.

Intuitively, increasing the number of anchor nodes will improve the precision of the virtual

coordinates. This has also been proven by DV-Hop based localization algorithms such as

in [73], [74], and [75]. The challenge, however, is to reduce computation and memory

usage which are limited in sensor nodes. The naive combination of greedily checking the

distance to the routing trajectory and the use of the virtual coordinate system with many

anchor nodes is not practical. Because it not only requires computational resources, but

also error-prone due to the use of the estimated location. According to the DV-Hop based

localization algorithms, in the worst case, the error rate can be as large as 45% of the range

of the radio [24], which could lead to routing failure.

25

2.3. ENERGY EFFICIENT DUTY CYCLE MECHANISMS

The Energy efficient duty cycle mechanisms saves energy of WSNs by putting

sensors to sleep periodically. To lower the duty cycle, sensors should sleep majority of

the time and awake up fast. In the active period, the sensors need to finish the optimized

work fast to reduce the energy consumption. Also, to reduce the collision of the radio

communication in the WSNs, sensors need to avoid transmitting data simultaneously in

the same region. In the work S-MAC [76], T-MAC [77], and Z-Mac [78], they maintain

the synchronized time slots which can be much bigger than normal time-division multiple

access (TDMA) slots. S-MAC, T-MAC employ request to send (RTS)/clear to send (CTS)

mechanism (Nodes maintain periodic duty cycle to listen for channel activities and transmit

data) in case of synchronization failures. As these protocols use RTS/CTS, the overhead

of the protocols is quite high because most data packets in sensor networks are small.

To reduce the overhead, instead of using RTS/CTS, the Z-MAC [78] adopted a technique

from RTP(real-time transport protocol) and developed a local synchronous protocol that the

control message transmission rate is limited to a small fraction of session bandwidth and

each session member adjusts its sending rate of control messages according to the allocated

session bandwidth. In its local synchronization protocol, each data sender transmits a

synchronization message containing its current clock value periodically. When a node

receives a synchronization message, it updates its clock value by taking a weighted moving

average of its current value and the newly received value.

B-Mac [79], which is a light weight carrier sense multiple access (CSSA)MAC pro-

tocol, is the default MAC protocol of Mica2 sensor. It also adopt low power listening (LPL)

and engineer the clear channel sensing (CCA) technique to improve channel utilization. The

LPL require the sender broadcast a preamble which lasts one cycle (sleep+active) before

actual sending the data. After a receiver wake up and overhear the preamble message, it

26

keeps awake until it receives all the data. The clear channel sensing technique exploits the

ambient noise changes depending on environment. If the channel is clear then the sender

will transmit while the channel is busy it will backoff (wait for a small interval and retry).

2.4. SIMULATINGWSNS

To demonstrate the effectiveness of a compression algorithm or a routing protocol

in large scale WSNs, many researchers have simulated WSNs under different conditions to

gather statistics on the performance. These simulations require input datasets that describe

the time-evolving nature of the network topology. In this section, available datasets and

models needed to simulate a WSN are listed and described.

2.4.1. Simulation System Properties of TOSSIM. The TOSSIM simulation sys-

tem has the following four properties: Scalability, Completeness, Fidelity, and Bridging.

The scalability means the simulation tool need to be able to handle large scale

networks. TOSSIM is an event driven simulator which handle network event in an asyn-

chronous queue that is able to handle large scale network’s message exchange simulation.

Also, it loads theWSN topology by reading a directed graph file which can handle thousands

of vertexes and links. The completeness requires the simulator to cover as many system

interactions as possible. The TOSSIM could fully simulate the data linked layer. It also

allow simulation of communication through PC to simulating WSNs. The user can also

choose external radio to verify their own prototypes. The fidelity means the simulator is

able to capture the behavior of the network at a fine grain. To improve the fidelity of the

simulation, TOSSIM considering real-world condition that affect the radio communication

like the environment noise and the radio contention caused in packet-level Interactions. The

bridging is a property that the user can effortless to test and verify code in real hardware. The

TOSSIM is designed for TinyOS and can simulate real-world nesC programming running

in real sensor motes.

27

2.4.2. Energy Simulation and Energy Model. To simulate the energy usage,

PowerTossim-Z [80] is used as a plugin for TOSSIM simulation. It use the micaZ power

model that precisely simulate the energy usage including CPU power, and Radio receive

and radio transmission power usage. It works as a plugin of TOSSIM and needs a data

parser to parse the simulation outputs.

2.5. TARGET TRACKING

Target tracking is a complex task including target trajectory prediction, trajectory

encoding, and real-time data dissemination.

2.5.1. Trajectory Prediction in WSNs. In a moving object tracking problem, the

key objective is the dynamic sensor tracking schedule to predict the trajectory that ensures

the real-time performance of object detection and tracking. When WSNs operate in low-

power-listening (LPL) mode, the radio communication latency equals half of the duty cycle

times hops counts as shown in the following Equation. Delayrcv
send =

Hrcv
send
×Tclc

2 where

Delayrcv
send is the routing delay in sending a packet from a sender to a receiver, Hrcv

send is the

hop counts from a sender to a receiver, and Tclc is the average duty cycle of the current

scheduling protocol. The prediction-based methods are used to predict the location of the

mobile object after Delayrcv
send time based on historical data. Therefore, the sensor states

(active, sleep) can be prepared before the target enters/leaves the area. Linear prediction

is a simple prediction approach, which depends only on the previous location of the target

[81]. However, linear prediction suffers from low prediction accuracy.

To improve the prediction accuracy, particle filter [82] and Kalman filter [83], [84],

[85] based prediction frameworks have been proposed. Kalman filter is a linear algorithm

that exploits a series of data observed overtime to boost the prediction’s precision. In paper

[86], the authors proposed a Kalman filter based generalized regression neural network that

not only reduced the prediction error but also improved the prediction speed by combining

28

Figure 2.9. Cluster-based Object tracking protocol

the Kalman filter with neural networks. The particle filter based frameworks like [87] [88]

[89] are also widely used in the target tracking as they are suitable for nonlinear systems.

There are also works like [90] that combines both Kalman filter and Particle filter based

frameworks to get reliable location prediction for real-world applications. Although the

previous prediction based target tracking approaches could achieve good prediction speed

and precision, they still rely on the GPS data or RSSI values, and can not directly generate

the control message which can directly control the local sensors. The predicted trajectory

needs to be processed by the server that has the knowledge of all the sensors’ locations

which has a higher risk of leaking the location privacy.

2.5.2. Cluster-based Object Tracking Algorithms. Cluster-based object tracking

protocols are so popular that some researchers classified the previous works into only two

groups: cluster-based and non-cluster-based. It is the most realistic solution that could

control the message flow in large scale WSNs.

In cluster-based protocols, cluster heads, which are selected by different cluster

algorithms, are responsible for collecting information from the nodes in their cluster, com-

municating with sinks, and propagating the control messages to their cluster members. In

29

this way, a large scale WSN is simplified to a small sink-cluster heads network with many

small cluster head - slave sensors sub-networks. For object tracking applications, once slave

sensors in any cluster detect the object they report the target’s information to their cluster

head. The cluster head then routes the information to the sink or the local mobile edge

server.

For saving energy, as we have discussed before, the server predicts the target’s

trajectory and sends the control messages to the cluster heads which reside on the target’s

trajectory. Those cluster heads then propagate the active/sleep messages to all or some

members when the target enters/leaves. Therefore, most of the sensors that far from the

target’s trajectory could fall into sleep to save energy and bandwidth.

For example, in Figure 2.9, the sink of a cluster-based WSN collects the target’s

current location from a cluster-head. After predicting the target’s future trajectory, the sink

sends control messages to the cluster heads that reside on the target’s future path. The

cluster-head then controls the related sensors for detecting the target. Although the linear

prediction model could predict the target’s movement well, the centralized cluster-based

approaches can’t deliver the wake-up (for tracking) and reset messages (for putting sensors

back to low power listening (LPL) mode) efficiently.

The drawback of the cluster-based object tracking protocols is the overhead of gener-

ating the dynamic cluster [91] and maintaining the clusters. Also, for different applications,

all the nodes in the WSN need to tune their program to meet specific routing and clustering

requirements. However, it is usually not practical for large scale WSNs.

Considering the above drawbacks of the cluster-based object tracking protocols, we

choose to use the DV-Hop (which stands for distance vector of hops) based packet routing

protocol [29] that decouples the data plane (network layer) and the control plane of the IoT

network. Like software-defined networks, the DV-Hop based routing rules are encapsulated

in each routing packet. So different applications could share the sameWSN by just creating

their own routing rules.

30

2.5.3. Counter-based Broadcast. Broadcasting is the fastest way to flood a mes-

sage into the whole WSN. However, limited bandwidth causes a delay in broadcasting a

sequence of messages into the network. After a node receives a given packet, the counter-

based broadcasting schemes [52][54][55] require a node to wait for a short period to listen

to its neighbors and count how many times the given packet has been rebroadcasted. If the

broadcast count of the given packet reaches the predefined threshold, it will drop the packet.

Thus, only a few of the nodes in the network will rebroadcast the given packet which saves

bandwidth and thus, alleviates the congestion.

31

PAPER

I. EFFICIENT Z-ORDER ENCODING BASED MULTI-MODALDATA
COMPRESSION IN WSNS

Xiaofei Cao, Sanjay Madria, Takahiro Hara

ABSTRACT

Wireless sensor networks have significant limitations in available bandwidth and

energy. The limited bandwidth in sensor networks can cause higher message delivery

latency in applications such as monitoring poisonous gas leak. In such applications, there

are multi-modal sensors whose values such as temperature, gas concentration, location and

CO2 level need to be transmitted together for faster detection and timely assessment of

gas leak. In this paper, we propose novel Z-order based data compression schemes (Z-

compression) to reduce energy and save bandwidth without increasing the message delivery

latency. Instead of using the popularHuffman tree style based encoding, Z-compression uses

Z-order encoding to map the multidimensional sensing data into one-dimensional binary

stream transmitted using a single packet. Our experimental evaluations using real-world

data sets show that Z-compression has a much better compression ratio, energy saving,

streaming rate than known schemes like LEC (and adaptive LEC), FELACS and TinyPack

for multi-modal sensor data.

Keywords: Sensor network, Data compression, Z-order encode

32

1. INTRODUCTION

Wireless sensor networks (WSNs) are being developed for a plethora of emerging

applications in wide range of disciplines. For example, there are near real-time sensor-

cloud applications [1] to perform multi-modal sensing tasks. Some military applications of

tracking hostile objects or monitoring intruders use multiple sensing units to provide precise

location and speed by applying multi-sensor data fusion. The unmanned vehicles [2] need

GPS and accelerometer to locate themselves, and to track distance and height of objects

using the camera, laser range meter or radar. By fusing these multi-modal sensor data,

they can also predict the moving trajectory of the nearby objects. Similarly, environmental

monitoring applications need temperature, wind direction, humidity, CO2 level, etc. Many

of these multi-modal sensor applications asking for rigorous data integrity as well as high

data stream rate, and therefore, cannot tolerate high latency due to limited link bandwidth

in WSNs. Since batteries are the typical power source for wireless sensors and cannot

easily be changed, the energy consumption is another primary constraint in the design of

multi-modal WSNs. Many research efforts have shown that radio communication is the

predominant factor in all energy consumptionmetrics of theWSNs. Thus, there is a need for

lossless data compression algorithms which could reduce the size of multi-modal sensing

data thereby, decreasing the radio communication.

Some sensor data aggregation approaches [3][4] could save energy and bandwidth by

reducing the number of packets to be transmitted. However, the data aggregating approaches

cannot guarantee the data integrity because of the lossy process and outlier data. Also, when

aggregating, the outlier detection is expensive and could introduce delay [5]. Model based

compression algorithms [6] such asAPCA[7], PWLH[8], SF[9] also have good compression

ratio. However, they can not work on lossless applications as they approximate the data with

temporal and spatial locality. The compressive sensing approaches have the same drawback

that may lose data Integrity thus, not suitable for multi-modal lossless data compression.

33

Existing works [10][11][12] propose the lossless compression algorithms for sen-

sors, using Huffman coding, that exploit temporal locality of the data of the WSNs. Instead

of storing and transmitting the complete data, [10][11][12][13] use the difference in value,

called delta value, between two adjacent timestamp readings and usually, it needs fewer bits

to represent a delta value than a complete value. Based on Shannon entropy theory [14]

and the Huffman coding[15], the most frequent values are assigned a shorter code than the

less frequent values. Thus, if dataset is drawn from a smaller set of values, the entropy

will be smaller. However, the standard Huffman and adaptive Huffman [16] coding have

larger overhead on RAM in storing the Huffman trees generated dynamically based on the

frequency of the data. Also, to decode the compressed data, every node in the wireless

sensor network needs to have a copy of the tree. However, as we know that WSNs have

limited bandwidth and energy, synchronizing the Huffman tree is impractical. LEC and

adaptive LEC [10][11] successfully adapted Huffman coding for its static initial code library

which is a predefined Huffman tree. That way, WSNs do not require transmitting the entire

Huffman tree. Similarly, TinyPack [12] modified its initial code library based on LEC’s and

also proposed algorithms adapting library to different types of sensor applications.

To address the problem discussed above and improving the applicability and com-

pression ratio of existing algorithms, we propose a Z-order encoding based compression

algorithm. We also compare the performance of our work with LEC, Adaptive-LEC,

FELACS and TinyPack (since they outperform other algorithms like ASTC [17], S-LZW

[18] and GAMPS[19]). [20] proposed their coding dictionary based on a very specific

dataset, thus, not considered in our experiments. In summary, this paper makes the follow-

ing contributions:

• Design of an efficient multi-modal sensor data compression scheme that combined

the Z-order encoding with delta compression. To our knowledge, this is first attempt

to propose multi-modal lossless data compression algorithms for WSNs. Briefly, our

main contributions are as follows.

34

• Improve Z-order encoding by integrating a static initial dictionary and an odd bit

Z-order encoding for further performance improvement in WSNs.

• Design a data concatenation scheme which can concatenate leaf nodes data efficiently

for compression.

• Perform extensive simulations using TinyOS and TOSSIM and compare the perfor-

mance with most recent and popular sensor data compression algorithms referenced

above. The results show that our schemes outperform these considering the compres-

sion ratio, streaming rate and energy efficiency as the metrics.

2. BACKGROUND AND RELATEDWORK

2.1. LEC, TINYPACK, AND ADAPTIVE LEC

LEC[10] and TinyPack[12] are both Huffman coding based delta compression al-

gorithm. The Huffman coding would represent higher frequency symbols with less number

of bits. However, in sensor networks, delta values can range from 0 to more than 216. Thus,

the memory limitation of nodes makes creating such large Huffman coding dictionary im-

possible. In their improved approaches to save memory and to make them computationally

efficient, instead of adapting Huffman coding to each symbol, LEC and TinyPack create the

Huffman coding for the length of the delta value in a fixed pattern that matches the frequency

of the data length group which they assume is decreasing when the length of delta value

increases. Thus, in both LEC and TinyPack, the length of Huffman coded prefix increases

with the increasing delta values length. The Huffman tree of LEC is shown in Figure 1a

and the TinyPack code is shown in Figure 1b. These two coding focused on the different

distribution of the delta value of the dataset. For example, if a dataset contains many data

35

of only one-bit length, according to Figure 2, TinyPack will have better compression ratio

than LEC whereas, for other delta values larger than 3, LEC will have better performance

than TinyPack.

However, as we have discussed before, the distribution of the delta values can

be varied in different sensor network applications. Even in the same application under

different time periods or in different sensor nodes, the distribution is different. Thus, in

these situations, LEC and TinyPack do not show good performance as they have fixed code.

To solve this problem, Adaptive-LEC and TinyPack-DP(TP-DP) can adapt the prefix code

when the distribution of the frequency of the delta value length changes. The Adaptive-LEC

will adapt its prefix code for every new data while the TP-DP only changes its prefix code

at the beginning of each new frame. The efficiency of Adaptive-LEC initial code is shown

in Figure 2. They define the length of delta value with the most frequency as the frequency

center of data and define the length of delta value with the minimum prefix code as the

code center. When the current frequency center of data is drifted from the previous code

center, the prefix code will shift to meet the current frequency center of the data. For some

dataset with two frequency centers, they proposed another initial code with two code center

and two adaptive sections where the prefix codes will be adapted independently based on

sections.

2.2. FAST EFFICIENCY LOSSLESS ADAPTIVE COMPRESSION SCHEMA

The idea of fast efficiency lossless adaptive compression schema (FELACS) [13] is

to give every compressing data a fixed b bits. Every value smaller than 2b will be filled with

’0’ at the front to reach b bits, added ’1’ bit at the front then directly appended to the output

stream. Every value larger than or equal to 2b will be cut into two sections. The higher bits

section is encoded using unary coding and is appended to the output stream. The lower bits

section has the length b directly appended to the output stream. The fixed bits b is generated

by calculating the average number of the input data.

36

(a) Huffman tree of LEC code

(b) Huffman tree of TinyPack initial code

Figure 1. Huffman tree of LEC and TinyPack initial code

3. PROPOSED Z-COMPRESSION APPROACH

Z-compression is a lossless compression algorithm that exploits temporal locality.

Thewireless sensor nodes use the delta value of each attribute as the input of the compression

algorithm. The delta value is calculated using Equation 1 whereVc is the current delta value,

Vp is the previous delta value and P is the resolution of the sensors.

d∆ =
Vc − Vp

P
(1)

37

Figure 2. Normalized compression overhead of LEC and TinyPack

3.1. NAIVE MULTI-DIMENSIONAL Z-COMPRESSION FOR SENSOR VALUES

The Naive Z-compression uses Z-order encode [21] and all-is-well scheme [12]. As

shown in Figure 3, the Z-order encode interleaves input data bit by bit and output a new

binary number with a length double of the largest input.

V =



2 × Vsigned, if Vsigned > 0

1, if Vsigned = 0

1 − 2 × Vsigned, if Vsigned < 0

(2)

Figure 3. Procedure of Z order encoding

38

We choose the byte array as the data structure to store the encoded data. Also, we

use unsigned integer V to represent both positive, negative and zero values Vsignedby using

Equation 2. Next, we add ’1’ at the front of the output to protect the possible ’0’. We also

integrate an all-is-well bit [12] with Z-order encode. It sets the compressed data to be zero

if all delta values of the input attributes are zero. We set the result to be an all-is-well bit

when nothing changes. The implementation is by directly checking all the input values. If

all the inputs equal to ’1’ then output ’1’ where ’1’ equals to zero according to Equation 2.

Different from theHuffman tree based compression algorithms that need to know the

probability distribution of the input data to achieve the best performance, Z-compression

only exploits the relationship between the length of delta value of the attributes. We

then compare the normalized overhead of Naive Z-compression, LEC, and TinyPack on

compressing the uniformly distributed multi-modal random data as shown in Figure 4.

Figure 4. Normalized compression overhead compressing multi-dimensional data

Figure 5. An example of optimized Z-compression

39

The result shows that Naive Z-compression performs well when the number of

attributes is smaller. However, with the increase in number of attributes, the overhead

of Z-encode increases. When the number of attributes is larger than eight, the overhead

of Z-encode is greater than that of LEC. To address this drawback, we next propose

an Optimized two-dimensional Z-compression scheme which guarantees to have better

compression ratio than TinyPack and LEC when compressing two-dimensional data. Thus,

for multi-dimensional data, we can split it into several groups with two or more attributes

to minimize the overhead due to extra bits.

3.2. OPTIMIZED TWO-DIMENSIONAL Z-COMPRESSION ALGORITHM

Before improving the Naive Z-compression, we need to study two important proper-

ties of Two-dimensional Z-order encoding. Here, we do not consider the extra ’1’ bit added

before the compression result.

• The number of bits in the output of Two-dimensional Z-order encoding is always

even.

• There must be at least one of ’1’ in the first two bits of the output of the Two-

dimensional Z-order encoding in binary format.

The first property indicates a way to improve the Naive Z-compression. We can use the

value with odd length to represent the ’skewed’ data. Here, we define a two-dimensional

dataset as skewed when the number of bits of the larger delta value is more than two times

of the number of bits of the smaller as in Equation 7. When the data is skewed, in order

to make the length of Z-value odd, we divide the larger value VL with length Bl into two

values VL1 and VL2 of length Bl1 and Bl2 using Equation 6a,6b,6c. Note that the notation

’<<’ and ’>>’ means shift left and shift right for certain bits.

Maskl2 = (1 << Bl2) − 1, (3a)

40

VL1 = VL >> Bl2, (3b)

VL2 = VL&Maskl2; (3c)

We can apply Z-order encoding on VL1 and VS which give us the Z value Zhal f . Then by

appending VL2 on Zhal f , shown in Equation 8, we get the Z value for the skewed data. The

notation ⊗ means applying Z-order encoding and ⊕ means concatenating the two binary

strings together. In the above procedure, we have to ensure that the Z value has odd length

Lodd and each different two-dimensional data maps to a unique Z value.

Algorithm 1 shows the procedure of the Optimized two-dimensional Z-compression.

It reduces the extra bits adding to the smaller delta value when the delta value pair is

skewed. However, when the delta value pair is not skewed, Naive Z-encode is applied.

For example, when encoding two attributes ’101’ and ’11110000’, we add two ’0’ bits

to the first attribute ’101’ which makes it ’00101’ and set the end pointer of the second

attribute to be 3 which divides it into two values, ’11110’ and ’000’. Then we apply Naive

Z-compression on ’00101’ and ’11110’ which produces ’0101110110’. In the end, we

append the remaining ’000’ to it and add ’1’ to the leftmost bit which gives us the encoded

Z-value of ’10101110110000’ which is 14 bits long.

Bs < f loor(Bl/2) (4)

Z = Zhal f ⊕ VL2 = (VL1 ⊗ VS) ⊕ VL2 (5)

When decoding, we use the second property of Two-dimensional Z-order encoding to help

us figure out which value within the two decoded data is larger. That is, the value with less

’0’s at the front is larger. Then we append the remaining data to it to get the final result.

For example, when decoding ’10101110110000’, we first count the length of the Z value

after the first ’1’ which give us 13. This odd value 13 indicates that the delta value pair

is skewed. Then using 13%6 = 1, we know that it belongs to the first case in Algorithm

41

1 that BL%4==0. And, using n = 13/2 = 2, we can divide the Z value into two parts at

2× (2n+ 1) = 10 bits from left. Interleaving the bits from the first part, we get ’00101’ and

’11110’. In the end, we append the remaining ’000’ to the second value as it has less ’0’

bits at the front than the first one so the decoder will output two binary values ’00101’ and

’11110000’.

Figure 6. Normalized overhead in compressing two attributes where the largest attribute’s
data is 20 bits long

In Figure 6, We compare the normalized overhead of extra bits of four different com-

pression algorithms which includes LEC, TinyPack, Naive Z-compression and Optimized

Z-compression on compressing two-attributes data where the larger attribute is 20-bits long.

The X-axis is the ratio of the number of bits of the input delta value pair. The Y-axis is

the normalized overhead which is the extra bits over the total bits that the input delta value

pair has. We can see that the Optimized Z-compression dwindle the extra bits significantly.

The maximum normalized overhead is 0.43 which is half of the normalized overhead of

42

TinyPack. In Optimized Z-compression using odd/even bit optimization, we use two as the

critical ratio of two attributes’ length to trigger the Optimized Z-compression as it is easier

to implement.

Algorithm 1: Optimized Two-dimensional Z-compression algorithm using
odd/even bits optimization

input : Delta value VL and VS where VL > VS
output
:

Z value

1 initialization BL ← Length(VL), BS ← Length(VS)

2 if BS ≥ f loor(BL/2) then
3 Z = VL ⊗ VS;
4 else
5 if BL%4 == 0 then
6 n← BL/4;
7 Divide VL into VL1 and VL2 where VL = VL1 ⊕ VL2;
8 Length(VL1) = 2n + 1 and Length(VL2) = 2n − 1;
9 Z = (VL1 ⊗ VS) ⊕ VL2;

10 else if BL%4 == 2 then
11 n← BL/4;
12 Divide VL into VL1 and VL2 where VL = VL1 ⊕ VL2;
13 Length(VL1) = 2n + 1 and Length(VL2) = 2n + 1;
14 Z = (VL1 ⊗ VS) ⊕ VL2;
15 else if BL%4 == 3 then
16 n← BL/4;
17 Divide VL into VL1 and VL2 where VL = VL1 ⊕ VL2;
18 Length(VL1) = 2n + 2 and Length(VL2) = 2n + 1;
19 Z = (VL1 ⊗ VS) ⊕ VL2;
20 else
21 n← BL/4;
22 VL =

′ 0′ ⊕ VL;
23 Divide VL into VL1 and VL2 where Length(VL1) = 2n + 1 and

Length(VL2) = 2n + 1;
24 Z = (VL1 ⊗ VS) ⊕ VL2;

25 return Z =′ 1′ ⊕ Z;

We then compare another optimization scheme that can applyOptimizedZ-compression

on two input attributes with any ratio of lengths. That is, use a fixed small bits as a ratio

indicator to indicate the actual ratio of two attributes’ lengths. However, extra control bits

43

can cause extra overhead. For example, when using two bits indicator, four different ratio

which are 3
2 ,

3
1 ,

2
3 , and

1
3 , can be indicated using ’00’, ’01’, ’10’, ’11’. We can then interleave

binary values in a fixed ratio. For example, when the ratio is set to be 3
2 , we should interleave

3 bits at a time for the first delta value and 2 bits at a time for the second delta value.

We changed the ratio indicator bits from 2 to 4 bits and tested it on a uniformly

distributed random data set. Figure 7 shows that with the increasing length of input

data, the average overhead of different optimized Z-compression also increases. However,

the odd/even checking based optimization performs better than others when the input’s

maximum length is fewer than 45 bits which is larger than the size of most wireless sensor’s

data sensing output. Thus, when compressing real-time sensing data packets, we suggest

only to use Algorithm 1.

Figure 7. Average overhead in compressing data with two attributes

3.3. SMALL CODE LIBRARY ADD-ON

We can further improve the Optimized two-dimensional Z-compression scheme by

integrating a small code library. This library will enhance the compression performance

without affecting the correctness. The code library is shown in Table 1. For entries in the

44

small library, one of the input delta value pairs should have ’0’ or ’1’. We assign the output

a smaller value which never appears in the result of Naive or Optimized Z-compression.

For example, when we compress two delta values where both the values are 0, the output of

encoding value will be 1-bit ’1’ instead of 2-bits ’11’ giving 50% improvement. Also, this

small code library will not affect the correctness of the encoding and decoding procedures

in Algorithm 1 because Algorithm 1 will not generate Z values that the small library has.

When decoding, we can check the small library before checking the length of Z value to get

the correct decoding result.

Table 1. Initial small code library

Value 1 Value 2 Z value
0 0 1
0 1 11
1 0 10
0 -1 111
-1 0 110
0 V2 >31 | | V2 <-31 10000⊕V

V1 >31 | | V1 <-31 0 100000⊕V

3.4. OPTIMIZED N-DIMENSIONAL Z-COMPRESSION ALGORITHM

The Optimized N-dimensional Z-compression algorithm combines the procedures

discussed in 3.A, 3.B, and 3.C using a predefined rule which is generated in Algorithm 3.

When compressing multi-dimensional sensing data, We can either use Naive Z-encoding

based compression on all the attributes or use Optimized Z-compression on the pairs of

attributes and then merge the result. Testing all the combinations of the input attributes

with above two encoding methods, Naive Z-compression and Optimized two-dimensional

Z-compression is an NP-complete problem. We propose an approximate algorithm using

two pointers and a local greedy approach to find the approximate combination result in

45

Algorithm 3. We use a two dimensional array as GroupMember to represent the attributes

ID and their length. We use another array as Group to store the list of GroupMembers.

The input of the algorithm is a list of GroupMembers which represent all the attributes.

The output of the algorithm is a list of Groups which instructs the encoding and decoding

procedure.

Algorithm 2: Rule Generation Algorithm
input : List of GroupMembers: GML
output
:

List of Groups: GL

1 Sort(GML); //sorting based on the length of attributes
2 LP← 0; //left pointer starting from the left end
3 RP← GML.getSize(); //right pointer initialization
4 while (length(GML[LP])<length(GML[RP-1])/2&&LP<RP) do
5 LP++,RP- -; //find pairs meeting Equation 2
6 //add groups of the pairs to the output list
7 while RP<GML.getSize() do
8 GL.add(new Group{GML[RP++],GML[GML.getSize()-RP]}
9 bufGroup=new Group{}//initial a new group
10 //add rest GroupMembers to the Group
11 for (i=LP;i<GML.getSize()-LP;i++) do
12 bufGroup.add(GML[i]);
13 GL.add(bufGroup);
14 return GL;

The encoder will use the Group information to help them encoding. If a Group

contains more than three entries, the encoder will use the Z-order encoding to compress the

attributes represented by the group. If a Group contains only two attributes, the encoder will

use Algorithm 1 and Table 1 to compress them. At last, the sensor will further encode all the

encoded values and output the result. For example, if there is a Group [{1,7},{2,5},{4,9}],

the wireless sensor node will do Z-order encoding on the attributes with field ID 1,2 and 4.

If there is another Group [{3,3},{5,10}], the sensor will do the optimized two-dimensional

Z-compression on the attributes with field ID 3 and 5. Then the node will compress the two

46

encoded value using optimized Z-compression as there is only two group. After transmitting

the compressed value to the decoder, the decoder will decode the Z value reversely based

on the number of groups and the fields ID in each group.

Algorithm 3: Lossless data concatenating algorithm
input : Q, N, bmax, bmin, sum, L
output
:

payload: out[]

1 Index=new byte[N], ind=1, prev=L[0][1];
2 Sort(L); //sorting is based on L[][0]
3 for (i=0;i<N;i++) do
4 Index[L[i][1]]=ind;
5 ind+=prev;
6 prev=L[i][1];
7 prev=L[0][1];
8 for (i=0;i<N;i++) do
9 buf=Q.poll();
10 for (j=prev-L[i][1]; j<L[i][1]; j++) do
11 out[Index[i] + j]=buf[j]
12 prev=L[i][1];
13 out[0]=N;
14 return out;

3.5. LOSSLESS DATA CONCATENATING ALGORITHM

The main reason that we need to concatenate the local compressed packets is to save

energy and bandwidth usage. In our experiments and also, in the previous experimental

analysis of radio performance[22] [23], we found that reducing the payload size of leaf

nodes’packets will not give us much energy saving. Also, a leaf node is not the bottleneck

in WSNs as there is not much traffic via them. However, in the experiment, we found that

the intermediate nodes are the bottleneck in WSNs as they not only need to sense data but

also need to route packets from the lower level nodes to the higher level nodes. The energy

consumption rate and bandwidth occupation by the intermediate nodes especially the root

is much more critical than the leaf nodes. Thus, to save energy and prolong the lifetime

47

Table 2. Fields of Experimental Dataset

data set name number of fields fields label
Intel Berkeley Lab
environment data

6 epoch, node ID, Temperature, Humidity,
Light, Voltage

Accelerator inmov-
ing car

5 epoch, node ID, X, Y, Z

ZebraNet data 5 epoch, node ID, Longitude, Latitude, Voltage
Vehicle trace data
(V to V)

10 epoch, node ID,
Longitude, Latitude, Altitude, speed of
two vehicles

of WSNs, we only need to consider the energy consumption of the node with the most

radio load. To do that, we need to concatenate the upstream data to decrease the number of

packets each intermediate node will transmit.

PacketSizeLimit < (sum + bmax − bmin) (6)

Next, we discuss how we can concatenate the local compressed packets. The

compressed data are in the byte array format with variable length. It has node ID and

timestamp as their primary key. It is not practical to decode and re-encode all the data in

the intermediate nodes as it will increase the RAM and CPU load as well as cause delays.

Here, we propose a data concatenating algorithm which will concatenate byte array input

data efficiently. The idea is that, in a packet of intermediate node, the compressed data with

larger number of bytes is always in front of the compressed data with smaller number of

bytes. However, the compressed data with smaller number of bytes will be filled with zero

bytes to make them have the same number of bytes as their neighbor in front of them. At the

end, we set the first byte of the output packet the number of bytes of the largest data. When

decoding, we first read the length of the largest packets bmax at first byte. Then we read the

following 2bmax bytes to extract the first and the second data. If there are empty bytes in

front of the second data we need to update the bmax by subtract the number of empty byte

from bmax . Next, we use the updated bmax to extract the third data and update the bmax

48

again. Repeating doing that until the last byte of the packet, we can extract all the samples

in the packets. Note that we use a queue Q to store all the upstream packets’ payload, a

two-dimensional array L to store the size of each payload and their index in Q, an index

array Index to help us append the data in the queue to the output byte array. We also need

to track the largest packet length bmax , the smallest packet length bmin and the total length

of all the packets sum =
∑n

i=1 bi in the queue. Once the criteria in Equation 9 is satisfied,

we use Algorithm 4 to concatenate the elements in the payload queue and create a large

packet. The total number of data needs to be concatenate is ’N’ which exclude the last item

in the queue. Then the intermediate node will transmit the large packet to its downstream

node.

4. EXPERIMENTS AND EVALUATIONS

4.1. EXPERIMENTAL SETUP AND CONFIGURATIONS

To demonstrate the effectiveness of our proposed Z-compression scheme in real-

world situation, we tested it against different types of real-world multi-modal data sets

such as GPS data [24], environmental data[25], Accelerometer data[26] and vehicle trace

data[27] from real projects. The attributes in each dataset are shown in Table 4. Two

common attributes which both data sets share are timestamp and node ID. These two

attributes are used as the primary key of the local packet. We cannot compress the primary

key because the intermediate nodes need to identify where the packet has come from and

when the sampling starts. We assign the timestamp fixed two bytes and the node ID fixed

one byte in the local packet, and use a variable length for the compressed sensing values.

The compression ratio CR in the performance matrix is defined as the compressed data

length over the size of uncompressed data shown in Equation 22. We use a base station

to accumulate the number of bytes of all n compressed packets.
∑n

1 Lcompressed is the

compressed data size and
∑n

1 Loriginal is the original data size.

49

CR =
∑n

1 Loriginal∑n
1 Lcompressed

(7)

To find out the energy cost of the intermediate nodes, we use PowerTOSSIM-Z

to simulate the energy consumption in WSN. The tool will calculate the CPU cycle, and

radio usage at each node. It then uses the predefined power model to generate the power

consumption at each node in the experiment. Data are inserted into the leaf nodes using

python script.

We notice that when we increase the sampling rate in the WSN, close to a certain

interval of two consecutive sensing sample, the packet drops starts happening at some

intermediate nodes and the sink node. Here, we define the sampling rate as the total number

of sensing samples per second in a WSN. To find the effectiveness of the compression

algorithms on the sampling rate and the maximum sampling rate a WSN can have, we

define Equation 23 which output the approximate maximum sample rate of theWSN, where

Tap = 30.31% is the maximum experimental normalized throughput of IEEE 802.15.4

radio in application layer[28], Vch = 250kbps is the channel speed of the radio [29], Sdata

is the uncompressed size of an original sensing sample and CR is the compression ratio of

respective compression algorithm.

sampleRatemax ≈
CR × Tap × Vch

Sdata
(8)

4.2. COMPRESSION PERFORMANCE COMPARISON

This experiment evaluates the average compression ratio in compressing 5000 data

items from each of the four different datasets listed before. The leaf nodes will do the

compression locally. Then the compressed packets are concatenated at the intermediate

nodes using Algorithm 4. To generate the compression rules, a sequence of previous

sensing data are studied. When using the Z-compression algorithm, we set the learning

50

period to be 100 continuously sensing samples. The evaluation results are shown in Figure

8. The compression ratio in Y axis is calculated using Equation 22. Note that greater the

compression ratio means better compression performance.

(a) Compression ratio of Intel lab data (b) Compression ratio of ZebraNet data

(c) Compresseion ratio of Accelerometer
data

(d) Compresseion ratio of Vehicle tracking
data

Figure 8. Compression ratio of real-time datasets

4.3. ENERGY USAGE COMPARISON

This experiment is done in the TOSSIM simulator using PowerTOSSIM-Z [30].

We inserted data at the leaf nodes using the python script again. For some datasets such

as Intel Lab and vehicle trace dataset, we inserted about 20000 samples each time. After

compression and concatenating, the number of packets sending to the sink is much smaller

than the original 20000 sample packets. The result is shown in Figure 9. As the compression

ratio of Z-compression is better than the other compression algorithms for all the four dataset,

the Z-compression reduces more packets than all others and thus, saving more energy and

also reduces the bandwidth usage in the network. Note that as we are comparing different

51

datasets and each dataset has a different number of samples, in the energy comparison

results, we use the normalized energy instead the real energy cost to show the effectiveness

of each compression algorithm. The normalized energy is the ratio of the energy consumed

by compressing or concatenating data and transmitting the fused packets over the energy

consumed by only transmitting the fused packets. The experimental results are shown in

Figure 10; the result shows that Z-compression provides best energy saving for the WSN. It

is because, with the better compression ratio, the intermediate nodes can concatenate much

more leaf node data into a larger packet that reduces the radio usage. Also, the fact that the

intermediate nodes do not perform the compression and the overhead due to concatenating

leaf node’s payload is negligible and thus, we don’t show the CPU energy consumption in

the result.

Figure 9. Total packets after compression and concatenating for 20000 sample data

4.4. APPROXIMATE MAXIMUM SAMPLING RATE

As we have discussed in Section 4.1, the maximum sampling rate is the rate that

the maximum throughput of the sink node can support without dropping packets. It mainly

depends on the compression ratio of the leaf nodes. The compression time will only

52

Table 3. Maximum approximate sampling rate using different compression algorithms
with data concatenating

compression al-
gorithms

Intel Lab envi-
ronment data

Accelerator in
moving car

ZebraNet data Vehicle trace
data (V to V)

Z-compression 1376 1409 1656 1947
LEC 1244 1297 1431 1430
FA-LEC 1245 1328 1500 1403
FAS-LEC 1282 1371 1479 1430
FELACS 1053 1341 1389 1119
TinyPack 1165 1172 1578 1594
No concatenating 131 136 136 117

determine the minimum sample interval of the leaf nodes in the WSN. The maximum

sampling rate will not be affected by the compression time as we can increase the number

of leaf nodes. Also, the time complexity of these 6 compressing algorithms are all O(n). It

is about 30-60 milliseconds for compressing each sample including the sampling time.

Table 3 shows the approximate maximum sampling rate on compressing and con-

catenating different data sets versus direct forwarding data without compressing and data

concatenating. The Z-compression has the best sampling performance comparing to LEC,

FA-LEC, FAS-LEC, FELACS, and TinyPack. The approach without data concatenating

has the worst sampling performance.

5. CONCLUSIONS AND FUTUREWORK

In this paper, we proposed Z-compression schemes based on Z-order encoding for

lossless compressing of multi-modal sensor data in WSNs. We have performed several

ToSSIM and TinyOS based simulation experiments using four real-world sensor datasets

and measured the compression ratio, energy and sampling rate as performance metrics

under different settings. The result shows that Z-order based compression algorithm with

pre-defined rules has the robust performance across these metrics on compressing multi-

53

(a) Energy consumption of Intel lab data (b) Energy consumption of ZebraNet data

(c) Energy consumption of Accelerometer data (d) Energy consumption of Vehicle tracking data

Figure 10. Energy consumption of real-time datasets

modal real-world sensor data sets when compared with other existing schemes. Our scheme

compresses multi-modal attributes into one Z value while avoiding using prefixes which

always produce extra bits. Since the Z-order compression reduces the packets size, it allows

the intermediate nodes to transmit less number of packets and thus, save energy and being

able to mitigate the packet drops when streaming rate is high when compared with others.

In future, we plan to implement Z-order based compression algorithm in a sensor

cloud [1], a paradigm of computation for wireless sensor networks which consist of wireless

sensors from different owners and provides sensing as a service. With the help of lossless

Z-compression, we can handle the maximum sensing request rate from many different

clients.

54

REFERENCES

[1] Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. Sensor cloud: A cloud of virtual
sensors. Software, IEEE, 31(2):70–77, 2014.

[2] John Burgess, John Zahorjan, Ratul Mahajan, et al. CRAWDAD dataset umass/diesel
(v. 2008-09-14), September 2008.

[3] Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. On the construction of
data aggregation tree with minimum energy cost in wireless sensor networks: Np-
completeness and approximation algorithms. IEEE Transactions on Computers,
65(10):3109–3121, 2016.

[4] Chen-Xu Liu, Yun Liu, Zhen-Jiang Zhang, and Zi-Yao Cheng. High energy-efficient
and privacy-preserving secure data aggregation for wireless sensor networks. Inter-
national Journal of Communication Systems, 26(3):380–394, 2013.

[5] Dylan McDonald, Stewart Sanchez, Sanjay Madria, and Fikret Ercal. A survey of
methods for finding outliers in wireless sensor networks. Journal of network and
systems management, 23(1):163–182, 2015.

[6] Nguyen Quoc Viet Hung, Hoyoung Jeung, and Karl Aberer. An evaluation of model-
based approaches to sensor data compression. IEEE Transactions on Knowledge and
Data Engineering, 25(11):2434–2447, 2013.

[7] EamonnKeogh, Kaushik Chakrabarti, Michael Pazzani, and SharadMehrotra. Locally
adaptive dimensionality reduction for indexing large time series databases. ACM
SIGMOD Record, 30(2):151–162, 2001.

[8] Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. Space efficient
streaming algorithms for the maximum error histogram. In 2007 IEEE 23rd Interna-
tional Conference on Data Engineering, pages 1026–1035. IEEE, 2007.

[9] Hazem Elmeleegy, Ahmed K Elmagarmid, Emmanuel Cecchet, Walid G Aref, and
Willy Zwaenepoel. Online piece-wise linear approximation of numerical streams with
precision guarantees. Proceedings of the VLDB Endowment, 2(1):145–156, 2009.

[10] Francesco Marcelloni and Massimo Vecchio. An efficient lossless compression algo-
rithm for tiny nodes of monitoring wireless sensor networks. The Computer Journal,
52(8):969–987, 2009.

[11] Massimo Vecchio, Raffaele Giaffreda, and Francesco Marcelloni. Adaptive lossless
entropy compressors for tiny iot devices. IEEE Transactions on Wireless Communi-
cations, 13(2):1088–1100, 2014.

[12] Tommy Szalapski and Sanjay Madria. On compressing data in wireless sensor net-
works for energy efficiency and real time delivery. Distributed and Parallel Databases,
31(2):151–182, 2013.

55

[13] Jonathan Gana Kolo, S Anandan Shanmugam, DavidWee Gin Lim, and Li-Minn Ang.
Fast and efficient lossless adaptive compression scheme for wireless sensor networks.
Computers & Electrical Engineering, 41:275–287, 2015.

[14] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-
BILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[15] David AHuffman et al. Amethod for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[16] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes. Journal of the
ACM (JACM), 34(4):825–845, 1987.

[17] Azad Ali, Abdelmajid Khelil, Piotr Szczytowski, and Neeraj Suri. An adaptive and
composite spatio-temporal data compression approach for wireless sensor networks.
In Proceedings of the 14th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems, pages 67–76. ACM, 2011.

[18] Christopher M Sadler and Margaret Martonosi. Data compression algorithms for
energy-constrained devices in delay tolerant networks. In Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 265–278,
2006.

[19] Sorabh Gandhi, Suman Nath, Subhash Suri, and Jie Liu. Gamps: Compressing multi
sensor data by grouping and amplitude scaling. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages 771–784. ACM,
2009.

[20] Henry Ponti Medeiros, Marcos Costa Maciel, Richard Demo Souza, and Marcelo Ed-
uardo Pellenz. Lightweight data compression in wireless sensor networks using huff-
man coding. International Journal of Distributed Sensor Networks, 2014.

[21] Guy M Morton. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York, 1966.

[22] Dimitrios Lymberopoulos, Nissanka B Priyantha, and Feng Zhao. Towards energy
efficient design of multi-radio platforms for wireless sensor networks. In Information
Processing in Sensor Networks. IPSN’08. International Conference on, 2008.

[23] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of data
aggregation in wireless sensor networks. In Distributed Computing Systems Work-
shops, 2002. Proceedings. 22nd International Conference on, pages 575–578. IEEE,
2002.

[24] Yong Wang, Pei Zhang, Ting Liu, Chris Sadler, and Margaret Martonosi.
CRAWDAD dataset princeton/zebranet (v. 2007-02-14). Downloaded from
http://crawdad.org/princeton/zebranet/20070214, February 2007.

[25] S Madden. Intel berkeley research lab data, 2003.

56

[26] Mohit Jain, Ajeet Pal Singh, Soshant Bali, and Sanjit Kaul. CRAWDAD dataset
jiit/accelerometer (v. 2012-11-03), November 2012.

[27] RichardM. Fujimoto, Randall Guensler, Michael P. Hunter, HaoWu, Mahesh Palekar,
Jaesup Lee, and Joonho Ko. CRAWDAD dataset gatech/vehicular (v. 2006-03-15).
Downloaded from http://crawdad.org/gatech/vehicular/20060315, March 2006.

[28] Nelson I Dopico, Carlos Gil-Soriano, Iňigo Arrazola, and Santiago Zazo. Analysis of
ieee 802.15. 4 throughput in beaconless mode on micaz under tinyos 2. In Vehicular
Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pages 1–5. IEEE,
2010.

[29] TelosB Datasheet. Crossbow Inc. Downloaded from
http://www.memsic.com/userfiles/files/Datasheets/WSN, 2013.

[30] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and Ciarán
Mc Goldrick. Powertossim z: realistic energy modelling for wireless sensor network
environments. In Proceedings of the 3nd ACM workshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks, pages 35–42. ACM,
2008.

57

II. MULTI-MODEL Z-COMPRESSION FOR HIGH SPEED DATASTREAMING
AND LOW POWER SENSOR NETWORKS

Xiaofei Cao, Sanjay Madria, Takahiro Hara

ABSTRACT

Wireless sensor networks have significant limitations in available bandwidth and

energy. The limited bandwidth in sensor networks can cause higher message delivery

latency in applications such as monitoring poisonous gas leak. In such applications, there

are multi-modal sensors whose values such as temperature, gas concentration, location and

CO2 level need to be transmitted together for faster detection and timely assessment of

gas leak. In this paper, we propose novel Z-order based data compression schemes (Z-

compression) to reduce energy and save bandwidth without increasing the message delivery

latency. Instead of using the popularHuffman tree style based encoding, Z-compression uses

Z-order encoding to map the multidimensional sensing data into one-dimensional binary

stream transmitted using a single packet. Our experimental evaluations using real-world

data sets show that Z-compression has a much better compression ratio, energy saving,

streaming rate than known schemes like LEC (and adaptive LEC), FELACS and TinyPack

for multi-modal sensor data.

Keywords: Sensor network, Data compression, Z-order

1. INTRODUCTION

Wireless sensor networks (WSNs) are being developed for a plethora of emerging

applications in a wide range of disciplines. For example, there are near real-time sensor

cloud applications [1] to perform multi-modal sensing tasks. Some military applications

58

like tracking hostile objects or monitoring intruders use multiple sensing units to provide

precise location and speed by applyingmulti-sensor data fusion. The unmanned vehicles [2]

needGPS and accelerometer to locate themselves, and to track distance and height of objects

using the camera, laser range meter or radar. By fusing these multi-modal sensor data, they

can also predict the moving trajectory of the nearby objects. Similarly, the environmental

monitoring applications need temperature, wind direction, humidity, CO2 levels, etc. Many

of these multi-modal sensor applications require data integrity (lossless data) as well as

high-streaming rate, and therefore, cannot tolerate high latency due to limited bandwidth

in WSNs. Since batteries are the typical power source for wireless sensors, the energy

consumption is another primary constraint in the design of multi-modal WSNs. Many

research efforts have shown that radio communication, including the data transmission and

channel listening, is the predominant factor among all the energy consumption metrics of

the WSNs.

The power model of Micaz in [3] shows that the channel listening even consumes

more power than the transmission. The duty cycle approaches are the most straightforward

way to reduce the radio communication. The fundamental idea of these duty cycle schemes

is to put the sensors to sleep periodically. When the sensors fall asleep, there is no radio

communication at all which minimizes the energy consumption. We can divide these duty

cycle approaches into two categories; synchronous and asynchronous. The synchronized

duty cycle MAC protocols include [4], [5], and [6]. and asynchronous approaches include

[7], [8], [9]. Among them, the low-power listening (LPL) scheme in TinyOS has proven

its ability to reduce the duty cycles of the wireless sensor nodes. It works well for the

applications that are without heavy loads. However, in LPL mode, sensors will wake up

for a full period for sending messages. Thus, there is a need for lossless data compression

algorithms which could reduce the size of multi-modal sensing data and thereby, decreasing

the radio communication.

59

Sensor data aggregation approaches like [10][11] save energy and bandwidth by

reducing the number of packets to be transmitted. However, they cannot guarantee the data

integrity because of the lossy process and the outliers. Also, when aggregating, the outlier

detection is expensive and introduce delays [12]. The model-based compression algorithms

[13] such as APCA[14], PWLH[15], and SF[16] also have good compression ratios. How-

ever, they can not work with applications requiring lossless data as they approximate the

data with temporal and spatial locality. The compressive sensing approaches like [17] have

the drawback that the data may lose integrity thus, are not suitable for multi-modal lossless

data compression.

Existing works [18][19][20] propose the lossless compression algorithms for sensor

data using Huffman tree style coding that exploit the temporal locality of the data in WSNs.

Instead of storing and transmitting the complete data, [18][19][20][21] use the difference

in values, called delta value, between the two adjacent timestamp readings and usually,

it needs fewer bits to represent a delta value. Based on the Shannon entropy theory [22]

and the Huffman coding[23], the most frequent values are assigned a shorter code than the

less frequent values. Thus, if a dataset is drawn from a smaller set of values, the entropy

will be smaller. However, the standard Huffman and adaptive Huffman [24] coding have

larger overhead on RAM in storing the Huffman trees generated dynamically based on the

frequency of the data. Also, to decode the compressed data, every node in the wireless

sensor network needs to have a copy of the tree. However, as we know that nodes in

WSNs have limited bandwidth and energy, synchronizing the Huffman tree among nodes

is impractical. LEC and Adaptive-LEC [18][19] successfully adapted Huffman coding for

their static initial code library which is a predefined Huffman tree. That way, WSNs do not

require transmitting the entire Huffman tree. Similarly, the TinyPack [20] modified its initial

code library based on LEC’s and proposed algorithms adapting library to different types of

sensor applications. The static initial code cannot always give the best performance because

60

the distribution of the dataset can deviate from the optimized code tree. Further more, these

schemes are designed to work for a single attribute value as the multi-dimensional sensing

data can have different distributions for each attribute.

To address the problems discussed above and improve the applicability and compres-

sion ratios of existing works, we propose a Z-order [25] encoding based data compression

scheme. The Z-order encoding called Z-compression can compress multi-modal sensing

data at each leaf node as well as at the intermediate nodes efficiently in near real-time.

The Z-compression algorithm can encode multi-modal sensor data like precipitation, water

level, and wind speed (needed to detect a flood risk in a region) into a binary stream. Using

our Z-compression algorithm in a WSN with a hierarchical topology [26], the nodes with

limited bandwidth can tolerate higher-stream data rates coming from upstream nodes by

concatenating compressed sensor data into the reduced number of packets which may be as

large as permissible by the network protocol. The proposed Z-compression algorithm also

uses temporal and spatial data locality and delta encoding for better performance. Instead of

using Huffman style coding which requires extra bits for each delta values, we use Z-order

encoding to compress the delta values of all attributes of the input data into a binary stream.

When decoding we use the predefined decoding rules to decode the Z-values and extract all

the values of attributes.

We conducted extensive experiments using skewed and unskewed real datasets.

We found that Z-order encoding based compression performs better than Huffman tree

based source coding approaches. We further optimized the original Z-order encoding,

where, for skewed datasets, we proposed the initial code library to improve the compression

performance further. Our experiments show that it has much better compression ratios

for the multi-dimensional datasets than the previous Huffman coding based compression

approaches likeLEC [18], TinyPack [20], Adaptive-LEC [19] andFELACS [21]. The packet

61

compression evaluation is done in a wireless sensor network using TelosB motes, which

use the IEEE 802.15.4 radio and 8 MHz TI MSP430 microcontroller with 10KB RAM. The

energy consumption rate evaluation is done in TOSSIM [27] using powerTossim-Z [28].

In this paper, we compare the performance of our work with LEC, Adaptive-LEC,

FELACS and TinyPack (since they outperform other algorithms like ASTC [29], S-LZW

[30] and GAMPS[31]). [32] proposed their coding dictionary based on a very specific

dataset, thus, not considered in our experiments.

In summary, this paper makes the following contributions: Design of an efficient

multi-modal sensor data Z-compression scheme that combines the Z-order encoding with

delta compression. To our knowledge, this is the first attempt to propose a multi-modal

lossless data compression algorithm for WSNs. Create a probability model of the sensing

data which has the temporal and spatial locality such as the environmental data, location

data andmotion data. Design a data concatenation schemewhich can concatenate leaf nodes

data efficiently for compression. Also, improve Z-order encoding by integrating a small

dictionary and an odd bit Z-order encoding for further performance improvement in WSNs.

Integrate the proposed Z-compression scheme with low-power listening and high-streaming

applications ofWSNs and prove its effectiveness using the simulation experiments. Perform

extensive simulations using TinyOS and TOSSIM and compare the performance with the

recent and popular sensor data compression algorithms. The results show that our schemes

outperform these other schemes in terms of compression ratio, handling high-streaming

data and energy usage as the metrics.

2. BACKGROUND AND RELATEDWORK

S-LZW [30] an extension of LZW [33] compresses data by encoding and represent-

ing a common sub-string with fewer bits used for the encoded value. The encoded common

sub-strings are stored in the dictionary which usually is too large to store at sensor motes.

LZWand S-LZWusually needmore data to create newwords and update their library before

62

(a) Huffman tree of LEC code (b) Huffman tree of TinyPack’s code

Figure 1. Huffman tree of the compression code of LEC and TinyPack

compressing, which causes longer delays.Additionally, the average waiting time increases

so LZW and S-LZW cannot be used for real-time wireless sensor applications as shown in

our earlier work also [20].

LEC [18] and TinyPack [20] are both Huffman coding based delta compression

algorithm. The Huffman coding would represent higher frequency symbols with less

number of bits. However, in sensor networks, delta values can range from 0 to more than

216. Thus, the memory limitation of nodes makes creating such large Huffman coding

dictionary impossible. In their improved approaches to save memory and to make them

computationally efficient, instead of adapting Huffman coding to each symbol, LEC and

TinyPack create the Huffman coding for the length of the delta value in a fixed pattern that

matches the frequency of the data length group which they assume is decreasing when the

length of delta value increases. Thus, in both LEC and TinyPack, the length of Huffman

coded prefix increases with the increasing delta values length. The Huffman tree of LEC

is shown in Figure 1a and the TinyPack code is shown in Figure 1b. These two coding

focused on the different distribution of the delta values of the dataset. For example, if a

dataset contains many data of only one-bit length, according to Figure 2, TinyPack will have

better compression ratio than LEC in terms of normalized compression overhead (ratio of

the extra bits required to code the delta value to the data bits) whereas, for other delta values

larger than 3, LEC will have better performance than TinyPack.

63

Figure 2. Normalized compression overhead of LEC and TinyPack

However, as we have discussed before, the distribution of the delta values can be

varied in different applications. Even in the same application at different time periods or

at different sensor nodes, the distribution may vary. Thus, in these situations, LEC and

TinyPack do not show good performances as they have fixed code. To solve this problem,

Adaptive-LEC [19] and TinyPack-DP(TP-DP)[20] can adapt the prefix codewhen the length

of the distribution of the frequency of the delta value changes. Adaptive-LEC will adapt its

prefix code for every new data while the TP-DP only changes its prefix code at the beginning

of each new frame. They define the length of delta value with the most frequency as the

frequency center of data and define the length of delta value with the minimum prefix code

as the code center. When the current frequency center of data is drifted from the previous

code center, the prefix code will shift to meet the current frequency center of the data.

For some datasets with the two frequency centers, they proposed another initial code with

the two code centers and two adaptive segments where the prefix codes will be adapted

independently based on the segments. However, the drift correction, always behind the data

drift, happens with a very high delay. Thus, it reduces the performance of the compression

algorithm. Also, different sensor nodes may have different code centers which requires

much overhead to handle the asynchronous WSNs.

64

[34] algorithm takes advantage of spatial locality between the two or more nodes,

and performs collaborative data compression. However, in WSNs, sensors may be sensing

multidimensional data independently and waiting for other sensors to dispatch their dif-

ferent attribute values will increase latency in processing and delays in transmission in an

intermittent environment. Thus, compressing the multi-modal sensing data locally at each

node becomes essential for real-time data transmission. Z-compression does not need to

correlate data with other nodes. Therefore, there is no need to wait for more data to acquire

before compressing.

FELACS [21] gives every compressing data a fixed b bits. Every value smaller

than 2b will be filled with ’0’s at the front to reach b bits, added ’1’ bit at the front then

directly appended to the output stream. Every value larger than or equal to 2b will be cut

into two sections. The higher bits section is encoded using unary coding and is appended

to the output stream. The lower bits section has the length b directly appended to the output

stream. The fixed bits b is generated by calculating the average number of the input data.

FELACS adapts data packets by packets rather than sample by sample. It works

for a single sensing attribute only. Also, it needs to wait for more data to achieve better

compression performance as they have fixed indicator bits.

3. PROPOSED Z-COMPRESSION APPROACH

In this section, we describe the efficient Z-order encoding based multi-modal data

compression scheme, Z-Compression. It is a lossless compression algorithm that exploits

temporal and spatial locality that only consider the value difference between two adjacent

data points. Also, it compresses every single sensing data sample without waiting for more

to arrive as only one previous data point is considered. The wireless sensor nodes use the

delta value of each attribute as the input of the compression algorithm. The delta value

is calculated using Equation 1 where Vc is the current delta value, Vp is the previous delta

65

value and P is the resolution of the sensors.

d∆ =
Vc − Vp

P
(1)

3.1. NAIVE MULTI-DIMENSIONAL Z-COMPRESSION FOR SENSOR VALUES

Naive Z-compression uses Z-order encode [25] and all-is-well bit like in [20]. As

shown in Figure 3, the Z-order encode interleaves input data bit by bit and output a new

binary number with a length that double of the largest input.

Figure 3. Procedure of Z order encoding

V =



2 × Vsigned, if Vsigned > 0

1, if Vsigned = 0

1 − 2 × Vsigned, if Vsigned < 0

(2)

We choose the byte array as the data structure to store the encoded data. Also, we

use unsigned integer V to represent both positive, negative and zero values Vsignedby using

the Equation 2. Next, we add ’1’ at the front of the output to protect the possible ’0’. For

example, consider three dimensional array, ’10’, ’110’ and ’1’. The largest attribute is ’110’

66

which has 3 bits. So first, we need to add zeros to the other two attributes. Then applying

Z-encoding on ’010’, ’110’, and ’001’ to get the Z-value, ’010110001’. Then, we add ’1’

which gives the final result of ’1010110001’.

In wireless sensors, as the computational and memory resources are limited, it is

better to use bitwise operator rather than converting the encoding data into string format

when doing Z-order encoding. We use bitwise ’shift’, ’or’(|), ’and’(&) for interleaving a

certain bit from the input data and append to the output. Note that the notation ’<<’ and

’>>’ means shift left and shift right for certain bits. We first need to find out the length of

the largest input data as Bl . Then the length of the output array, LZ , can be calculated using

the Equation 3. In the same way, the output length of TinyPack and LEC on compressing

the two sensing attributes can be calculated using Equation (4) and (5) where Bi represent

the number of bits of the ith attribute which needs to be compressed.

LZ = N × Bl + 1 (3)

LTP =

N∑
i=1
(2Bi − 1) + 1 (4)

LLEC =

N∑
i=1
(2Bi − T) + 1,T =



0, if 0 < Bi < 3

1, if Bi = 3

2, if Bi = 4

3, if Bi = 5

4 if Bi > 5

(5)

As stated, we also integrate an all-is-well bit [20] with Z-order encoding. It sets

the compressed data to be zero if all the delta values of the input attributes are zero. In

Z-compression, we set the result to be an all-is-well bit when nothing changes. It is done

by directly checking all the input values. If all the inputs equal to ’1’ then output ’1’ where

’1’ equals to zero according to the Equation 2.

67

Different from theHuffman-tree based compression algorithms that need to know the

probability distribution of the input data to achieve the best performance, Z-compression

only exploits the relationship between the length of delta values of the attributes. We

then compare the normalized overhead (in terms of extra bits over total bits) of Naive

Z-compression, LEC, and TinyPack on compressing the uniformly distributed multi-modal

random data by using the Equations (3), (4) and (5). The result is shown in Figure 4.

Figure 4. Normalized compression overhead compressing multidimensional Data

The result shows that Naive Z-compression performs well when the number of

attributes is small. However, with the increasing number of attributes, the overhead of

Z-encode increases. When the number of attributes is larger than eight, the overhead

of Z-encode is greater than that of LEC. To address this drawback, we next propose

an Optimized two-dimensional Z-compression scheme which guarantees to have a better

compression ratio than TinyPack and LEC when compressing two-dimensional data. Thus,

for multi-dimensional data, we can split it into several groups with two or more attributes

to minimize the overall overhead due to extra bits.

68

3.2. OPTIMIZED TWO-DIMENSIONAL Z-COMPRESSION ALGORITHM

Before improving Naive Z-compression, we need to study two important properties

of two-dimensional Z-order encoding. First, the number of bits in the output of Two-

dimensional Z-order encoding is always even. Second, there must be at least one of ’1’ in

the first two bits of the output of the two-dimensional Z-order encoding in binary format.

Here, we do not consider the extra ’1’ bit added before the compression result. The first

property indicates that We can use the value with odd length to represent the ’skewed’ data.

Here, we define a two-dimensional dataset as skewed when the number of bits of the larger

delta value is more than two times the number of bits of the smaller as in Equation 7. When

the data is skewed, in order to make the length of Z-value odd, we divide the larger value

VL with length Bl into two values VL1 and VL2 of length Bl1 and Bl2 using the Equations 6a,

6b and 6c.

Maskl2 = (1 << Bl2) − 1, (6a)

VL1 = VL >> Bl2, (6b)

VL2 = VL&Maskl2; (6c)

We can apply Z-order encoding on VL1 and VS to get the Z-value Zhal f . Then by

appending VL2 on Zhal f , shown in Equation 8, we get the Z-value for the skewed data. The

notation ⊗ means applying Z-order encoding and ⊕ means concatenating the two binary

strings together. In the above procedure, we have to ensure that the Z-value has odd length

Lodd and each different two-dimensional data maps to a unique Z-value.

Algorithm 1 shows the procedure of the Optimized two-dimensional Z-compression.

It reduces the extra bits adding to the smaller delta value when the delta value pair is

skewed. However, when the delta value pair is not skewed, Naive Z-encode is applied.

69

Figure 5. Normalized overhead in compressing two attributes where the largest attribute’s
data is 20 bits long

For example, when encoding two attributes ’101’ and ’11110000’, we add two ’0’ bits

to the first attribute ’101’ which makes it ’00101’ and set the end pointer of the second

attribute to be 3 which divides it into two values, ’11110’ and ’000’. Then we apply Naive

Z-compression on ’00101’ and ’11110’ which produces ’0101110110’. At the end, we

append the remaining ’000’ to it and add ’1’ as the leftmost bit which gives us the encoded

Z-value of ’10101110110000’ which is 14 bits long.

Bs < f loor(Bl/2) (7)

Z = Zhal f ⊕ VL2 = (VL1 ⊗ VS) ⊕ VL2 (8)

When decoding, we use the second property of two-dimensional Z-order encoding

to help us figure out which value within the two decoded data is larger. The value with less

’0’s at the front is larger. Then we append the remaining data to it to get the final result.

For example, when decoding ’10101110110000’, we first count the length of the Z-value

after the first ’1’ which give us 13. This odd value 13 indicates that the delta value pair

is skewed. Then using 13%6 = 1, we know that it belongs to the first case in Algorithm

70

1 that BL%4==0. And, using n = 13/2 = 2, we can divide the Z-value into two parts at

2 × (2n + 1) = 10 bits from left. By interleaving the bits from the first part, we get ’00101’

and ’11110’. At the end, we append the remaining ’000’ to the second value as it has less

’0’ bits at the front than the first one so the decoder will output two binary values ’00101’

and ’11110000’.

Algorithm 1: Optimized Two-dimensional Z-compression algorithm using
odd/even bits optimization

input : Delta value VL and VS where VL > VS
output
:

Z value

1 initialization BL ← Length(VL), BS ← Length(VS)

2 if BS ≥ f loor(BL/2) then
3 Z = VL ⊗ VS;
4 else
5 if BL%4 == 0 then
6 n← BL/4;
7 Divide VL into VL1 and VL2 where VL = VL1 ⊕ VL2;
8 Length(VL1) = 2n + 1 and Length(VL2) = 2n − 1;
9 Z = (VL1 ⊗ VS) ⊕ VL2;

10 else if BL%4 == 2 then
11 n← BL/4;
12 Divide VL into VL1 and VL2 where VL = VL1 ⊕ VL2;
13 Length(VL1) = 2n + 1 and Length(VL2) = 2n + 1;
14 Z = (VL1 ⊗ VS) ⊕ VL2;
15 else if BL%4 == 3 then
16 n← BL/4;
17 Divide VL into VL1 and VL2 where VL = VL1 ⊕ VL2;
18 Length(VL1) = 2n + 2 and Length(VL2) = 2n + 1;
19 Z = (VL1 ⊗ VS) ⊕ VL2;
20 else
21 n← BL/4;
22 VL =

′ 0′ ⊕ VL;
23 Divide VL into VL1 and VL2 where Length(VL1) = 2n + 1 and

Length(VL2) = 2n + 1;
24 Z = (VL1 ⊗ VS) ⊕ VL2;

25 return Z =′ 1′ ⊕ Z;

71

In Figure 5, we compare the normalized overhead of extra bits of four different com-

pression algorithms LEC, TinyPack, Naive Z-compression and Optimized Z-compression

on compressing two-attributes data where the larger attribute is 20-bits long. The X-axis is

the ratio of the number of bits of the input delta value pairs. The Y-axis is the normalized

overhead which is the extra bits over the total bits that the input delta value pair has. We

can see that Optimized Z-compression dwindle the extra bits significantly. The maximum

normalized overhead is 0.43 which is half of the normalized overhead of TinyPack. In

Optimized Z-compression using odd/even bit optimization, we use two as the critical ratio

of two attributes’ length to trigger the Optimized Z-compression as it is easier to implement.

Algorithm 2: Optimized Z-compression algorithm with input length ratio
indicator

input : Delta value VL and VS where VL > VS
output
:

Z value

1 initialization BL ← Length(VL), BS ← Length(VS)

2 if CalculateOverhead(BL, BS) prefer Naive then
3 Z =′ 1′ ⊕ VL ⊗ VS;
4 else
5 Z =′ 0′;
6 Z = Z ⊕ FindBestRatio(BL, BS); Z = Z ⊕ FindZValue(VL,VS, ratio);
7 return Z =′ 1′ ⊕ Z;

Another optimization scheme that can apply Optimized Z-compression on two input

attributes with any ratio of lengths is compared. We use a fixed small bit as a ratio indicator

to indicate the actual ratio of two attributes’ lengths. However, extra control bits can cause

extra overhead. For example, when using two bits indicator, four different ratio which are
3
2 ,

3
1 ,

2
3 , and

1
3 , can be indicated using ’00’, ’01’, ’10’, ’11’. We can then interleave binary

values in a fixed ratio. For example, when the ratio is set to be 3
2 , we should interleave 3

bits at a time for the first delta value and 2 bits at a time for the second delta value.

72

We changed the ratio indicator bits from 2 to 4 and tested it on a uniformly distributed

random data set. Figure 6 shows that with the increasing length of input data, the average

overhead of different optimized Z-compression also increases. However, the odd/even

checking based optimization performs better than others when the input’s maximum length

is fewer than 45 bits which is larger than the size of most wireless sensor’s data sensing

output. Thus, when compressing real-time sensing data packets, we suggest only to use

Algorithm 1.

Figure 6. Average overhead in compressing data with two attributes

3.3. SMALL CODE LIBRARY ADD-ON

We can further improve Optimized two-dimensional Z-compression scheme by

integrating a small code library. This library will enhance the compression performance

without affecting the correctness. The code library is shown in Table II. For entries in the

small library, one of the input delta value pairs should have ’0’ or ’1’. We assign the output

a smaller value which never appears in the result of Naive or Optimized Z-compression.

For example, when we compress two delta values where both the values are 0, the output of

encoding value will be 1-bit ’1’ instead of 2-bits ’11’ giving 50% improvement. Also, this

small code library will not affect the correctness of the encoding and decoding procedures

73

given in Algorithm 1 because it will not generate Z-values that the small library has. When

decoding, we can check the small library before checking the length of Z-value to get the

correct decoding result.

Table 1. Initial small code library

Value 1 Value 2 Z value
0 0 1
0 1 11
1 0 10
0 -1 111
-1 0 110
0 V2 >31 | | V2 <-31 10000⊕V

V1 >31 | | V1 <-31 0 100000⊕V

3.4. OPTIMIZED N-DIMENSIONAL Z-COMPRESSION ALGORITHM

To improve Naive Z-compression for more than two-dimensional data, we proposed

the optimized N-dimensional Z-compression that exploit the data correlation between close

attributes. As the number of the sensing attributes are fixed based on the sensing hardware,

we suppose both the encoder and decoder know how many attributes they are going to

compress and decode.

The optimized N-dimensional Z-compression algorithm combines the procedures

discussed in 3.A, 3.B, and 3.C using a predefined rule which is generated in Algorithm

3. When compressing multidimensional sensing data, we can either use Naive Z-encoding

based compression on all the attributes or use Optimized Z-compression on the pairs of

attributes and then merge the result. Testing all the combinations of the input attributes

with the above two encoding methods is an NP-complete problem. Thus, we propose

an approximate algorithm using two pointers and a local greedy approach to find the

approximate combination result given in Algorithm 3. We use a two-dimensional array as

74

Figure 7. System model Of optimized Z Compression

GroupMember to represent the attribute IDs and their length. We use another array as Group

to store the list of GroupMembers. The input of the algorithm is a list of GroupMembers

which represent all the attributes. The output of the algorithm is a list of Groups which

instructs the encoding and decoding procedure.

The encoder will use the Group information to help them encoding. If a Group

contains more than three entries, the encoder will use the Z-order encoding to compress the

attributes represented by the group. If a Group contains only two attributes, the encoder will

use Algorithm 1 and Table 1 to compress them. At last, the sensor will further encode all the

encoded values and output the result. For example, if there is a Group [{1,7},{2,5},{4,9}],

the wireless sensor node will do a Z-order encoding on the attributes with field IDs 1, 2

and 4. If there is another Group [{3,3},{5,10}], the sensor will do the optimized two-

dimensional Z-compression on the attributes with field ID 3 and 5. Then the node will

75

Figure 8. An example of group algorithm

compress the two encoded values using optimized Z-compression as there are only two

groups. After transmitting the compressed value to the decoder, the decoder will decode

the Z-value reversely based on the number of groups and the field IDs in each group.

To improve Naive Z-compression for more than two-dimensional data, we proposed

the optimized N-dimensional Z-compression that exploit the data correlation between close

attributes. As the number of the sensing attributes are fixed based on the sensing hardware,

we suppose both the encoder and decoder know how many attributes they are going to

compress and decode.

The optimized N-dimensional Z-compression algorithm combines the procedures

discussed in 3.A, 3.B, and 3.C using a predefined rule which is generated in Algorithm

3. When compressing multidimensional sensing data, we can either use Naive Z-encoding

based compression on all the attributes or use Optimized Z-compression on the pairs of

attributes and then merge the result. Testing all the combinations of the input attributes

with the above two encoding methods is an NP-complete problem. Thus, we propose

an approximate algorithm using two pointers and a local greedy approach to find the

76

approximate combination result given in Algorithm 3. We use a two-dimensional array as

GroupMember to represent the attribute IDs and their length. We use another array as Group

to store the list of GroupMembers. The input of the algorithm is a list of GroupMembers

which represent all the attributes. The output of the algorithm is a list of Groups which

instructs the encoding and decoding procedure.

The encoder will use the Group information to help them encoding. If a Group

contains more than three entries, the encoder will use the Z-order encoding to compress the

attributes represented by the group. If a Group contains only two attributes, the encoder will

use Algorithm 1 and Table 1 to compress them. At last, the sensor will further encode all the

encoded values and output the result. For example, if there is a Group [{1,7},{2,5},{4,9}],

the wireless sensor node will do a Z-order encoding on the attributes with field IDs 1, 2

and 4. If there is another Group [{3,3},{5,10}], the sensor will do the optimized two-

dimensional Z-compression on the attributes with field ID 3 and 5. Then the node will

compress the two encoded values using optimized Z-compression as there are only two

groups. After transmitting the compressed value to the decoder, the decoder will decode

the Z-value reversely based on the number of groups and the field IDs in each group.

For example, for compressing the Intel Berkeley Lab data, which includes the

following four attributes: temperature, humidity, Light tense, and voltage of sensors, the

system model of optimized Z-compression is shown in Figure 7.

First, calculate the delta values of these four attributes using Equation 1. Second,

we do learning based on the first 100 packets. Find the compression rules using Algorithm

3. Third, group the attributes based on the compression rules. In this example, the best

compression strategy is to group the temperature data with humidity data and group the

light intensity data with the sensor voltage data, then group the compressed data of these two

groups. Next, compress data in each group using the optimized Z-compression Algorithm

1 until there are no more groups and then output the compressed data. Figure 8 shows an

example of using grouping algorithm to solve the optimized Z-compression.

77

Algorithm 3: Rule Generation Algorithm
input : List of GroupMembers: GML
output
:

List of Groups: GL

1 Sort(GML); //sorting based on the length of attributes
2 LP← 0; //left pointer starting from the left end
3 RP← GML.getSize(); //right pointer initialization
4 while (length(GML[LP])<length(GML[RP-1])/2&&LP<RP) do
5 LP++,RP- -; //find pairs meeting Equation 2
6 //add groups of the pairs to the output list
7 while RP<GML.getSize() do
8 GL.add(new Group{GML[RP++],GML[GML.getSize()-RP]}
9 bufGroup=new Group{}//initial a new group
10 //add rest GroupMembers to the Group
11 for (i=LP;i<GML.getSize()-LP;i++) do
12 bufGroup.add(GML[i]);
13 GL.add(bufGroup);
14 return GL;

Algorithm 4: Lossless data concatenating algorithm
input : Q, N, bmax, bmin, sum, L
output
:

payload: out[]

1 Index=new byte[N], ind=1, prev=L[0][1];
2 Sort(L); //sorting is based on L[][0]
3 for (i=0;i<N;i++) do
4 Index[L[i][1]]=ind;
5 ind+=prev;
6 prev=L[i][1];
7 prev=L[0][1];
8 for (i=0;i<N;i++) do
9 buf=Q.poll();
10 for (j=prev-L[i][1]; j<L[i][1]; j++) do
11 out[Index[i] + j]=buf[j]
12 prev=L[i][1];
13 out[0]=N;
14 return out;

78

3.5. LOSSLESS DATA CONCATENATING ALGORITHM

The main reason to concatenate the locally compressed packets is to save the energy

and bandwidth usage further. In our experimental results, also shown in experimental

analysis of radio performance in [35] and [36], we found that reducing the payload size of

the packets at the leaf node will not give us much energy saving. Also, a leaf node is not

the bottleneck in WSNs as there is not much traffic via them. However, we found by the

experiment that the intermediate nodes are the bottleneck as they not only need to sense

data but also need to route packets from the lower level nodes to the higher level nodes in

the tree. The energy consumption rate and bandwidth occupation by the intermediate nodes

are much more critical than the leaf nodes. Thus, to save energy and prolong the lifetime of

WSNs, we only need to consider the energy consumption of the node with the most radio

connections. To do that, we need to concatenate the upstream data to decrease the number

of packets each intermediate node will transmit.

Next, we discuss how to concatenate the locally data packets. The compressed data

are byte arrays of variable length. It has the node ID and timestamp as the primary key.

It is not practical to decode and re-encode all the data at the intermediate nodes as it will

increase the RAM and CPU load and thus, will cause delays. Here, we propose a data

concatenating algorithm which will concatenate byte array input data efficiently. The idea

is that in a packet transmitted by the intermediate node, the compressed data with a larger

number of bytes is always in front of the compressed data with a smaller number of bytes.

However, the compressed data with a smaller number of bytes will be filled with zero bytes

to make them have the same number of bytes as their neighbor in front of them.

At the end, we set the first byte of the output packet as the number of bytes of the

largest data. When decoding, we first read the length of the largest packet bmax at the first

byte. Then we read the following 2bmax bytes to extract the first and the second data. If

there are empty bytes in front of the second data, we need to update the bmax by subtracting

the number of empty byte from bmax . Next, we use the updated bmax to extract the third data

79

Table 2. Fields of Experimental Dataset

data set name number of fields fields label
Intel Berkeley Lab data 6 epoch, node ID, Temperature, Humidity, Light, Voltage

Accelerator in moving car 5 epoch, node ID, X, Y, Z
ZebraNet data 5 epoch, node ID, Longitude, Latitude, Voltage

Vehicle trace data (V to V) 10 epoch, node ID, (Longitude, Latitude, Altitude, speed)× 2

and update the bmax again. Repeating this process until the last byte of the packet, we can

extract all the data samples in the packet. Figure 9 shows how we concatenate small size

packets into large size packets by sorting the size of the packets in the descending order.

PacketSizeLimit < (sum + bmax − bmin) (9)

Note that we use a queueQ to store the upstream packets’ payload, a two-dimensional

array L to store the size of each payload and their index in Q, an index array Index to help

append the data in the queue to the output byte array. We also need to track the largest

packet length bmax , the smallest packet length bmin and the total length of all the packets

sum =
∑n

i=1 bi in the queue. Once the criteria in Equation 9 is satisfied, we use Algorithm

4 to concatenate the elements in the payload queue and create a larger size packet. The total

number of data needs to concatenate is ’N’ which exclude the last item in the queue. Then

the intermediate node will transmit the large size packet to its downstream node.

Figure 9. Concatenate packets based on packets’ size

80

4. ENTROPY AND DATA DISTRIBUTION MODEL

Based on Shanon’s entropy theory, the minimal number of bits needed to represent

each value of the source data can be calculated using Equation 10 where pi is the probability

of the appearance of each symbol.

H(X) = −
N−1∑
i=0

pilog2pi (10)

The entropy indicates how much the input sensing data can be compressed. The

Equation 10 shows Shannon entropy determined by the probability of the data elements in

the set. Since the distribution of the sensing data is not known before sensing and therefore,

to evaluate the compression algorithms’ performance, we propose a temporal and spatial

data model that could simulate the delta (∆) values of the real-world sensing data.

4.1. TEMPORAL AND SPATIAL DATA APPROXIMATION AND REGRESSION

The temporal property means, in a short sensing period, two consequent sensor

data have similar values. The spatial property means the nearby sensor or the same sensor

moving nearby, the sensor data will have the similar values. Below, we discuss the data

approximation using regression, the probability mass function of the bits in the compressed

sensor data and the possible compression strategies.

For data with temporal locality, we find that the sensing period can directly affect

the statistical distribution of the delta values. Intuitively, if the sensing period is small, the

delta values of the sensing data poses to be small because the data do not have much time

to change. We describe the distribution of the delta values of the sensing data with the

temporal locality mathematically in the following sections.

81

Assumptions and preconditions: When the sensor data have the temporal locality

property periodically, we only consider data from one period only. In that period, the

data have three stages; the ascending stage, the stable stage and the descending stage. We

perform linear regression at each stage and use a straight line with a fixed slope β1 as the

linear model. Note that in the following equations, xi refers to the time i and yi refers to the

observed sensing value at time i. We can find the β0 and β1 by minimizing the Pearson’s

correlation coefficient at each stage.

yi = β
i
0 + β1 × xi

Regression and approximation: In each period, we approximate the data using

the following three linear regression models; the ascending linear line model (11), the

descending linear line model (12) and the static linear line model(13). After proper slicing

of the dataset and regression, the average residual of the linear regression should fall in the

10% criteria which indicates a very small correlation. We assume that the residual is white

noise with the mean value zero.

yi = β
asc
0 + βasc

1 × xi where βasc > 0; (11)

yi = β
des
0 + βdes

1 × xi where βdes < 0; (12)

yi = β
sta
0 (13)

4.2. PROBABILITY DISTRIBUTION OF ∆ OF THE SENSOR DATA

The ∆ is the difference of two sensor data in the adjacent time period, ∆ = Valuei −

Valuei−1 whereValuei is the sensing value at time i. In sensing period, say Ts, the expected

value changes can be calculatedwithEquations 11, 12 and 13. We calculate the average value

changes E∆ in the sensing period using the Equation 14. As each sensing is independent

82

of others, the distribution of each sensing period follows the Poisson distribution shown

in Equation 15 where k indicates the steps of the data change in each sensing period. For

example, consider a temperature sensor in the sensing period Ts where the temperature of

this sensor is 0.1 degrees higher than the sensing data in the last period. Suppose the sensor

has the sensing ranges from -40 degree to 123.8 degrees and the sensing result is in 14 bits

binary format. In that sensing period, the total steps of the temperature changes can be

given as 213×0.1
123.8−(40) ≈ 10 which results in a 5 bits delta value of the temperature. Note here

that we need to consider the positive or negative delta values. For example, the positive 10

steps can be represented as 10100 which ends with 0 while the negative 10 steps can be

represented as 10101 which ends at 1.

E∆ =



βasc × Ts When in ascending stage

βdes × Ts When in descending stage

0 When in static stage

(14)

P∆(k∆) =



β
k∆
asce−βasc

k∆! When in ascending stage

|βdes |
k∆e−|βdes |

k∆! When in descending stage

0k∆When in static stage

(15)

Considering the accuracy range of the sensors, based on the 3 − σ rule, 99.7% of

the sensing data should within the accuracy’s upper-bound 3σ′ and the accuracy’s lower-

bound −3σ′. The PMF distribution should follow the discrete approximation of the normal

distribution with µ = 0, σ = σ′ which is the binomial distribution Equation 16 with

n = 4 × σ2, p = 1/2:

Pbino(k) =
(

n
k + n/2

)
pk+n/2 × (1 − p)n/2−k (16)

83

The noise of the sensor is independent from the sensing attributes so we can join

these two PMFs 15 and 16 using the following equation:

PXY (x, y) = P(X = x,Y = y) = PX(x) × PY (y) (17)

Thus, we can get: Pk=k∆+kbino(k∆, kbino) = P∆(k∆) × Pbino(kbino)

Next we want to find the PMF in terms of k = k∆ + kbino at each stage. For the

convenience of the calculation, we assume the noise, within the sensor accuracy, is in

the range of [−3σ, 3σ]. For stage 1, k ∈ [−3σ, n + 3σ] where n is the positive sensing

limitation. We get:

Pk(k) =
3σ∑

kbino=−3σ
Pbino(kbino) ∗ P∆(k − kbino)

For stage 2, k ∈ [−n − 3σ, 3σ] where -n is the negative sensing limitation. We get:

Pk(k) =
3σ∑

kbino=−3σ
Pbino(kbino) ∗ P∆(k − kbino)

For stage 3, k is ranging from [−3σ, 3σ]. We get:

Pk =

(
n

k + 3σ + n/2

)
pk+3σ+n/2 × (1 − p)n/2−(k+3σ)

As the number of bits of the compressed data is only determined by the number of bits in the

delta value K = log2(k), we only need to consider the PMF of K . Thus, we can represent

each stage’s PMF function PK using each model’s Pk as follows.

PK(K) =
2K−1−1∑
k=2K−2

Pk(k) (18)

84

Let’s assume that the number of ascending sensing periods in stage 1 be np1, the

number of descending sensing periods in stage 2 be np2, and the number of sensing periods

in stage 3 be np3. As discussed above, we assume that the expected delta value is zero over

the long period. Thus, we have the following derivation:

np2 =
np1 ∗ βas

βde
(19)

So the distribution of the number of bits in the delta value becomes:

PMF(K) =
np1 ∗ PK(K)stage1

np1 + np2 + np3
+

np2 ∗ PK(K)stage2

np1 + np2 + np3

+
np3 ∗ PK(K)stage3

np1 + np2 + np3

(20)

Consider Intel-Lab environmental data [37] which records the temperature, humid-

ity, and light intensity; here we only consider the temperature and humidity as both of which

have the temporal and spatial locality. From [38], in a single day, the indoor temperature

rising period is about 6 hours when it increases by 1.6 degrees, descending temperature

period is about 2 hours when it decreases by 1.6 degrees and the constant temperature period

is about 16 hours. The ratio of these three time periods is the 3 : 1 : 8. The three periods

of the humidity has the value change of +36%, -36% and 0% whose ratio is the same as the

ratio of the temperature. Thus, for distribution (Equation 15), stage 1 is for the rising period

of the temperature and humidity where βtemp = 1 and βhumi = 7 based on the approximate

sensing period of 2 minutes. Stage 2 is for the temperature and humidity descending period.

Stage 3 is for the temperature and humidity holding period where βtemp = 0 and βhumi = 0.

In Equation 19, we set np1 = 3, np2 = 1, np3 = 8, thus, we can get βde =
np1∗βas

np2
. After

studying the sensor’s datasheet [39], we find the accuracy for the temperature is 0.5 degree,

and the accuracy of the humidity is 3.5%.

85

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of bits

Pr
ob

ab
ili
ty

∆Temp of Intel Lab Node 13
∆Temp calculated with distribution model

∆Humi of Intel Lab Node 13
∆Humi calculated with distribution model

Figure 10. Calculated PMF of the number of bits in the Intel lab data

Consider the sensor resolution of the temperature as 0.01 and the sensor resolution

for the humidity as 0.03%. As the accuracy means the sensing value should have high

probability to fall in the accuracy range, we set 6σ = Accuracy
resolution which gives us σTemperature =

3.1 and σHumidity = 7.3. Then we can calculate n = 4 × σ2 by the distribute (Equation 16)

postulate which is the discrete approximation of the normal distribution. Then after joining

of 15 and 16 using 20, we get the approximate distribution of the number of bits of the

indoor temperature and humidity as shown in Figure 10. Our distribution model represents

the number of the bits of the sensing data correctly with less than 10% distortion. Using this

data model, we can simulate different temporal and spatial sensing data by modifying the

five arguments defined in this data model. We then evaluate the performance of different

sensor compression algorithms on compressing the data generated using this data model.

86

4.3. PERFORMANCE EVALUATION USING TEMPORAL AND SPATIAL DATA
MODEL

Recall the data model mentioned in Section 4.2 where five attributes which affect

the distribution of the sensing data with the temporal and spatial property are given. The

conjunction of the PMF of the sensing data model can be seen as the combination of three

Poisson distribution with variance σ. The β values of stage 1 and stage 2 of the sensing

period determine the center of the PMF of the data distribution. The stage period n1, n2, n3

determines the proportion of each Poisson stage in the whole sensing period. Suppose we

have two independent randomly selected sensing attributes say attribute 1 and attribute 2

which need to be compressed with 300,000 samples. To study the effectiveness of optimized

Z-Compression, TinyPack, and LEC algorithms on these two attributes’ sensing data, we

vary the β value, the σ value and the ratio of each stage period. We use the Equations 3,4,

and 5 given in Section 4.2 to estimate the average number of bits in the compressed data.

The result is shown in figures 11a,11b, 11c and 12.

In Figure 11a, we can notice that when compressing two independent attributes with

the distribution model (mentioned in Section 4.2) that has σ = 5 and 1 : 1 : 0 stages ratio,

the optimized Z-Compression could always beat the TinyPack and LEC on the compression

ratio independent of the β values of two attributes. We can also see that closer the two β

values are, the better the compression ratio is. It is because a fewer number of extra bits

will be added if two attributes are similar in the number of bits when using the optimal

Z-Compression.

In Figure 11b, we can notice that when we increase the σ value of the sensing data

distribution model, the average number of bits of the compressed data increases. The effect

is more significant when the β value is small for the two compressing attributes. When the

β values are more than twice of the σ value, the effect of the σ value on the number of bits

of the compressed data is trivial.

87

(a) Average number of bits in the compressed data
with different β values

(b) Average number of bits in the compressed data
with different β and σ values

(c) Average number of bits in the compressed data with
σ = 64

Figure 11. Average number of bits in the compressed data with different β and σ values
for optimal Z-Compression, LEC, and TinyPack.

Figure 11c shows although larger σ value will introduce extra bits for the optimal

Z-Compression, it is still better than the TinyPack and LEC for sensing data with beta

values ranging from 1 to 1000. The reason is that TinyPack and LEC create more overhead

in coding larger values.

The stage ratio of the sensing data, mentioned in Section 4.2, will affect the average

number of bits of the compressed value for Optimized Z-compression, TinyPack, and

LEC. When the ratio of stage 3 in the sensing period is higher, suggesting the data has a

high probability to be unchanged in the sensing period, fewer average bits are needed for

the compressed value. Figure 12 shows for each ratio of stage 3 in the sensing period,

88

(a) Compressing using Optimized Z-compression (b) Compressing using TinyPack

(c) Compressing using LEC

Figure 12. Average number of bits of the compressed values against different ratio of stage
3 (n3) in the whole sensing period. Stage 1 and stage 2 has ratio n1 : n2 = 1 : 1, σ = 5

Optimized Z-compression performs better than LEC and TinyPack. Thus, the stages’ ratios

of the sensing period will not affect the rank of these three compression algorithms in the

evaluation.

4.4. OBSERVATION

In this section, we proposed a data model with less than 10% data distortion to

simulate the ∆ values of the temporal and spatial sensing data. Next, we evaluated three

different compression algorithms against this model which show that when the β value is

small, meaning the data with a lower number of bits appear more frequently, Optimized Z-

compression, LEC, and TinyPack work well. The reason is that LEC and TinyPack both use

89

the codebook which assumes the higher occurring probability of lower bit symbols like 0,1,

and -1, so when the number of bits of the sensing data decreases, their compression ratio is

close to each other (including of Z-compression). That is, LEC and TinyPack are designed

for the data distribution with decreasing probability of occurrence when the number of

bits of the data increases. However, when the β value increases, meaning the number of

bits of the sensing attributes increases, the performance of LEC and TinyPack decrease

significantly. It is because When the β value is small, the code of LEC and TinyPack fits the

distribution model better, so the compression overhead is smaller. However, when the β or

σ value increases, the distribution of the data diverges from the distribution model of LEC

and TinyPack, thus the performance degrades. Whereas Optimized Z-compression does

not depend on the data distribution only. It exploits the known information on how many

attributes appear in compressing the sensing data and their average number of bits (better

than estimating the bits using Shannon’s entropy model or Huffman coding), therefore

achieving better compression performance than the LEC and TinyPack.

5. Z-COMPRESSION IN HIGH STREAM RATEWSNS

In a wireless sensor network, there can be hundreds of wireless sensors nodes. As

the number of sinks is limited, each data link to the sink is limited by the bandwidth of that

sink. The bottleneck of the bandwidth is at the last hop of the data link which is the hop

after the sink.

Both Naive Z-compression and Optimized Z-compression can be easily applied to

different applications of WSNs. The best strategy to improve the throughput in a WSN that

has high data streaming rate is to compress the data locally and concatenate the compressed

data at the intermediate node.

To show, we assume a wireless sensor network organized as a tree structure where

data will be transmitted from lower level to higher level in the tree. We assume that the

root of the wireless sensor network is the base station. In such systems, the intermediate

90

nodes not only need to perform sensing but also need to do routing from the lower level to

higher level nodes. As stated earlier, the energy consumption rate and bandwidth occupation

by the intermediate nodes are much more critical than the leaf nodes. The lifetime of a

wireless sensor network organized as a tree is the time elapsed until the first node in the

network depletes its energy (like an intermediate node). In our experiments, we consider

the intermediate node as the bottleneck for both energy and bandwidth consumption. Figure

13 shows a WSN organized as a tree structure with R = 3 where R stands for the number

of children of each intermediate node. Every node will sense, compress and transmit local

data at the same rate. The intermediate nodes will also forward the upstream data from

their children to their parent node. In this case, the leaf nodes only need to handle the

data generated by themselves while the intermediate nodes not only need to compress and

transmit the data produced not only by themselves but also need to forward their R children’s

data to downstream nodes.

Figure 14 shows how small energy saving locally at a node can provide a considerable

benefit to the intermediate nodes with more than one children in the tree structure. In the

WSNs with a tree structure and R greater than 1, the packets the downstream nodes receive

will increase exponentially when the number of hops increases. Also, with the help of the

local compression algorithm, upstream nodes will generate fewer packets which will save

the bandwidth at the intermediate nodes and mitigate the potential network congestion in

WSNs.

6. Z-COMPRESSION IN LOW-POWER LISTENINGWSNS

Low-power listening WSNs are widely used in real-world applications because they

could extend the lifetime of the network by reducing the duty cycle of the sensors in the

network. In low-power listening WSNs, nodes periodically fall asleep to save the energy

used while listening to the channel. In each period, the sensor nodes will wake up for a

short-time to listen to the channel. If the node receives a packet, it will wake up for a

91

Figure 13. Tree structure with R=3

longer-time to receive additional packets and to compute and perform routing. However, if

the node does not receive any packets, it goes back to sleep after the waiting time is over.

In low-power listening WSNs, the only criteria to judge the energy consumption of the

network is the duty cycle of all the sensor nodes in the WSNs. In this section, we are going

to discuss how the Z-compression could reduce the duty cycles in the low-power listening

WSNs as well as reduce the distortion (the difference between real data and sensing data)

of the sensing data.

In a wireless sensor network with one sink node, we assume that the physical event

delta value Si has spatial correlation with the interested region S. The previous paper [40]

modeled the physical phenomenon as joint Gaussian random variables (JGRVs) at each

observation point i with zero mean and with σS as the variance. The observed sample

at node i will be the sum of the physical event’s value Si plus the observation noise Ni

which has zero mean and variance σN . The measured distortion can be calculated using the

following equation:

DE (M) = E[(S − Ŝ(M))2]

92

Figure 14. Energy savings at intermediate nodes with different number of hops and
children when compressing ZebraNet data using Optimized Z-compression vs. no

compression

Here S is the true value and S(M) is the reporting value. Based on [41], we define the

distortion function 21 where DE (M) is the distortion of all the reporting message M.

DE (M) = σ2
S +

σ4
S

M(σ2
S + σ

2
N)
(2

M∑
i=1

ρ(S,i) − 1)

+
σ6

S

M(σ2
S + σ

2
N)

2

M∑
i=1

M∑
j,i

ρ(S,i)

(21)

From the Equation 21, we find that it is not necessary to collect all the data from the

location of interest to keep the distortion low. If we choose several reporting nodes wisely

from the area of interest, we can reduce the number of sensing nodes and still get highly

reliable data.

In [41], the reporting nodes are selected using Lloyd’s algorithm. The data from the

reporting nodes send back to the sink node directly. However, in the low-power listening

WSNs, the routing nodes need to wake up for a period doing the radio transmission. More

the routing path we use, more the energy will be used as the routing node will not go to sleep

93

until it receives the acknowledgment from its successor. To reduce the usage of energy on

the routing path, we can compress the sensing data using Z-compression and concatenate

the reporting packets. Thus, we can reduce the duty cycles by reducing the wake-up time

of the nodes on the routing path.

For example, in WSN in Figure 15, the base station will select the reporting sensors

using the Lloyd’s algorithm. After broadcasting the request to the areas of interest, the

reporting sensors will report the sensing data as follows. First, the reporting node will sense

and compress the data locally using Z-compression. Second, the reporting nodes will send

the compressed data back to the broadcast center which was selected by the base station.

Next, the sensing data will be concatenated in the broadcast center and then send back to

the base station through the reliable route (which uses the same route the request message

used).

Figure 15. Data collection in low power listening WSN using Z-compression along with
data concatenation

94

7. EXPERIMENTAL EVALUATIONS

We evaluated and compared compression algorithms using the following three types

of experiments involving high-stream rate WSNs’ data compression, local block data com-

pression, and data compression in low-power listening WSNs.

7.1. Z-COMPRESSION IN HIGH STREAM RATEWSNS

The size of the data packets in wireless sensors is usually restricted to 128 bytes

with 250kbps bandwidth, but the data streaming rate of each packet can range from seconds

to hours. For example, the ZebraNet senses location data every few minutes. The Intel

Berkeley Lab sensor network application collects temperature, humidity, and light lumen

at different periods whereas the accelerometer on the vehicle collects 3-axis acceleration

values, and the vehicle tracking application collects communicating vehicle’s location,

speed, and altitude data much more frequently.

7.1.1. Experimental Setup andConfigurations. To demonstrate the effectiveness

of our proposed Z-compression scheme in real-world situation, we tested it against different

types of real-world multi-modal data sets such as GPS data [42], environmental data [37],

accelerometer data [43], and vehicle tracking data [44]. The attributes in each dataset are

shown in Table 4. Two common attributes which these data sets share are timestamp and

node ID. These two attributes are used as the primary key of the local packet. We cannot

compress the primary key because the intermediate nodes need to identify where the packet

has come from as well as when the sampling starts. We assign the timestamp as fixed two

bytes and the node ID as fixed one byte in the local packet, and we use a variable length

packet for the compressed sensing values. The compression ratio CR in the performance

matrix is defined as the compressed data length over the size of uncompressed data as shown

in Equation 22. We use a base station to accumulate the number of bytes of all n compressed

packets.
∑n

1 Lcompressed is the compressed data size and
∑n

1 Loriginal is the original data size.

95

CR =
∑n

1 Loriginal∑n
1 Lcompressed

(22)

To find the energy cost of the intermediate nodes, we use PowerTOSSIM-Z to

simulate the energy consumption in WSN. The tool will calculate the CPU cycles and

radio usage at each node. It then uses the predefined power model to generate the power

consumption at each node in the experiment. Data is inserted into the leaf nodes using the

python script.

We notice that when we increase the sampling rate close to a certain interval of

two consecutive sensing samples, the packets drop start happening at some intermediate

nodes, and at the sink node. Here, we define the sampling rate as the total number of

sensing samples per second. To find the effectiveness of the compression algorithms on the

sampling rate, and the maximum sampling rate a WSN can have, we define Equation 23

which outputs the approximate maximum sampling rate of the WSN. Here Tap = 30.31% is

the maximum experimentally normalized throughput of IEEE 802.15.4 radio in application

layer [45], Vch = 250kbps is the channel speed of the radio [46], Sdata is the uncompressed

size of an original sensing sample andCR is the compression ratio of respective compression

algorithm.

sampleRatemax ≈
CR × Tap × Vch

Sdata
(23)

7.1.2. Compression Performance Comparison. This experiment evaluates the

average compression ratio in compressing 5000 data items from each of the four different

datasets listed before. The leaf nodes will do the compression locally. Then the compressed

packets are concatenated at the intermediate nodes using the Algorithm 4. The evaluation

results are shown in Figure 16. The compression ratios in Y-axis is calculated using the

Equation 22. Note that a higher compression ratio means better compression performance.

96

On compressing vehicle trace dataset, Z-compression has more than 30% im-

provement over other compression algorithms. On compressing other three datasets, Z-

compression has between 5% to 30% improvement over other compression algorithms.

Z-compression has better compression ratio improvement when using the vehicle trace

dataset because this dataset has more unchanged samples than others. Z-compression also

has an all-is-well function that can reduce themultiple zero delta values into a single Z-value

of zero. Also, the performance of Z-compression is stable whereas we can see that other

compression algorithms, for example, TinyPack and LEC, have large performance variation

when the input data distribution changes. LEC performs better for the dataset with smaller

delta values. However, TinyPack has a better compression ratio over the datasets which

have more smaller delta values.

Table 3. Maximum approximate sampling rate using different compression algorithms
with data concatenating

data set name Z-comp LEC FA-LEC FAS-LEC FELACS TinyPack No concat
Intel Lab environment data 1376 1244 1245 1282 1053 1165 131
Accelerator in moving car 1409 1297 1328 1371 1341 1172 136

ZebraNet data 1656 1431 1500 1479 1389 1578 136
Vehicle trace data (V to V) 1947 1430 1403 1430 1119 1594 117

Adaptive-LEC improved the compression performance by using the real-time adap-

tion. However, when adapting multi-modal sensing data, there can be more than two

frequency center exists like what Figure 10 shows. That limits the performance of Adaptive-

LEC. FELACShas theworst performance because it is not good at compressingmulti-modal

sensor data. It has the same drawback as Naive Z-compression. That is, when compressing

skewed data, both Naive Z-compression and FELACS need to add ’0’ at the front of the

smaller delta values to make their length equal to the length of the largest delta value. For

example, in the Intel Berkeley lab environment dataset, the length of the delta values of the

humidity is always larger than the length of the delta values of the light intensity. For the

97

multi-modal sensing data, the distribution of the length of each attribute can be different.

That means the dataset is prone to be skewed like Figure 10. That is the reason FELACS

can not perform well on compressing real-world multi-modal datasets.

(a) Compression ratio of Intel lab data (b) Compression ratio of ZebraNet data

(c) Compresseion ratio of Accelerometer
data

(d) Compresseion ratio of Vehicle tracking
data

Figure 16. Compression ratio of real-time datasets

The result shows that the TinyPack achieves a higher compression ratio in com-

pressing dataset with many "zero" delta values like in ZebraNet data in Figure 16.b and

Vehicle tracking data in Figure 16.d. However, in compressing ZebraNet dataset, Optimized

Z-compression algorithm achieves a higher compression ratio than Naive Z-compression

and has about 15% improvement over the next best TinyPack algorithm. On compressing

Intel Berkeley dataset, LEC achieves a higher compression ratio than Naive Z-compression.

The reason is that the light lumen values in the IntelLab dataset do not change as frequently

as the temperature and humidity values do, so the dataset is skewed. Thus, the delta values

of temperature and humidity are much higher than delta values of the light lumen. However,

98

here our Optimized Z-compression groups temperature and light lumen together and then

compressed with the humidity data. Thus, the result in Figure 16.a shows that optimized

Z-compression gains about 10% improvement over the next best LEC.

On compressing Vehicle tracking data in Figure 16.d, we use the small code library

and odd/evenOptimized Z-compression. We notice that the attributes of the vehicle tracking

dataset are evenly distributed with the average number of bits of the delta value close to 1.

So for the eight attributes of the dataset, we generate a rule to compress pairs of attributes

first; then compress pairs of encoded values recursively till only one Z-value is obtained.

From Table 1, we can compress two zero delta values, which is represented as ’1’, into one

bit Z-value of ’1’. If all eight attributes of vehicle tracking data are zero, the final encoded

result will be ’11’ (The first ’1’ is the placeholder). Therefore, Optimized Z-compression

gets about 50% improvement over next best TinyPack.

Accelerometer dataset has an evenly distributed delta values. Therefore, Figure

16.c shows that Naive Z-compression achieves good performance on the compression ratio

with an improvement of about 18.4% over LEC and 30% over TinyPack. However, as we

discussed in the last section, the Optimized Z-compression uses the same compression rule

as Naive Z-compression so the performance of Optimized Z-compression in Figure 16.c is

same as of Naive Z-compression.

7.1.3. EnergyUsageComparison. These experiments are performedwithTOSSIM

simulator using PowerTOSSIM-Z [28]. We inserted data at the leaf nodes using the python

script again. For some datasets such as Intel Lab and vehicle trace dataset, we inserted

about 20,000 samples each time. After compression and concatenating, the number of

packets forwarded to the sink is much smaller than the original 20,000 samples. The result

is shown in Figure 17. As the compression ratio of Z-compression is better than the other

compression algorithms for all the four datasets, the Z-compression reduces more packets

than all others and thus, saving more energy and also it reduces the bandwidth usage in the

network.

99

Figure 17. Total packets after compression and concatenating for 20,000 data samples

Note that as we are comparing different datasets and each dataset has a different

number of samples in the energy comparison results, thus we use the normalized energy

instead the real energy cost to show the effectiveness of each compression algorithm. The

normalized energy is the ratio of the energy consumed by compressing or concatenating

data and transmitting the fused packets over the energy consumed by only transmitting

the fused packets. The experimental results are shown in Figure 18; the result shows that

Z-compression provides the best energy saving for the WSN. It is because with the better

compression ratio achieved with Z-compression, the intermediate nodes can concatenate

much more leaf node data into a larger packet that reduces the radio usage which saves

battery. The fact that the intermediate nodes do not perform the compression, and the

overhead due to concatenating leaf node’s payload is negligible, thus, we do not show the

CPU energy usage in the result.

7.1.4. ApproximateMaximumSampling Rate. Aswe discussed in Section 5, the

maximum sampling rate is the rate at which the maximum throughput of the sink node can

be supported without dropping packets. It mainly depends on the compression ratio of the

leaf nodes. The compression time will only determine the minimum sample interval of the

leaf nodes in theWSN. The maximum sampling rate will not be affected by the compression

100

(a) Energy consumption of Intel lab data (b) Energy consumption of ZebraNet data

(c) Energy consumption of Accelerometer
data

(d) Energy consumption of Vehicle tracking
data

Figure 18. Energy consumption of real-time datasets

time as we can increase the number of leaf nodes. Also, the time complexity of all these

compressing algorithms is O(n). It takes about 30-60 milliseconds for compressing each

sample including the sampling time.

Table 3 shows the approximate maximum sampling rate for compressing and con-

catenation of different data sets versus direct forwarding. The optimal Z-compression has

the best performance according to the results.

7.2. LOCAL BLOCK DATA COMPRESSION

In wireless sensor networks, energy is the most critical factor for the lifetime of the

network. Most of the power consumed by wireless sensor nodes is due to data transmissions

using radio communication. The time radio is on mainly depends on the number of packets

to be transmitted, which in turn depends on the packet size. Thus, the compression algorithm

which achieves a better compression ratio will usually have a better energy saving due to the

101

reduced radio transmission time as it will send fewer packets. However, the microcontroller

also consumes energy in compressing data as well. Thus, it is essential that we not only

consider the compression ratio as the performance metric but also compare the energy

savings of compression methods.

For the experiment here, different from the last which uses real-time datasets, the

system model of the evaluation here is an only one-hop delay-tolerant wireless sensor

network. We initialize two blocks of data as byte arrays. Each block is 528 bytes containing

a sequence of continuous timestamp data. Each data item is composed of timestamp and

sensing values. To exploit the temporal locality property of sensing attributes,We regrouped

data by sensor category and types before compressing. For example, when compressing

ZebraNet data, we group based on timestamp, the longitude, the latitude and the boolean

values separately based on the sensor types. For the case without compression, local energy

consumption is the energy required to transmit the whole block of data. For the node

doing compression, the energy consumption is the sum of the energy needed to transmit

the compressed data and the energy used in compressing. We define the energy saving as

the energy consumed when compressing and transmitting data over the energy consumed

in transmitting uncompressed data immediately.

The compression algorithms we evaluated in this part are S-LZW (as it works

traditionally on data blocks), Delta-S-LZW, LEC, TinyPack, Naive Z-compression and

Three-round Z-compression. The size of the output packet is 114 bytes which are suitable

for the TelosB mote. For S-LZW and Delta-S-LZW, we use the dictionary with 1024

entries. We propose here Delta-S-LZW that compresses the delta values rather than the

actual values. It exploits the temporal locality and gives us a higher compression ratio

as shown in Figure 19 and better energy saving as shown in Figure 20 than S-LZW. For

TinyPack and LEC, Huffman code is generated respectively based on Figure 1. For Naive

Z-compression and Three-round Z-compression, to reduce the compression overhead, we

split the output packet into smaller blocks of the same size. The number of blocks under

102

a packet is predefined. In this experiment, we set this to be 6. After generating all the

blocks of a packet using Naive Z-compression, we then merge those blocks to get the output

packet. Note that each block needs extra one byte to indicate howmany data items are in the

block. Next, Three-round optimized Z-compression is proposed to improve compression

performance on the datasets with many delta values as ’0’. In this case, we compress a

sequence of continuous ’0’ delta values together using LEC to encode the number of ’0’s.

Then we apply Naive Z-compression on the newer dataset generated in the first round. We

call this optimization Three-round Z-compression algorithm because it uses three rounds

to get the result. Note that the first round that handles a sequence of ’0’ bits will add extra

one bit to the delta values which are not 0s.

We regrouped sensor data by category and types before compressing. For example,

for ZebraNet data, we group timestamp, the longitude, the latitude and the boolean values

separately based on sensor types. For each group, temporal locality property is exploited.

To reduce the compression overhead when using Z-compression, we set the sub-group size

first and then compress data into groups with the size less than the sub-group size. After

generating all the sub-groups, we apply Naive Z-compression on those sub-groups to get

the final output. We also refer to this as Two-round Naive Z-compression to indicate that it

uses two rounds of compression.

Compressing large blocks of local data is different from compressing smaller data

packets. First, delays are not considered in this case. Second, the compressing produces

data packets which have size limitations. Third, the time stamp is included. Fourth, the

format of input data is the byte array.

Figure 19 shows the local compression ratio of four different kinds of datasets

with five different compression algorithms. And, Figure 20 shows the normalized energy

consumption for different compression algorithms using four different datasets. Naive Z-

compression beats all the other compression algorithms on compression ratio and energy

saving in compressing Intel lab and Accelerometer datasets shown in Figure 19.a, 19.c and

103

Tin
yPa

ck LE
C

S-L
ZW
∆S
-LZ

W
nai
ve
Z

Op
tim

ize
d Z

0

2

4

6

Co
mp

res
sio

nR
ati
o

(a) Compression ratio of Intel Lab data

Tin
yPa

ck LE
C

S-L
ZW
∆S
-LZ

W
nai
ve
Z

Op
tim

ize
d Z

0

2

4

6

8

10

Co
mp

res
sio

nR
ati

o

(b) Compression ratio of ZebraNet data

Tin
yPa

ck LE
C

S-L
ZW
∆S
-LZ

W
nai
ve
Z

Op
tim

ize
d Z

0

1

2

3

Co
mp

res
sio

nR
ati
o

(c) Compresseion ratio of Accelerometer
data

Tin
yPa

ck LE
C

S-L
ZW
∆S
-LZ

W
nai
ve
Z

Op
tim

ize
d Z

0

2

4

6

8

10

Co
mp

res
sio

nR
ati

o

(d) Compresseion ratio of Vehicle tracking
data

Figure 19. Compression ratio of different local datasets

Figure 20.a, 20.c for the reason that Naive Z-compression has less overhead in compressing

evenly distributed dataset. Three-round Z-compression beats all the other compression

algorithms on compression ratio and energy saving for compressing ZebraNet and Vehicle

tracking datasets showing in Figure 19.b, 19.d and Figure 20.b, 20.d for the reason that

it will decrease overhead by encoding sequence of ’0’ delta values into a single LEC

code. Three-round Z-compression has better performance in compressing Vehicle tracking

dataset than compressing ZebraNet dataset because Vehicle tracking dataset contains many

’0’ delta values than ZebraNet. The more ’0’ delta values a dataset contains, the more better

Three-round Z-compression performs.

104

(a) Compression ratio of Intel lab data (b) Compression ratio of ZebraNet data

(c) Compresseion ratio of Accelerometer
data

(d) Compresseion ratio of Vehicle tracking
data

Figure 20. Energy consumption in compressing different datasets

Datasets such as Accelerometer and Intel lab which contain fewer ’0’ bits items are

not suitable for Three-round Z-compression algorithm, which is also validated by Figure

20.a and 20.c. As explained above, for these two datasets, Naive Z-compression is the

best. Thus, our proposed Z-compression schemes also perform well for not so real-time

time case. Although Delta-S-LZW always achieves better compression ratio, it is still not

as good as other delta compression algorithms. It shows that delta compression has an

advantage over local sensor data compression.

7.3. EXPERIMENTS AND EVALUATIONS OF OPTIMAL Z-COMPRESSION IN
LPL WSNS

In this experiment, we use TOSSIM to simulate the wireless sensor networks. We

use PowerTOSSIM-Z to measure the energy consumption of each node. The sensors are

deployed in a rectangle area with length × width equal to 3600 × 2000. We assume that the

105

area is homogeneous and the sensors hold the same radio range in the area. The network is

not sparse, and the sensors are uniformly deployed in the rectangle area. By configuring the

range of the radios of the sensors, we can make sure that each sensor node has an average

of six to ten direct neighbors. The sensor deployment rule is shown in Table 4. We did two

experiments with a different number of nodes. In each experiment, we compare the energy

consumption at each node using direct sensing and reporting the energy consumption using

the compression and concatenation.

Table 4. Sensors deployment parameters

type Experiment 1 Experiment 2
Number of nodes 990 2500
Area to deploy 3600 × 2000 3600 × 2000
Radio range 300 200
Energy model micaz micaz
Sleep period 2 second 2 second
Duty cycle 10% 10%

Area of interest radius = 1000 radius = 600
of Reporting nodes 10 10
of Sensing attributes 10 10

TOSSIM does not perform real sensing. To simulate the data collection and com-

pression, we use the data injection function in TOSSIM to insert data at each node. The

data injection works as follows. First, choose the node to inject the data. Second,inject

the artificial data at the set time. Third, continue the rest of the code. However, this data

injection will increase the duty cycle of the sensor’s which makes the simulation results

incorrectly. So we hard-coded the sensing data in the header file and refer the header

file from the NesC code of the sensors based on the node ID. Also, to ensure the routing

accuracy, each sensor has also hard-coded its neighbors’ ID in their source code. The 990

sensor nodes’ result is shown in figures 21 and 22. And, the 2500 sensor nodes’ result is

shown in figures 23 and 24.

106

Figure 21. Energy usage of 990 node WSN in 10,000 seconds with 1250 sensing requests
with no compression

Figure 22. Energy usage of 990 nodes WSN in 10,000 seconds with 1250 sensing requests
with optimal Z-compression along with data concatenation

107

Figure 23. Energy usage of 2500 nodes WSN in 10,000 seconds with 1250 sensing
requests with no compression

Figure 24. Energy usage of 2500 nodes WSN in 10,000 seconds with 1250 sensing
requests with optimal Z-compression along with data concatenation

108

The simulation results using 990 nodes show that the optimal Z-compression along

with the data concatenation reduces the average energy consumption by about 9%. It also

balances the load of the network significantly by reducing the load on the intermediate

nodes. Figure 22 is smoother than Figure 21 which directly transmits the reporting message

back to the base station without compression. The improvement reaches about 24% at the

nodes with peak loads. It significantly increases the lifetime of the whole network.

In the result with 2500 nodes in Figure 23 and 24, when using the optimal Z-

compression, the average energy saving reaches 26%. The nodes with peak load have about

24% energy saving. We notice that the average energy saving for the 2500 nodes is more

significant than that for the 990 nodes. The reason is that for both of these WSNs, the

number of reporting nodes is the same. However, the number of hops in the path from

the reporting nodes to the sink is more for the 2500 nodes than that of 990 nodes. Thus,

Optimal Z-compression saves much more energy as it reduces the duty cycle of the sensors

on the routing path of the data which reduces the number of reporting nodes.

8. CONCLUSION AND FUTUREWORK

In this paper, we proposed, based on Z-order, a multi-model Z-compression scheme

for sensor data in wireless sensor networks to conserve bandwidth as well as energy. It

compresses multi-dimensional data by exploiting the temporal and spatial locality. It

reduces the packets size and allows the intermediate nodes to transmit less number of

packets and thus, save energy, and being able to reduce the packet drops when streaming

rate is high. We have performed several ToSSIM and TinyOS based experiments using

four real-world sensor datasets. It performs much better when compared with well-known

compression schemes like LEC, Adaptive-LEC and TinyPack using the compression ratio,

energy usage and sampling rate as performance metrics. The Z-compression algorithm

compresses multi-model sensing data locally in a real-time fashion, and thus, it can work

with different MAC protocols to achieve further efficiency in WSNs. In the high-stream

109

rate WSNs, Z-compression improves the throughput thus increase the maximum stream

rate of the network. In the low-power wireless sensor networks using asynchronous MAC

protocol such as low-power listening (LPL), Z-compression could reduce the duty cycle of

the nodes in the path from where the reporting data routes back. The experimental results

also demonstrated that Z-compression could not only save the energy and bandwidth but

also balances the load in the WSNs which could prolong the lifetime of the sensor nodes.

In future, we plan to implement the Z-compression in a sensor cloud [1], which

provides on demand sensing as a service to users satisfying the QoS. With the help of

lossless Z-compression, we can handle the maximum sensing request rate from many

different clients without additional delays, and also maintain the QoS requests of users.

Similarly, in IoT-based applications such as smart-city, Z-compression can adpat according

to the device type and can handle the network heterogeneity as well to meet the application

demands.

REFERENCES

[1] Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. Sensor cloud: A cloud of virtual
sensors. Software, IEEE, 31(2):70–77, 2014.

[2] John Burgess, John Zahorjan, Ratul Mahajan, et al. CRAWDAD dataset umass/diesel
(v. 2008-09-14), September 2008.

[3] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and Ciarán
Mc Goldrick. Powertossim z: realistic energy modelling for wireless sensor network
environments. In Proceedings of the 3nd ACM workshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks, pages 35–42. ACM,
2008.

[4] Injong Rhee, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L Sichitiu. Z-mac:
a hybrid mac for wireless sensor networks. IEEE/ACM Transactions on Networking
(TON), 16(3):511–524, 2008.

[5] Luca Anchora, Antonio Capone, Vincenzo Mighali, Luigi Patrono, and Francesco
Simone. A novel mac scheduler to minimize the energy consumption in a wireless
sensor network. Ad Hoc Networks, 16:88–104, 2014.

110

[6] Jun Long, Mianxiong Dong, Kaoru Ota, and Anfeng Liu. A green tdma scheduling
algorithm for prolonging lifetime in wireless sensor networks. IEEE Systems Journal,
11(2):868–877, 2017.

[7] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings
of the 4th international conference on Embedded networked sensor systems, pages
307–320. ACM, 2006.

[8] Yanjun Sun, Omer Gurewitz, and David B Johnson. Ri-mac: a receiver-initiated
asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor
networks. In Proceedings of the 6th ACM conference on Embedded network sensor
systems, pages 1–14. ACM, 2008.

[9] Jun Bum Lim, Beakcheol Jang, and Mihail L Sichitiu. Mcas-mac: A multichan-
nel asynchronous scheduled mac protocol for wireless sensor networks. Computer
Communications, 56:98–107, 2015.

[10] Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. On the construction of
data aggregation tree with minimum energy cost in wireless sensor networks: Np-
completeness and approximation algorithms. IEEE Transactions on Computers,
65(10):3109–3121, 2016.

[11] Chen-Xu Liu, Yun Liu, Zhen-Jiang Zhang, and Zi-Yao Cheng. High energy-efficient
and privacy-preserving secure data aggregation for wireless sensor networks. Inter-
national Journal of Communication Systems, 26(3):380–394, 2013.

[12] Dylan McDonald, Stewart Sanchez, Sanjay Madria, and Fikret Ercal. A survey of
methods for finding outliers in wireless sensor networks. Journal of network and
systems management, 23(1):163–182, 2015.

[13] Nguyen Quoc Viet Hung, Hoyoung Jeung, and Karl Aberer. An evaluation of model-
based approaches to sensor data compression. IEEE Transactions on Knowledge and
Data Engineering, 25(11):2434–2447, 2013.

[14] EamonnKeogh, Kaushik Chakrabarti, Michael Pazzani, and SharadMehrotra. Locally
adaptive dimensionality reduction for indexing large time series databases. ACM
SIGMOD Record, 30(2):151–162, 2001.

[15] Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. Space efficient
streaming algorithms for the maximum error histogram. In 2007 IEEE 23rd Interna-
tional Conference on Data Engineering, pages 1026–1035. IEEE, 2007.

[16] Hazem Elmeleegy, Ahmed K Elmagarmid, Emmanuel Cecchet, Walid G Aref, and
Willy Zwaenepoel. Online piece-wise linear approximation of numerical streams with
precision guarantees. Proceedings of the VLDB Endowment, 2(1):145–156, 2009.

111

[17] G Kumar, K Baskaran, R Elijah Blessing, and M Lydia. A comprehensive review on
the impact of compressed sensing in wireless sensor networks. International Journal
on Smart Sensing & Intelligent Systems, 9(2), 2016.

[18] Francesco Marcelloni and Massimo Vecchio. An efficient lossless compression algo-
rithm for tiny nodes of monitoring wireless sensor networks. The Computer Journal,
52(8):969–987, 2009.

[19] Massimo Vecchio, Raffaele Giaffreda, and Francesco Marcelloni. Adaptive lossless
entropy compressors for tiny iot devices. IEEE Transactions on Wireless Communi-
cations, 13(2):1088–1100, 2014.

[20] Tommy Szalapski and Sanjay Madria. On compressing data in wireless sensor net-
works for energy efficiency and real time delivery. Distributed and Parallel Databases,
31(2):151–182, 2013.

[21] Jonathan Gana Kolo, S Anandan Shanmugam, DavidWee Gin Lim, and Li-Minn Ang.
Fast and efficient lossless adaptive compression scheme for wireless sensor networks.
Computers & Electrical Engineering, 41:275–287, 2015.

[22] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-
BILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[23] David AHuffman et al. Amethod for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[24] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes. Journal of the
ACM (JACM), 34(4):825–845, 1987.

[25] Guy M Morton. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York, 1966.

[26] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in wireless
sensor networks. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 134–147. ACM, 2004.

[27] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and
scalable simulation of entire tinyos applications. InProceedings of the 1st international
conference on Embedded networked sensor systems, pages 126–137. ACM, 2003.

[28] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and Ciarán
Mc Goldrick. Powertossim z: realistic energy modelling for wireless sensor network
environments. In Proceedings of the 3nd ACM workshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks, pages 35–42. ACM,
2008.

[29] Azad Ali, Abdelmajid Khelil, Piotr Szczytowski, and Neeraj Suri. An adaptive and
composite spatio-temporal data compression approach for wireless sensor networks.
In Proceedings of the 14th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems, pages 67–76. ACM, 2011.

112

[30] Christopher M Sadler and Margaret Martonosi. Data compression algorithms for
energy-constrained devices in delay tolerant networks. In Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 265–278,
2006.

[31] Sorabh Gandhi, Suman Nath, Subhash Suri, and Jie Liu. Gamps: Compressing multi
sensor data by grouping and amplitude scaling. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages 771–784. ACM,
2009.

[32] Henry Ponti Medeiros, Marcos Costa Maciel, Richard Demo Souza, and Marcelo Ed-
uardo Pellenz. Lightweight data compression in wireless sensor networks using huff-
man coding. International Journal of Distributed Sensor Networks, 2014.

[33] Terry A Welch. A technique for high-performance data compression. Computer,
17(6):8–19, 1984.

[34] Tommy Szalapski and Sanjay Madria. Energy efficient distributed grouping and
scaling for real-time data compression in sensor networks. In 2014 IEEE 33rd Inter-
national Performance Computing and Communications Conference (IPCCC), pages
1–9. IEEE, 2014.

[35] Dimitrios Lymberopoulos, Nissanka B Priyantha, and Feng Zhao. Towards energy
efficient design of multi-radio platforms for wireless sensor networks. In Information
Processing in Sensor Networks. IPSN’08. International Conference on, 2008.

[36] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of data
aggregation in wireless sensor networks. In Distributed Computing Systems Work-
shops, 2002. Proceedings. 22nd International Conference on, pages 575–578. IEEE,
2002.

[37] S Madden. Intel berkeley research lab data, 2003.

[38] HM Künzel, A Holm, D Zirkelbach, and AN Karagiozis. Simulation of indoor
temperature and humidity conditions including hygrothermal interactions with the
building envelope. Solar Energy, 78(4):554–561, 2005.

[39] Memsic Crossbow. Telosb v2 data sheet. Downloaded from
www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf, 2008.

[40] Mehmet C Vuran, Özgür B Akan, and Ian F Akyildiz. Spatio-temporal correlation:
theory and applications for wireless sensor networks. Computer Networks, 45(3):245–
259, 2004.

[41] Mehmet C Vuran and Ian F Akyildiz. Spatial correlation-based collaborative medium
access control in wireless sensor networks. IEEE/ACM Transactions on Networking
(TON), 14(2):316–329, 2006.

113

[42] Yong Wang, Pei Zhang, Ting Liu, Chris Sadler, and Margaret Martonosi.
CRAWDAD dataset princeton/zebranet (v. 2007-02-14). Downloaded from
http://crawdad.org/princeton/zebranet/20070214, February 2007.

[43] Mohit Jain, Ajeet Pal Singh, Soshant Bali, and Sanjit Kaul. CRAWDAD dataset
jiit/accelerometer (v. 2012-11-03), November 2012.

[44] RichardM. Fujimoto, Randall Guensler, Michael P. Hunter, HaoWu, Mahesh Palekar,
Jaesup Lee, and Joonho Ko. CRAWDAD dataset gatech/vehicular (v. 2006-03-15).
Downloaded from http://crawdad.org/gatech/vehicular/20060315, March 2006.

[45] Nelson I Dopico, Carlos Gil-Soriano, Iňigo Arrazola, and Santiago Zazo. Analysis of
ieee 802.15. 4 throughput in beaconless mode on micaz under tinyos 2. In Vehicular
Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pages 1–5. IEEE,
2010.

[46] TelosB Datasheet. Crossbow Inc. Downloaded from
http://www.memsic.com/userfiles/files/Datasheets/WSN, 2013.

114

III. EFFICIENT GEOSPATIAL DATA COLLECTION IN IOT NETWORKS FOR
MOBILE EDGE COMPUTING

Xiaofei Cao and Sanjay Madria

ABSTRACT

TheMobile EdgeComputing (MEC) paradigmchanges the role of edge devices from

data producers and service requesters to data consumers and processors. MEC mitigates

the bandwidth constraint between the edge server and the cloud by directly processing the

large data created by the sheer volume of IoT devices in the edge locally. An efficient

data-gathering scheme is crucial for providing quality of service (QoS) within MEC. In

this paper, we proposed an efficient data collection scheme that only gathers the necessary

data from IoT devices like wireless sensors along a trajectory for local services based on

geospatial constraints. We only use a vector of the minimal distance of hops (DV-Hop)

to the anchor nodes selected by the fog server, instead of using GPS data. The proposed

scheme includes a lossy compression algorithm that could compress each routing message,

thus reducing the response time. In this paper, the experiments are conducted to evaluate the

performance of our data collection using the encoded trajectory routing scheme compared

with others using a TOSSIM simulator, and also using the powerTOSSIM-Zwith real sensor

motes. Our scheme performs better in terms of latency, reliability, coverage, and energy

usage compared to other state-of-the-art schemes.

1. INTRODUCTION

The Internet of Things (IoT) facilitate fast access, process, and utilization of the big

data created by the ’things’ surrounding many applications such as disaster management or

battlefield monitoring. The number of IoT devices and the data rate and size produced by

115

this large number of things are increasing faster than wireless bandwidth in IoT networks.

Further, the applications which rely on real-time data delivery cannot accept delays caused

by the routing and the bandwidth bottleneck between the edge of the IoT network and

the cloud. For example, in a battlefield, soldiers patrolling a border area need to receive

real-time sensing data from RF scanners about IEDs from the locations of interest, so any

delay in receiving such data may endanger their lives.

In recent years, researchers have turned their focus on edge computing [1] and fog

computing [2]. By collecting, caching, and exploiting sensing data locally, and interacting

with local wireless sensor and actuator networks (WSAN) directly, the edge/fog provides

services with higher reliability. However, data collection at the edge with reduced latency

is still a challenge in mobile edge networks (MEN). For some location-aware applications,

location anonymity is crucial for safety of users. For example, an adversary could easily

infer users’ locations like home address and working place and predict their mobility based

on the history of using the location-aware services [3]. Thus, the challenge is to collect data

by preserving the location anonymity in MEN.

In MEN, sensors and other IoT devices in WSAN contribute to the most volume

of sensing data. Broadcasting is widely used as the fastest way to disseminate real-time

data requests to the whole network. The counter-based broadcasting scheme [4] and their

adaptive versions [5][6][7] are proposed to minimize the redundant rebroadcasting to save

energy and mitigate the broadcast storm effects [4]. However, even the state-of-the-art

adaptions of the counter-based broadcasting cannot reduce more than 60% rebroadcasting.

Some trajectory-based routing protocols, which route packets through wireless sen-

sor nodes that reside more or less on the designed trajectory, have the potential to fetch the

data from specific areas with the minimum overhead of redundant forwarding. However,

most of the trajectory routing protocols like [8] and [9] require all the sensor nodes to

have the GPS to decode the encoded routing trajectory, which is not practical for low-cost

WSAN. Although the cubic Bezier curve used in [8] provides a good compression ratio for

116

the position of interest (POI), it still cannot be adapted in WSAN without GPS modules. A

virtual coordinate system is an option for IoT WSAN without GPS. It can use local connec-

tivity information such as the number of neighbors of each node and the perimeter nodes’

locations as in [10]. It can also use the anchor nodes and the vector of minimum hop dis-

tance (DV-Hop) to the anchor nodes to estimate the distance between nodes. However, the

state-of-the-art DV-Hop based location estimation [11] requires lots of memory resources

and computational power which is not suitable for low power wireless sensor networks.

To address the shortcomings of the existing works, we propose a spatial data collec-

tion scheme that has both low latency and less overhead of redundant broadcasting. Instead

of using the exact nodes’ location information from GPS as in [8][9][12], we only use a

vector of the minimal distance of hops (DV-Hops) to all the anchor nodes selected by the

secure fog server. The area of position of interest (POI) can be represented as a list of hop

constraints to the anchor nodes. Our routing message only contains two basic geometric

shapes: hyperbola and arc. These shapes can be represented with two simple mathematical

equations. The sensor nodes could avoid the complex geometric computing, which makes

it suitable for WSAN that have low-power and low-computing resources.

In addition, the proposed scheme provides location anonymity by avoiding using

and transmission of the GPS location information. To decode the POI of the client, the

adversary has to have the encoded message as well as the location of the anchor nodes,

which are stored in the secure fog server. We also address the broadcast storm issue by

integrating the counter-based broadcasting mechanism.

Our performance evaluation shows that the proposed scheme compresses the data

about 8 times and reduces more than half of the latency in data requesting and collection

process compared to directly broadcasting the list of node identificationswhich residewithin

the POI. The reliability of the proposed scheme also beats state-of-the-art geospatial routing

117

protocols like ring routing and nested routing [13][14], which route messages in a circular

trajectory. The energy consumption of data requests within our scheme is also reduced

compared to the state-of-the-art counter-based broadcasting schemes.

2. RELATEDWORKS

2.1. COUNTER-BASED BROADCASTING

Broadcasting is the fastest way to flood a message into the whole WSAN. However,

limited bandwidth causes delay in broadcasting a sequence of messages into the network.

After a node receives a given packet, the counter-based broadcasting scheme [4][5][6][7]

requires the node to wait for a short period of time to listen to its neighbors and count how

many times the given packet has been rebroadcast. If the broadcast count of the given packet

reaches the predefined threshold, it will drop the packet. Thus, only few of the nodes in the

network will rebroadcast the given packet which saves bandwidth and thus, alleviates the

congestion.

2.2. RING ROUTING AND NESTED ROUTING

Ring routing and nested routing [13][14] are proposed to solve the problem of

routing packets to a mobile sink. The idea behind ring routing and nested routing is to

store the current mobile sink’s location in a ring or nested ring structure. The data source

needs to query the nodes in the ring/nested ring structure to fetch the updated location of

the mobile sink before routing the packets. Then the data source routes the packets to the

mobile sink using the updated sink location. Ring routing and nested routing achieve good

delay and energy performance because searching the ring structure is easier than searching

the whole network.

118

2.3. TRAJECTORY-BASED ROUTING AND VIRTUAL COORDINATES

Trajectory based routing [8][9] is a paradigm that only the nodes near the given

routing trajectory will forward the packets. It includes trajectory generating and encoding

and the routing decision rules for each sensor node. It has the following challenges: First,

the trajectory encoding algorithm should able to compress the trajectory as the encoded

message will be included in the routing packets. Second, each compressed message should

be able to route through the trajectory to the sink reliably. Third, the overhead of routing

caused by redundant rebroadcast should be minimized. However, for WSAN, the additional

challenge is to route through a trajectory without using any GPS-based location information.

In order to route through a trajectory with virtual coordinates using DV-Hop rather

thanGPS, the virtual coordinates should be able to reflect the sensors’ real location precisely.

Intuitively, increasing the number of anchor nodes will improve the precision of the virtual

coordinates. This has also been proven by DV-Hop based localization algorithms such as

in [15], [16], and [17]. The challenge, however, is to reduce the computation and memory

usage which are limited in sensor nodes. The naive combination of greedily checking the

distance to the routing trajectory and the use of the virtual coordinate system with many

anchor nodes requires computational resources, and is also error prone due to the use of

estimated location. According to the DV-Hop based localization algorithms, in the worst

case, the error rate can be as large as 45% of the range of the radio [11], which could lead

to a routing failure.

3. PROPOSED DATA COLLECTION SCHEME

The proposed data collection scheme enables the fog server to directly collect only

the necessary data for the edge clients from nearby IoT networks by sending a data request

message. The data request packets should be able to reach from mobile edge devices like

cellphones, computers, and routers that are near the client’s position of interest (POI) to the

119

target IoT devices (usually the wireless sensor motes) with minimum overhead and latency.

In heterogeneous IoT networks, different wireless devices with different radio standards

cannot directly communicate with each other. We first introduce the system overview

where we use a cellphone as a gateway of a wireless sensor network. Then, we present a

novel trajectory encoding algorithm that could not only compresses the location information

to reduce the system response time and latency, but also preserve the location anonymity

which is essential for a location-based edge-computing application.

3.1. SYSTEM OVERVIEW

The location-based applications usually need real-time response and current and

consistent data. The conventional approaches that collect all the sensor data periodically

and process the clients’ requests in the cloud data center not only have poor QoS due to high

latency and data distortion but also suffer from bandwidth bottleneck due to the huge number

of IoT devices at the edge. The proposed data collection scheme is based on edge-computing

paradigm where the edge devices consume data with geospatial constraints specified by the

client. It uses mobile edge devices as the gateway that coordinate with wireless sensor

networks and downstream fog servers. The data collection tasks are offloaded to the local

edge nodes near the POI and thus reduces the latency. The data processing tasks are

offloaded to the local fog server.

The system overview is shown in Figure 1. The cloud data centers only collect,

process, and store the time-insensitive data. The fog servers collect, process, and generate

the compressed geospatial constraints of user requests which will be discussed in the next

section. Then, the data collection task is offloaded to the mobile edge devices near the POI.

With the help of the serial port listening and writing app [18], the edge device becomes a

gateway of IoT sensor network by connecting a sensor mote to its serial port.

120

Figure 1. Data collection in local edge network

3.2. ASSUMPTIONS

In the IoT network, many applications prefer to have the geospatial information

tagged with the sensing data. For example, firefighters want to know the fire status based

on the temperature and infrared sensors’ data tagged with the location information. As

discussed in the Introduction, in location-based IoT networks, the wireless sensor nodes

are the most populated ’things’ and generate most of the data. Due to their low cost and

energy limitation, most of the sensor motes do not contain GPS module themselves. To

enable these sensors provide geospatial information without GPS, we use a vector of the

minimal distance of hops to the anchor nodes (DV-Hop) as the virtual coordinates. The

anchor nodes, which are selected by the fog server, know their locations. They have a

one-byte ID number, which is enough for a local fog network. We assume that mobile edge

devices try to collect data from aWSAN directly. We also assume that the fog server, which

encodes the geospatial request, has the location information of the local anchor nodes and

121

has enough computing resources. In the WSAN, near each sensor node, there are at least

three randomly deployed anchor nodes which will flood their identification to the others

in the area within a limited number of hops (Hmax) from them. While flooding, all the

sensor nodes will create and update a vector of minimal distance of hop (DV-Hop) to their

nearby (within Hmax hops) anchor nodes. The anchor nodes also have the DV-Hop of their

nearby (within Hmax hops) anchor nodes and will eventually transmit this information to the

fog server. After the network has been initialized, if any nodes move, they need to update

their DV-Hop by querying all their new neighbors’ DV-Hop. For the new DV-Hop of the

moving nodes, the new DV-Hop is set to be the minimal hop count of all the new neighbors’

DV-Hops to the respective anchor nodes plus one.

The trajectory, which includes the routing path and POI, can have the shape of any

type of continuous curve. It may have different widths in different segments, and can overlap

with itself. However, we assume that the trajectory is unidirectional, so the overlapping

trajectory is seen as one curve and the intersection trajectory is seen as a branch. To avoid

looping, we assume that every node in the trajectory only re-broadcast the same routing

packet once. A routing packet should be fewer than 127 bytes (the limit of IEEE 802.15.4

packet size).

3.3. DV-HOP BASED GEOSPATIAL ENCODING ALGORITHM

The idea of our encoding algorithm is to use a set of geometry shapes to represent

position of interest (POI) and the trajectory from a gateway to the POI. With the assumption

as in 3.1, the trajectory and POI drawn by the clients can be seen as a set of discrete pixels

in a 2d Euclidean space. Each pixel has two parameters: the x- and y-coordinates from the

predefined origin point. The unit of the coordinate, µ, is chosen based on the application

requirement. So each 1 µ by 1 µ area in this WSAN is a pixel that can be represented with

a tuple (xcoor, ycoor). We call this set of pixel the Trajectory Area Set (TAS).

122

(a) A circular trajectory (b) An arc trajectory

Figure 2. Example of a circular, and an arc trajectory represented with hop constraints

As the fog server knows the location and the DV-Hop of each anchor node, we can

calculate the average hop distance davg in µ unit between each pair of anchor nodes. Then,

we can use hop constraints to represent the following simple shapes. For example, as shown

in Figure 2-a, a circular area with width davg can be represented with a center anchor node

ID, AID, and the circle radius in number of hops h. With two anchor nodes, we can represent

the arc by defining each anchor node’s (A1, A2) hop distance (h1, h2) to its circle and finding

the two intersection points (I1, I2) between these two circles as shown in Figure 2-b.

Another example in Figure 3-a shows the shortest path from node S1 to node S2 is a

straight line. Using anchor nodes A1 and A2, we can define a hyperbola h1 − h2 = 0 which

is a line passing through S1 and S2. Then, we need a third anchor node A3 with hop h3

to cover both S1 and S2. Finally, we obtain a segment of line that starts and ends from S1

and S2. Here, the anchor nodes A1, A2 determine the line’s direction, and A3’s location and

hop constraints determine the line’s starting and ending points. The line is a special case

123

of constraints h1 − h2 = 2 × a, (a ∈ Integer) that represent an arc of a hyperbola shown in

Figure 3-b. With the anchor node A3 and its hop count h3, we can obtain a segment of the

hyperbola.

(a) A segment of line trajectory (b) A segment of hyperbola

trajectory

Figure 3. Example of a segment of line, and a hyperbola trajectory represented with hop
constraints

Intuitively, the line can be used to connect two nodes with the shortest path length.

The arc can be used to connect two lines with different directions. Any trajectory can be

seen as the assembly of these two shapes. As a straight line is a special case of a hyperbola,

we use hyperbola to approximate the line. If there is no anchor pair that could create this

line, we can still use a segment of hyperbola to approximate it.

The computation complexity is another challenge in encoding a geospatial area

using shapes. For a WSAN with anchor nodes NAnchor and hops limitation Hmax for each

anchor node, the shapes (hyperbola and arc) which constitute the trajectory are chosen from

Nshapes = N2
Anchor H2

max + N3
Anchor H2

max different possible shape constraints. Testing of all

the combinations of the shapes has O(Nshapes!) time complexity, which is not practical.

124

Thus, we propose a greedy algorithm which considers both the number of newly covered

pixels and the effective coverage ratio (ECR). ECR, which is defined in Equation 1, is the

ratio of the overlapping area of TAS and a shape over the area of the shape.

ECR =
Areacovered

Areashape
(1)

The trajectory encoding algorithm is divided into the following two steps:

3.3.1. Find All Possible Shapes from Nshapes and Their Area Areashape. We

define the possible shapes as the shapes that could constitute a portion of the trajectory.

First of all, we calculate the minimal number of hops hstart from each anchor node to the

nearest pixel in the TAS, and the minimal number of hops hend required by each anchor

node to reach the farthest pixels in the TAS.

Thus, to find all possible arcs, we use two layers nested for loops to iterate through

the anchor nodes. Within each layer, we iterate respective anchor node’s hops from hstart

till hend . Within the inner anchor loop, we calculate the average one-hop length (davg) for

each pair of anchor nodes. So each possible arc can be represented as follows:

Carc = [A1, A2, h1, h2, davg] (2)

As shown in Figure 2-b, the arc is from point I1 to point I2 with width davg which

is the average one-hop distance from inner circle with hop count h1 − 1 to the outer circle

with hop count h1. We use Areao to represent the overlapping area between the outer circle

of A1 and the control circle of A2 and use Areai to represent the overlapping area between

the inner circle of A1 and the control circle of A2. Thus, the area of the arc Areaarc meets

Areaarc = Areao − Areai.

There are four cases exits when calculating the overlapping area of two circles.

When two circles are separated, the overlapping area is zero. When circle A2 is inside circle

of A1, the overlapping area is the area of A2. When circle of A1 is inside circle of A2, the

125

overlapping area is the area of circle A1. For the last case that two circles intersect with

each other, the overlapping area can be calculated using Equation 3. Algorithm 1 shows the

procedure for calculating the area of a segment of the arc trajectory.

Algorithm 1: Get the area of the arc
Result: Area of arc: Areaarc

Input : arcCircle, controlCircle, davg

1 innerCircle = new Circle(arcCircle, davg);

2 AreaouterCircle = CALL Algorithm(2):

circlesIntersect Area(arcCircle, controlCircle);

3 AreainnerCircle = CALL Algorithm(2):

circlesIntersect Area(innerCircle, controlCircle);

4 return Areaarc = AreaouterCircle − AreainnerCircle;

A hyperbola can be defined with two anchor nodes which are its foci. A control

circle is defined with one anchor node which is its center. To find all possible hyperbola

segments, we use three layers nested for loop to iterate through the anchor nodes. For each

shape, we iterate hops from hstart to hend . We calculate both the average one-hop distance

between the foci of the hyperbola as d f ocus and the average one-hop distance between all

three anchor nodes as davg. So each possible hyperbola can be represented as shown in

Equation 4.

Area = r2
2 × acos((d2 + r2

2 − r2
1)/(2 × d × r2))

+ r2
1 × acos((d2 + r2

1 − r2
2)/(2 × d × r1))

− 0.5 × sqrt((−d + r2 + r1) × (d + r2 − r1)

× (d − r2 + r1) × (d + r1 + r2))

(3)

Chyper = [A1, A2, A3, a, h3, d f ocus, davg] (4)

126

Algorithm 2: Get the area of two intersecting circles
Result: Intersect area of two circles

Input : circle1, circle2

1 d = getCenterDistance(circle1, circle2);

2 if d >= circle1.radius + circle2.radius then

3 return 0; //case (1)

4 else if circle1.radius >= circle2.radius + d then

5 return π × (circle2.radius)2; //case (2)

6 else if circle2.radius >= circle1.radius + d then

7 return π × (circle1.radius)2; //case (3)

8 else

9 return run Equation (3) ; //case (4)

10 end

For example, in Figure (4), assume that the x-coordinate of the anchor nodes is XID

where "ID" is the anchor node’s identification number and the y-coordinate of the anchor

nodes is YID. Assume that the Euclidean distance between A1 and A2 is 2 × c. We define

the overlapping area of the hyperbola of A1 and A2 and control circle of A3 is Areahyper =

AreainnerHyper − Areahyperbola. The inner hyperbola meets DisA1 −DisA2 = 2× a× d f ocus.

Here DisAID is the distance between any point in the hyperbola to the focus with given ’ID’;

’a’ is a positive integer less than Hmax .

Algorithm 3 and 4 show the procedure of calculating the area of a segment of the

intersection of a hyperbola and a circle. First, the hyperbola is rotated and shifted to standard

format, which obeys Equation (5) by multiplying the hyperbola with the transformation

matrix (6) and subtracting a shift vector shown in Equation 7. Then, multiplying the circle

127

with center A3 with the same transformation matrix 6, and shift using vector 7, which gives

us the new center shown in Equation (8). With the transformed circle center, we can get the

circular function as in Equation (9).

Figure 4. A hyperbola segment’s area estimation example

x2

a2 −
y2

(c − a)2
= 1 (5)

T =


c×(X2−X1)

2×((X2−X1)2+(Y2−Y1)2)
c×(Y1−Y2)

2×((X2−X1)2+(Y2−Y1)2)

c×(Y2−Y1)
2×((X2−X1)2+(Y2−Y1)2)

c×(X2−X1)
2×((X2−X1)2+(Y2−Y1)2)

 (6)

V =


(X1 + X2)/2

(Y1 + Y2)/2

 (7)

128


Xcycle

Ycycle

 = T · (


X3

Y3

 + V) (8)

(x − Xcycle)
2 + (y − Ycycle)

2 = (h3 × davg)
2 (9)

Algorithm 3: Get the area of hyperbola segment
Result: Area of hyperbola segment: Areahyper

Input : hyperbola, controlCircle, davg

1 innerHyper = new Hyperbola(hyperbola, davg);

2 Areahyperbola = CALL Algorithm(4):

hyper IntersectCircle(hyperbola, controlCircle);

3 AreainnerHyper = CALL Algorithm(4):

hyper IntersectCircle(innerHyper, controlCircle);

4 return Areahyper = AreainnerHyper − Areahyperbola;

The Equation 5 and 9 can be merged into a quartic-equation. Then, we can approx-

imate the intersection points of the hyperbola and the circle by solving the quartic-equation

using Newton’s method [19], and sort the points list, Listp, based on the y-coordinate values.

After finding the intersection points, the overlapping area of a hyperbola and the control

circle can be calculated as follows: Areahyper = Areapie + Areatriangle − Areacurve.

As shown in Figure 4, the Areacurve is the area between the line connected the two

intersection points and the hyperbola curve between the two intersection points. We can

calculate this area by solving the definite integral of the hyperbola function minus the line

function. This area is the overlapping area of the pie area and the triangle area. So it need

to be deducted from the sum of the pie area and triangle area to get the final intersection

area.

129

Algorithm 4: Get the area of hyperbola intersect circle
Result: Area of hyperbola intersect circle

Input : hyperbola h, circle c

1 standardize(&h,&c); //Eq:(5)-(9);

2 coe f f icients = quarticCoe f f icient(h, c) ;

3 roots = getRealRootsQuarticEq(coe f f icients);

4 Listp = f indIntersectionPoint(roots, h, c);

5 for i ← 0 to size(Listp) by 2 do

6 φ = intersect Angle(Listp[i], Listp[i + 1]);

7 if sin φ < 0 then

8 Areapie = arccos(cos φ) ∗ r2/2;

9 else

10 Areapie = (2 ∗ pi − arccos(cos φ)) ∗ r2/2;

11 end

12 Areatriangle = sin φ × r2/2;

13 Areacurve = FindCurveArea(h, Listp[i], Listp[i + 1]);

14 Areahyper+ = Areapie + Areatriangle − Areacurve;

15 end

16 return Areahyper;

3.3.2. Compute the Effective Coverage Ratio (ECR) and Elect the Best Shapes.

To calculate the Areacovered , a brute force method is used by testing hop constraints pixel

by pixel. Different from the first step which uses a lot of condition branches, the second step

has few branches. Thus, we are able to accelerate the computation with GPU computing.

We designed a NVIDIA CUDA kernel that calculates the ECR as follows:

130

For the arc, if the distance from any pixel in the TAS to A1 (DisA1) obeys DisA1 =

h1 × davg and the distance from any pixel in the TAS to A2(DisA2) obeys DisA2 ≤ h2 × davg,

then that pixel is covered by the arc shape. For the hyperbola, if the distance from any pixel

in the TAS to A1 (DisA1) and to A2 (DisA2) obeys DisA1 − DisA2 = 2 × a × d f ocus and the

distance from any pixel in the TAS to A3(DisA3) obeys DisA3 ≤ h3 × davg, then that pixel is

covered by the hyperbola shape [note that here all the notations are the same as in Equations

(2) and (4) and Figure 4].

We consider both the total number of pixels in TAS covered by the element shapes,

and the Effective Coverage Ratio (ECR). In each iteration of our greedy algorithm for

finding the best shape, we always elect the shape which provides the maximum value of the

Greedy Factor (GF) which is the number of pixels multiplied by cubic ECR as shown in

Equation (10):

GF = Areacovered × ECR3 (10)

After each iteration, we first eliminate the pixels of TAS, which also exists in the

best shape in 3.5.1. Then, we calculate the newly covered pixels for each possible shape

with the updated TAS. But instead of calculating a new ECR, the ECR is reused to speed

up the calculation. The shape with the maximum GF are chosen as the best shape. The

pixels covered by the best shape are deducted from the TAS.

Last, we repeat this procedure until the size of updated TAS is less than 1 − T h of

the original size, where T h is the predefined coverage threshold and will be discussed in

Figure 11. If the trajectory encoding message is exceed the packet size limitation, which is

shown in Table 1, we will divide the POI into two and create two separate trajectories with

two different gateway nodes, which is shown in Figure 1. Then the algorithm will encode

them separately and send two request packets in sequence. The second packet will refer to

the ID of the first packet and able to rebroadcast in the trajectory the first packet indicates.

131

3.4. PAYLOAD DATA STRUCTURE OF ROUTING PACKET

The message structure of TinyOS has a 11-byte header that includes the sender’s

address. We also exploit the type and the group data in the header. The payload structure,

defined in Table 1, is used for our implementation of DV-TE-R and adapted DV-TE-BR

which will be discussed in Section 4.

3.5. ROUTING DECISION FORWIRELESS SENSORS

For theWSANwhere sensor nodes never sleep, we propose the counter-based routing

decision to mitigate the broadcast storm effect [4]. In the proposed counter-based routing

decision, each wireless sensor uses two kinds of criteria to decide if it should forward the

routing packet or not. First is to check if it meets any constraint of the encoded trajectory

(f lagC). Second is to check if the counter used to count the number of the nearby redundant

re-broadcasting for the same packet reaches the threshold (f lagT).

As we have discussed in 3.3, the arc constraint has a size of four bytes: A1, A2, h1,

h2. For any sensor node, we set its f lagC to be true if its DV-Hop entry of A1 and A2 obeys

Equation (11). The hyperbola constraint has a size of five bytes: A1, A2, A3, a, h3. For the

same sensor node, we set its f lagC to be true if its DV-Hop entry of A1, A2, A3 satisfies

Equation (12). 
DVHop[A1] == h1 | | DVHop[A1] == h1 − 1

DVHop[A2] ≤ h2

(11)


f loor(DVHop[A1] − DVHop[A2])/2 == a

DVHop[A3] ≤ h3

(12)

The counter-based routing decision is first proposed in [4]. Once a sensor node

broadcasts a packet to its neighbors, the neighbors will be listening to the channel for a

random amount of time before it actually forwards the packet. During the listening period,

132

the sensors will count the number of times the same packet has been forwarded. If it

exceeds the counter threshold, it will set the f lagT to be false so only the sensors with

f lagC == true and f lagT == true will forward the routing packets. Thus, only a few of

the nodes in the network will rebroadcast the given packet which saves bandwidth and thus,

alleviates the congestion.

Table 1. Payload data structure

Descriptions Starting Bytes Length in Bytes

Message ID 0 4

Parent Node address 4 2

Hop counts 6 1

1st group size 7 1

relaxation parameter 8 1

constraints for relax 9 5

routing constraints 14 100

Another case is for low-power listening WSAN where sensors hibernate for most of

their lifetime. The sensors will rebroadcast immediately if they find they satisfy Equation

(11) and Equation (12) (f lagC == true) and initialize a counter with value 0. Then,

they will stop broadcasting when there is a timeout or when their rebroadcasting neighbors’

number reaches the counter threshold (f lagT == true). Note, the rebroadcaster will update

their packets based on how many neighbors has broadcast. In this way, only the counter

number of neighbors will rebroadcast the packets which saves energy and bandwidth. Thus,

only a few of the nodes in the network will rebroadcast the given packet which saves

bandwidth and thus, alleviates the congestion. Further, the broadcast could reduce the

routing delay which mitigates the long latency of LPL.

133

3.6. SAMPLE ROUTING RESULT AND ANALYSIS

The proposed geospatial area encoding algorithmworks for any shape and trajectory.

Here we test the encoding algorithm on some sample trajectories shown in Figure 5-

(a),(d),(g). Figure 5-(a) is a trajectory of handwritten ’a’. Figure 5-(d) is an outline trajectory

of Breuer park in Rolla, Missouri, USA. Figure 5-(g) is a trajectory of automatically

generated nested rings. For each of the routing trajectories, assume anchor node ID is one

byte long and the number of hops is one byte long and the length of the encoded trajectory

is 23, 54, and 89 bytes as shown in Table (2). The red shapes, which represent the encoded

trajectory, shown in Figure 5-(b),(e),(h) are the cascaded arc and hyperbola shapes. We also

compress the minimum area of the hand drawing trajectory using JPEG format, which is a

lossy compression algorithm for images. The resolution of the output of JPEG is set to be

64 × 64.

For time complexity analysis, assume that there are ’n’ anchor nodes in local edge

network, each anchor node floods at most ’r’ hops, and the TAS has ’m’ entries. Then the

time complexity of finding the best arc shape is O(mn2r2), the time complexity of finding

the best hyperbola is O(mn3r3).

Table 2. Encoding result for sample trajectory

Trajectory type A outline Circles

Number of arcs 3 12 17

Number of hyperbolas 2 1 4

Message length(byte) 23 54 89

Compressed size with JPEG(byte) 867 887 934

134

(a) Hand drawing ’A’ (b) Encoding trajectory ’A’ (c) JPEG compressed hand

drawing A

(d) Hand drawing boundary of

Breuer Park, Rolla, MO

(e) Encoding trajectory of Breuer

Park, Rolla, MO

(f) JPEG compressed park

boundary

(g) Auto drawing ’rings’ (h) Encoding trajectory ’rings’ (i) JPEG compressed nested

rings

Figure 5. Example of a circular, and an arc trajectory represented with hop constraints and
the compressed trajectory using JPEG

135

4. ADAPTED DV-HOP BASED DATA COLLECTION SCHEME FOR
LOW-POWERWSAN

To ensure high QoS in WSAN, we adapt the proposed DV-Hop based trajectory

encoding and routing protocol (DV-TE-R). For low-power WSAN, which can be deployed

in the harsh environment, the density of the network topology can be heterogeneous.

Somewhere in the region, the sensors may be sparsely deployed, or the routing path could

be obstructed by some ’holes’ shown in Figure 6, where we plan to forward a packet from

node Si to So through an arc with center A and radius h hops with 1 hop width. Although

the DV-hop of both the nodes Si and So is h, these two nodes are not directly connected

because of an obstacle between them. If using local broadcasting, for example in Figure

6, to fix the routing path, we at least need to flood 4 hops which is a huge overhead. We

propose a bridge on the edge adaption (DV-TE-BR) that could connect a broken routing

path with minimum overhead.

After a forwarder node has forwarded the routing packet and has not overheard any

rebroadcast from its neighboring nodes nor acknowledgement from the sinks, it will start

iterating its valid constraints, relax those by one hop, note all the changes and rebroadcast

the packet again. If it receives the rebroadcast from its neighbors, it will stop iterating and

go to sleep immediately. If a node receives the relaxed-constraint packet, it will tighten the

constraint by one, and repeat the previous procedure until recover the original constraint.

Note that both h1 and h2 are relaxed for arc constraint, and both a and h3 are relaxed for

hyperbola constraint.

For example, like Figure 6, the nodes B1, B2, B3, B4 have an increased DV-hop entry

of A from h + 1 to h + 2. Thus, the sensor node Si needs to relax the hop constraints by

one. Then, the node B1 needs to relax the hop constraint by one more. For B2, it will hold

the constraints as of B1. The constraint is tighten by one for B3, and so does B4. Finally,

the route is fixed after B4 forwards the packet to So.

136

Figure 6. Example of the bridge on the edge adaption

5. EXPERIMENTS AND RESULTS

We set-up our experiments using the parameters in Table 3. The trajectory and POI

encoding is executed using a desktop, which acts as a fog server, with a Xeon E5-1620 v2

and a Nvidia RTX 2070 GPU.We assume that the POI is located within aWSAN distributed

in a 1800m by 1700m area. The density of the WSAN is less than 0.6%. To save energy,

all of the wireless sensors work under low power listening mode (LPL), where each sensor

node only wakes up for a few milliseconds to listen to the channel. The WSAN is simulated

using TOSSIM. We also use powerTOSSIM-Z to estimate the energy consumption of the

activated sensor nodes. There are 30 local edge nodes randomly deployed in the WSAN

field. The local edge nodes act as the gateway that will broadcast the encoded data requests’

packets and collect the data from the WSAN. The performance metric used includes the

compression ratio, reliability, average delay in data reporting, and energy consumption.

137

Table 3. Parameters for the experiments

Area of deployment 1800×1700 m

Number of sensor nodes 5000

Communication range 100 m

Number of edge devices 30

Broadcasting hop limitation 30 hops

LPL sleeping time 600ms

LPL wake time 10ms

Energy model MicaZ

Coverage threshold 90%

Number of anchor nodes (20 - 100)

Anchor cover range 20 hops

To measure the compression ratio of the proposed trajectory encoding algorithm,

we use real-world taxi-trajectory data [20]. Each line of the trajectory data contains the

trajectory of a taxi trip, in the city of Porto in Portugal, represented as a list of 8 byte GPS

data (latitude and longitude). The 2 GB data-set contains trajectories of different shapes

and lengths. We scale the taxi trajectory to the center of the sensing field. The width of

the trajectory is set as two thirds of the wireless radio range. In Figure 7, the X-axis is the

number of GPS data points in the trajectory, and the Y-axis is the size of the set of node

IDs in the trajectory. The figure shows that trajectory with more GPS data will cover more

sensor nodes. In Figure 9, where the X-axis is the number of GPS data in a trajectory

and the Y-axis is the compression ratio, 500 trajectories were sampled, the number of GPS

data points ranging from [2, 20],[21, 40],[41, 60],[61, 80], and [81, 105] and the number

of anchor nodes in the set [20, 40, 60, 80, 100] which is (0.4%, 0.8%, 1.2%, 1.6%, 2%)

of the total number of nodes in the network. The compression ratio (CR) is defined as

138

the uncompressed-data size over the compressed data size using the proposed encoding

algorithm. Here the uncompressed data size is the size of a list of sensor IDs that reside

in the trajectory. The results show that when the number of anchor nodes increase, the

CR also increases. It is more likely to find the enough closest ’shapes’ when the number

of anchor nodes is large, which costs fewer iterations to cover the area. We notice that

when the number of GPS data points increases, the CR is not increased when encoding

with 20 or 40 anchor nodes. A possible reason is that when there are fewer anchor nodes,

redundant shapes may be selected in the late iterations, which increases the size of the

encoded message. For example, in Figure 5(e)(h), there are more shapes that overlap with

other shapes than that in the case of Figure 5(b).

10 20 30 40 50 60 70 80 90 100

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

Number of GPS data points in a trajectory

U
nc
om

pr
es
se
d
da
ta
siz

e
(in

by
te
)

Figure 7. Property of taxi trajectory dataset

139

10 20 30 40 50 60 70 80 90 100

6

8

10

12

14

Number of GPS data points in a trajectory

Co
m
pr
es
sio

n
ra
tio

80 Anchors
60 Anchors
40 Anchors
20 Anchors

Figure 8. The compression ratio of the proposed DV-Hop based trajectory encoding
algorithm for different trajectory sizes with different number of anchor nodes

10 20 30 40 50 60 70 80 90 100

6

8

10

12

14

Number of GPS data points in a trajectory

Co
m
pr
es
sio

n
ra
tio

80 Anchors
60 Anchors
40 Anchors
20 Anchors

Figure 9. The compression ratio of the proposed DV-Hop based trajectory encoding
algorithm for different trajectory sizes with different number of anchor nodes

140

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Epoch elapse

Re
du

nd
an
tr
eb
ro
ad
ca
st
ra
tio

(%
)

20% mobile nodes
50% mobile nodes
80% mobile nodes

Figure 10. Average redundant rebroadcast ratio

Since the proposed trajectory encoding algorithm uses basic shapes (arc and hyper-

bola segments) to approximate the trajectory, there is a possibility that the encoding will fail

when no suitable shape is found. Here, we define an encoding failure as when the encoding

algorithm cannot find any combination of shapes that will cover a certain threshold ratio of

T AS, which is defined as the predefined coverage ratio. For example, when the threshold

is set to 85%, the hops constraints represented shapes must overlap with more than 85%

of the trajectory area. The lower the threshold, the higher is the encoding successful rate.

However a threshold lower than 85% is not recommended, as the routing reliability (the

rate of successfully routing the data request message to the POI) will be affected due to

the uncovered gaps between the routing paths. In this experiment, we find the relationship

between the number of anchor nodes, success rate (the percentage of encoding that do not

fail), and coverage threshold. The result in Figure 11 shows that as the number of anchor

nodes increasing, the successful rate of encoding will increase. However, increasing the

coverage threshold will decrease the successful rate of encoding.

141

70 75 80 85 90 95 100 105
90

92

94

96

98

100

Threshold of the coverage

Ra
te
of

su
cc
es
sf
ul

en
co
di
ng

20 Anchors
40 Anchors
60 Anchors

Figure 11. Experiment of successful encoding rate with different number of Anchor nodes
and coverage threshold

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Average number of neighbor nodes

Re
lia

bi
lit
y

DV-TE-R
DV-TE-BR
Ring routing
Nested Routing

Figure 12. The reliability of DV-TE-R, DV-TE-BR, Ring routing, and Nested routing with
different number of neighbors

142

We compare the reliability of the proposed encoding and routing protocol with the

ring routing [13] and the nested routing [14], which both enable data routing to a moving

sink (mobile edge device that can move in some applications) by relaying the data to a

circular area where the nodes know the updated location of the mobile edge device. The

area of a nested ring is in the middle of the sensing field, as shown in Figure 5(g). In this

experiment, we use 50 anchor nodes for the proposed algorithm. We define the reliability

of ring routing as the success rate of generating a ring structure.

50 100 150 200 250 300 350 400
2,000

3,000

4,000

5,000

6,000

Sink moving distance in 30 seconds (m)

Av
er
ag
e
de
liv

er
y
de
la
y

(in
m

il
li

se
co

nd
s)

DV-TE-BR
Ring routing
Nested Routing

Figure 13. The average delay of data reporting comparing with state-of-art schemes

The reliability of nested routing is the success rate of generating any one of the

ring structures within its nested ring structure. The reliability of the proposed DV-Hop

based trajectory encoding and routing (DV-TE-R) and its bridge on the edge (DV-TE-BR)

adaption is the success rate of generating the encoded message of the trajectory and routing

the data request packets to the nodes within POI. The result is shown in Figure 12. When

the average number of neighbors of each node is smaller than 8, which is 0.16% of the

total number of nodes, both protocols have low reliability. The nested routing protocol has

143

better reliability performance than ring routing because it has redundant rings. The bridge

on the edge adaption improves the reliability of DV-TE-R by relaxing the hop constraints.

When the average number of neighboring nodes is greater than 16, which is 0.32% of the

total number of nodes, the reliability of DV-TE-BR is greater than 99%. It achieves the best

reliability performance compared to ring routing and nested ring routing. In the rest of the

experiments, by default, we use DV-TE-BR.

0 20 40 60 80 100
0

2

4

6

8

10

Number of GPS data points in a trajectory

La
te
nc
y
of

da
ta
co
lle

ct
io
n

(in
se

co
nd

)

Encoded Trajectory (without ellipse)
Encoded Trajectory (with ellipse)

uncompressed, broadcasting

Figure 14. Average delay from starting broadcast request till receiving all the data from the
POI

In the following average data reporting delay experiment, we assume that mobile

edge devices will move randomly with different speeds in the local IoT network with the

configuration, as shown in Table 3. The average delay in data reporting is the time when

the moving mobile edge devices receive the data minus the time when the source reports

the data. The proposed DV-TE-BR fixes the current routing path by letting the mobile edge

144

devices update their locations periodically. Thus, it cannot always guarantee the shortest

reporting path as the ring routing and nested routing methods do. Although the ring routing

and nested routing provide the current location of the mobile sink, fetching this information

from the ring or nested ring for the source node causes the delay overhead of one round trip

to the closest ring. Thus, the delays of ring routing and nested ring routing are still higher

than the delay of DV-TE-BR. In addition, the counter-based routing strategy of DV-TE-BR

reduces the waiting delay for the low-power listening WSN because the first awaked node

could start routing, while ring routing and nested routing have to wait for specific routing

nodes within its routing table. Nested routing has a better delay performance than ring

routing because its average shortest distance from the source to the rings is shorter than the

ring routing. The delay performance of data reporting is shown in Figure 13.

(a) Encoded trajectory (b) Visualized routing result

Figure 15. Sample routing example

In the following latency and energy consumption experiments, we compare the

proposed scheme with the state-of-the-art counter-based broadcasting algorithm. The ex-

perimental set-up, which uses the taxi trajectory data, is shown in Table 3. We use TOSSIM

to simulate the routing of data request messages and data reporting packets and visualize

the results using Python. Figure 15(a) shows a sample trajectory being encoded using hops

145

constraints represented shapes, and Figure 15(b) shows a sample output of the visualized

routing result where the red dots are the sensors that forwarded a message and the green

dots are sensors that received a message.

The latency in collecting the requested data is an important factor in meeting the

quality of service. Broadcasting is the fastest way to flood the data request into the whole

network. The proposed data collection scheme also broadcasts the data request to the

POI. However, as opposed to flooding approaches [6], only the nodes in a hop constraints

defined trajectory can rebroadcast. Thus, the energy consumption and bandwidth usage are

minimized.

Figure 14 compares the latency of the local edge devices receiving all the sensing

data of the POI from the local WSAN, which are working under low power listening (LPL)

mode with a 660 ms sleeping and waking period. We assume that all local edge devices will

broadcast the data request messages. The sensor nodes that receive the data request packets

will be awake and send the data back to the nearest edge devices if they are at the POI. The

experimental result shows that the proposed data collection scheme could reduce latency

because broadcasting a compressed message requires fewer packets than an uncompressed

message which includes IDs of all the sensor nodes residing within the POI.

The energy consumption experiment is simulated with powerTOSSIM-Z, which is

an energy simulation tool for wireless sensors. It uses the micaZ energy model and can

measure the energy consumption at the packet level. The result in Figure 16 shows that the

proposed data collection scheme consumes less energy than the broadcasting approach. We

next compare the average number of rebroadcasting nodes of the proposed DV-hop based

trajectory encoding and routing scheme (DV-TE-BR) verses the state-of-the-art counter-

based broadcasting [6] for each single data request packet. The result shows that the

proposed DV-TE-BR scheme reduces the number of redundant rebroadcasting packets (142

vs. 2491) by 94% and thus, saves bandwidth usage in the WSAN.

146

0 20 40 60 80 100
0

100

200

300

400

500

600

Number of GPS data points in a trajectory

A
cc
um

ul
at
ed

en
er
gy

co
ns
um

pt
io
n

(in
Jo

ul
e)

Encoded Trajectory (without ellipse)
Encoded Trajectory (with ellipse)

uncompressed, broadcasting

Figure 16. Accumulated energy consumption in fetching the data from the POI

6. CONCLUSION AND FUTUREWORK

The proposed trajectory encoding and data collection algorithm for IoT applications

has improved energy efficiency, reduced latency, and achieved reliable performance when

fetching data from the POI in the local fog network without using GPS. In addition, with

the use of virtual coordinates, location anonymity is achieved for the source, sink, and

intermediate nodes in the routing path, as only the secure server in the local fog knows the

anchor nodes’ locations. In the future, we plan to integrate the Z-compression algorithm

[21] to further compress the trajectory message and sensing data of the IoT devices. The

link of the current implementation provided as a web service is here http://www.routing-

demos.com:8080/.

147

REFERENCES

[1] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,
49(5):78–81, 2016.

[2] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and
applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb). IEEE, 2015.

[3] Yingzi Wang, Nicholas Jing Yuan, Defu Lian, Linli Xu, Xing Xie, Enhong Chen,
and Yong Rui. Regularity and conformity: Location prediction using heterogeneous
mobility data. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1275–1284. ACM, 2015.

[4] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. Wireless networks, 8(2-3):153–167, 2002.

[5] Chien Chen, Chin-Kai Hsu, and Hsien-Kang Wang. A distance-aware counter-based
broadcast scheme for wireless ad hoc networks. InMilitary Communications Confer-
ence, MILCOM. IEEE, 2005.

[6] Ji-Young Jung and Dong-Yoon Seo. Counter-based broadcast scheme considering
reachability, network density, and energy efficiency for wireless sensor networks.
Sensors, 18(1):120, 2018.

[7] Kok-Poh Ng, Charalampos Tsimenidis, and Wai Lok Woo. C-sync: Counter-based
synchronization for duty-cycled wireless sensor networks. Ad Hoc Networks, 61:51–
64, 2017.

[8] Murat Yuksel, Ritesh Pradhan, and Shivkumar Kalyanaraman. An implementa-
tion framework for trajectory-based routing in ad hoc networks. Ad Hoc Networks,
4(1):125–137, 2006.

[9] Houda Labiod, Nedal Ababneh, and Miguel García de la Fuente. An efficient scalable
trajectory based forwarding scheme for vanets. In Advanced Information Networking
and Applications (AINA), 24th IEEE International Conference on, pages 600–606.
IEEE, 2010.

[10] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion Stoica.
Geographic routing without location information. In Proceedings of the 9th annual
international conference on Mobile computing and networking, pages 96–108. ACM,
2003.

[11] Shrawan Kumar and DK Lobiyal. Novel dv-hop localization algorithm for wireless
sensor networks. Telecommunication Systems, 2017.

[12] Badri Nath and Dragoş Niculescu. Routing on a curve. ACM SIGCOMM Computer
Communication Review, 33(1):155–160, 2003.

148

[13] Can Tunca, Sinan Isik, Mehmet Yunus Donmez, and Cem Ersoy. Ring routing: An
energy-efficient routing protocol for wireless sensor networks with a mobile sink.
IEEE Transactions on Mobile Computing, 14(9):1947–1960, 2015.

[14] Ramin Yarinezhad. Reducing delay and prolonging the lifetime of wireless sensor
network using efficient routing protocol based onmobile sink and virtual infrastructure.
Ad Hoc Networks, 84, 2019.

[15] Hongyang Chen, Kaoru Sezaki, and Ping Deng. An improved dv-hop localization
algorithm with reduced node location error for wireless sensor networks. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, 91(8):2232–2236, 2008.

[16] Kai Chen, Zhong-hua Wang, Mei Lin, and Min Yu. An improved dv-hop localization
algorithm for wireless sensor networks. 2010.

[17] Shrawan Kumar and DK Lobiyal. An advanced dv-hop localization algorithm for
wireless sensor networks.Wireless personal communications, 71(2):1365–1385, 2013.

[18] Xiaofei Cao. Serial port reader and writer for the android gateway.
https://github.com/cxfcdcpu/gateway.

[19] Carl T Kelley. Solving nonlinear equations with Newton’s method, volume 1. Siam,
2003.

[20] Taxi trajectory data. www.kaggle.com/crailtap/taxi-trajectory.

[21] Xiaofei Cao, Sanjay Madria, and Takahiro Hara. Multi-model z-compression for
high speed data streaming and low-power wireless sensor networks. Distributed and
Parallel Databases, 2019.

149

IV. EFFICIENT DATA COLLECTION IN IOT NETWORKS USING
TRAJECTORY ENCODEDWITH GEOMETRIC SHAPES

Xiaofei Cao and Sanjay Madria

ABSTRACT

The Mobile Edge Computing (MEC) paradigm changes the role of edge devices

from data producers and requesters to data consumers and processors. MEC mitigates the

bandwidth limitation between the edge server and the remote cloud by directly processing

the large amount of data locally generated by the network of the internet of things (IoT)

at the edge. An efficient data-gathering scheme is crucial for providing quality of service

(QoS) within MEC. To reduce redundant data transmission, this paper proposes a data

collection scheme that only gathers the necessary data from IoT devices (like wireless

sensors) along a trajectory. Instead of using and transmitting location information (which

may leak the location anonymity), a virtual coordinate system called "distance vector of

hops to anchors" (DV-Hop) is used. The proposed trajectory encoding algorithm uses ellipse

and hyperbola constraints to encode the position of interest (POI) and the trajectory route

to the POI. Sensors make routing decisions only based on the geometric constraints and the

DV-Hop information, both of which are stored in their memory. Also, the proposed scheme

can work in heterogeneous networks (with different radio ranges) where each sensor can

calculate the average one-hop distance within the POI dynamically. The proposed DV-Hop

updating algorithm enables the users to collect data in an IoT network with mobile nodes.

The experiments show that in heterogeneous IoT networks, the proposed data collection

scheme outperforms two other state-of-the-art topology-based routing protocols, called ring

150

routing, and nested ring. The results also show that the proposed scheme has better latency,

reliability, coverage, energy usage, and provide location privacy compared to state-of-the-art

schemes.

1. INTRODUCTION

The Internet of Things (IoT) facilitates fast access, process, and utilization of the big

data created by the ’things’ surrounding many applications such as disaster management,

battlefield monitoring, and moving object tracking. However, for some IoT devices like

wireless sensors, the limited energy, and high recharging cost require them to save energy

as much as possible during their duty cycles. Bandwidth limitation is another challenge for

IoT networks. In recent years, the number of IoT devices, the data rate, and the enormous

data produced by these large numbers of things are increasing faster than the growth of

wireless bandwidth. Also, for heterogeneous IoT networks with mobile nodes, there is a

need of maintaining the correct and stable data collection routes without leaking the users’

locations information. Last but not the least, different applications should be able to share

the same IoT network efficiently. Therefore, the users of different applications can fetch

data from sensors regardless of their types, precise locations, and identities.

In recent years, researchers have turned their focus on edge computing [1] and

fog computing [2] to support IoT networks. The edge/fog networks interacting with local

wireless sensor networks (WSNs) provide services with higher reliability in collecting,

caching, and exploiting sensing data locally. Also, the latency of data collection in mobile

edge networks (MEN) is reduced because edge nodes can collect and process data faster than

the remote cloud. However, with the participation of third party mobile edge devices, the

location anonymity problem draws some researchers’ attention again. For example, consider

a celebrity athlete who may try to get pollution levels along his/her running trajectory from

crowd-sourcing and/or existing environmental sensor networks. An adversary could easily

infer the user’s locations like the hiking trail and home address, and predict the mobility

151

based on the history of using the location-aware services [3]. Therefore, as such this

individual user would like to keep the location anonymity against the potential security

risks.

InMEN, sensors and other IoT devices contribute to themost volume of sensing data.

In most of the WSN applications, sensors report their sensing data periodically. However,

periodically sensing has a long delay which is not desirable for applications requiring real-

time low-distorted data. In recent works like [4], data sensing only happens when the

sensor or mobile user receives a data request packet. Therefore, unnecessary data sensing

and reporting outside of the position of interest are reduced. Another way to reduce the

data delay is broadcasting, which is widely used as the fastest way to disseminate real-time

data to the whole network. The drawback of broadcasting is its high energy consumption

due to massive rebroadcasting. Therefore, the counter-based broadcasting scheme [5] and

their adaptive versions [6][7][8] are proposed to minimize the redundant rebroadcasting to

save energy and mitigate the broadcast storm effects [5]. However, even the state-of-the-

art adaptions of counter-based broadcasting cannot reduce more than 60% rebroadcasting.

Also, the broadcast can not control the data flow precisely which is not acceptable for some

military applications like tracking enemy objects, while not being detected by the targets.

Some trajectory-based routing protocols, which route packets through wireless sen-

sor nodes that reside more or less on the designed trajectory, have the potential to fetch the

data from specific areas with the minimum overhead of redundant forwarding. However,

most of the trajectory routing protocols like [9] and [10] require all the sensor nodes to

have the GPS to decode the encoded routing trajectory, which is not practical for low-cost

WSNs. Although the cubic Bezier curve used in [9] provides a good compression ratio for

the position of interest (POI), it still cannot be adapted in WSNs without GPS modules.

A virtual coordinate system is an option for IoT consisting of WSNs without GPS. It can

use local connectivity information such as the number of neighbors of each node and the

perimeter nodes’ locations as in [11]. It can also use the anchor nodes and the vector of

152

minimum hop distance (DV-Hop) to the anchor nodes to estimate the distance between

nodes. However, the state-of-the-art DV-Hop based location estimation [12] requires lots

of memory resources and computational power, therefore, is not suitable for low power

wireless sensor networks.

To address the shortcomings of the existing works, this paper proposes a spatial data

collection scheme that has both low latency and less overhead of redundant broadcasting.

Instead of using the exact nodes’ location information from GPS as in [9][10][13], The

proposed algorithm uses a vector of the minimal distance of hops (DV-Hops) to all the

anchor nodes selected by the secure fog server as a dictionary or virtual coordinate. The

area of the position of interest (POI) can be represented as a list of hop constraints to the

anchor nodes. The routingmessage only contains two basic geometric shapes; hyperbola and

ellipse segments in the proposed scheme. Each shape is encodedwith simple hop constraints

(e.g., size of the ellipse and the hyperbola and the start and end of the segment). The sensor

nodes could avoid complex geometric computing, which makes it suitable for WSNs that

have low-power and low-computing resources. In addition, the proposed scheme provides

location anonymity by avoiding using and transmission of the GPS location information.

To decode the POI of the client, the adversary has to have the encoded message as well as

the location of the anchor nodes, which are stored in the secure fog server. The broadcast

storm issue is addressed by integrating the counter-based broadcasting mechanism. The

performance evaluation shows that the proposed scheme reduces the redundant rebroadcast

in a small real-world WSN. In simulation experiments, it compresses the data about eight

times and reduces more than half of the latency in the data requesting and collection process

compared to directly broadcasting the list of node identifications that reside within the POI.

The reliability of the proposed scheme also beats the state-of-the-art geospatial

routing protocols like ring routing and nested routing [14][15], which route messages in

a circular trajectory. The energy consumption of data requests within our scheme is also

reduced compared to the state-of-the-art counter-based broadcasting schemes [7][8].

153

The paper is organized as follows: Section 2 discusses related works about routing,

broadcasting, and virtual coordinate. Section 3 first describes the system overview and

assumptions. Then it elaborates the method of encoding trajectory with hyperbola and

ellipse. Last, it shows some examples of encoding and routing with the encoded trajectory

message. Section 4 gives an adapted data collection protocol for low-power WSN in where

sensors sleep periodically. Section 7 explains the experiment setup and demonstrates the

performance improvement with detailed elaborations. Section 8 concludes the paper with

future work ideas.

2. RELATEDWORKS

2.1. COUNTER-BASED BROADCASTING

Broadcasting is the fastest way to flood amessage to cover the wholeWSN.However,

limited bandwidth causes a delay in broadcasting a sequence of messages into the network.

After a node receives a given packet, the counter-based broadcasting schemes [5][6][7][8]

require a node to wait for a short period to listen to its neighbors and count how many times

the given packet has been rebroadcast. If the broadcast count of the given packet reaches the

predefined threshold, it will drop the packet. Thus, only a few of the nodes in the network

will rebroadcast the given packet which saves bandwidth and thus, alleviates the congestion.

2.2. GRID-BASED ROUTING

Hierarchical grid-based routing is an energy-efficient method for routing of data

packets [16]. With the mobile sink and predefined virtual grid, packets could bypass the

congestion area of the grid and route to the mobile sink by fetching the updated mobile

sink’s location from the cell-center. The grid-based routing protocol can be classified into

two categories, the query-based protocol (i.e. PANEL [17], GMCAR [18], etc.) and the

154

event-based protocol EAGER [19]. For the query-based routing protocol, sensor nodes

only sending the sensing data on request, while event-based protocol sensors will report

events based on the pre-configuration of the event definition. Comparing to the event-based

routing protocol where each sensor report sensing data periodically, the query-based routing

protocol greatly reduces the overhead of unnecessary sensing and routing, which saves both

energy and bandwidth. However, efficiently disseminating the data request packets in a

WSN without GPS is a challenge for the query-based routing protocol. Some works like

[16] switch alternately grid-head states to overcome the energy and bandwidth overhead of

flooding control packets. The work [20] uses the location information of the cell-header

and their neighbors to forward the query towards the target cell and flood message only in

the target cell. Though these works reduce the broadcast overhead, the grid-based routing

still needs the GPS information and extra energy to maintain the grid topology.

2.3. RING ROUTING AND NESTED ROUTING

Ring routing and nested routing [14][15] are proposed to solve the problem of

routing packets to a mobile sink. The idea behind ring routing and nested routing is to

store the current mobile sink’s location in a ring or nested ring structure. The data source

needs to query the nodes in the ring/nested ring structure to fetch the updated location of

the mobile sink before routing the packets. Then the data source routes the packets to the

mobile sink using the updated sink location. Ring routing and nested routing achieve good

performance because searching the ring structure is easier than searching the network.

2.4. TRAJECTORY-BASED ROUTING AND VIRTUAL COORDINATE

Trajectory based routing [9][10] is a paradigm that only the nodes near the given

routing trajectory will forward the packets. It includes trajectory generating and encoding

and the routing decision rules for each sensor node. It has the following challenges: First,

155

the trajectory encoding algorithm should able to compress the trajectory as the encoded

message will be included in the routing packets. Second, each compressed message should

be able to route through the trajectory to the sink reliably. Third, the overhead of routing

caused by redundant rebroadcast should be minimized. However, for a WSN, the additional

challenge is to route through a trajectory without using any GPS-based location information.

To route through a trajectory with virtual coordinates using DV-Hop rather than

GPS, the virtual coordinates should be able to reflect the sensors’ real location precisely.

Intuitively, increasing the number of anchor nodes will improve the precision of the virtual

coordinates. This has also been proven by DV-Hop based localization algorithms such as in

[21], [22], and [23]. Some previous works like [24] and [23] use the non-dominated sorting

(NSGA-II) algorithm to improve positioning accuracy for complex network topologies with

many anchor nodes. Their results demonstrate DV-Hop based localization algorithm could

achieve good localization accuracy. The challenge in this work, however, is to reduce

computation and memory usage which are limited in sensor nodes. The naive combination

of greedily checking the distance to the routing trajectory and the use of the virtual coordinate

system with many anchor nodes requires computational resources and is also error-prone

due to the use of the estimated location. According to the DV-Hop based localization

algorithms, in the worst case, the error rate can be as large as 45% of the range of the radio

[12],[24] and [23]. which could lead to routing failure.

2.5. LOCATION PRIVACY IN WSN

WSNs are vulnerable to be attacked by an eavesdropper. To oppose the eavesdropper

and protect the location information of the source, sink, and gateways, different approaches

are proposed. To protect the source’s location privacy, the paper [25] proposed a dynamic

clustering algorithm and dynamic shortest path scheme that change the network topology

dynamically. Thus, the adversary won’t be able to locate the routing path and can’t find the

source by backtracking. However, the dynamic clustering algorithm consumes excessive

156

energy which is a drawback for many real-world applications. A more energy-efficient

approach [26] proposed a hybrid source location privacy protection scheme that combined

phantom source node strategy and ring routing. The phantom source node could mislead

the adversary to the wrong location and the ring routing saves energy while has a good

routing performance.

To protect the sink nodes’ location privacy, the work [27] proposed a routing scheme

that preserves the sink’s location anonymity and guarantees to routewithin a delay threshold.

The data packets route to the sink’s location through several ray routes. Only one ray route

is the true that goes through the sink location. The sink collects the data from random

nearby intermediate nodes which store the data from the sender. However, the proposed

ray routing requires the sensor nodes to maintain a table of their nearby neighbor nodes and

their location information.

3. PROPOSED DATA COLLECTION SCHEME

The proposed data collection scheme enables the fog server to directly collect only

the necessary data for the edge clients from nearby IoT networks by sending a data request

message. The data request packet frommobile edge devices like cellphones that are near the

client’s position of interest (POI) should be able to reach the targeted IoT devices (usually the

wireless sensormotes) withminimumoverhead and latency. In heterogeneous IoT networks,

different wireless devices with different radio standards cannot directly communicate with

each other.

3.1. SYSTEM OVERVIEW

The proposed data collection scheme is based on an edge-computing paradigmwhere

the edge devices consume data within the geometric constraints specified by the client. It

uses mobile edge devices as the gateway that coordinate with the wireless sensor network

157

and downstream fog servers. The data collection tasks are offloaded to the local edge nodes

near the POI, and thus reduces the latency. The data processing tasks are offloaded to the

local fog server.

Figure 1. Data collection in local edge network

The system overview is shown in Figure 1. The cloud data centers only collect,

process, and store the time-insensitive data. The fog servers collect, process, and generate

the compressed geospatial constraints of user requests which will be discussed in the next

section. Then, the data collection task is offloaded to the mobile edge devices near the POI.

With the help of the serial port listening and writing app [28], the edge device becomes a

gateway to the IoT sensor network by connecting a sensor mote to its serial port.

158

3.2. ASSUMPTIONS

In IoT networks, many applications prefer to have the geospatial information tagged

with the sensing data. For example, firefighters want to know the chemical leak status

based on the temperature and infrared sensors’ data tagged with the location information.

Due to their low cost and energy limitation, most of the sensor motes do not contain GPS

modules themselves. To enable these sensors to provide geospatial information without

GPS, the proposed algorithm uses a vector of the minimal distance of hops to the anchor

nodes (DV-Hop) as the virtual coordinates.

The proposed data collection scheme has the following assumptions:

First, the anchor nodes, which are selected by the fog server, know their locations.

They have a one-byte long ID number, which is enough for a local fog network. Also, the

mobile edge devices, which different from anchor nodes, collect data from a WSN directly.

Nodes in theWSN (maybemobile also)may have different radio ranges and different sensing

preferences.

Second, the fog server, which encodes the geospatial data request, has the location

information of the local anchor nodes and has enough computing resources. In the WSN,

near each sensor node, there are at least three randomly deployed anchor nodes that will

flood their identification to the others in the area within a limited number of hops (Hmax)

from them. While flooding, all the sensor nodes will create and update a vector of the

minimal distance of hop (DV-Hop) to their nearby (within Hmax hops) anchor nodes.

Third, the anchor nodes also have the DV-Hop of their nearby (within Hmax hops)

anchor nodes and will eventually transmit this information to the fog server. After the

network has been initialized, if any nodes move, they need to update their DV-Hop by

querying all their new neighbors’ DV-Hop. For the new DV-Hop of the moving nodes,

the new DV-Hop entry is set to be one plus the minimum hop count entry of all the new

neighbors’ DV-Hops.

159

Fourth, this work assumes the user only wants to collect the necessary data where

the definition of necessary data can vary based on the applications. For example, in the

battlefieldmonitoring application, we havementioned in the introduction, unnecessary radio

broadcasting not only has the risk of being eavesdropped on but also exposes to the tactical

intent. For an environmental monitoring application, we may want to monitor different

locations with different frequencies. For this paper, in short, the sensor data reside in the

trajectory that the user requests as the necessary data. We haven’t restricted how the users

should define their personalized trajectory.

Fifth, the trajectory, which includes the routing path and POI, can have the shape of

any type of continuous curve. It may have different widths in different segments and can

overlap with itself. The trajectory is unidirectional. So the overlapping trajectory is seen as

one curve and the intersecting trajectory is seen as a branch. To avoid looping, it is assumed

that every node in the trajectory re-broadcast the same routing packet only once. A routing

packet size should be fewer than 127 bytes (the limit of IEEE 802.15.4 packet size).

3.3. DV-HOP BASED GEOSPATIAL ENCODING ALGORITHM

The topology of the IoT network is dynamically changing, as the network is hetero-

geneous and some nodes are mobile. So, the fixed routing table, which proactive routing

protocol uses, is not suitable for routing and collecting data in IoT networks. Also, the

reactive or cluster-based routing protocols are not efficient due to the overhead of updat-

ing the routing table or maintaining the cluster topology. They also need to be tuned for

each specific application. Thus, it is hard to mix the use of different applications. The

proposed trajectory encoding algorithm uses a similar idea in a software-defined network

(SDN), which is to decouple the data plane (network layer) and the control plane of the IoT

network. In the proposed work, the routing controllers are the fog servers shown in Figure

3.1. The routing rules are encapsulated in each routing packet. Here, the routing rules are

160

encoded by the controller application which resides in the control plane. Each sensor in a

data plane is also seen as a mini router that decides the routing action (i.e., re-broadcast or

drop packets) based on the matching rules in the routing packets.

(a) A segment of line trajectory (b) A segment of hyperbola

trajectory

Figure 2. Example of a segment of line, and a hyperbola trajectory represented with hop
constraints

(a) A segment of circle (b) A segment of ellipse

Figure 3. Example of a segment of circle, and a ellipse segment

161

To route without using the GPS data, the proposed algorithm uses DV-Hop as the

virtual coordinate and store the DV-Hop table in each IoT device in the network. The

controlling information in the routing packets is the geometric shape constraints discussed

in the following paragraphs.

The idea of the proposed encoding algorithm is to use a set of geometric shapes

to represent the position of interest (POI) and the trajectory from a gateway to the POI.

With the assumption as in 3.1, the trajectory and POI drawn by the clients can be seen as a

set of discrete pixels in a 2d Euclidean space. Each pixel has two parameters: the x- and

y-coordinates from the predefined origin point. The unit of the coordinate, µ, is chosen

based on the application requirement. So each 1 µ by 1 µ area in this WSN is a pixel that

can be represented by a tuple (xcoor, ycoor) which is called the Trajectory Area Set (TAS).

Intuitively, a line can be used to connect two nodes with the shortest path length and

an arc can be used to connect two lines with different directions. Then, any trajectory can

be seen as the assembly of these two shapes or their more generalized form: the Hyperbola

segment and an arc segment.

For example, in Figure 2-(a), the shortest path from node S1 to node S2 is a straight

line. Using anchor nodes A1 and A2, a hyperbola can be defined as: h1 − h2 = 0 which is

a line passing through S1 and S2. Then, a third anchor node A3 with hop h3 is required to

cover both S1 and S2. Finally, it gives a segment of the line that starts and ends from S1 and

S2. Here, the anchor nodes A1, A2 determine the line’s direction, and A3’s location and hop

constraints determine the line’s starting and ending points. As a straight line is a special case

of a hyperbola, a hyperbola can be used to approximate the line. The left arc of a hyperbola

shown in Figure 2-(b) can be represented with constraints h1 − h2 = 2 × a, (a ∈ Integer) .

Then, with the anchor node A3 and its hop count h3, it generates a segment of the hyperbola.

When a = 0, the segment is a straight line.

162

Another example in Figure 3 shows how to use the arc of a circle to connect two

lines with different directions [29]. As a circle is a special case of an ellipse with overlapped

foci, the ellipse segment could replace the circle segment.

The objective now is to use the virtual coordinate to represent these two shapes:

the hyperbola segment and the ellipse arc. As the fog server knows the location and the

DV-Hop of each anchor node, the average hop distance davg in µ unit between each pair of

anchor nodes can be calculated. Each pair of the anchor nodes can be seen as the foci of a

set of hyperbolas and a set of ellipses. The desired hyperbola and an ellipse can be chosen

by setting the a value (in hop counts) of the Cartesian equation of the hyperbola and an

ellipse shown in Equation (1), (2) where xo, yo are the coordinate of the center of the ellipse

and the hyperbola. At last, keep the hyperbola and ellipse segments which overlap most of

the trajectory for data collection. The segment is the intersection of the hyperbola and an

ellipse with a control circle that uses an anchor node as its center and given hops count as

its radius which is shown in Equation (3) where xc, yc are the coordinate of the center of

the circle. Then, the two following simple shapes: the hyperbola segment and the ellipse

segment can be encoded with the hop constraints.

(x − xo)
2

a2 −
(y − yo)

2

b2 = 1 (1)

(x − xo)
2

a2 +
(y − yo)

2

b2 = 1 (2)

(x − xc)
2

r2 +
(y − yc)

2

r2 = 1 (3)

The computation complexity is another challenge in encoding a geospatial area

using shapes. As discussed, a hyperbola or an ellipse segment is determined with three

different anchor nodes (two as foci and one as the center of the control circle) and two

constraints of hop-distance (one as the a value, and the other as the radius of the control

circle). For a WSN with anchor nodes NAnchor and hops limitation Hmax for each anchor

163

node, the shapes (hyperbola and ellipse) which constitute the trajectory are chosen from

Nshapes = N3
Anchor H2

max different possible shape constraints. Testing of all the combinations

of the shapes has O(Nshapes!) time complexity, which is not practical. Thus, this paper

proposes a greedy algorithm that considers both the number of newly covered pixels and the

effective coverage ratio (ECR). ECR, defined in Equation 4, is the ratio of the overlapping

area of TAS and a shape over the mathematical area of the shape.

ECR =
Areacovered

Areashape
(4)

The trajectory encoding algorithm is divided into the three steps discussed next.

3.3.1. Find All Possible Shapes from Nshapes and Their Area Areashape. The

possible shapes are defined as the shapes that could constitute a portion of the trajectory.

In other words, the possible shapes must overlap with a portion of the data collection

trajectory. The objective of this step is to generate Nshapes shape constraints where Nshapes =

N3
Anchor H2

max . Each possible shape constraint can be represented as follows:

Cshape = [A1, A2, A3, a, h3] (5)

Here, A1,A2 are the foci of the shape hyperbola or the ellipse, A3 is the center of the control

circle, a is the parameter in the Cartesian Equation (1), (2), and h3 is the radius of the

control circle. The average one-hop distance davg is used to estimate the overlapping area

of each shape as shown in the Appendix.

Then the algorithm uses the following filtering criteria to filter each shape constraint

(hyperbola and ellipse segments) and discard shapes that don’t overlap with the TAS. First,

check if the control circle overlaps with the TAS. As the control circle will intercept the

shape segment and finalize the shape, it is the most important criteria to determine if a shape

164

overlaps with the TAS. The proposed algorithm only keeps the constraints that overlap with

the TAS by comparing the distance of the center of the control circle and the convex hull of

the TAS which is constructed using Chan’s algorithm [30].

The second is to check if the hyperbola or an ellipse overlaps with the TAS using a

filter algorithm and discard any constraint that does not overlap with the convex hull of the

TAS. For the hyperbola, it uses the rectangle which is perpendicular with the line between

the foci with length equal to 2Hmax , width equal to Hmax , and the start point is the midpoint

between the foci, to approximate the hyperbola. For an ellipse, it uses circles with radius a

and the foci as the center to approximate the ellipses constraints where a is half of the long

axis length of the ellipse.

Third, check if the hyperbola or ellipse overlaps with the control circle. In this step,

the filter algorithm not only needs to discard the shape constraints with zero or trivial area

but also needs to store the area of the shape for each constraint and send them to the GPU

along with all the possible shape constraints and the TAS for further calculation.

AreaSegment = AreaouterOverlap − AreainnerOverlap (6)

3.3.2. Calculating the Area of the Shape Segments. To ensure the accuracy of

the effective coverage ratio (ECR) as shown in Equation (4), the concise computation of

the shape segments’ area is essential. This paper defines the area of an ellipse segment

AreaSegment (in Equation (6)) as the difference of the area of the outer ellipse overlapping

with the control circle Areaouteroverlap and the area of the inner ellipse overlapping with the

control circle AreainnerOverlap(the shaded area shown in Figure 4) where the control circle

has the center A3 and the radius h3. The outer ellipse and inner ellipse share the same foci

A1 and A2. Also, for any point on the outer ellipse, the distance from it to the foci (h1 and

h2) meets h1 + h2 = 2 × a where a is a predefined value. The distance from any point on

the inner ellipse to the foci (h′1 and h′2) meets h′1 + h′2 = 2 × a′.

165

Figure 4. A ellipse segment’s area estimation example

The objective now is to calculate the overlapping area of the inner ellipse and the

control circle, and the overlapping area of the outer ellipse and the circle. To do that, the

first step is to transfer the ellipse to standard Cartesian format as in Equation (2) by rotating

the foci to be horizontally aligned and shift the center of the ellipse to the origin point of

the predefined coordinate.

The second step is to find the intersection point of the ellipse and the circle by

solving the simultaneous equations of the Cartesian equation of the ellipse (Equation 2) and

the Cartesian equation of the circle (Equation 3 where xc and yc are the x and y coordinate

166

of the circle center). The simultaneous equations can be transformed to be a quadratic

equation (Equation 7) which has zero to four real number solutions for y. Each real solution

indicates one intersection point of the ellipse and the circle.



x = a
√

b2−y2

b

y4 + S1y
3 + S2y

2 + S3y + S4 = 0

m = b2 − a2

n = a2b2 + b2c2
x + b2c2

y − b2r2

S1 = −4b2cy/m

S2 = (2mn + 4b4c2
y + 4b2a2c2

x)/m
2

S3 = −4b2cyn/m2

S4 = (n2 − 4b2c2
xa2b2)/m2

(7)

The third step is to simplify and adapt the algorithm in [31] for computing the

overlapping area of an ellipse and the circle. The detailed procedures and algorithms are

described in the Appendix.

A hyperbola’s segment constraints are defined as the overlapping area of a hyperbola

with one hop width and a control circle with a given radius. The hyperbola is defined with

two anchor nodes which are its foci. The control circle is defined with one anchor node

which is its center. To find all possible hyperbola segments, The proposed algorithm

uses three layers nested for-loop to iterate through the anchor nodes A1, A2, A3 as shown

in Equation (5). For each shape, it iterates hops from hstart to hend . It also calculates

the average one-hop distance between the foci of the hyperbola as d f ocus and the average

one-hop distance between all three anchor nodes as davg which is used to estimate the

overlapping area of the hyperbola segment and the control circle discussed in Figure 5.

167

Figure 5. A hyperbola segment’s area estimation example

For example, in Figure 5, assume that the x-coordinate of the anchor nodes is XID

where "ID" is the anchor node’s identification number and the y-coordinate of the anchor

nodes is YID. Assume that the Euclidean distance between A1 and A2 is 2 × c. The

overlapping area of the hyperbola of A1 and A2 and the control circle of A3 is defined as

Areahyper = AreainnerHyper − Areahyperbola. The inner hyperbola meets DisA1 − DisA2 =

2 × a × d f ocus. Here DisAID is the distance between any point in the hyperbola to the focus

with given ’ID’; ’a’ is a positive integer less than Hmax . The overlapping area of a hyperbola

168

and the control circle can be calculated as follows:

Areahyper = Areapie + Areatriangle − Areacurve

As shown in Figure 5, the Areacurve is the area between the line connected to the two

intersection points and the hyperbola curve between the two intersection points. This area

is the result of the definite integral of the hyperbola function minus the line function. The

detailed algorithms are given in the Appendix.

(a) One shapes in another (b) Shapes disjoint with each other

(c) Three intersection points (d) Four intersection points

Figure 6. Ellipse and circle intersection cases

169

Areaarc_circle

Areaarc_ellipse

α

θ

P2 (x2,y2)

P1 (x1,y1)

O (0,0)

C (xc,yc)

(a) Two intersection points

Ar
ea

ar
c_

ci
rc

le

Areaarc_ellipse

P2 (x2,y2)

P1 (x1,y1)

O (0,0)

C (xc,yc)

P3 (x3,y3)

P4 (x4,y4)

Areaquadrilateral

(b) Four intersection points

Figure 7. Example of finding overlapping area of ellipse and circle

170

3.4. CALCULATE THE OVERLAPPING AREA OF ELLIPSE AND CIRCLE

Here, we simplify the algorithm of finding overlapping area of ellipse and circle into

five cases. When there is one or zero intersection point, we have the following two cases.

First is a single shape within another as in Figure 6-(a), and the other is two disjoint

shapes as in Figure 6-(b). These two cases can be determined by checking the distance

of the centers of the ellipse and the circle. When there are two intersection points, the

ellipse and circle must have overlapping area which is a portion of the ’pie’ area (Triangle

area Areatriangle plus arc area Areaellipse and Areacircle) of the control circle as shown

in Figure 7. To calculate the triangle area Areatriangle, we can use Equation (8) where

(x1, y1), (x2, y2), (x3, y3) are three vertices of the triangle. We can use Equation (12) and

(13) to calculate the arc area. The α and θ in Equation (12) and (13) is the angle difference

of vector (O, P1) and (O, P2) (for polar angle θ) or the angle difference of vector (C, P1) and

(C, P2) (for angle α), which can be calculated with Equation (9) or (10).

For three intersection points cases shown in Figure 6-(c), one intersection point is the

tangent point which we should be omit in the area computation. The last case is the ellipse

crossing the control circle as shown in Figure 6-(d). In this case, four intersection points

exist (P1(x1, y1), P2(x2, y2), P3(x3, y3), P4(x4, y4)). The total overlapping area is the sum of

four arc area which can be calculated using Equation (8),(12) and(13), and a quadrilateral

area which can be calculated using Equation (14).

Areatriangle = |x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|/2 (8)

Angle αpn =


arccos (xn/r) if yn >= 0

2π − arccos (xn/r) Otherwise
(9)

Polar Angle θpn =


arccos (xn/a) if yn >= 0

2π − arccos (xn/a) Otherwise
(10)

171

sign =



1 if α (or) θ > π

0 if α (or) θ = π

−1 if α (or) θ < π

(11)

Areaarccirle = αr2/2 + signc ∗ Areatriangle (12)

Areaarcellip = θab/2 + signe ∗ Areatriangle (13)

Areaquad = |(x3 − x1)(y4 − y2) − (x4 − x2)(y3 − y1)|/2 (14)

Fourth, find the overlapping area of the inner ellipse and control circle (AreaouterEllipse)

by repeating the previous steps. Then subtract AreaouterEllipse from the overlapping area

of the outer ellipse and control circle (AreainnerEllipse). The residual will be the area of the

ellipse segment Areaarc. The detail algorithm can be referred to Algorithm (1) and (2).

Last, tiny ellipse segments, which only contain less than 1000 pixels, are trival and

won’t be count to the final result. To save computational power, all these small ellipse

segments will be discarded.

Algorithm 1: Get the area of the ellipse segment
Result: Area of ellipse segment: Areaarc

Input : outerEllipse, controlCircle, davg

1 innerEllipse = new Circle(arcCircle, davg);

2 AreaouterEllipse = CALL Algorithm(2):

ellipseIntersect Area(outerEllipse, controlCircle);

3 AreainnerEllipse = CALL Algorithm(2):

ellipseIntersect Area(innerEllipse, controlCircle);

4 return Areaarc = AreaouterEllipse − AreainnerEllipse;

172

Algorithm 2: Get the overlapping area of ellipse and circle
Result: Intersect area of ellipse and circle

Input : ellipse, circle

1 P← EmptyList;

2 P← getIntersectionPoints(ellipse, circle);

3 if size(P) <= 1 then

4 if is_overlapping() then

5 return min(πr2, πab);

6 else

7 return 0;

8 end

9 else if size(P) <= 3 then

10 (P1, P2) ← removeTangentPoint(P);

11 //Equation (12)(13)

12 Areacircle = f indCircleArcArea(P1, P2);

13 Areaellipse = f indEllipseArcArea(P1, P2);

14 Areaoverlap = Areacircle + Areaellipse;

15 else

16 Areaoverlap = f indQuadArea(P);

17 for (i = 0; i < 4; i + +) do

18 Areacircle = f indCircleArcArea(P[i], P[(i + 1)%4]);

19 Areaellipse = f indEllipseArcArea(P[i], P[(i + 1)%4]);

20 Areaoverlap+ = Areacircle + Areaellipse;

21 end

22 end

23 return Areaoverlap;

173

3.5. CALCULATE THE OVERLAPPING AREA OF HYPERBOLA AND CIRCLE

Algorithms 3 and 4 show the procedure of calculating the area of a segment of the

intersection of a hyperbola and a circle. First, the hyperbola is rotated and shifted to standard

format, which obeys Equation (15) by multiplying the hyperbola with the transformation

matrix (16) and subtracting a shift vector shown in Equation 17. Then, multiplying the

circle with center A3 with the same transformation matrix 16, and shift using vector 17,

which gives us the new center shown in Equation (18). With the transformed circle center,

we can get the circular function as in Equation (19).

x2

a2 −
y2

(c − a)2
= 1 (15)

T =


c×(X2−X1)

2×((X2−X1)2+(Y2−Y1)2)
c×(Y1−Y2)

2×((X2−X1)2+(Y2−Y1)2)

c×(Y2−Y1)
2×((X2−X1)2+(Y2−Y1)2)

c×(X2−X1)
2×((X2−X1)2+(Y2−Y1)2)

 (16)

V =


(X1 + X2)/2

(Y1 + Y2)/2

 (17)

Algorithm 3: Get the area of hyperbola segment
Result: Area of hyperbola segment: Areahyper

Input : hyperbola, controlCircle, davg

1 innerHyper = new Hyperbola(hyperbola, davg);

2 Areahyperbola = CALL Algorithm(4):

hyper IntersectCircle(hyperbola, controlCircle);

3 AreainnerHyper = CALL Algorithm(4):

hyper IntersectCircle(innerHyper, controlCircle);

4 return Areahyper = AreainnerHyper − Areahyperbola;

174

Algorithm 4: Get the area of hyperbola intersect circle
Result: Area of hyperbola intersect circle

Input : hyperbola h, circle c

1 standardize(&h,&c); //Eq:(15)-(19);

2 coe f f icients = quarticCoe f f icient(h, c) ;

3 roots = getRealRootsQuarticEq(coe f f icients);

4 Listp = f indIntersectionPoint(roots, h, c);

5 for i ← 0 to size(Listp) by 2 do

6 φ = intersect Angle(Listp[i], Listp[i + 1]);

7 if sin φ < 0 then

8 Areapie = arccos(cos φ) ∗ r2/2;

9 else

10 Areapie = (2 ∗ pi − arccos(cos φ)) ∗ r2/2;

11 end

12 Areatriangle = sin φ × r2/2;

13 Areacurve = FindCurveArea(h, Listp[i], Listp[i + 1]);

14 Areahyper+ = Areapie + Areatriangle − Areacurve;

15 end

16 return Areahyper;

The Equations 15 and 19 can be merged into a quartic-equation. Then, we can

approximate the intersection points of the hyperbola and the circle by solving the quartic-

equation and sort the points list, Listp, based on the y-coordinate values.


Xcycle

Ycycle

 = T · (


X3

Y3

 + V) (18)

(x − Xcycle)
2 + (y − Ycycle)

2 = (h3 × davg)
2 (19)

175

3.5.1. Compute the Effective Coverage Ratio (ECR) and Elect the Best Shapes.

To calculate the Areacovered , a brute force method is used by testing hop constraints pixel

by pixel. Different from the first step which uses a lot of condition branches, the second step

has few branches. Thus, GPU can accelerate its computing. The NVIDIA CUDA kernel

that calculates the ECR is designed as follows:

For the ellipse arc, if the distance from any pixel in the TAS to A1 (DisA1) and

A2(DisA2) obeys DisA1 + DisA2 ≤ 2 × davg × a and any pixel in TAS to A3(DisA3) obeys

DisA3 ≤ davg × h3, then that pixel is covered by the arc shape. For the hyperbola, if the

distance from any pixel in the TAS to A1 (DisA1) and to A2 (DisA2) obeys DisA1 −DisA2 =

2×a×d f ocus and the distance fromany pixel in theTAS to A3(DisA3) obeys DisA3 ≤ h3×davg,

then that pixel is covered by the hyperbola shape (note that here all the notations used are the

same as in Equation (5) and Figure 5). The GPU algorithm considers both the total number

of pixels in TAS covered by the element shapes and the Effective Coverage Ratio (ECR).

In each iteration, the proposed greedy algorithm only selects the shape which provides the

maximum value of the Greedy Factor (GF) which is the number of pixels multiplied by

cubic ECR as shown in Equation (20):

GF = Areacovered × ECR3 (20)

So each iteration will eliminate some pixels of TAS, which also exists in the best

shape in 3.5.1. Then, the newly covered pixels is calculated for each possible shape with

the updated TAS. Also, instead of calculating a new ECR for each shape, the algorithm

reuses the ECR calculated in the first iteration. The shape with the maximum GF is chosen

as the best shape. This procedure is repeated until the size of the updated TAS is less than

1 − T h of the original size, where T h is the predefined coverage threshold. This procedure

is discussed in Figure 24, which generates the final sequence of shapes that cover most of

176

the TAS. If the trajectory encoding message exceeds the packet size limitation, shown in

Table 1, the POI needs to be divided into two, and create two separate trajectories with two

different gateway nodes and encode them separately. It is shown in Figure 1.

3.6. ROUTING DECISION FORWIRELESS SENSORS

The message structure of TinyOS has an 11-byte header that includes the sender’s

address, the type, and the group data. The payload structure, defined in Table 1, is used for

the implementation of DV-TE-R and adapted DV-TE-BR discussed in Section 4.

Table 1. Payload data structure

Descriptions Starting Bytes Length in Bytes

Message ID 0 4

Parent Node address 4 2

Hop counts 6 1

relaxation parameter 7 1

constraints for relax 9 6

routing constraints 14 100

The counter-based routing decision is also used to mitigate the broadcast storm

effect [5]. In the proposed counter-based routing decision, each wireless sensor uses two

kinds of criteria to decide if it should forward the routing packet or not. The first is to

check if it meets any constraint of the encoded trajectory (f lagC). The second is to check if

the counter used to count the number of the nearby redundant re-broadcasting for the same

packet reaches the threshold (f lagT).

177

As discussed in 3.3, the ellipse constraint has a size of four bytes: A1, A2, A3, a,

h3. For any sensor node, setting f lagC to be true means its DV-Hop entry of A1, A2, A3

obeys Equation (21). The hyperbola constraint has a size of five bytes: A1, A2, A3, a, h3.

For the same sensor node, f lagC should be true if its DV-Hop entry of A1, A2, A3 satisfies

Equation (22). To distinguish the ellipse constrains from the hyperbola constraints, the

ellipse constraint sets the a value to be negative while the hyperbola constraint uses positive

a value.


f loor(DVHop[A1] + DVHop[A2])/2 == |a|

DVHop[A3] ≤ h3

(21)


f loor(DVHop[A1] − DVHop[A2])/2 == |a|

DVHop[A3] ≤ h3

(22)

Table 2. Encoding result for sample trajectories

Trajectory type A outline Circles

Number of circle arcs (without ellipse) 3 12 17

Number of hyperbolas (without ellipse) 2 1 4

Message length(byte) 23 54 89

Number of ellipse arcs (with ellipse) 2 6 12

Number of hyperbolas (with ellipse) 2 4 5

Message length(byte) 21 51 86

Compressed size with JPEG(byte) 867 887 934

178

The counter-based routing decision is first proposed in [5]. Once a sensor node

broadcasts a packet to its neighbors, the neighbors will be listening to the channel for a

randomamount of time before it forwards the packet. During the listening period, the sensors

will count the number of times the same packet has been forwarded. If it exceeds the counter

threshold, it will set the f lagT to be false so only the sensors with f lagC == true and

f lagT == true will forward the routing packets. Another case is for a low-power listening

WSN where sensors hibernate for most of their lifetime. The sensors will rebroadcast

immediately if they find they satisfy Equation (21) and Equation (22) (f lagC == true

) and initialize a counter with value 0. Then, they will stop broadcasting when there is

a timeout or when their rebroadcasting neighbors’ number reaches the counter threshold

(f lagT == true).

3.7. SAMPLE ROUTING RESULT AND ANALYSIS

The proposed geospatial area encoding algorithmworks for any shape and trajectory.

Figure 8 shows the encoding algorithm on some sample trajectories. For each of the routing

trajectories, assume anchor node ID is one byte long and the number of hops is one byte

long. As shown in Table 2, the length of the encoded trajectory is 23, 54, and 89 bytes when

encodingwithout the use of ellipse constraints, and the length of the encoded trajectory is 21,

51, and 86 when encoding with the ellipse constraints. The red shapes, which represent the

encoded trajectory, shown in Figure 8-(a),(b),(c) are the cascaded circle arc and hyperbola

shapes. Figure 9 shows the encoding result of trajectory handwriting "A" and hand drawing

park boundary when encoding with ellipse and hyperbola constraints. JPEG compression

algorithm is lossy for images. The above JPEG example has a 64 × 64 resolution while

has only about 800 bytes size. Assume that there are "n" anchor nodes in the local edge

network, each anchor node floods at most "r" hops, and the TAS has "m" entries. Then the

time complexity of finding the best ellipse arc and the best hyperbola segment is O(mn3r3).

Another experiment is conducted with anchor nodes from 20 to 80, and the TAS is from

179

10000 to 100000. Figure 10 shows when the number of anchor nodes increases, the CPU

time of calculating the area of all possible shapes has a polynomial growth. Figure 11 (b)

shows that the GPU time of finding the best shape also has polynomial growth when the

number of anchor nodes increases. However, Figure 11 (a) indicates that the GPU time of

finding the best shape has a linear relationship with the size of TAS.

(a) Encoding trajectory ’A’ (b) Encoding trajectory of

Breuer Park, Rolla, MO

(c) Encoding trajectory ’rings’

(d) JPEG compressed hand

drawing A

(e) JPEG compressed park

boundary

(f) JPEG compressed nested

rings

Figure 8. Example encoding with the circle and the hyperbola constraints and the
compressed trajectory using JPEG

180

(a) Hand drawing ’A’ (b) Hand drawing boundary of Breuer

Park,Rolla,MO

Figure 9. Example Encoding of ellipse and hyperbola

20406080
0

1,000

2,000

3,000

4,000

5,000

6,000

Number of anchor nodes

CP
U
tim

e
in

m
ill
ise

co
nd

circle hyperbola ellipse

Figure 10. CPU time calculating area of all possible shapes

181

(a) GPU time versus size of TAS

(b) GPU time versus number of anchor nodes

Figure 11. GPU time finding the best shape

182

4. ADAPTED DV-HOP BASED DATA COLLECTION SCHEME FOR
LOW-POWERWSN

To ensure high QoS in a WSN, the DV-Hop based trajectory encoding and routing

protocol (DV-TE-R) has been proposed. For low-power WSN, which can be deployed in a

harsh environment, the density of the network topology can be heterogeneous. Somewhere

in the region, the sensors may be sparsely deployed, or the routing path could be obstructed

by some "holes" shown in Figure 12. Now the user wants to forward a packet from node

Si to So through an arc with center A and radius h hops with 1 hop width. Although the

DV-hop of both the nodes Si and So is h, these two nodes are not directly connected because

of an obstacle between them. If using local broadcasting, for example in Figure 12, to fix the

routing path, at least 4 hops extra broadcast is required which is a huge overhead. Therefore,

the routing protocol adopts a bridge on the edge adaption (DV-TE-BR) that could connect

a broken routing path with minimum overhead.

After a forwarder node has forwarded the routing packet and has not overheard any

rebroadcast from its neighboring nodes nor acknowledgment from the sinks, it will start

iterating its valid constraints, relax those by one hop, note all the changes, and rebroadcast

the packets again. If it receives the rebroadcast from its neighbors, it will stop iterating and

go to sleep immediately. If a node receives the relaxed-constraint packet, it will tighten the

constraint by one, and repeat the previous procedure until recovering the original constraint.

Note that both h1 and h2 are relaxed for the arc constraint, and both a and h3 are relaxed for

hyperbola constraint.

For example, like Figure 12, the nodes B1, B2, B3, B4 have an increased DV-hop entry

of A from h + 1 to h + 2. Thus, the sensor node Si needs to relax the hop constraints by

one. Then, the node B1 needs to relax the hop constraint by one more. For B2, it will hold

the constraints as of B1. The constraint is tightened by one for B3, and so does B4. Finally,

the route is fixed after B4 forwards the packet to So.

183

Figure 12. Example of the bridge on the edge adaption

5. EXPERIMENTS AND RESULTS

The experiments are conducted with a simulation tool TOSSIM and a real sensor

network test-bed. The simulation uses a randomly created large-scale wireless sensor net-

work as the working area which contains both heterogeneous and homogeneous topology.

It uses real-world trajectory data (taxi-trajectory [32]) for sensor data collection. The exper-

iments also include the performance evaluation of the proposed data collection algorithm

in WSN with mobile nodes.

The structure of our experiments is listed as follows: First, an experiment to validate

the effeteness of the proposed trajectory-based routing protocol in a real wireless sensor

network with 28 nodes. Second, an experiment to evaluate the proposed data collection

scheme in a large static WSN with a mobile sink using the TOSSIM simulator. The

simulation uses the real-world taxi trajectory dataset. Third, an experiment to test routing

184

in the shortest path to the mobile sink and compared the delay and energy consumption

comparing to ring routing and nested routing. Fourth, a Python program to evaluate the

proposed data collection scheme in a WSN with mobile sensor nodes. It shows the data

collection area scatters with the movement of sensors.

Figure 13. Experimental WSN and routing trajectory

5.1. PERFORMANCE USING AWSN TEST-BED

This real-world experiment contains a small wireless sensor network, which is a mix

of 16 TelosB sensors [33] and 12 MicaZ sensors [34], with minimal radio power configura-

tion, and hard-coded DV-Hop information of 10 virtual anchor nodes. The experiments test

the performance of broadcasting the data collection requests toward the location of interest

185

through a given trajectory. The performance metrics were mainly focused on the coverage

ratio and latency. The baseline comparisonwas with the counter-based broadcasting scheme

discussed earlier.

The 28 wireless sensors are coded with the proposed DV-Hop based broadcasting

protocol, and the counter based broadcasting scheme. The sensors are labeled and hard-

codedwith theDV-Hop of 10 virtual anchor nodes. The values of theDV-Hops are generated

with a simulation tool that simulates a WSN with 500 nodes and 10 anchor nodes. It selects

28 nodes from the 500 nodes in the WSN. Three trajectories are used in this experiment as

shown in Figure 13. The blue trajectory (dot line) has a "Γ" shape and is located near the

top left corner of the WSN. The red trajectory (dash line) has a "_|" shape and is located on

the bottom right corner of the WSN. The green trajectory (dash-dot line) has a shape that

looks like an "X" and is located in the middle of the WSN.

Next, the wireless sensor network deployed follows the same topology as in the

simulation tool based on their labels. Node 1 is the start node and node 28 is the sink node

for all three trajectories. In the center of the WSN, the green trajectory is a multi-casting

route that forwards packets from node 1 to nodes 28, 25, and 12 at the same time.

Then, use the simulation tool to generate the routing messages covering the colored

trajectory, and sending the routing messages through the gateway sensor (source node)

connecting the laptop near node 1.

Once the sensors rebroadcast the received data request messages, they will blink

their LED light until enough neighbors (larger than the counter threshold) rebroadcast or

when it timeouts. Also, the predefined destination nodes (POI) will route the sensing data

back to the gateway sensors through its parent’s node. The time elapsed between the time

the source sending the data collection packets and the time the source received back the

sensing data is considered to be the latency.

186

Figure 14. Latency of multi-hop routing when disseminating data collection message with
proposed data forwarding approach and counter-based broadcast

Figure 15. Total number of nodes rebroadcasting when disseminating data collection
message with proposed data forwarding approach through trajectory and counter-based

broadcast

The experiment shows that the proposed approach can successfully disseminate

messages to the desired path by only modifying the constraints in the routing message.

Only the sensors on the trajectory that meets the constraints will be activated to rebroadcast

187

the message. In Figure 14, the multi-hop latency is similar to the broadcasting approach

for the green trajectory. The reason is that the routing decision of the proposed DV-

Hop based data forwarding approach is made by comparing the routing constraints and

the DV-Hop stored in the sensor, which is trivial. Most portion of the delay is caused

by the predefined random channel listening period which is similar to the counter-based

broadcasting approach (It is used to mitigate the broadcasting storm effect). The proposed

approach has better latency when routing through the green trajectory. The reason is that

the green trajectory has fewer hops from the start node to the sink node. The broadcasting

approach has better latency compared to the proposed data forwarding approach because it

can always route messages to the destination through the minimum hop counts. However, as

a trade-off, the broadcast approach can only flood through all the nodes while the proposed

DV-Hop based data forwarding approach not only can route on the trajectory but also

reduce the overhead caused by the redundant rebroadcasting. Figure 15 shows that the

baseline(counter-based broadcasting) approach will flood the whole network and will cause

all the nodes to rebroadcast even in the small wireless sensor network.

Another experiment is executed with low power listening(LPL)[35] configured

WSN. In LPL mode, the sensors fell asleep frequently and only wake up for a small

period to listen to the channel. The proposed approach sets the sleeping time as 600 ms

and wake up time as 10 ms in one cycle. It is challenging to do routing in an LPL WSN

where the network topology is unstable as most of the neighboring sensors fell asleep. The

adaption of the routing approach for LPLWSN, discussed in Section 4, doesn’t need to rely

on the routing table. However, unlike the existing LPL broadcasting scheme, the proposed

approach lets the current broadcasting nodes to keep broadcasting until the number of re-

broadcasting neighbors reaches the predefined counter threshold or it times out. Figure 16

shows that although the counter based broadcasting has a lower delay due to flooding, the

proposed data forwarding protocol still has an acceptable multi-hop routing delay.

188

Figure 16. Latency of multi-hop routing when disseminating data collection messages
with proposed data forwarding approach and counter-based broadcast in LPL WSN

5.2. SIMULATION RESULTS

The simulation experiment creates random heterogeneous WSNs and routes data

collection messages on the real-world taxi trajectory [32]. Coverage performance is defined

as follows. The correct coverage ratio is the number of nodes rebroadcasting while on

the trajectory over the number of the nodes supposed to rebroadcast (total nodes on the

taxi trajectory). It shows the effectiveness of the proposed protocol (higher ratio indicates

high accuracy). The redundant rebroadcast ratio is the number of the nodes not in the

trajectory while still rebroadcasting over the number of nodes supposed to rebroadcast. A

higher redundant rebroadcast ratio indicates a higher overhead of bandwidth and energy

consumption.

The experimental parameters are defined inTable 3. The trajectory andPOI encoding

are executed using a desktop, which acts as a fog server, with a Xeon E5-1620 v2 and an

Nvidia RTX 2070 GPU. The POI is located within aWSN distributed in a 2800m by 1700m

area. The density of the WSN is less than 0.5% where the density is defined as the average

number of neighbors over a total number of sensor nodes. To save energy, all the wireless

189

sensors work under low power listening mode (LPL), where each sensor node only wakes up

for a few milliseconds to listen to the channel. The WSN is simulated using TOSSIM. The

experiment also uses powerTOSSIM-Z to estimate the energy consumption of the activated

sensor nodes. There are 30 local edge nodes randomly deployed in the WSN field. The

local edge nodes act as the gateway that will broadcast the encoded data requests’ packets

and collect the data from the WSN. The performance metric used includes the compression

ratio, reliability, average delay in data reporting, and energy consumption.

Table 3. Parameters for the experiments

Area of deployment 2800×1700 m

Number of sensor nodes 5000

Communication range 40-100 m

Number of edge devices 30

Broadcasting hop limitation 30 hops

LPL sleeping time 600ms

LPL wake time 10ms

Energy model MicaZ

Coverage threshold 90%

Number of anchor nodes (20 - 100)

Anchor cover range 20 hops

As mentioned above, the experiments use real-world taxi-trajectory data [32] as the

routing trajectory. Each line of the trajectory data contains the trajectory of a taxi trip in

the city of Porto in Portugal. The trajectory is represented as a list of 8 bytes of GPS data

(latitude and longitude) sampled every 15 seconds. The 2 GB data-set contains trajectories

of different shapes, lengths, starting, and ending locations. To use these trajectories in the

190

experiments, the first step is to pre-process the data-set by removing the abnormal trajectory

and aligning the trajectories in the center of the WSN. To remove the outliers, trajectories

that contain abnormal itinerary like where the taxi has abnormal speed, are discarded so

that the data-set only contains valid GPS data points for each itinerary. The third step is to

reconstruct the itinerary fromGPS data points andmap it to a 2D trajectory which is the area

in the fixed WSN field (TAS). To determine the rectangle field of the WSN and align with

the taxi trajectory on it, the fourth step is to use Chan’s algorithm [30] to generate the convex

hull of the trajectory and then find the minimal rectangle that could wrap the trajectory as

shown in Figure 17. The largest length and width of the minimal wrapping rectangles of all

the taxi trajectories are chosen as the WSN’s outline. Then all the trajectories are shifted

and rotated to align to the center of the WSN field. The last step is to set the thickness of

the trajectory line to be the average one-hop radio distance of the sensors.

(a) (b)

Figure 17. Find convex hull and the minimal surrounding rectangle for taxi trajectory with
60 GPS data points(left) and 189 GPS data points(right) and the trajectories after

pre-process

191

The statistics of the dataset are shown in Figure 18 where the X-axis shows the

number of GPS data points of the trajectory, and Y-axis is the size of the set of node IDs

that reside on the trajectory. The figure shows that the trajectory with more GPS data will

cover more sensor nodes. In Figure 19 and 20, where the X-axis is the number of GPS

data in a trajectory and the Y-axis is the compression ratio, 500 trajectories were sampled,

the number of GPS data points ranging from [2, 20], [21, 40], [41, 60], [61, 80], and [81,

105] and the number of anchor nodes in the set [20, 40, 60, 80, 100] which is (0.4%, 0.8%,

1.2%, 1.6%, 2%) of the total number of nodes in the network. The compression ratio (CR)

is defined as the uncompressed-data size over the compressed data size using the proposed

encoding algorithm. Here the uncompressed data size is the size of a list of sensor IDs that

reside in the trajectory.

10 20 30 40 50 60 70 80 90 100

200

400

600

800

1,000

1,200

Number of GPS data points in a trajectory

U
nc
om

pr
es
se
d
da
ta
siz

e

(in
by

te
)

Figure 18. Property of taxi trajectory dataset

192

20 40 60 80 100 120 140 160 180
5

6

7

8

9

10

11

Number of GPS data points in a trajectory

Co
m
pr
es
sio

n
ra
tio

20 anchors
40 anchors
60 anchors
80 anchors

Figure 19. Compression ratio of the encoding without using an ellipse

20 40 60 80 100 120 140 160 180
5

6

7

8

9

10

11

12

13

Number of GPS data points in a trajectory

Co
m
pr
es
sio

n
ra
tio

20 anchors
40 anchors
60 anchors
80 anchors

Figure 20. The compression ratio of the proposed DV-Hop based trajectory encoding
algorithm (with ellipse) for different trajectory sizes

193

Figure 21. With 50% mobile nodes for each epoch, the changing of coverage for taxi
trajectory of Figure 17(a)

194

0 10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

Epoch elapse

Eff
ec
tiv

e
co
ve
ra
ge

ra
tio

(%
)

20% mobile nodes
50% mobile nodes
80% mobile nodes

Figure 22. Average correct coverage ratio

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Epoch elapse

Re
du

nd
an
tr
eb
ro
ad
ca
st
ra
tio

(%
)

20% mobile nodes
50% mobile nodes
80% mobile nodes

Figure 23. Average redundant rebroadcast ratio

195

The results show that when the number of anchor nodes increases, the CR also

increases. It is more likely to find the closest ’shapes’ when the number of anchor nodes

is large, which costs fewer iterations to cover the area. Note that when the number of GPS

data points increases, theCR is not increased when encoding with 20 or 40 anchor nodes. A

possible reason is that when there are fewer anchor nodes, redundant shapes may be selected

in the later iterations, which increases the size of the encoded message. For example, in

Figure 8-(b)(c), more shapes that overlap with other shapes than that in the case of Figure

8-(a).

70 75 80 85 90 95 100 105
90

92

94

96

98

100

Threshold of the coverage

Ra
te
of

su
cc
es
si
n
en
co
di
ng

20 Anchors
40 Anchors
60 Anchors
20 without ellipse

Figure 24. Experiment of successful encoding rate with different number of anchor nodes
and coverage threshold

When the mobile nodes change location, they will update the DV-Hop by querying

the nearby sensor nodes. As discussed in Section 3.1, the new DV-Hop to anchors will be

the minimum hop count of all current neighbors plus one. However, when the neighbors

contain the anchor nodes, the new DV-Hop will use the anchor nodes’ minimal DV-Hop as

196

the only reference. A trajectory routing example for a sample trajectory with 66 GPS data

in Figure 21 shows the coverage area increases steadily when the network has 50% of the

mobile nodes. Figure 22 shows the result of how the correct coverage ratio changes with

20%, 50%, and 80% mobile nodes in a given period (0-100 epoch). In each epoch, the

randomly selected sensors will move 1.5 times of its radio distance. The correct coverage

ratio will increase due to the increase in the total coverage area. However, the trade-off is

the redundant rebroadcast ratio also increases as shown in Figure 23.

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Average number of neighbor nodes

Re
lia

bi
lit
y

DV-TE-R
DV-TE-BR
Ring routing
Nested Routing

Figure 25. The reliability of DV-TE-R, DV-TE-BR, Ring routing, and Nested routing with
different number of neighbors

For the reliability experiment. Since the proposed trajectory encoding algorithm

uses basic shapes (ellipse arc and hyperbola segments) to approximate the trajectory, there is

a possibility that the encoding will fail when no suitable shape is found. Here, an encoding

failure is defined as when the encoding algorithm cannot find any combination of shapes

that will cover a certain threshold ratio of T AS, which is defined as the predefined coverage

197

ratio. For example, when the threshold is set to 85%, the hops constraints represented

shapes must overlap with more than 85% of the trajectory area. The lower the threshold,

the higher is the encoding successful rate. However, a threshold lower than 85% is not

recommended, as the routing reliability (the rate of successfully routing the data request

message to the POI) will be affected due to the uncovered gaps between the routing paths.

This experiment is to find the relationship between the number of anchor nodes, success

rate (the percentage of encoding that does not fail), and coverage threshold. The result in

Figure 24 shows that as the number of anchor nodes increasing, the success rate of encoding

will increase. However, increasing the coverage threshold will decrease the success rate of

encoding. Note that When using ellipse constraints, the success rate is higher than using

naive circle constraints when the number of anchor nodes is 20. The reason is the ellipse

use three anchor nodes which provide more combination than the circle constraints with

two anchor nodes.

The next experiment compares the reliability of the proposed encoding and routing

protocol with the ring routing [14] and the nested routing [15], which both enable data

routing to a moving sink (mobile edge device that can move in some applications) by

relaying the data to a circular area where the nodes know the updated location of the mobile

edge device. The area of a nested ring is in themiddle of the sensing field, as shown in Figure

8-(c). This experiment uses 50 anchor nodes for the proposed algorithm. The reliability

of ring routing is defined as the success rate of generating a ring structure. The reliability

of nested routing is the success rate of generating any one of the ring structures within its

nested ring structure. The reliability of the proposed DV-Hop based trajectory encoding

and routing (DV-TE-R) and its bridge on the edge (DV-TE-BR) adaption is the success rate

of generating the encoded message of the trajectory and routing the data request packets

to the nodes within POI. The result is shown in Figure 25. When the average number of

neighbors of each node is smaller than 8, which is 0.16% of the total number of nodes, both

protocols have low reliability. The nested routing protocol has better reliability performance

198

than ring routing because it has redundant rings. The bridge on the edge adaption improves

the reliability of DV-TE-R by relaxing the hop constraints. When the average number of

neighboring nodes is greater than 16, which is 0.32% of the total number of nodes, the

reliability of DV-TE-BR is greater than 99%. It achieves the best reliability performance

compared to ring routing and nested ring routing. In the rest of the experiments, by default,

the following experiments use DV-TE-BR.

50 100 150 200 250 300 350 400
2,000

3,000

4,000

5,000

6,000

Sink moving distance in 30 seconds (m)

Av
er
ag
e
de
liv

er
y
de
la
y

(in
m

il
li

se
co

nd
s)

DV-TE-BR
Ring routing
Nested Routing

Figure 26. The average delay in data reporting compared with state-of-the-art schemes

The next experiment assumes that mobile edge devices will move randomly with

different speeds in the local IoT network with the configuration, as shown in Table 3. The

average delay in data reporting is the time when the moving mobile edge devices receive the

data minus the time when the source reports the data. The proposed DV-TE-BR fixes the

current routing path by letting the mobile edge devices update their locations periodically.

199

Thus, it cannot always guarantee the shortest reporting path as the ring routing and nested

routing methods do. Although the ring routing and nested routing provide the current

location of the mobile sink, fetching this information from the ring or nested ring for the

source node causes the delay overhead of one round trip to the closest ring. Thus, the

delays of ring routing and nested ring routing are still higher than the delay of DV-TE-BR.

In addition, the counter-based routing strategy of DV-TE-BR reduces the waiting delay for

the low-power listening WSN because the first awaked node could start routing, while ring

routing and nested routing have to wait for specific routing nodes within its routing table.

Nested routing has a better delay performance than ring routing because its average shortest

distance from the source to the rings is shorter than the ring routing. The delay performance

of data reporting is shown in Figure 26.

0 20 40 60 80 100
0

2

4

6

8

10

Number of GPS data points in a trajectory

La
te
nc
y
of

da
ta
co
lle

ct
io
n

(in
se

co
nd

)

Encoded Trajectory (without ellipse)
Encoded Trajectory (with ellipse)

uncompressed, broadcasting

Figure 27. Average delay from starting broadcast request till receiving all the data from the
POI

200

The following latency and energy consumption experiments compare the proposed

scheme with the state-of-the-art counter-based broadcasting algorithm. The experimental

set-up, which uses the taxi trajectory data, is shown in Table 3. It uses TOSSIM to simulate

the routing of data request messages and data reporting packets and visualize the results

using Python. Figure 28-(a) shows a sample trajectory being encoded using hops constraints

represented shapes, and Figure 28-(b) shows a sample output of the visualized routing result

where the red dots are the sensors that forwarded a message and the green dots are sensors

that received a message.

(a) Encoded trajectory (b) Visualized routing result

Figure 28. Sample routing example

The latency in collecting the requested data is an important factor in meeting the

quality of service. Broadcasting is the fastest way to flood the data request into the

whole network. The proposed data collection scheme also broadcasts the data request

to the POI. However, as opposed to flooding approaches [7], only the nodes in a hop

constraint defined trajectory can rebroadcast. Thus, energy consumption and bandwidth

usage are minimized. Figure 27 compares the latency of the local edge devices receiving

all the sensing data of the POI from the local WSN, which are working under low power

listening (LPL) mode with a 660 ms sleeping and waking period. All local edge devices

201

will broadcast the data request messages. The sensor nodes that receive the data request

packets will be awake and send the data back to the nearest edge devices if they are at the

POI. The experimental result shows that transmitting encoded data request messages could

reduce latency because broadcasting a compressed message requires fewer packets than an

uncompressed message which includes IDs of all the sensor nodes residing within the POI.

The proposed scheme, which encodes trajectories with ellipse-circle constraint, achieves

better latency performance than the trajectory encoding protocol with only circle-circle

constraints due to its higher compression ratio.

0 20 40 60 80 100
0

100

200

300

400

500

600

Number of GPS data points in a trajectory

A
cc
um

ul
at
ed

en
er
gy

co
ns
um

pt
io
n

(in
Jo

ul
e)

Encoded Trajectory (without ellipse)
Encoded Trajectory (with ellipse)

uncompressed, broadcasting

Figure 29. Accumulated energy consumption in fetching the data from the POI

202

The energy consumption experiment is simulated with powerTOSSIM-Z, which is

an energy simulation tool for wireless sensors. It uses the micaZ energy model and can

measure energy consumption at the packet level. The result in Figure 29 shows that the

proposed data collection scheme consumes less energy than the broadcasting approach.

The proposed scheme, which encodes trajectories with ellipse-circle constraints, achieves

better energy performance than the trajectory encoding protocol with only circle-circle

constraints due to the higher compression ratio. The last experiment is to compare the

average number of rebroadcasting nodes of the proposed DV-hop based trajectory encoding

and routing scheme (DV-TE-BR) verses the state-of-the-art counter-based broadcasting [7]

for each single data request packet. The result shows that the proposed DV-TE-BR scheme

reduces the number of redundant rebroadcasting packets (142 vs. 2491) by 94% and thus,

saves bandwidth usage in the WSN.

6. CONCLUSION AND FUTUREWORK

The proposed trajectory encoding and data collection algorithms for IoT applications

have improved energy efficiency, reduced latency, and achieved reliable performance when

fetching data from the POI in the local fog network without using GPS coordinates. In

addition, with the use of virtual coordinates, location anonymity is achieved for the source,

sink, and intermediate nodes in the routing path, as only the secure server in the local fog

knows the anchor nodes’ locations. Besides, the use of ellipse and hyperbola constraints

increase the encoding accuracy and compression ratio. In the future, the plan is to solve the

real-time event detection problem in multi-hop IoT network using the proposed approach

and the conditional random field [36]. The plan is also explore to extend the proposed

scheme for under water WSN.

203

REFERENCES

[1] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,
49(5):78–81, 2016.

[2] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and
applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb). IEEE, 2015.

[3] Yingzi Wang, Nicholas Jing Yuan, Defu Lian, Linli Xu, Xing Xie, Enhong Chen,
and Yong Rui. Regularity and conformity: Location prediction using heterogeneous
mobility data. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1275–1284. ACM, 2015.

[4] Jing Wang, Jian Tang, Guoliang Xue, and Dejun Yang. Towards energy-efficient task
scheduling on smartphones in mobile crowd sensing systems. Computer Networks,
115:100–109, 2017.

[5] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. Wireless networks, 8(2-3):153–167, 2002.

[6] Chien Chen, Chin-Kai Hsu, and Hsien-Kang Wang. A distance-aware counter-based
broadcast scheme for wireless ad hoc networks. InMilitary Communications Confer-
ence, MILCOM. IEEE, 2005.

[7] Ji-Young Jung and Dong-Yoon Seo. Counter-based broadcast scheme considering
reachability, network density, and energy efficiency for wireless sensor networks.
Sensors, 18(1):120, 2018.

[8] Kok-Poh Ng, Charalampos Tsimenidis, and Wai Lok Woo. C-sync: Counter-based
synchronization for duty-cycled wireless sensor networks. Ad Hoc Networks, 61:51–
64, 2017.

[9] Murat Yuksel, Ritesh Pradhan, and Shivkumar Kalyanaraman. An implementa-
tion framework for trajectory-based routing in ad hoc networks. Ad Hoc Networks,
4(1):125–137, 2006.

[10] Houda Labiod, Nedal Ababneh, and Miguel García de la Fuente. An efficient scalable
trajectory based forwarding scheme for vanets. In Advanced Information Networking
and Applications (AINA), 24th IEEE International Conference on, pages 600–606.
IEEE, 2010.

[11] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion Stoica.
Geographic routing without location information. In Proceedings of the 9th annual
international conference on Mobile computing and networking, pages 96–108. ACM,
2003.

204

[12] Shrawan Kumar and DK Lobiyal. Novel dv-hop localization algorithm for wireless
sensor networks. Telecommunication Systems, 2017.

[13] Badri Nath and Dragoş Niculescu. Routing on a curve. ACM SIGCOMM Computer
Communication Review, 33(1):155–160, 2003.

[14] Can Tunca, Sinan Isik, Mehmet Yunus Donmez, and Cem Ersoy. Ring routing: An
energy-efficient routing protocol for wireless sensor networks with a mobile sink.
IEEE Transactions on Mobile Computing, 14(9):1947–1960, 2015.

[15] Ramin Yarinezhad. Reducing delay and prolonging the lifetime of wireless sensor
network using efficient routing protocol based onmobile sink and virtual infrastructure.
Ad Hoc Networks, 84, 2019.

[16] Suraj Sharma, Deepak Puthal, Sabah Tazeen, Mukesh Prasad, and Albert Y Zomaya.
Msgr: A mode-switched grid-based sustainable routing protocol for wireless sensor
networks. IEEE Access, 5:19864–19875, 2017.

[17] Levente Buttyán and Péter Schaffer. Position-based aggregator node election in
wireless sensor networks. International Journal of Distributed Sensor Networks,
6(1):679205, 2010.

[18] Omar Banimelhem and Samer Khasawneh. Gmcar: Grid-based multipath with con-
gestion avoidance routing protocol in wireless sensor networks. Ad Hoc Networks,
10(7):1346–1361, 2012.

[19] Yuan-Po Chi and Hsung-Pin Chang. An energy-aware grid-based routing scheme for
wireless sensor networks. Telecommunication Systems, 54(4):405–415, 2013.

[20] Abdul Waheed Khan, Javed Iqbal Bangash, Adnan Ahmed, and Abdul Hanan Abdul-
lah. Qdvgdd: Query-driven virtual grid based data dissemination for wireless sensor
networks using single mobile sink. Wireless Networks, (1):241–253, 2019.

[21] Kai Chen, Zhong-hua Wang, Mei Lin, and Min Yu. An improved dv-hop localization
algorithm for wireless sensor networks. 2010.

[22] Shrawan Kumar and DK Lobiyal. An advanced dv-hop localization algorithm for
wireless sensor networks.Wireless personal communications, 71(2):1365–1385, 2013.

[23] PenghongWang, Jianrou Huang, Zhihua Cui, Liping Xie, and Jinjun Chen. A gaussian
error correction multi-objective positioning model with nsga-ii. Concurrency and
Computation: Practice and Experience, 32(5):e5464, 2020.

[24] Xingjuan Cai, Penghong Wang, Lei Du, Zhihua Cui, Wensheng Zhang, and Jinjun
Chen. Multi-objective three-dimensional dv-hop localization algorithm with nsga-ii.
IEEE Sensors Journal, 19(21):10003–10015, 2019.

[25] Mamoun F Al-Mistarihi, Islam M Tanash, Fedaa S Yaseen, and Khalid A Darabkh.
Protecting source location privacy in a clustered wireless sensor networks against local
eavesdroppers. Mobile Networks and Applications, 25(1):42–54, 2020.

205

[26] Hao Wang, Guangjie Han, Chunsheng Zhu, Sammy Chan, and Wenbo Zhang. Tcslp:
A trace cost based source location privacy protection scheme in wsns for smart cities.
Future Generation Computer Systems, 107:965–974, 2020.

[27] Anfeng Liu, Xiao Liu, Zhipeng Tang, Laurence T Yang, and Zili Shao. Preserving
smart sink-location privacy with delay guaranteed routing scheme for wsns. ACM
Transactions on Embedded Computing Systems (TECS), 16(3):1–25, 2017.

[28] Xiaofei Cao. Serial port reader and writer for the android gateway.
https://github.com/cxfcdcpu/gateway.

[29] Xiaofei Cao and Sanjay Madria. Efficient geospatial data collection in iot networks
for mobile edge computing. In 2019 IEEE 18th International Symposium on Network
Computing and Applications (NCA), pages 1–10. IEEE, 2019.

[30] Timothy M Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

[31] Gary B Hughes and Mohcine Chraibi. Calculating ellipse overlap areas. Computing
and visualization in science, 15(5):291–301, 2012.

[32] Taxi trajectory data. www.kaggle.com/crailtap/taxi-trajectory.

[33] TelosB Datasheet. Crossbow Inc. Downloaded from mem-
sic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf.

[34] MicaZ. Crossbow Inc. Downloaded from
memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf.

[35] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings
of the 4th international conference on Embedded networked sensor systems, pages
307–320, 2006.

[36] Huihsin Tseng, Pi-Chuan Chang, Galen Andrew, Dan Jurafsky, and Christopher D
Manning. A conditional random field word segmenter for sighan bakeoff 2005. In
Proceedings of the fourth SIGHAN workshop on Chinese language Processing, 2005.

206

V. AN EFFICIENT MOVING OBJECT TRACKING FRAMEWORK FORWSNS
USING SEQUENCE-TO-SEQUENCE LEARNING MODEL

Xiaofei Cao and Sanjay Madria

ABSTRACT

Wireless sensors can detect an object from the light it reflects, the noise it causes, or

the gas molecules it disseminates. However, tracking a moving object requires the wireless

sensors to perform high-frequency sensing and data transmission which consume much

more energy. To save energy and prolong the lifetime of wireless sensor networks while

tracking a moving object effectively, this paper proposes a framework that predicts the

trajectory of the moving object using a Sequence-to-Sequence learning (Seq2Seq) model

and only wakes-up the sensors that fall within the predicted trajectory of the moving object

with a specially designed control packet. The framework uses DV-Hop (distance vector of

hops to anchors) as the virtual coordinate that eliminates the dependency of using GPS to

locate the sensors to be invoked for tracking themoving object. The framework translates the

object’s moving trajectory to a sequence of cascaded hyperbolas and encodes the hyperbolas

with DV-Hop constraints. A control packet containing these constraints forbid sensors not

in the trajectory to rebroadcast, and awake/sleep signals that control the sensors’ action. The

proposed Seq2Seq model predicts the target’s next trajectory directly and outputs a control

message that could route along the predicted trajectory. In comparison to predicting the

target’s trajectory then encoding the trajectory using geometric objects such as hyperbola, the

proposed Seq2Seq model reduces the computation time of encoding geospatial trajectory.

Also, the proposed framework preserves the location anonymity by only transmitting the

hop’s information instead of GPS values. The performance comparisons with the existing

methods show an improvement in energy-saving and control message routing delay.

207

1. INTRODUCTION

Wireless sensor networks (WSNs) have been of considerable interest to the research

community in recent years because of their use in many real-world applications. Among

many, moving object tracking is one of the important applications of wireless sensor

networks and is widely used in both civil, research, agriculture, and military applications.

For example, the military can use wireless sensor networks to track military vehicles [1].

The smart city uses WSNs to fetch the trajectory of every vehicle and use the information

to guide other commuters or detect abnormal driving behavior [2]. In these target tracking

applications, different sensors monitoring the targets continuously during their mobility and

thus faces several challenges. First, not all sensors contribute equally to target tracking.

Unnecessary sensing by the sensors which are off the targets could cause excessive energy

consumption. Second, detecting targets with long sensing period in a WSN could be a

challenge due to limited battery power. Given low power listening (LPL)[3] and other

energy-efficient MAC protocols, most of the real-world WSN applications can put the

sensors into the wake/sleep cycle, and only wake up some of them for a small period for

sensing and communication. However, in LPL mode, sensors may face a high risk of

losing the target because of the low sensing and communication frequency. Third, for some

military applications, sensors also need to prevent being detected by other enemy targets.

For example, once the enemy targets detect the presence of nearby sensors through the

radio signals, they may perform some adverse actions which may increase the detection

difficulty. The enemy targets may also start jamming the radio transmissions in the area [4].

Fourth, obtaining the enemy targets’ location is also a challenge. The sensors detecting the

target need to estimate the target’s location. However, due to the low cost of the WSNs,

most of the sensors have no GPS modules. Though virtual coordinates [5],[6] and [7]

could calculate the approximate location of sensors, fetching all the hop information of the

sensors in a large scale WSN and calculating the location centrally can cause excessive

208

energy consumption. Lastly, location anonymity is also a challenge as the sensors are

vulnerable to be eavesdropped and can be compromised, thus directly transmitting the

location information is not secure.

The prediction-based methods [8], [9] are used to control the sensor states (active,

sleep) in the next location of the moving object based on historical data. Cluster-based

tracking approaches [10], [11] divide the WSNs into small subsets called clusters. The

clustering architecture sends sleep/awake schedule messages from the cluster head to their

member nodes with less communication overhead to reduce energy consumption. The

grid-based target localization and tracking approaches [12] estimate the target’s location

with multiple nodes in the target’s boundary grid to increase the localization precision.

However, they are still challenges that need to be tackled. The cluster-based control message

dissemination approaches introduce radio communication overhead for electing the cluster

head and in maintaining the cluster topology. Also, every node in the network has to know

its location, which increases costs for either the precise deployment or the extra GPSmodule.

Furthermore, in military applications, the adversary target could detect the broadcasting of

the cluster head which adds the risk of losing the target. Although the linear prediction

model could predict the target’s movement well, the centralized cluster-based approaches

can’t deliver the wake-up (for tracking) and reset messages (for putting sensors back to low

power listening (LPL) mode) efficiently. The grid-based tracking approaches [12] are only

a transformer of the cluster-based approaches with additional restrictions. Furthermore,

when the target moves near the boundary of the cluster and the grid, the system will spend

much more effort on localization and tracking because two or more clusters/grids are now

participating in the tracking.

Our study will therefore focus on solving the following challenges. First, to locate

and track the moving target without using any GPS-based sensors. Second, to deliver the

wake-up and reset message to the area around the target’s path quickly and energy efficiently.

Last but not the least, to preserve the location anonymity of the sensors tracking objects.

209

To achieve the above goals, we proposed a Seq2Seq model that takes the target’s

previous estimated locations as input and outputs a geometric constraint (will be discussed

in Section 2.4) that allows only the sensors within the predicted trajectory to wake up, detect

and track the target and report the results to the nearest local edge server. A set of these

constraints creates a path constraint that covers all the areas of the target’s previous and

predicted trajectory.

The proposed framework directly predicts the routing constraints that cover the

target’s predicted trajectory. It is much faster than predicting the sequence of future target’s

location first and then encoding the predicted trajectory. Compared to the cluster-based

target tracking approach, the geometric constraints based routing protocol reduces the

overhead of cluster generation and maintenance. The location anonymity is preserved as

no GPS data are used and transmitted. The performance evaluations show the effectiveness

of the proposed scheme over other competitive schemes.

Organization of the paper: In Section 2, we discuss some state-of-the-art energy-

efficient object tracking frameworks, trajectory prediction algorithms, and DV-hop local-

ization methods. In Section 3, we formulate the problem and provides the assumption

and system model of the proposed framework. In Section 4, we propose an optimization

approach using a Sequence to Sequence learning model to speed up the computation. In

Section 7, we present the results of our performance evaluation. In Section 8, we make

concluding remarks and discuss future work.

2. RELATEDWORK

2.1. TRAJECTORY PREDICTION IN WSNS

In a moving object tracking problem, the key objective is the dynamic sensor

tracking schedule to predict the trajectory that ensures the real-time performance of object

detection and tracking. When WSNs operate in low-power-listening (LPL) mode, the radio

210

communication latency equals half of the duty cycle times hops counts as shown in the

following equation. Delayrcv
send =

Hrcv
send
×Tclc

2 where Delayrcv
send is the routing delay in sending

a packet from a sender to a receiver, Hrcv
send is the hop counts from a sender to a receiver,

and Tclc is the average duty cycle of the current scheduling protocol. The prediction-based

methods are used to predict the location of the mobile object after Delayrcv
send time based on

historical data. Therefore, the sensor states (active, sleep) can be prepared before the target

enters/leaves the area. Linear prediction is a simple prediction approach, which depends

only on the previous location of the target [13]. However, linear prediction suffers from low

prediction accuracy.

To improve the prediction accuracy, particle filter [14] and Kalman filter [15], [16],

[17] based prediction frameworks have been proposed. Kalman filter is a linear algorithm

that exploits a series of data observed overtime to boost the prediction’s precision. In paper

[18], the authors proposed a Kalman filter based generalized regression neural network that

not only reduced the prediction error but also improved the prediction speed by combining

the Kalman filter with neural networks. The particle filter based frameworks like [19] [20]

[21] are also widely used in the target tracking as they are suitable for nonlinear systems.

There are also works like [22] that combines both Kalman filter and Particle filter based

frameworks to get reliable location prediction for real-world applications. Although the

previous prediction based target tracking approaches could achieve good prediction speed

and precision, they still rely on the GPS data or RSSI values, and can not directly generate

the control message which can directly control the local sensors. The predicted trajectory

needs to be processed by the server that has the knowledge of all the sensors’ locations

which has a higher risk of leaking the location privacy.

211

Figure 1. Cluster-based Object tracking protocol

2.2. CLUSTER-BASED OBJECT TRACKING ALGORITHMS

Cluster-based object tracking protocols are so popular that some researchers clas-

sified the previous works into only two groups: cluster-based and non-cluster-based. It is

the most realistic solution that could control the message flow in large scale WSNs. In

cluster-based protocols, cluster heads, which are selected by different cluster algorithms,

are responsible for collecting information from the nodes in their cluster, communicating

with sinks, and propagating the control messages to their cluster members. In this way, a

large scale WSN is simplified to a small sink-cluster heads network with many small cluster

head - slave sensors sub-networks.

For object tracking applications, once slave sensors in any cluster detect the object

they report the target’s information to their cluster head. The cluster head then routes the

information to the sink or the local mobile edge server. For saving energy, as we have

discussed in Section 2.1, the server predicts the target’s trajectory and sends the control

messages to the cluster headswhich reside on the target’s trajectory. Those cluster heads then

propagate the active/sleep messages to all or some members when the target enters/leaves.

For example, in Figure 1, the sink of a cluster-based WSN collects the target’s current

212

location from a cluster-head. After predicting the target’s future trajectory, the sink sends

control messages to the cluster heads that reside on the target’s future path. The cluster-head

then controls the related sensors for detecting the target.

The drawback of the cluster-based object tracking protocols is the overhead of gener-

ating the dynamic cluster [23] and maintaining the clusters. Also, for different applications,

all the nodes in the WSN need to tune their program to meet specific routing and clustering

requirements. However, it is usually not practical for large scale WSNs.

Considering the above drawbacks of the cluster-based object tracking protocols, we

choose to use the DV-Hop (which stands for distance vector of hops) based packet routing

protocol [24] that decouples the data plane (network layer) and the control plane of the IoT

network. Like software-defined networks, the DV-Hop based routing rules are encapsulated

in each routing packet. So different applications could share the sameWSN by just creating

their own routing rules. The DV-Hop based routing protocol will be elaborated in Section

2.4.

2.3. COUNTER-BASED BROADCAST

Broadcasting is the fastest way to flood a message into the whole WSN. However,

limited bandwidth causes a delay in broadcasting a sequence of messages into the network.

After a node receives a given packet, the counter-based broadcasting schemes [25][26][27]

require a node to wait for a short period to listen to its neighbors and count how many

times the given packet has been rebroadcasted. If the broadcast count of the given packet

reaches the predefined threshold, it will drop the packet. Otherwise, the receiving sensor

node will rebroadcast the packet. This procedure will repeate in the whole broadcasting

period until all the nodes in the network receive the data packet. Comparing to the naive

broadcast approach, for counter-based broadcast, only a few of the nodes in the network will

rebroadcast the given packet which saves bandwidth and thus, alleviates the congestion.

213

2.4. DV-HOP BASED PACKET ROUTING PROTOCOL

The previous research work [24] had devised a data collection and routing approach

based on DV-Hop virtual coordinate that could deliver packets through any trajectory. DV-

Hop uses the anchor nodes and the vector of minimum hop distance to the anchor nodes to

estimate the distance between nodes where anchor nodes are the pre-selected nodes whose

locations are known. Combining anchor nodes and their hop counts relationship follows

certain geometric shapes like an arc of a circle, a wing of a hyperbola, and a segment of

an ellipse. A trajectory then can be approximated with a set of these geometric constraints.

Also, as all the sensors in the network have the DV-Hop table, which contains the hops

counts to nearby anchor nodes, they can decide whether they are within the trajectory

or not by calculating if any of these geometry constraints satisfy their DV-hop tables.

Intuitively, increasing the number of anchor nodes will have a better precision of trajectory

approximation. However, the computational time complexity will also have a cubic growth.

We take the advantage of these cutting edge DV-Hop based routing approaches but reduce

the computational complexity by proposing a Seq2Seq model to derive the relationship

between the target’s trajectory and the geometric constraints that cover that trajectory.

3. PROPOSED OBJECT TRACKING FRAMEWORK

In a multi-hop wireless sensor network, a user wants to detect and track one or more

hiddenmobile objects/events, called target, in the region of interest. The sensors of theWSN

can detect the target within the detection range based on the sensing values. The proposed

object tracking framework predicts the trajectory of the moving target and directly generates

the control message to activate the sensors within the trajectory to perform the active sensing

for fast target detection when the target approaches. It contains two parts. First is the the

trajectory prediction and encoding. The second is control message dissemination within

the trajectory.

214

3.1. ASSUMPTION

The proposed framework has the following assumptions. In the WSN, there are two

types of sensors, the anchor nodes and the regular sensors. The regular sensors are deployed

randomly in the network and can reach any other node within a hop count hMax . They don’t

have GPS nor they know their locations. The anchor nodes are randomly deployed which

have identical computation and storage power as other nodes in the network. However, the

network owner has their location information. In the deployment time, the anchors will

flood the beacon signals within a given hop counts (h f loodLimit) to help the regular sensors

initialize the DV-Hop values to these anchors. No routing table or any other information is

stored.

After the deployment, the sensors will keep their radio in sleep states to save energy

and avoid being detected by the target. Periodically passive detection and periodically

sleep/wake are also performed by the sensors to prolong the battery life. The proposed

framework also assumes that the sensors’ object detecting area is much smaller than the

radio communication range. When a sensor detects a target, it will broadcast the target

detection packet (T DPkt) to the nearest anchor nodes through the decreasing DV-Hop

gradient path (discussed in Section 3.3) in a counter-based broadcast fashion. T DPkt

includes the timestamp, which indicates when the target is detected. It also contains the

DV-Hop information of the sensor that detects the target.

3.2. SYSTEM OVERVIEW

The proposed system includes the sensor plane and the control plane. The sensor

plane is consists of low power devices like wireless sensors, RFID, and wireless actuators.

The control plane contains the remote cloud, the local edge server, or mobile end users.

All the devices in the control plane have more computational power and energy. However,

215

they may belong and affiliate to third parties, temporary contractors, or other authorized

clients. As the sensors may use different radio protocols than the device in the control plane,

gateways are used to bridge the devices between these two planes.

(a) A larget WSN with five overlapped working area in the middle

(b) A zoom in example of working area 0

Figure 2. System Overview

216

As shown in Figure 2 (a), a WSN is divided into multiple overlapped working areas.

Anchor nodes (red triangle) are randomly deployed in these working areas. As we have

discussed in the assumption, anchor nodes will flood the beacon messages to nearby regular

sensor nodes(black dots). The regular sensors then create a DV-Hop table for each nearby

anchor nodes. Local edge servers (trapezoid) act as sink nodes that collect and control

the sensor nodes through the wireless gateway. They gather the target’s previous location

information and predict the routing constraints that cover the target’s future trajectory with

a Seq2Seq learning model which will be discussed in Section 4.

Figure 2 (b) is a zoom-in example of one working area of Figure 2 (a). It shows

three stages of the proposed target tracking framework as follows: The first stage is called

the local activation stage which is discussed in Section 3.3. When a sensor detects a target,

it immediately broadcasts its current timestamp and DV-Hop information toward the nearest

local edge server. The broadcast follows the hop gradient decreasing and limited broadcast

count rules to reduce the risk of being detected by the target as well as help in saving energy.

All the nodes receiving the broadcast message start actively sensing the nearby field for a

short period TLocal Activate.

The second stage is to predict the trajectory constraints that cover the target’s future

location using the proposed Sequence to Sequence (Seq2Seq) learning model which is

elaborated in Section 3.4 and Section 4. The Seq2Seq model, pre-loaded in the local edge

servers, uses a sequence of DV-Hop list as the input and output control packets directly.

Therefore, the local edge servers can control the sensor network without the location

information of the anchor nodes. Also, even when the local edge servers are compromised,

the adversary won’t be able to recover the target’s tracking trajectory.

The third stage connects the local edge server to the sensor node that most recently

detected the moving object by generating a set of path constraints which has been discussed

in Section 5. These path constraints are trained with a Seq2Seq model similar to the one

217

that encodes the predicted target trajectory. The only difference is that the path encoding

requires an input of DV-Hop of start and end points while the trajectory prediction requires

a list of target’s DV-Hop associated with the previous timestamp, Spre.

These two types of Seq2Seq models are trained in a trusted remote cloud that has the

location information of the anchors for each working area. After training, the remote cloud

will assign the models of each working area to the local edge server respectively. Sensors

that detect the target will broadcast the target’s location to all the nearby local edge servers

using a gradient broadcast which has been discussed in Section 3.3. So if the target moves

over the overlapped working area, the local edge servers of all the overlapped working areas

will track the packet simultaneously. When the target moves and the prediction is updated,

the local edge server will send a reset message through the old path to force the sensors

to fall asleep and send an activate message to wake up the sensors in the newly predicted

target’s trajectory.

3.3. GRADIENT-BASED BROADCAST

When a node in a WSN broadcasts a message, it only contains the packet’s unique

ID and the packet’s rebroadcast time. Then all the receivers rebroadcast the message with

the incremented rebroadcast time. If all the sensors only rebroadcast the packets with

lower rebroadcast times, then, after the flooding stops, all the nodes in the network would

have the minimal hops counts (referred to as gradient in some papers [28]) to that initial

broadcasting sensors. Then let any node other than the initial node to broadcast a message

to the initial node that has a zero gradient. The shortest path will be the path that has

a decreasing gradient to the initial nodes. The gradient is zero for the initial node. The

gradient-based broadcast could always route a message to the zero gradient point in the

shortest hop path. However, the redundant rebroadcast is inevitable for the gradient-based

broadcast. To mitigate the rebroadcast, the counter-based broadcast [26][27] can be used.

218

Figure 3. Sensor that detect the target report to the local edge server through a hop
gradient decreasing path.

In the proposed framework, when every local edge server joins the WSN, it floods

a beacon packet to the nearby sensors. Those sensors receiving a beacon packet create a

DV-Hop for these local edge servers. When the local edge server leaves the network, it

will also broadcast a beacon packet to inform all the nearby sensors. Thus, the sensors

will delete the respective DV-Hop entry for that local edge server. When a sensor detects a

target, as shown in Figure 3, it immediately broadcast the current timestamp, the hop count

from itself to the local edge server, and its DV-Hop of anchors to the nearest local edge

server.

3.4. HYPERBOLA CONSTRAINTS BASED CONTROL-MESSAGE ROUTING

As we have discussed in Section 1, routing of the control messages to the desired

trajectory is a challenge because the local edge servers have no location information of all

the sensor nodes in the large scale WSN. In the proposed framework, the sensors won’t use

a static routing table (as it may only good for one application), nor a dynamic routing table

219

(as this will have high latency and energy cost). Modified DV-Hop constraints based routing

protocol [24], which only uses the hyperbola constraints, are chosen to route the control

message. As shown in Figure 4 (a), a hyperbola constraint contains three anchor nodes ID

and the two hop-counts represent the a value and the circle radius, respectively. Here the

first anchor nodes ID represents the foci of the hyperbola and the third one represents the

center of the circle. a is a constant in the following equation h1 − h2 = a where h1, as

shown in Figure 4 (a), is the length of a point in the hyperbola to the left foci A1 and h2

is the length of that point to the right foci A2. Figure 4 (b) shows the case when a sensor

decides whether it should rebroadcast the control message by comparing all the entries in

its DV-Hop table with all the constraints in the routing message. If the DV-Hop information

of a sensor satisfy any of the routing constraint (h1 − h2 == a and h3 <= r), the sensor will

rebroadcast. Otherwise, it will drop the packet.

(a) A segment of hyperbola trajectory (b) The routing constraint of given

hyperbola

Figure 4. Example of a hyperbola trajectory and its routing constraints

220

Calculating the routing constraints requires a lot of computational power and con-

sumes a long time to get the result. For a working area with 80 anchor nodes, about three

minutes are required to get the approximate routing constraints, which is unacceptable for

the real-time tracking application. However, the greedy algorithm to calculate the DV-Hop

based routing constraints contains redundant calculations. For example, for every new

routing trajectory the area of all the possible hyperbola shapes will be calculated once. In

CUDA Kernel, all the shape area will be ranked based on the new trajectory. However,

because the DV-Hop for all the sensors is decided by the topology of the anchor nodes of

the working area at the initialization stage, the area of all the possible shapes won’t change

no matter what the input trajectory looks like. The computational time should able to be

reduced by reuse the shapes’ area information calculated before. In this paper, the proposed

framework uses a Seq2Seq model to remember the relationship between the trajectory area

set and the best hyperbola constraint that covers the TAS and the future predicted trajectory.

The Seq2Seq learning model will be elaborated in Section 4.

4. SEQ2SEQ MODEL FOR CONSTRAINT PREDICTION

To predict the future trajectory of the moving object as well as to generate the next

hyperbola constraint, a sequence to sequence model [29] containing two LSTM layers,

as shown in Figure 5, has been proposed. One of the LSTM layer act as "encoder" that

processes the targets’ previous trajectory, and returns its internal state. However, the outputs

of the encoder LSTM are discarded. This internal state will serve as the initial state of the

decoder in the next step. Note that we assumed in Section 3.1 that sensors don’t know their

locations and the target detection area is much smaller than the sensor’s radio range. Thus,

we can use the DV-Hop of the sensor that detects the target as the target’s location. A list

of the DV-Hop information sorted in timestamp order can be seen as the previous trajectory

of the target. The encoder LSTM in the proposed Seq2Seq model takes these sequences of

DV-Hops as the input.

221

Figure 5. Trajectory prediction Seq2Seq model

Another LSTM layer acts as a "decoder" which is trained to predict the hyperbola

constraint element by element. The decoder LSTM uses the encoder’s hidden parameters’

value (h, c) as its initial value. Specifically, it is trained to predict the best hyperbola

foci (A1 and A2), the circle center (A3), and the hops count of a and r of hyperbola and

circle. So the decoder LSTM iterates five times to fin the following attributes of the

constraint:(A1, A2, A3, a, r). In each iteration, the output is dense and softmax to a list with

a size of max(Numanchors, NumhopLimits) where Numanchors is the number of anchor nodes

in the current working area and NumhopLimits is the predefined maximum number of hops a

broadcast allows. Then the argmax is used to find the anchor nodes IDs or the hop counts

that provide the minimal loss in the current iteration.

Once the local edge server predicts the hyperbola constraint of the target’s future

trajectory, it will send an activation message to the sensors located within the trajectory

through the shortest path from itself to the location where the target has been detected most

recently. The nodes in the shortest path, which are also encoded to a set of hyperbola

222

constraints, will only wake up temporarily to forward the activate message and the reset

message (to put the sensor back in LPL mode). The path encoding procedure is discussed

in Section 5.

Figure 6. Path encoding Seq2Seq model

5. SEQ2SEQ MODEL FOR PATH ENCODING

The shortest path encoding problem can be formulated as follows. There is a start

point’s (Ps) DV-Hop of all the anchors DHs and an end point’s (Pe) DV-Hop of all the

anchors DHe. It is to find the best hyperbola constraints set that covers the line from Ps

to Pe. The proposed path encoding Seq2Seq model is designed as in Figure 6 where AI
k

means the anchor node k in I’th constraint, aI and r I are the hyperbola and circle parameters

which stand for the hop differences between hyperbola foci and the radius of the circle.

The encoder of the proposed model takes two DV-Hop entry as the input and discards the

223

output. The decoder uses the encoder’s hidden parameter value as its hidden parameter’s

initial value. It predicts a parameter of a hyperbola constraint in each iteration until the stop

symbol.

To route the activate message to the predicted trajectory, the framework defines an

activate packet in Table 1. The variable-length activation packet contains a message ID,

a local edge server ID, the length of the payload, a control bit, 5 bits activation area’s

hyperbola constraint, and a set of hyperbola constraints of the temporary routing path.

Table 1. Activate/Reset packet’s payload data structure

Descriptions Starting Bytes Length in Bytes

Message ID 0 4

edge server ID 4 2

payload length 6 1

control bit 7 1

active/reset area 8 5

routing constraints 13 100

6. TRAJECTORY PREDICTION USING SEQ2SEQ MODEL

To train the trajectory prediction Seq2Seq model, a real-world taxi trajectory dataset

[30] is used. For the path encoding model, we use a path generator to enumerate all the

possible paths in the working area. These two datasets and the training details are elaborated

below.

224

6.1. TAXI DATASET AND TRAINING

The real-world taxi trajectory data [30] contains around two million taxi trips in the

city of Porto in Portugal. Each row of the trajectory data contains the trajectory of a taxi

trip in the city of Porto in Portugal. The trajectory is represented as a list of 8 bytes of

GPS data (latitude and longitude) sampled every 15 seconds. The 2 GB data-set contains

trajectories of different shapes, lengths, starting, and ending locations. As the road map in a

city is fixed, the taxi trajectory is a perfect dataset that contains the information of the road

map of an area, the hotspot in a city, popular commute routes, and daily traffic conditions.

Following pre-processing steps are taken to transfer the raw data to be the training ready

dataset.

First is to sanitize the data by discarding, from the taxi dataset, data containing

wrong GPS values. The second is to define the working area and transfer the raw data to the

coordinates in the working area. In the proposed framework, each working area has a fixed

length, width, number of anchors and the topology of the anchor nodes. As shown in Figure

7, all the trajectories within the latitude of 41.188 to 41.138 and the longitude of -8.653

to -8.578 are selected. We define the working area as of length 1800, width 1200, and 60

anchor nodes. Then, we translate the GPS values of the taxi dataset to the working area

pixels. As the anchors’ location are transparent to the remote cloud, the DV-Hop of all the

pixels to the anchors can be calculated. Thus, the taxi trajectory can be translated into a list

of DV-Hop values. The first half of the trajectory’s DV-Hops are stored in a 2D array. As

our model requires 20 previous timestamps’ locations, for a short trajectory, zero DV-Hops

are appended at the end of the previous trajectory’s DV-Hop list. At last, the training input

data are prepared by concatenating all the trajectory’s DV-Hop sequences to a 3D array.

Third, rebuild the trajectory from discrete GPS points and calculate the hyperbola

constraints. As the proposed trajectory encoding the Seq2Seq model directly predicts the

hyperbola constraints, the training output data need to be calculated mathematically. In this

work, we first need to rebuild the trajectory area set, which is a list of pixels covered by

225

the trajectory, using the last half of the GPS points. Then, use a greedy algorithm to find

the best hyperbola that covers most of the area of the trajectory while also overlap with the

first GPS points. Last, use one-hot encoding to encode the hyperbola constraint as shown

in Figure 8. Then, the one-hot encoded hyperbola constraint is used as the training output.

Figure 7. Translate road map to trajectories in a working area

The encoder and decoder of the proposed model are both a LSTM with 256 hidden

layers. Total trainable parameters are 952,360. Total training data number is 1.4 million.

Batch size is 128. We used the Adam optimizer [31] with learningrate = 0.001, β1 =

0.9, β2 = 0.999, ε = 10−7. The loss function is chosen to be the cross-entropy.

226

6.2. DATAGENERATINGANDTRAININGFORTHEPATHENCODINGMODEL

After getting the constraint that covers the target’s prediction trajectory (TPT), we

need to route the control message from the current local edge server to the TPT. Although the

local edge server may have the location information of itself, it won’t have the knowledge of

the TPT as the anchors’ locations are not disclosed to the local edge server. In the proposed

framework, the shortest path from the current local edge server and the most recent sensor

that detects the target is chosen as the route path. The beginning and ending points of

the path, which are in DV-Hop format, are known to the local edge server. The proposed

framework uses a Seq2Seq model to predict the routing constraints from the start point to

the endpoint as shown in Figure 6.

Figure 8. One-hot encoding for the hyperbola constraint

To train the model, the input data are generated from a path generator. The path

generator transforms the working area into a grid with 45 horizontal cells and 30 vertical

cells. For each grid cell, the DV-Hop to all the anchors is calculated. Then the path generator

enumerates all the possible grid cell pairs using a two-layer nested loop. For each pair of the

start and end points, a straight line is drawn as the path. Then a set of hyperbola constraints

are calculated as shown in paper [24]. The encoder input of the model will be the DV-Hop

of the grid cell pair. The decoder output is a set parameter of hyperbola constraints. The

total training data has 0.91 million paths and constraints sequence. The encoder LSTM has

227

128 hidden layers and the decoder LSTM has 256 hidden layers. The batch size is 128. We

also choose Adam’s optimizer with the same parameters as in the training of the trajectory

prediction model.

7. RESULTS

7.1. HARDWARE, FRAMEWORK, AND TRAINING TIME

In the experiment, the Seq2Seq model is trained for one working area with 60

randomly deployed anchor nodes. The anchor nodes’ IDs increment from zero in the

direction of left to right and top to bottom. The working area has 1800 unit length and 1200

unit width. It is transferred into a grid with a 40 × 40 grid cell size for training the path

encoding model. The one-hop distance is 60 units for all the sensors.

Based on cross-validation, the proposed trajectory prediction model is trained on

131 epochs. The proposed path encoding model is trained on 162 epochs. The hardware

for training the models is a desktop with two Xeon E5-2680 V4 and one RTX 2070 GPU.

The framework is Keras of PyTorch. For trajectory prediction model training, each epoch

takes 155 seconds. For path encoding model training, each step takes 237 seconds.

ACS =
Areacovered_by_constraints ∩ AreaTra jectory

AreaTra jectory
(1)

F AR =
Areacovered_by_constraints − AreaTra jectory

Areacovered_by_constraints
(2)

7.2. PREDICTION ACCURACY

This experiment uses the real-world taxi trajectory dataset [30]. As the dataset only

contains the GPS points, we reconstruct the trajectory by connecting adjacent GPS points

with straight lines as we have discussed in Section 6.1. The trajectory’s width is the same

228

as the radio range (60 units in this experiment). The area of the trajectory can be calculated

as the summation of all the line segments of the trajectory. While each line segment can be

seen as a rectangle with length equal to the distance between two adjacent GPS points and

width equal to the radio range. Also, in this experiment, two types of accuracy metrics are

defined. One is called the valid coverage score (ACS) which is defined in Equation 1. The

other is called the false activation rate (FAR) which is defined in Equation 2. As shown in

Figure 9, AreaTra jectory is the area of the desired target trajectory. Areacovered_by_constraints

is the area calculated by testing every pixel of the working area with the DV-Hop constraints.

All the pixels valid for the hyperbola constraints are counted. Therefore, the high ACS score

means more areas of the target trajectory are predicted and covered. The higher FAR rate

means more false areas are predicted which will incur redundant rebroadcast and waste

sensors’ energy.

Figure 9. An example of the definition of Areacovered_by_constraints and AreaTra jectory

As no previous works predict DV-Hop for target tracking, in this experiment, we

designed and tested several machine learning models including LSTM, bi-direction LSTM,

and Seq2Seq models. The results are shown in Table 2. The LSTM model has both the

worst ACS and FAR. The bidirectional LSTM learn trajectories in both directions which has

slightly better performance regarding the ACS and FAR metrics. The proposed trajectory

229

prediction Seq2Seq model achieves the best prediction of ACS and FAR scores. We found

when the Seq2Seq model predicts different from the expected constraint, it will predict

anchor nodes’ IDs and hop count values close to the expected constraint’s anchor nodes’ IDs

and hop counts. As discussed in Section 7.1, anchor nodes with similar values usually close

to each other. Different anchor nodes with similar locations and similar hop constraints

will usually provide a similar coverage area. Thus, the ACS of the proposed Seq2Seq

could achieve around 0.8 coverage which is sufficient for the target tracking application

as multiple independent predictions for different working areas could activate sensors in

different trajectories.

Table 2. Accuracy comparison for four different learning models

Models ACS FAR
Expected constraints
from greedy algorithm 0.92 0.36

Our LSTM 0.43 0.75

Our bidirectional LSTM 0.51 0.70
Trajectory prediction

Seq2Seq model 0.76 0.54
Path encoding
Seq2Seq model 0.85 0.42

Different from the trajectory prediction Seq2Seq model, the proposed path encoding

Seq2Seq model has higher ACS and FAR scores because the training dataset and prediction

dataset have the same synthetic dataset. As discussed in Section 6.2, the path encoding

model enumerates all possible routing paths of the grid cells. A Large epoch number is

chosen. The overfitting strategy works well in this problem.

230

7.3. PREDICTION SPEED

For the target tracking application, the fast prediction time is essential. The pre-

diction must be real-time, otherwise the target can move away from the predicted location.

The DV-Hop constraints based trajectory encoding algorithm [24] consumes more time in

calculating the geometric constraints if the anchor nodes number is larger or the trajectory

area is bigger. Although it has better encoding accuracy, it can’t be used on target tracking

due to the high delay. However, the model-based constraints prediction approach has con-

stant time consumption based on the model size. In this experiment, we compare the time

consumption of geometric encoding and the proposed Seq2Seq model-based approaches

for encoding the same trajectories in the taxi trajectory dataset [30]. The result is shown in

Figure 10.

The result shows when the number of anchor nodes increases, the time of calculating

the hyperbola constraint has polynomial growth. When the number of anchor nodes is 20,

the computational time is 210 milliseconds which is good for target tracking applications.

However, when the number of anchor nodes is 60, the computational time becomes 4440

millisecondswhich is not suitable for the real-time target tracking applications.The proposed

trajectory prediction model with 952,360 parameters only takes an average of 67 millisec-

onds for all the prediction tasks which are only 1/70 of the time consumed by calculating the

same hyperbola constraint with 60 anchor nodes and 20 GPS points. Instead of repeating

the shape coverage area calculations for different trajectories, the Seq2Seq model-based

approach remembers the trajectory and hop constraint patterns and store all the information

in its hidden parameters. When predicting the hyperbola constraints, the calculation is like

searching a state dictionary which is faster than start over all the calculations from scratch.

The prediction speed of the proposed model is good enough for any real-time applications

including the target tracking application.

231

20 40 60 80

102

103

104

Number of anchor nodes

En
co
di
ng

tim
e
in

m
ill
ise

co
nd

Seq2Seq model Geometric Encoding

Figure 10. Time consumption of encoding trajectories with 20 GPS points to hyperbola
constraints

Table 3. Parameters for the experiments

Area of deployment 1800×1200 m

Number of sensor nodes 3000

Communication range 60 m

Number of edge devices 3

Broadcasting hop limitation 30 hops

LPL sleeping time 600ms

LPL wake time 10ms

Energy model MicaZ

Number of clusters 20

Coverage threshold 90%

Number of anchor nodes 60

Anchor cover range 20 hops

232

7.4. COMPARISONWITH PREVIOUS WORKS

Here, we compare the proposed trajectory prediction Seq2Seq model and target

tracking framework with the state-of-the-art cluster-based target prediction and tracking

framework in [9]. The authors in [9] use the target’s current speed and direction to predict

its future location. To save energy, they proposed an adaptive cluster head election algorithm

that reduces the setup overhead by increasing the steady-state phase. We simplified their

implementation by adopting a fixed cluster topology for a working area. Thus, their setup

overhead is minimized. So, our experiments only compare the delay of delivering a control

message and sensors reporting the target’s location information and the energy consumption

caused by redundant rebroadcasting. The network setup is in Table 3.

In each step of the experiment, a random sensor is chosen to report the target’s

location to a random local edge server. The cluster-based approach allows the sensor

to route the report packet to the cluster-head first. Then the cluster-head will route the

packet to the local edge server. While the sensor in the proposed framework broadcasts

the report packets toward the hop-gradient decrease direction. The experiment is simulated

in TOSSIM [32] which is an event-driven sensor simulator. The random topology of the

WSN is generated and hard-coded for each simulated sensor. The cluster mechanism is

simulated as follows. First, we simulate the distributed cluster procedure and the reporting

path is calculated with the cluster information. Second, based on the randomly chosen

sensor and the local edge server, we embed the routing path in the reporting packet. Then

we inject the reporting packet to the node selected to report. Third, we simulate the process

in TOSSIM where all radio communication information including source, receiver, and

timestamp are recorded. Next, we calculate the average delay for different hop distance

between the sensor and local edge server. For our proposed approach, same procedures are

considered except that the injected packets contain hop constraints instead of cluster-based

routing information.

233

Figure 11 shows the delay of a sensor in delivering the target detecting signal to

the local edge server. As discussed in Section 3.3, the sensors in the proposed approach

rebroadcast the target detection message only if their hop count to the local edge server is

lower than the previous sensors that rebroadcast the message. The X-axis in Figure 11 is

the number of hops from the sensor (that detects the target) to the local edge server. The

Y-axis is the reporting message delivery delay.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

·104

Hops to the local edge server

D
el
ay

in
m
ill
ise

co
nd

s

Gradient-broadcast-based
Cluster-based

Figure 11. Delay in a sensor reporting detected target’s location to the local edge server (in
milliseconds)

The result shows that the gradient-based broadcasting of the proposed target tracking

framework has reduced reporting delays. Also, when the number of hops from the reporting

sensor to the local edge server increases, the average delay in both the approaches increase.

The reason is as follows. The cluster-based approach in [9] requires all the slave nodes to

report the target’s information to the cluster head through a pre-defined route. The cluster

head then will deliver the target’s location to the local edge server for processing. However,

234

the gradient-based reporting protocol always reports through the shortest path with minimal

hops. Thus, the reporting delay of the proposed protocol is lower than the cluster-based

target detecting protocol. Also, in the experiment, the cluster size is about 6 to 10 hops in

width. For the cluster-based routing approach, when the sensor that detect the target is close

to the local edge server, it can’t send or receive control messages to/from the local edge

server directly. Thus, in the experimental results in Figures 11 and 12, the delay increases

when the sensor is one or two hops away from the local edge server.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

·104

Hops from server to the predicted area

D
el
ay

in
m
ill
ise

co
nd

s

Hop-constraint-based
Cluster-based

Figure 12. Delay in local edge server sending control messages to the target’s predicted
trajectory (in milliseconds)

Figure 12 shows the delay at the local edge server in predicting the target’s future

location and delivering the control message to the predicted area. The proposed approach

uses the hop-constraint-based message dissemination protocol [24]. It uses hyperbola

constraints and only the sensors which meet the constraints could rebroadcast. The X-axis

of Figure 12 is the number of hops from the local edge server to the predicted area which

235

is the center sensor within all the sensors in the predicted area. The Y-axis is the message

delivery delay from the local edge server to all the sensors within the predicted area. The

result shows that the proposed approach has a lower delay in delivering the control message

than the cluster-based approaches. The reason is similar to the previous delay reporting

experiment. The control message of the cluster-based approach can’t route to the location

of interest directly. It needs to route through the cluster-head which requires extra hops.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

Number of GPS data points in the predicted trajectory

A
cc
um

ul
at
ed

en
er
gy

co
ns
um

pt
io
n

(in
Jo

ul
e)

Encoded with hyperbola constraint
uncompressed, cluster-based routing

Figure 13. Accumulated energy consumption in tracking and reporting target’s location

Figure 13 shows the energy consumption of the cluster-based and the proposed

Seq2Seq prediction based target tracking frameworks. The experiment uses the powerTOSSIM-

Z simulator [33] to estimate the energy consumption. In this experiment, we assume that

the target moving speed is much smaller than the radio transmitting speed. Thus, the energy

236

consumption model for each framework is the energy consumed by the activated sensor

nodes. When more sensors are activated, more is the energy consumed. The result of the

experiment shows that the proposed prediction based target tracking approach consumes

much less energy because fewer sensors are activated for tracking the moving target. The

cluster-based approach will activate all the nodes in the predicted clusters which are not

energy efficient.

8. CONCLUSION AND FUTUREWORK

In this paper, we proposed an efficient Seq2Seq learning model to predict the future

trajectory of a moving object using WSNs. The proposed Seq2Seq model predicts and

generates the DV-Hop based routing constraints without knowing the location of the anchor

nodes in the object tracking area. Therefore, it enables sensors to wake up before the

target passes by a given area and sleep after. The proposed framework decouples the data

plane and the control plane by using the constraint-based routing protocol that enables

different applications to share the same WSN. The Seq2Seq based hyperbola constraint

generation model speeds up the computation significantly and thus it enables a real-time

control-message generation for object tracking. It also allows any edge device to participate

in the target tracking applications as location information is hidden. In the future, we plan

to create an online training transformer network model that could achieve better prediction

accuracy.

REFERENCES

[1] Mohamed Hamdi, Noureddine Boudriga, and Mohammad S Obaidat. Whomoves:
An optimized broadband sensor network for military vehicle tracking. International
Journal of Communication Systems, 21(3):277–300, 2008.

[2] Hong Zhang, Zeyu Zhang, Lei Zhang, Yifan Yang, Qiaochu Kang, and Daniel Sun.
Object tracking for a smart city using iot and edge computing. Sensors, 19(9):1987,
2019.

237

[3] Injong Rhee, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L Sichitiu. Z-mac:
a hybrid mac for wireless sensor networks. IEEE/ACM Transactions On Networking,
16(3):511–524, 2008.

[4] Taneli Riihonen, Dani Korpi, Matias Turunen, and Mikko Valkama. Full-duplex
radio technology for simultaneously detecting and preventing improvised explosive
device activation. In 2018 International Conference on Military Communications and
Information Systems (ICMCIS), pages 1–4. IEEE, 2018.

[5] Shrawan Kumar and DK Lobiyal. Novel dv-hop localization algorithm for wireless
sensor networks. Telecommunication Systems, 2017.

[6] Xingjuan Cai, Penghong Wang, Lei Du, Zhihua Cui, Wensheng Zhang, and Jinjun
Chen. Multi-objective three-dimensional dv-hop localization algorithm with nsga-ii.
IEEE Sensors Journal, 19(21):10003–10015, 2019.

[7] PenghongWang, Jianrou Huang, Zhihua Cui, Liping Xie, and Jinjun Chen. A gaussian
error correction multi-objective positioning model with nsga-ii. Concurrency and
Computation: Practice and Experience, 32(5):e5464, 2020.

[8] Samer Samarah, Muhannad Al-Hajri, and Azzedine Boukerche. A predictive energy-
efficient technique to support object-tracking sensor networks. IEEE Transactions on
Vehicular Technology, 60(2):656–663, 2010.

[9] Khalid A Darabkh, Wijdan Y Albtoush, and Iyad F Jafar. Improved clustering algo-
rithms for target tracking in wireless sensor networks. The Journal of Supercomputing,
73(5):1952–1977, 2017.

[10] ZhiboWang, Wei Lou, Zhi Wang, JunchaoMa, and Honglong Chen. A hybrid cluster-
based target tracking protocol for wireless sensor networks. International Journal of
Distributed Sensor Networks, 9(3):494863, 2013.

[11] Chunming Wu, Chen Zhao, and Haoquan Gong. Energy-efficient target tracking
algorithm for wsns. 3D Research, 10(1):1, 2019.

[12] Chao Sha, Lian-hua Zhong, Yao Bian, Dan-dan Song, and Chun-hui Ren. A type of
energy-efficient target tracking approach based on grids in sensor networks. Peer-to-
Peer Networking and Applications, 12(5):1041–1060, 2019.

[13] Xiao-ping ZHANG and Gui-xiong LIU. Target tracking prediction in wsn based
on quadratic polynomial motion modeling [j]. Journal of Jinan University (Natural
Science & Medicine Edition), 5, 2009.

[14] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and David G Lowe. A
boosted particle filter: Multitarget detection and tracking. In European conference on
computer vision, pages 28–39. Springer, 2004.

[15] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter, 1995.

238

[16] H. Zhang, X. Zhou, Z. Wang, H. Yan, and J. Sun. Adaptive consensus-based dis-
tributed target tracking with dynamic cluster in sensor networks. IEEE Transactions
on Cybernetics, 49(5):1580–1591, 2019.

[17] Gharavian FayaziBarjini. Target tracking in wireless sensor networks using ngekf
algorithm. J Ambient Intell Human Comput, pages 3417–3429, 2019.

[18] Satish R Jondhale and Rajkumar S Deshpande. Kalman filtering framework-based real
time target tracking in wireless sensor networks using generalized regression neural
networks. IEEE Sensors Journal, 19(1):224–233, 2018.

[19] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang. Multi-task correlation parti-
cle filter for robust object tracking. InProceedings of the IEEE conference on computer
vision and pattern recognition, pages 4335–4343, 2017.

[20] Tianzhu Zhang, Si Liu, Changsheng Xu, Bin Liu, and Ming-Hsuan Yang. Correlation
particle filter for visual tracking. IEEETransactions on Image Processing, 27(6):2676–
2687, 2017.

[21] Gurjit Singh Walia, Ashish Kumar, Astitwa Saxena, Kapil Sharma, and Kuldeep
Singh. Robust object tracking with crow search optimized multi-cue particle filter.
Pattern Analysis and Applications, 23(3):1439–1455, 2020.

[22] Dhiren P Bhagat and Himanshukumar Soni. Target tracking using a hybrid kf-pso
tracking model in wsn. In International Conference on Emerging Technology Trends
in Electronics Communication and Networking, pages 83–98. Springer, 2020.

[23] Shalli Rani, Syed Hassan Ahmed, and Ravi Rastogi. Dynamic clustering approach
based on wireless sensor networks genetic algorithm for iot applications. Wireless
Networks, pages 1–10, 2019.

[24] Xiaofei Cao and Sanjay Madria. Efficient geospatial data collection in iot networks
for mobile edge computing. In 2019 IEEE 18th International Symposium on Network
Computing and Applications (NCA), pages 1–10. IEEE, 2019.

[25] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. Wireless networks, 8(2-3):153–167, 2002.

[26] Ji-Young Jung and Dong-Yoon Seo. Counter-based broadcast scheme considering
reachability, network density, and energy efficiency for wireless sensor networks.
Sensors, 18(1):120, 2018.

[27] Kok-Poh Ng, Charalampos Tsimenidis, and Wai Lok Woo. C-sync: Counter-based
synchronization for duty-cycled wireless sensor networks. Ad Hoc Networks, 61:51–
64, 2017.

[28] Tao Liu, Qingrui Li, and Ping Liang. An energy-balancing clustering approach
for gradient-based routing in wireless sensor networks. Computer Communications,
35(17):2150–2161, 2012.

239

[29] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

[30] Taxi trajectory data. www.kaggle.com/crailtap/taxi-trajectory.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[32] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and
scalable simulation of entire tinyos applications. InProceedings of the 1st international
conference on Embedded networked sensor systems, pages 126–137. ACM, 2003.

[33] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and Ciarán
Mc Goldrick. Powertossim z: realistic energy modelling for wireless sensor network
environments. In Proceedings of the 3nd ACM workshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks, pages 35–42. ACM,
2008.

240

VI. A WSN TESTBED FOR Z-ORDER ENCODING BASED MULTI-MODAL
SENSOR DATA COMPRESSION

Xiaofei Cao, Sanjay Madria, Takahiro Hara

ABSTRACT

Wireless sensor networks (WSNs) have significant limitations in available band-

width and energy. The limited bandwidth in sensor networks can cause higher message

delivery latency. In this demo, we demonstrate working of novel Z-order based data com-

pression schemes (Z-compression) to reduce energy and save bandwidth without increasing

the message delivery latency using a TelosB motes based sensor network testbed. Instead of

using the popular Huffman tree style based encoding, Z-compression uses Z-order encoding

to map the multidimensional sensing data into one-dimensional binary stream transmitted

using a single packet. We have also designed and developed a data concatenating algorithm

which can concatenate small packets into large packets, thus increases the throughput of the

WSNs.

Keywords: Sensor network, Data compression, Z-order encode

1. INTRODUCTION AND PROBLEM STATEMENT

Wireless sensor networks (WSNs) are being developed for a plethora of emerging

applications in wide range of disciplines. Many of these multi-modal sensor applications

asking for a higher data stream rate with lossless property, and therefore, cannot tolerate

high latency (or drop data) due to limited link bandwidth in WSNs. Since batteries are

the typical power source for wireless sensors and cannot easily be replaced, the energy

241

consumption is another primary constraint in the design of multi-modal WSNs. Many

research efforts have shown that the radio communication is the predominant factor in all

energy consumption metrics of the WSNs.

In a multi-hop wireless sensor network with multiple different sensor types, in order

to save energy and bandwidth, the multi-modal sensor data need to be compressed without

affecting the data integrity. The compression procedure should not introduce delays, thus

it should be spatial independent and doesn’t need to wait for more data to compress. The

solution must also be application independent which can compress any type and any number

of data attributes without any modification. Due to the limitations of computing resource

such as RAM, the algorithm also need to be light weight and computationally efficient.

2. SYSTEM ARCHITECTURE

In this demo, we classified the sensor nodes in WSNs into three layers based on

their utility. When applying Z-compression [1], the sensing and compression layer takes the

responsibility of sensing and compression. The data concatenating layer will concatenate

compressed data thus reduces the number of packets need to be transmitted. The forwarding

layer will forward the data to the sink. Figure 1(b) shows six different stage the data flow in

the WSNs. The data is generated and flow through the lower layer to the upper layer.

(a) Layers of WSNs (b) Data flow

Figure 1. Layers of WSNs and the data flow

242

2.1. DATA COMPRESSION AND DECOMPRESSION

The local compression uses optimized Z-compressionwhich is the optimized version

of the naive z-compression. The Naive Z-compression uses Z-order encode and all-is-well

scheme [2]. It fuses multi-dimensional data into a binary data stream by interleaving the

binary representations of the input data.

To optimize the naive Z-compression, We can use the z-value with odd length to

represent the ’skewed’ data. Here, we define a two-dimensional dataset as skewed when the

number of bits of the larger delta value is more than two times of the number of bits of the

smaller.

2.2. CONCATENATING COMPRESSED DATA

Data concatenating happens in the intermediate node shown in Figure 2(a). Ac-

cording to the previous experimental analysis of radio performance[3] [4], we found that

reducing the payload size of leaf nodes’ packets will not give much energy saving. It is

the intermediate nodes rather than the leaf nodes which is the bottleneck in the network.

Without reducing the number of packets the intermediate node transmits, we can’t save

the energy and prolong the lifetime of the whole network. We therefroe concatenate the

upstream data to increase the payloads of each outgoing packets of the intermediate node

to reduce the number of outgoing packets.

When concatenating, the intermediate nodes need to collect enough data from its

leaf nodes. Once the sum of the size of the collected data exceeds the threshold, we sort the

data based on the size in descending order. Finally, we create a byte array as the payload

and insert the sorted data if its size is equal to the previous and insert zero bytes if it’s size

is smaller than the previous data’s size.

243

3. SENSOR TESTBED IMPLEMENTATION

3.1. SYSTEM SETUP

In this demo, we use a three-hop wireless sensor network with 27 nodes to show the

effectiveness of the compression algorithm. Fig 2(a) shows the topology of the system. The

sensors labeled 1-20 in the system are working under three different sensing modes fetching

multi-modal sensor data. The sensors labeled 21-25 are performing as the intermediate node

and will concatenating the compressed data from its children. The node 26 is connected to

the base station directly and will only forward the incoming packets from node 21-25.

(a) System topology for demo

(b) real world layout

Figure 2. System topology and real-world layout

244

In real-world, the WSNs may have thousands of leaf nodes and hundreds of con-

catenating nodes and many forwarding nodes. So, even the sensing period of the sensor

nodes may be long, the stream rate in the upper layer can be very high. To simulate the

WSNs data flow and to figure out how much our Z-compression algorithm could mitigate

the bottleneck of the WSNs in terms of bandwidth and energy, we decrease the sensing and

transmitting interval of the leaf nodes. Although the minimum sensing interval is much

longer than the minimum radio transmitting interval, we let the radio be able to transmit the

previous sensing samples if the new samples are not updated.

3.2. DATA COLLECTION AND VISUALIZATION

We use a PC as the base station and a TelosB mote as the interface to collect the

sensor data. TelosB motes communicate with other sensor nodes with IEEE 802.15.4 radio.

It is connected to the PC using the serial port. The sensor nodes will collect the temperature,

humidity, Visible light, invisible light, and voltage data. We visualize the sensor nodes and

the sensing data with a JavaFX UI which will display the current sensing data, performance

summary, control button, etc.

3.3. PERFORMANCE EVALUATION

We also provide a performance evaluation function that will visualize the perfor-

mance metrics, including the compression ratio, the delivery rate, the energy consumption,

the packets delivered, the average latency and the log size in the performance summary

page. We compare four different compression approaches such as LEC [5], TinyPack [2],

and Z-compression [6] and FELACS[7]. The datasets we use in the comparison is the

logged data from our demo WSN. There are also some pre-loaded datasets including Intel

Lab data, ZebraNet data and accelerometer data.

245

4. CONCLUSIONS

This testbed demo shows that Z-compression could achieve competitive compres-

sion ratio compared with the following three well-known compression schemes. The

Z-compression is spatial independent and can be easily adapted to the WSN applications

that have multi-type of sensors fetching multi-modal sensor data. The light weight, fast

compressiion and decoding speed of the Z-compression make it suitable for sensor appli-

cations which suffer from energy constraint and bandwidth limitations.

REFERENCES

[1] Xiaofei Cao, Sanjay Madria, and Takahiro Hara. Multi-model z-compression for high
speed data streaming and low-power wireless sensor networks. Distributed and Parallel
Databases, 2019.

[2] Tommy Szalapski and SanjayMadria. On compressing data in wireless sensor networks
for energy efficiency and real time delivery. Distributed and Parallel Databases,
31(2):151–182, 2013.

[3] Dimitrios Lymberopoulos, Nissanka B Priyantha, and Feng Zhao. Towards energy
efficient design of multi-radio platforms for wireless sensor networks. In Information
Processing in Sensor Networks. IPSN’08. International Conference on, 2008.

[4] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of data
aggregation in wireless sensor networks. InDistributed Computing SystemsWorkshops,
2002. Proceedings. 22nd International Conference on, pages 575–578. IEEE, 2002.

[5] Francesco Marcelloni and Massimo Vecchio. An efficient lossless compression algo-
rithm for tiny nodes of monitoring wireless sensor networks. The Computer Journal,
52(8):969–987, 2009.

[6] Xiaofei Cao, Sanjay Madria, and Takahiro Hara. Efficient z-order encoding based
multi-modal data compression in wsns. In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, pages 2185–2192. IEEE, 2017.

[7] Jonathan Gana Kolo, S Anandan Shanmugam, David Wee Gin Lim, and Li-Minn Ang.
Fast and efficient lossless adaptive compression scheme for wireless sensor networks.
Computers & Electrical Engineering, 41:275–287, 2015.

246

VII. A TESTBED FOR DATA ROUTING IN LOW-POWERWSNS USING
DV-HOP BASED TRAJECTORY ENCODING ALGORITHM

Xiaofei Cao, Sanjay Madria

ABSTRACT

Trajectory-based routing is a common data forwarding protocol while collecting

sensor data during a disaster or in a battlefield for situation-awareness. However, wireless

sensor networks (WSNs) have limitations in available bandwidth and energy. The trajectory-

based routing protocols could reduce redundant broadcasting to save energy and bandwidth

significantly. In this demo, we will demonstrate the working of a DV-Hop (Distance Vector

Hop) based trajectory encoding algorithm using virtual coordinates rather than using GPS

data. Using the proposed trajectory based routing protocol, we achieve energy savings,

reduced latency, reliability, better coverage, while routing data from a source node to a

mobile sink.

1. INTRODUCTION AND PROBLEM STATEMENT

WSNs are common tool in many disaster and battlefield applications for collecting

sensor data. For example, in a battlefield, soldiers patrolling a border area need to receive

real-time sensing data from RF scanners about IEDs from the locations of interest. Any

delay in receiving such data may endanger their lives. For some location-aware applications,

location anonymity is crucial for safety of users as an adversary could easily infer users’

locations like home address and working place and predict their mobility based on the

history of using the location-aware services. Thus, the challenge is to collect sensor data

by preserving the location anonymity.

247

Routing in low-power wireless sensor networks is challenging as the network topol-

ogy changes when the intermediate nodes sleep/fail. The previous works to solve this

problem proposed cluster based routing algorithms, table driven proactive routing proto-

cols, and trajectory based routing protocols. Due to lower communication rate for low-power

listening WSNs (wireless sensor networks), cluster based data routing algorithms with mo-

bile sinks like [1], and [2] suffer from high latency and energy usage, and redundant radio

communication. Other cluster-based approaches like LEACH [3] are limited due to the

cluster head election overhead, and the short transmission range of the IEEE 802.15.4 radio

limits.

The table driven proactive routing protocols like [4] causes high overhead on updat-

ing the routing tables. For the classic reactive routing protocol like AODV [5], the higher

energy consumption, and the broadcast storm issue make it unscalable. To alleviate the

broadcast storm problem, variety of counter-based broadcast approaches like [6], and [7]

have been proposed. However, they still don’t provide the remedy as they reduce only about

60% of the redundant re-broadcasting in ideal-conditions (like known location of every

node in the WSN) [6]. Although the location-based broadcast approaches like [8] reduces

the broadcast overhead, they require GPS which restricts their usage in the battery limited

applications. There are many trajectory encoding methods proposed earlier which route

packets through wireless sensor nodes that lies more or less on the designed trajectory. The

paper [9] uses the cubic Bezier curve, to approximate the desired routing path. In [10],

the authors encode the trajectory using a sequence of linear functions which simplifies the

encoding computation but increases decoding complexity. In [11], a sine wave trajectory

encoding is proposed which takes the advantage of using trigonometric function as a single

sine function representing a curve with two convex points. Further more, ring routing [12],

and circular routing [13] have overheads due to inefficient handling of node failures. All

the above algorithms uses 2d coordinates for trajectory encoding.

248

Virtual coordinate system is an option for geographic routing without using GPS. It

can use local connectivity information including the number of neighbors of each node and

the perimeter nodes’ location as in [14]. It can also use the anchor nodes and the vector

of minimum hop distance (DV-Hop) to the anchor nodes to estimate the distance between

nodes as shown in [13].

To address the above shortcomings for routing in low power WSNs, we proposed

a hybrid trajectory-based routing (TBR) [15] protocol which provides low latency of the

proactive routing, and less maintenance overhead of the reactive routing. Instead of using

the exact nodes’ location information from GPS as in the classic TBRs like [9], [10], [11],

we only use a vector of the minimal distance of hops (DV-Hop) to all the virtual anchor

nodes initialized once in the WSN setup phase. The routing trajectory can be represented

as a list of hop constraints to the anchor nodes. Also, our routing message only contains

two basic geometric shapes hyperbola and arc which can be represented with two simple

mathematical equations. It is different from the classic Cartesian based TBRs as we avoid

the complex geometric computing at the sensor nodes which makes it suitable for the WSN

environment of low-power and low-computing resources. We provide location anonymity

by avoiding the use of GPS, and avoiding to transmit the location information. We also

address the broadcast storm issues by integrating the counter-based broadcasting.

This demo shows how the proposed DV-Hop based trajectory encoding work, and

demonstrates the routing procedure using the routing messages with the encoded trajectory.

2. SIMULATION AND TESTBED IMPLEMENTATION

There is no special requirement for space and need only Internet connection for this

demo. The simulation website is hosted in the lab server which has 40 cores, 192 GB RAM,

and three GTX 1060 GPUs. The estimated parallel computation power is 13 TFLOPs.

249

2.1. SIMULATION AND VISUALIZATION

The objective of this demo is to encode a user drawing trajectory using the DV-Hop

based trajectory encoding algorithm and then simulate the routing procedure in a simulated

Wireless sensor networks. The front end of the demo takes the following responsibility.

Firstly, it helps the user to generate a wireless sensor network with the user defined number

of sensor nodes, number of anchor nodes, wireless communication range of sensors, and

the length and width of the sensor field. Secondly, it enables the user to draw the routing

trajectory and save the trajectory as a set of pixels. Thirdly, it has the ability to check the

information of each individual nodes and shown on the screen. Fourthly, it transfers the

sensors list and the pixels’ set to the server and receive the routing message calculated by the

back-end program. Fifthly, it is able to display the estimated routing trajectory calculated

by the routing message. Last, the routing procedure is translated from routing file to the

specific animation of routing activity in the order of time and displayed on the screen. The

Figure 1 shows the control box that help the user generating the Wireless sensor networks.

The Figure 2 shows the menu of the demo UI and how the front-end displays the sensor

nodes, and to query the detail information of each sensor node. The anchor nodes are shown

as small read dots while the normal sensor nodes appear as black dots. The Figure 3 shows

the menu of visualizing the encoded results and routing simulation.

Figure 1. The control box setting up the WSNs

250

Figure 2. The visual effect of a sample WSN and the detail node information of a sensor

Figure 3. The routing visualization menu

251

The back-end of the simulation program cooperates with the front-end to do most

of the computation tasks including calculating vector of the minimal distance of hops of

sensors for each anchor node, the routing message with hop constraints, and the simulation

activities based on the routing message. The DV-Hop based trajectory encoding algorithm

uses arc segments and hyperbola segments to represent the routing trajectory as shown in

Figure 4. To calculate the best combination of arc segments and hyperbola segments that

maximizing the coverage ratio while minimizing the redundant broadcasting, we use GPUs

and CUDA to excute the proposed greedy algorithm in a parallel fashion. Figure 5 shows

the samples of hand drawn trajectory and the visualization of the encoded trajectory.

(a) An arc trajectory (b) A hyperbola trajectory

Figure 4. Example of an arc and hyperbola trajectory represented with hop constraints

252

(a) Hand drawing ’A’ (b) Encoding Trajectory ’A’

(c) Hand drawing ’B’ (d) Encoding Trajectory ’B’

Figure 5. Example of a circular and arc trajectory represented with hop constraints

2.2. DEMO SHOWN

In this demo, we will ask users to select an area to be tracked for sensor data, select

sensors nodes, define wireless radio range, select n anchor nodes where each anchor node

will flood information to at most r hops, and the TAS will have m entries where TAS stands

for the Trajectory Area Set which is the set containing all the pixels which the trajectory

covers. With the current hardware used in this demo, it takes less than one minute to

calculate the routing constraints in a WSN of 5000 nodes with 50 anchor nodes.

253

To evaluate the performance of routing with the trajectory message and display the

routing procedure step by step, the server side will run TOSSIM [16] to simulate the routing

procedure based on the user defined WSN. The visualized result will be sent back to the

front end and displayed as an animation. The routing delay will be stored and can be

referred by the user later after the animation is finished. Figure 6 shows a sample output of

the routing procedure.

(a) Encoded trajectory

(b) Simulated actual route (in red)

Figure 6. Example of a encoded routing trajectory and simulated routing trajectory

254

3. CONCLUSIONS

In this demo, we show how a routing trajectory can be encoded efficiently without

using GPS by applying the proposed DV-Hop based trajectory encoding algorithm. The

result shows that our trajectory based routing algorithm could reduce redundant broadcasting

and minimizes latency. The link of the demo is: http://www.routing-demos.com:8080/.

REFERENCES

[1] Abdul Waheed Khan, Abdul Hanan Abdullah, Mohammad Abdur Razzaque, and
Javed Iqbal Bangash. Vgdra: a virtual grid-based dynamic routes adjustment scheme
formobile sink-basedwireless sensor networks. IEEE sensors journal, 15(1):526–534,
2015.

[2] Lei Shi, Zheng Yao, Baoxian Zhang, Cheng Li, and Jian Ma. An efficient distributed
routing protocol for wireless sensor networks with mobile sinks. International Journal
of Communication Systems, 28(11):1789–1804, 2015.

[3] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In System sci-
ences. Proceedings of the 33rd annual Hawaii international conference on, pages
10–pp. IEEE, 2000.

[4] Shio Kumar Singh, MP Singh, Dharmendra K Singh, et al. Routing protocols in
wireless sensor networks–a survey. International Journal of Computer Science &
Engineering Survey (IJCSES), 1(2):63–83, 2010.

[5] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Ad hoc on-demand distance
vector (aodv) routing. Technical report, 2003.

[6] Ji-Young Jung and Dong-Yoon Seo. Counter-based broadcast scheme considering
reachability, network density, and energy efficiency for wireless sensor networks.
Sensors, 18(1):120, 2018.

[7] Kok-Poh Ng, Charalampos Tsimenidis, and Wai Lok Woo. C-sync: Counter-based
synchronization for duty-cycled wireless sensor networks. Ad Hoc Networks, 61:51–
64, 2017.

[8] Byungseok Kang and Hyunseung Choo. An energy-efficient routing scheme by us-
ing gps information for wireless sensor networks. International Journal of Sensor
Networks, 26(2):136–143, 2018.

255

[9] Murat Yuksel, Ritesh Pradhan, and Shivkumar Kalyanaraman. An implementa-
tion framework for trajectory-based routing in ad hoc networks. Ad Hoc Networks,
4(1):125–137, 2006.

[10] Houda Labiod, Nedal Ababneh, and Miguel García de la Fuente. An efficient scalable
trajectory based forwarding scheme for vanets. In Advanced Information Networking
and Applications (AINA), 24th IEEE International Conference on, pages 600–606.
IEEE, 2010.

[11] Badri Nath and Dragoş Niculescu. Routing on a curve. ACM SIGCOMM Computer
Communication Review, 33(1):155–160, 2003.

[12] Can Tunca, Sinan Isik, Mehmet Yunus Donmez, and Cem Ersoy. Ring routing: An
energy-efficient routing protocol for wireless sensor networks with a mobile sink.
IEEE Transactions on Mobile Computing, 14(9):1947–1960, 2015.

[13] Rouhollah Rahmatizadeh, Saad Ahmad Khan, Anura P Jayasumana, Damla Turgut,
and Ladislau Boloni. Circular update directional virtual coordinate routing protocol in
sensor networks. In IEEE Global Communications Conference (GLOBECOM), pages
1–6, 2015.

[14] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion Stoica.
Geographic routing without location information. In Proceedings of the 9th annual
international conference on Mobile computing and networking, pages 96–108. ACM,
2003.

[15] Xiaofei Cao and Sanjay Madria. An efficient trajectory-based routing using virtual
coordinates for low-power wsns with mobile sinks. In 2019 International Conference
on Distributed Computing in Sensor Systems (DCOSS), 2019.

[16] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and
scalable simulation of entire tinyos applications. InProceedings of the 1st international
conference on Embedded networked sensor systems, pages 126–137. ACM, 2003.

256

SECTION

3. CONCLUSION AND FUTUREWORK

In this section, we conclude the research objectives and results reported in this

dissertation. At the end, we also list some interesting problems for the future work related

to this research.

3.1. RESEARCH OBJECTIVES ADDRESSED

This research reported in this research aimed to develop the efficient data and re-

source management frameworks for wireless networks including wireless sensor networks

(WSNs), wireless actuator networks (WANs), and Internet of things (IoTs). Real-worldwire-

less network applications require comprehensive solutions that could solve the challenge of

energy and bandwidth limitation, security and privacy, and meeting the QoS requirements.

In this research, we studied three typical applications including the environment data mon-

itoring application in WSNs, the data dissemination application with mobile sensors, and

the object tracking application in IoT environment.

For the static WSNs applications monitoring the environment data, the objective is

to reduce the energy consumption while not compromise the QoS. Since batteries are the

typical power source for wireless sensors, the energy consumption is the primary constraint

in the design of WSNs. Many research efforts have shown that radio communication,

including the data transmission and channel listening, is the predominant factor among all

the energy consumption metrics of the WSNs.

257

For the applications with mobile sensor nodes, the objective is to disseminate data

reliably and securely. In most of the WSN applications, sensors report their sensing data

periodically. However, periodically sensing has a long delay which is not desirable for

applications requiring real-time low-distorted data. Also, in WSNs with mobile nodes, to

improve the reliability of disseminating sensing data is a challenge due to the dynamical

topology they have. The edge/fog networks interacting with local wireless sensor networks

(WSNs) provide services with higher reliability in managing data and resources locally.

Also, the latency of data dissemination in mobile edge networks (MEN) is reduced because

edge nodes can collect and process data faster than the remote cloud. However, with the

participation of third party mobile edge devices, security is another important challenge

which need to be addressed.

For the object tracking application, the objective is to correctly activate the senors

on the trajectory of the moving object. In the mean time, the energy consumption and

location anonymity also need to be considered. As not all sensors contribute equally to

target tracking, activating those sensors that contribute most to the tracking could not only

increase the tracking accuracy but also save energy. In some military applications, sensors

also need to prevent being detected by other enemy targets.

3.2. THE MAIN CONTRIBUTIONS

In this research, we first proposed a Z-order [31] encoding based data compression

scheme. The Z-order encoding called Z-compression can compress multi-modal sensing

data at each leaf node as well as at the intermediate nodes efficiently in near real-time.

The Z-compression algorithm can encode multi-modal sensor data like precipitation, water

level, and wind speed (needed to detect a flood risk in a region) into a binary stream. Using

our Z-compression algorithm in a WSN with a hierarchical topology [32], the nodes with

limited bandwidth can tolerate higher-stream data rates coming from upstream nodes by

concatenating compressed sensor data into the reduced number of packets which may be as

258

large as permissible by the network protocol. The proposed Z-compression algorithm also

uses temporal and spatial data locality and delta encoding for better performance. Instead

of using Huffman style coding which requires extra bits for each delta values, Z-order

encoding is used to compress the delta values of all attributes of the input data into a binary

stream. The predefined decoding rules are used to decode the Z-values and extract all the

values of attributes. We conducted extensive experiments using skewed and unskewed real

datasets and find that Z-order encoding based compression performs better than Huffman

tree based source coding approaches. Also, we optimized the original Z-order encoding,

where, for skewed datasets, we proposed the initial code library to improve the compression

performance further. Our experiments show that it has much better compression ratios

for the multi-dimensional datasets than the previous Huffman coding based compression

approaches like LEC [41], TinyPack [33], Adaptive-LEC [42] and FELACS [44].

Second, we proposed a data dissemination scheme which enables the fog server

to directly collect/send only the necessary data for the edge clients through predefined

trajectories. The data packet from mobile edge devices like cellphones that are near

the client’s position of interest (POI) should be able to reach the targeted IoT devices

(usually the wireless sensor motes) with minimum overhead and latency. Also, a data

collection algorithm are proposed that have both low latency and less overhead of redundant

broadcasting. Instead of using the exact nodes’ location information from GPS as in

[34][35][36], we only use a vector of the minimal distance of hops (DV-Hops) to all the

anchor nodes selected by the secure fog server. The area of position of interest (POI) can

be represented as a list of hop constraints to the anchor nodes. Our routing message only

contains two basic geometric shapes: hyperbola and arc. These shapes can be represented

with two simple mathematical equations. The sensor nodes could avoid the complex

geometric computing, which makes it suitable for WSAN that have low-power and low-

computing resources. In addition, the proposed scheme provides location anonymity by

avoiding using and transmission of the GPS location information. To encode the POI, a

259

trajectory encoding algorithm for IoT applications is proposed that have improved energy

efficiency, reduced latency, and achieve reliable performance when fetching data from the

POI in the local fog network without using GPS coordinates. It uses geometry shapes

to approximate the complex trajectory which achieve good compression ratio compare to

JPEG. In addition, with the use of virtual coordinates, location anonymity is achieved for

the source, sink, and intermediate nodes in the routing path, as only the secure server in

the local fog knows the anchor nodes’ locations. Besides, the use of ellipse and hyperbola

constraints increase the encoding accuracy and compression ratio.

Third, we proposed an efficient Seq2Seq learning model to predict the future trajec-

tory of a moving object using WSNs. The proposed Seq2Seq model predicts and generates

the DV-Hop based routing constraints without knowing the location of the anchor nodes in

the object tracking area. Therefore, it enables sensors to wake up before the target passes

by a given area and sleep after. The proposed framework decouples the data plane and the

control plane by using the constraint-based routing protocol that enables different applica-

tions to share the same WSN. The Seq2Seq based hyperbola constraint generation model

speeds up the computation significantly and thus it enables a real-time control-message

generation for object tracking. It also allows any edge device to participate in the target

tracking applications as location information is hidden.

3.3. THE FUTUREWORK

In the future, we plan to study the adapted anchor nodes deployment strategy

for different IoT environment and application requirements. To adapt the anchor-based

virtual coordinate system fitting the needs of network topology without physical anchors,

such as underwater sonar system, and hash environment networks. Thereby, extending the

applicability of the framework, and improve the location privacy of the anchors. The anchor

deployment problem is a challenge ignored in previous research works. In fact, many real-

world applications are unable to maintain physical anchors or difficult to set up the DV-Hop

260

table for all IoT devices through the anchors’ broadcast. Our research can be extended to

design three different substitution methods for deploying anchors. First, we plan to use the

landmarks and the distance from the IoT devices to the landmarks as the virtual coordinates.

It expands the usability of the proposed framework for a sparse IoT network that is deployed

in a vast geospatial area. Second, we plan to use the light, sound, or microwave sources and

the signal strength of those signal sources as the virtual coordinates. It expands the usability

of the proposed framework for a dense indoor IoT network and allows precision trajectory

encoding with continuous signal strength level rather than discrete hop counts. Third, we

plan to use the activate sonar array and the receiving signal phase as the virtual coordinates.

It expands the usability of the proposed framework for underwater sonar network.

Also, we plan to create an online training transformer network model that could

achieve better prediction accuracy by adapting our seq2seq-based trajectory prediction

framework. Using online training reduces the requirement of the size of the training dataset

which makes the framework more practical.

261

REFERENCES

[1] Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. Sensor cloud: A cloud of virtual
sensors. Software, IEEE, 31(2):70–77, 2014.

[2] John Burgess, John Zahorjan, RatulMahajan, et al. CRAWDADdataset umass/diesel
(v. 2008-09-14), September 2008.

[3] Mare Srbinovska, Cvetan Gavrovski, Vladimir Dimcev, Aleksandra Krkoleva, and
Vesna Borozan. Environmental parameters monitoring in precision agriculture using
wireless sensor networks. Journal of cleaner production, 88:297–307, 2015.

[4] Fan Wu, Christoph Rudiger, and Mehmet Rasit Yuce. Design and field test of an
autonomous iot wsn platform for environmental monitoring. In 2017 27th Interna-
tional Telecommunication Networks and Applications Conference (ITNAC), pages
1–6. IEEE, 2017.

[5] Shu Shen, Lijuan Sun, Yibo Dang, Zhiqiang Zou, and Ruchuan Wang. Node local-
ization based on improved pso and mobile nodes for environmental monitoring wsns.
International Journal of Wireless Information Networks, 25(4):470–479, 2018.

[6] Jue Yang, Chengyang Zhang, Xinrong Li, Yan Huang, Shengli Fu, and Miguel F
Acevedo. Integration of wireless sensor networks in environmental monitoring cyber
infrastructure. Wireless Networks, 16(4):1091–1108, 2010.

[7] Biljana Risteska Stojkoska, Andrijana Popovska Avramova, and Periklis Chatzimi-
sios. Application of wireless sensor networks for indoor temperature regulation.
International Journal of Distributed Sensor Networks, 10(5):502419, 2014.

[8] Baoqiang Kan, Li Cai, and Lei Zhao. An accurate energy model for wsn node and
its optimal design. In 2007 International Conference on Communications, Circuits
and Systems, pages 328–332. IEEE, 2007.

[9] Hai-Ying Zhou, Dan-Yan Luo, Yan Gao, and De-Cheng Zuo. Modeling of node
energy consumption for wireless sensor networks. Wireless Sensor Network, 3(1):18,
2011.

[10] Mehmet C Vuran, Vehbi C Gungor, and Ozgür B Akan. On the interdependency of
congestion and contention in wireless sensor networks. In Proc. SENMETRICS’05,
pages 136–147, 2005.

[11] Yong Wang, Pei Zhang, Ting Liu, Chris Sadler, and Margaret Martonosi.
CRAWDAD dataset princeton/zebranet (v. 2007-02-14). Downloaded from
http://crawdad.org/princeton/zebranet/20070214, February 2007.

262

[12] Yeran Sun, Yashar Moshfeghi, and Zhang Liu. Exploiting crowdsourced geographic
information and gis for assessment of air pollution exposure during active travel.
Journal of Transport & Health, 6:93–104, 2017.

[13] Yeran Sun and Amin Mobasheri. Utilizing crowdsourced data for studies of cycling
and air pollution exposure: A case study using strava data. International journal of
environmental research and public health, 14(3):274, 2017.

[14] Grant R McKercher, Jennifer A Salmond, and Jennifer K Vanos. Characteristics
and applications of small, portable gaseous air pollution monitors. Environmental
Pollution, 223:102–110, 2017.

[15] Naonori Ueda and Futoshi Naya. Spatio-temporal multidimensional collective data
analysis for providing comfortable living anytime and anywhere. APSIPA Transac-
tions on Signal and Information Processing, 7, 2018.

[16] Vishal Sharma, Fei Song, Ilsun You, and Mohammed Atiquzzaman. Energy efficient
device discovery for reliable communication in 5g-based iot and bsns using unmanned
aerial vehicles. Journal of Network and Computer Applications, 97:79–95, 2017.

[17] Wei Feng, Jingchao Wang, Yunfei Chen, Xuanxuan Wang, Ning Ge, and Jianhua Lu.
Uav-aided mimo communications for 5g internet of things. IEEE Internet of Things
Journal, 6(2):1731–1740, 2018.

[18] Shivani Rajendra Teli, Stanislav Zvanovec, and Zabih Ghassemlooy. Optical internet
of things within 5g: Applications and challenges. In 2018 IEEE International
Conference on Internet of Things and Intelligence System (IOTAIS), pages 40–45.
IEEE, 2018.

[19] Mohamed Hamdi, Noureddine Boudriga, and Mohammad S Obaidat. Whomoves:
An optimized broadband sensor network for military vehicle tracking. International
Journal of Communication Systems, 21(3):277–300, 2008.

[20] Hong Zhang, Zeyu Zhang, Lei Zhang, Yifan Yang, Qiaochu Kang, and Daniel Sun.
Object tracking for a smart city using iot and edge computing. Sensors, 19(9):1987,
2019.

[21] Peter Corke, Carrick Detweiler, MatthewDunbabin, Michael Hamilton, Daniela Rus,
and Iuliu Vasilescu. Experiments with underwater robot localization and tracking.
In Proceedings 2007 IEEE International Conference on Robotics and Automation,
pages 4556–4561. IEEE, 2007.

[22] Injong Rhee, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L Sichitiu. Z-mac:
a hybrid mac for wireless sensor networks. IEEE/ACM Transactions On Networking,
16(3):511–524, 2008.

263

[23] Taneli Riihonen, Dani Korpi, Matias Turunen, and Mikko Valkama. Full-duplex
radio technology for simultaneously detecting and preventing improvised explosive
device activation. In 2018 International Conference on Military Communications
and Information Systems (ICMCIS), pages 1–4. IEEE, 2018.

[24] Shrawan Kumar and DK Lobiyal. Novel dv-hop localization algorithm for wireless
sensor networks. Telecommunication Systems, 2017.

[25] Xingjuan Cai, Penghong Wang, Lei Du, Zhihua Cui, Wensheng Zhang, and Jinjun
Chen. Multi-objective three-dimensional dv-hop localization algorithm with nsga-ii.
IEEE Sensors Journal, 19(21):10003–10015, 2019.

[26] Penghong Wang, Jianrou Huang, Zhihua Cui, Liping Xie, and Jinjun Chen. A gaus-
sian error correction multi-objective positioning model with nsga-ii. Concurrency
and Computation: Practice and Experience, 32(5):e5464, 2020.

[27] Xiaofei Cao, Sanjay Madria, and Takahiro Hara. Efficient z-order encoding based
multi-modal data compression in wsns. In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, pages 2185–2192. IEEE, 2017.

[28] Xiaofei Cao, Sanjay Madria, and Takahiro Hara. Multi-model z-compression for
high speed data streaming and low-power wireless sensor networks. Distributed and
Parallel Databases, 2019.

[29] Xiaofei Cao and Sanjay Madria. Efficient geospatial data collection in iot networks
for mobile edge computing. In 2019 IEEE 18th International Symposium on Network
Computing and Applications (NCA), pages 1–10. IEEE, 2019.

[30] Xiaofei Cao and Sanjay Madria. Efficient data collection in iot networks using
trajectory encoded with geometric shapes. In Trans. on Sustainable Computing
Special Issue on Energy-Efficient Edge Computing 2020. IEEE, Under reviewing.

[31] Guy M Morton. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York, 1966.

[32] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in wireless
sensor networks. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 134–147. ACM, 2004.

[33] Tommy Szalapski and Sanjay Madria. On compressing data in wireless sensor
networks for energy efficiency and real time delivery. Distributed and Parallel
Databases, 31(2):151–182, 2013.

[34] Murat Yuksel, Ritesh Pradhan, and Shivkumar Kalyanaraman. An implementa-
tion framework for trajectory-based routing in ad hoc networks. Ad Hoc Networks,
4(1):125–137, 2006.

264

[35] Houda Labiod, Nedal Ababneh, andMiguel García de la Fuente. An efficient scalable
trajectory based forwarding scheme for vanets. In Advanced Information Networking
and Applications (AINA), 24th IEEE International Conference on, pages 600–606.
IEEE, 2010.

[36] Badri Nath and Dragoş Niculescu. Routing on a curve. ACM SIGCOMM Computer
Communication Review, 33(1):155–160, 2003.

[37] Tossaporn Srisooksai, Kamol Keamarungsi, Poonlap Lamsrichan, and Kiyomichi
Araki. Practical data compression in wireless sensor networks: A survey. Journal of
network and computer applications, 35(1):37–59, 2012.

[38] Muneer Bani Yassein, Sanabel Fathi Nimer, and Ahmed Y Al-Dubai. A new dy-
namic counter-based broadcasting scheme for mobile ad hoc networks. Simulation
Modelling Practice and Theory, 19(1):553–563, 2011.

[39] David A Huffman et al. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[40] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-
BILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[41] Francesco Marcelloni and Massimo Vecchio. An efficient lossless compression
algorithm for tiny nodes of monitoring wireless sensor networks. The Computer
Journal, 52(8):969–987, 2009.

[42] Massimo Vecchio, Raffaele Giaffreda, and Francesco Marcelloni. Adaptive lossless
entropy compressors for tiny iot devices. IEEE Transactions on Wireless Communi-
cations, 13(2):1088–1100, 2014.

[43] Tommy Szalapski and Sanjay Madria. Energy efficient distributed grouping and
scaling for real-time data compression in sensor networks. In 2014 IEEE 33rd
International Performance Computing and Communications Conference (IPCCC),
pages 1–9. IEEE, 2014.

[44] Jonathan Gana Kolo, S Anandan Shanmugam, David Wee Gin Lim, and Li-Minn
Ang. Fast and efficient lossless adaptive compression scheme for wireless sensor
networks. Computers & Electrical Engineering, 41:275–287, 2015.

[45] Christopher M Sadler and Margaret Martonosi. Data compression algorithms for
energy-constrained devices in delay tolerant networks. In Proceedings of the 4th
international conference on Embedded networked sensor systems, pages 265–278,
2006.

[46] Terry A Welch. A technique for high-performance data compression. Computer,
17(6):8–19, 1984.

265

[47] Nguyen Quoc Viet Hung, Hoyoung Jeung, and Karl Aberer. An evaluation of model-
based approaches to sensor data compression. IEEE Transactions on Knowledge and
Data Engineering, 25(11):2434–2447, 2013.

[48] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Lo-
cally adaptive dimensionality reduction for indexing large time series databases. ACM
SIGMOD Record, 30(2):151–162, 2001.

[49] Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. Space efficient
streaming algorithms for the maximum error histogram. In 2007 IEEE 23rd Inter-
national Conference on Data Engineering, pages 1026–1035. IEEE, 2007.

[50] Hazem Elmeleegy, Ahmed K Elmagarmid, Emmanuel Cecchet, Walid G Aref, and
Willy Zwaenepoel. Online piece-wise linear approximation of numerical streams
with precision guarantees. Proceedings of the VLDB Endowment, 2(1):145–156,
2009.

[51] G Kumar, K Baskaran, R Elijah Blessing, and M Lydia. A comprehensive review on
the impact of compressed sensing in wireless sensor networks. International Journal
on Smart Sensing & Intelligent Systems, 9(2), 2016.

[52] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. The broadcast
storm problem in a mobile ad hoc network. Wireless networks, 8(2-3):153–167,
2002.

[53] Chien Chen, Chin-Kai Hsu, and Hsien-Kang Wang. A distance-aware counter-
based broadcast scheme for wireless ad hoc networks. In Military Communications
Conference, MILCOM. IEEE, 2005.

[54] Ji-Young Jung and Dong-Yoon Seo. Counter-based broadcast scheme considering
reachability, network density, and energy efficiency for wireless sensor networks.
Sensors, 18(1):120, 2018.

[55] Kok-Poh Ng, Charalampos Tsimenidis, and Wai Lok Woo. C-sync: Counter-based
synchronization for duty-cycled wireless sensor networks. Ad Hoc Networks, 61:51–
64, 2017.

[56] MBani Yassein, AAl-Dubai, MOuld Khaoua, and OmarMAl-Jarrah. New adaptive
counter based broadcast using neighborhood information in manets. In 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages 1–7. IEEE,
2009.

[57] Thang Le Duc, Duc Tai Le, Vyacheslav V Zalyubovskiy, Dongsoo S Kim, and
Hyunseung Choo. Level-based approach for minimum-transmission broadcast in
duty-cycled wireless sensor networks. Pervasive and Mobile Computing, 27:116–
132, 2016.

266

[58] Suraj Sharma, Deepak Puthal, Sabah Tazeen, Mukesh Prasad, and Albert Y Zomaya.
Msgr: A mode-switched grid-based sustainable routing protocol for wireless sensor
networks. IEEE Access, 5:19864–19875, 2017.

[59] Levente Buttyán and Péter Schaffer. Position-based aggregator node election in
wireless sensor networks. International Journal of Distributed Sensor Networks,
6(1):679205, 2010.

[60] Robert Akl and Uttara Sawant. Grid-based coordinated routing in wireless sensor
networks. In 2007 4th IEEEConsumerCommunications andNetworkingConference,
pages 860–864. Citeseer, 2007.

[61] Omar Banimelhem and Samer Khasawneh. Gmcar: Grid-based multipath with
congestion avoidance routing protocol in wireless sensor networks. AdHocNetworks,
10(7):1346–1361, 2012.

[62] Haiyun Luo, Fan Ye, Jerry Cheng, Songwu Lu, and Lixia Zhang. Ttdd: Two-
tier data dissemination in large-scale wireless sensor networks. Wireless networks,
11(1-2):161–175, 2005.

[63] Juan A Sanchez, Pedro M Ruiz, and Ivan Stojmnenovic. Gmr: Geographic multicast
routing for wireless sensor networks. In 2006 3rd Annual IEEE Communications
Society on Sensor and Ad Hoc Communications and Networks, volume 1, pages
20–29. IEEE, 2006.

[64] Yuan-Po Chi and Hsung-Pin Chang. An energy-aware grid-based routing scheme for
wireless sensor networks. Telecommunication Systems, 54(4):405–415, 2013.

[65] Abdul Waheed Khan, Javed Iqbal Bangash, Adnan Ahmed, and Abdul Hanan Abdul-
lah. Qdvgdd: Query-driven virtual grid based data dissemination for wireless sensor
networks using single mobile sink. Wireless Networks, (1):241–253, 2019.

[66] Can Tunca, Sinan Isik, Mehmet Yunus Donmez, and Cem Ersoy. Ring routing: An
energy-efficient routing protocol for wireless sensor networks with a mobile sink.
IEEE Transactions on Mobile Computing, 14(9):1947–1960, 2015.

[67] Ramin Yarinezhad. Reducing delay and prolonging the lifetime of wireless sensor
network using efficient routing protocol based on mobile sink and virtual infrastruc-
ture. Ad Hoc Networks, 84, 2019.

[68] Wendi RabinerHeinzelman, AnanthaChandrakasan, andHari Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In System
sciences. Proceedings of the 33rd annual Hawaii international conference on, pages
10–pp. IEEE, 2000.

[69] Ossama Younis and Sonia Fahmy. Heed: a hybrid, energy-efficient, distributed clus-
tering approach for ad hoc sensor networks. Mobile Computing, IEEE Transactions
on, 3(4):366–379, 2004.

267

[70] Khalid Haseeb, Kamalrulnizam Abu Bakar, Abdul Hanan Abdullah, and Tasneem
Darwish. Adaptive energy aware cluster-based routing protocol for wireless sensor
networks. Wireless Networks, 23(6):1953–1966, 2017.

[71] Peyman Neamatollahi, Mahmoud Naghibzadeh, and Saeid Abrishami. Fuzzy-based
clustering-task scheduling for lifetime enhancement in wireless sensor networks.
IEEE Sensors Journal, 17(20):6837–6844, 2017.

[72] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ion
Stoica. Geographic routing without location information. In Proceedings of the
9th annual international conference on Mobile computing and networking, pages
96–108. ACM, 2003.

[73] Hongyang Chen, Kaoru Sezaki, and Ping Deng. An improved dv-hop localization
algorithm with reduced node location error for wireless sensor networks. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, 91(8):2232–2236, 2008.

[74] Kai Chen, Zhong-huaWang, Mei Lin, andMin Yu. An improved dv-hop localization
algorithm for wireless sensor networks. 2010.

[75] Shrawan Kumar and DK Lobiyal. An advanced dv-hop localization algorithm for
wireless sensor networks. Wireless personal communications, 71(2):1365–1385,
2013.

[76] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with coor-
dinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on
networking, 12(3):493–506, 2004.

[77] Tijs Van Dam and Koen Langendoen. An adaptive energy-efficient mac protocol
for wireless sensor networks. In Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 171–180, 2003.

[78] Injong Rhee, Ajit Warrier, Mahesh Aia, Jeongki Min, and Mihail L Sichitiu. Z-mac:
a hybrid mac for wireless sensor networks. IEEE/ACM Transactions on Networking
(TON), 16(3):511–524, 2008.

[79] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access
for wireless sensor networks. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 95–107, 2004.

[80] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and Ciarán
Mc Goldrick. Powertossim z: realistic energy modelling for wireless sensor network
environments. In Proceedings of the 3nd ACMworkshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks, pages 35–42. ACM,
2008.

268

[81] Xiao-ping ZHANG and Gui-xiong LIU. Target tracking prediction in wsn based
on quadratic polynomial motion modeling [j]. Journal of Jinan University (Natural
Science & Medicine Edition), 5, 2009.

[82] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J Little, and David G Lowe.
A boosted particle filter: Multitarget detection and tracking. In European conference
on computer vision, pages 28–39. Springer, 2004.

[83] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter, 1995.

[84] H. Zhang, X. Zhou, Z. Wang, H. Yan, and J. Sun. Adaptive consensus-based dis-
tributed target tracking with dynamic cluster in sensor networks. IEEE Transactions
on Cybernetics, 49(5):1580–1591, 2019.

[85] Gharavian FayaziBarjini. Target tracking in wireless sensor networks using ngekf
algorithm. J Ambient Intell Human Comput, pages 3417–3429, 2019.

[86] Satish R Jondhale and Rajkumar S Deshpande. Kalman filtering framework-based
real time target tracking in wireless sensor networks using generalized regression
neural networks. IEEE Sensors Journal, 19(1):224–233, 2018.

[87] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang. Multi-task correlation
particle filter for robust object tracking. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4335–4343, 2017.

[88] Tianzhu Zhang, Si Liu, Changsheng Xu, Bin Liu, and Ming-Hsuan Yang. Corre-
lation particle filter for visual tracking. IEEE Transactions on Image Processing,
27(6):2676–2687, 2017.

[89] Gurjit Singh Walia, Ashish Kumar, Astitwa Saxena, Kapil Sharma, and Kuldeep
Singh. Robust object tracking with crow search optimized multi-cue particle filter.
Pattern Analysis and Applications, 23(3):1439–1455, 2020.

[90] Dhiren P Bhagat and Himanshukumar Soni. Target tracking using a hybrid kf-pso
tracking model in wsn. In International Conference on Emerging Technology Trends
in Electronics Communication and Networking, pages 83–98. Springer, 2020.

[91] Shalli Rani, Syed Hassan Ahmed, and Ravi Rastogi. Dynamic clustering approach
based on wireless sensor networks genetic algorithm for iot applications. Wireless
Networks, pages 1–10, 2019.

[92] Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. On the construction of
data aggregation tree with minimum energy cost in wireless sensor networks: Np-
completeness and approximation algorithms. IEEE Transactions on Computers,
65(10):3109–3121, 2016.

[93] Chen-Xu Liu, Yun Liu, Zhen-Jiang Zhang, and Zi-Yao Cheng. High energy-efficient
and privacy-preserving secure data aggregation for wireless sensor networks. Inter-
national Journal of Communication Systems, 26(3):380–394, 2013.

269

[94] Dylan McDonald, Stewart Sanchez, Sanjay Madria, and Fikret Ercal. A survey of
methods for finding outliers in wireless sensor networks. Journal of network and
systems management, 23(1):163–182, 2015.

[95] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes. Journal of the
ACM (JACM), 34(4):825–845, 1987.

[96] Azad Ali, Abdelmajid Khelil, Piotr Szczytowski, and Neeraj Suri. An adaptive and
composite spatio-temporal data compression approach for wireless sensor networks.
In Proceedings of the 14th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems, pages 67–76. ACM, 2011.

[97] Sorabh Gandhi, Suman Nath, Subhash Suri, and Jie Liu. Gamps: Compressing multi
sensor data by grouping and amplitude scaling. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages 771–784. ACM,
2009.

[98] Henry PontiMedeiros, Marcos CostaMaciel, Richard Demo Souza, andMarcelo Ed-
uardo Pellenz. Lightweight data compression in wireless sensor networks using
huffman coding. International Journal of Distributed Sensor Networks, 2014.

[99] Dimitrios Lymberopoulos, Nissanka B Priyantha, and Feng Zhao. Towards energy
efficient design of multi-radio platforms for wireless sensor networks. In Information
Processing in Sensor Networks. IPSN’08. International Conference on, 2008.

[100] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of data
aggregation in wireless sensor networks. In Distributed Computing Systems Work-
shops, 2002. Proceedings. 22nd International Conference on, pages 575–578. IEEE,
2002.

[101] S Madden. Intel berkeley research lab data, 2003.

[102] Mohit Jain, Ajeet Pal Singh, Soshant Bali, and Sanjit Kaul. CRAWDAD dataset
jiit/accelerometer (v. 2012-11-03), November 2012.

[103] Richard M. Fujimoto, Randall Guensler, Michael P. Hunter, Hao Wu, Mahesh
Palekar, Jaesup Lee, and Joonho Ko. CRAWDAD dataset gatech/vehicular (v. 2006-
03-15). Downloaded from http://crawdad.org/gatech/vehicular/20060315, March
2006.

[104] Nelson I Dopico, Carlos Gil-Soriano, Iňigo Arrazola, and Santiago Zazo. Analysis of
ieee 802.15. 4 throughput in beaconless mode on micaz under tinyos 2. In Vehicular
Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pages 1–5. IEEE,
2010.

[105] TelosB Datasheet. Crossbow Inc. Downloaded from
http://www.memsic.com/userfiles/files/Datasheets/WSN, 2013.

270

[106] Enrico Perla, Art Ó Catháin, Ricardo Simon Carbajo, Meriel Huggard, and Ciarán
Mc Goldrick. Powertossim z: realistic energy modelling for wireless sensor network
environments. In Proceedings of the 3nd ACMworkshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks, pages 35–42. ACM,
2008.

[107] Luca Anchora, Antonio Capone, Vincenzo Mighali, Luigi Patrono, and Francesco
Simone. A novel mac scheduler to minimize the energy consumption in a wireless
sensor network. Ad Hoc Networks, 16:88–104, 2014.

[108] Jun Long, Mianxiong Dong, Kaoru Ota, and Anfeng Liu. A green tdma scheduling
algorithm for prolonging lifetime in wireless sensor networks. IEEE Systems Journal,
11(2):868–877, 2017.

[109] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings
of the 4th international conference on Embedded networked sensor systems, pages
307–320. ACM, 2006.

[110] Yanjun Sun, Omer Gurewitz, and David B Johnson. Ri-mac: a receiver-initiated
asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor
networks. In Proceedings of the 6th ACM conference on Embedded network sensor
systems, pages 1–14. ACM, 2008.

[111] Jun Bum Lim, Beakcheol Jang, and Mihail L Sichitiu. Mcas-mac: A multichan-
nel asynchronous scheduled mac protocol for wireless sensor networks. Computer
Communications, 56:98–107, 2015.

[112] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and scal-
able simulation of entire tinyos applications. In Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 126–137. ACM, 2003.

[113] HM Künzel, A Holm, D Zirkelbach, and AN Karagiozis. Simulation of indoor
temperature and humidity conditions including hygrothermal interactions with the
building envelope. Solar Energy, 78(4):554–561, 2005.

[114] Memsic Crossbow. Telosb v2 data sheet. Downloaded from
www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf, 2008.

[115] Mehmet C Vuran, Özgür B Akan, and Ian F Akyildiz. Spatio-temporal correlation:
theory and applications forwireless sensor networks.ComputerNetworks, 45(3):245–
259, 2004.

[116] Mehmet CVuran and Ian FAkyildiz. Spatial correlation-based collaborativemedium
access control in wireless sensor networks. IEEE/ACM Transactions on Networking
(TON), 14(2):316–329, 2006.

[117] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,
49(5):78–81, 2016.

271

[118] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform and
applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb). IEEE, 2015.

[119] Yingzi Wang, Nicholas Jing Yuan, Defu Lian, Linli Xu, Xing Xie, Enhong Chen,
and Yong Rui. Regularity and conformity: Location prediction using heterogeneous
mobility data. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1275–1284. ACM, 2015.

[120] Xiaofei Cao. Serial port reader and writer for the android gateway.
https://github.com/cxfcdcpu/gateway.

[121] Carl T Kelley. Solving nonlinear equations with Newton’s method, volume 1. Siam,
2003.

[122] Taxi trajectory data. www.kaggle.com/crailtap/taxi-trajectory.

[123] JingWang, Jian Tang, Guoliang Xue, and Dejun Yang. Towards energy-efficient task
scheduling on smartphones in mobile crowd sensing systems. Computer Networks,
115:100–109, 2017.

[124] Mamoun F Al-Mistarihi, Islam M Tanash, Fedaa S Yaseen, and Khalid A Darabkh.
Protecting source location privacy in a clustered wireless sensor networks against
local eavesdroppers. Mobile Networks and Applications, 25(1):42–54, 2020.

[125] HaoWang, Guangjie Han, Chunsheng Zhu, Sammy Chan, andWenbo Zhang. Tcslp:
A trace cost based source location privacy protection scheme in wsns for smart cities.
Future Generation Computer Systems, 107:965–974, 2020.

[126] Anfeng Liu, Xiao Liu, Zhipeng Tang, Laurence T Yang, and Zili Shao. Preserving
smart sink-location privacy with delay guaranteed routing scheme for wsns. ACM
Transactions on Embedded Computing Systems (TECS), 16(3):1–25, 2017.

[127] Timothy M Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

[128] Gary B Hughes and Mohcine Chraibi. Calculating ellipse overlap areas. Computing
and visualization in science, 15(5):291–301, 2012.

[129] TelosB Datasheet. Crossbow Inc. Downloaded from mem-
sic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf.

[130] MicaZ. Crossbow Inc. Downloaded from
memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf.

[131] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks. In Proceedings
of the 4th international conference on Embedded networked sensor systems, pages
307–320, 2006.

272

[132] Huihsin Tseng, Pi-Chuan Chang, Galen Andrew, Dan Jurafsky, and Christopher D
Manning. A conditional random field word segmenter for sighan bakeoff 2005. In
Proceedings of the fourth SIGHANworkshop on Chinese language Processing, 2005.

[133] Samer Samarah, Muhannad Al-Hajri, and Azzedine Boukerche. A predictive energy-
efficient technique to support object-tracking sensor networks. IEEE Transactions
on Vehicular Technology, 60(2):656–663, 2010.

[134] Khalid A Darabkh, Wijdan Y Albtoush, and Iyad F Jafar. Improved clustering
algorithms for target tracking in wireless sensor networks. The Journal of Supercom-
puting, 73(5):1952–1977, 2017.

[135] Zhibo Wang, Wei Lou, Zhi Wang, Junchao Ma, and Honglong Chen. A hybrid
cluster-based target tracking protocol for wireless sensor networks. International
Journal of Distributed Sensor Networks, 9(3):494863, 2013.

[136] Chunming Wu, Chen Zhao, and Haoquan Gong. Energy-efficient target tracking
algorithm for wsns. 3D Research, 10(1):1, 2019.

[137] Chao Sha, Lian-hua Zhong, Yao Bian, Dan-dan Song, and Chun-hui Ren. A type of
energy-efficient target tracking approach based on grids in sensor networks. Peer-to-
Peer Networking and Applications, 12(5):1041–1060, 2019.

[138] Tao Liu, Qingrui Li, and Ping Liang. An energy-balancing clustering approach for
gradient-based routing in wireless sensor networks. Computer Communications,
35(17):2150–2161, 2012.

[139] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

[140] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[141] Abdul Waheed Khan, Abdul Hanan Abdullah, Mohammad Abdur Razzaque, and
Javed Iqbal Bangash. Vgdra: a virtual grid-based dynamic routes adjustment scheme
for mobile sink-based wireless sensor networks. IEEE sensors journal, 15(1):526–
534, 2015.

[142] Lei Shi, Zheng Yao, Baoxian Zhang, Cheng Li, and Jian Ma. An efficient distributed
routing protocol for wireless sensor networks with mobile sinks. International Jour-
nal of Communication Systems, 28(11):1789–1804, 2015.

[143] Shio Kumar Singh, MP Singh, Dharmendra K Singh, et al. Routing protocols in
wireless sensor networks–a survey. International Journal of Computer Science &
Engineering Survey (IJCSES), 1(2):63–83, 2010.

[144] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Ad hoc on-demand dis-
tance vector (aodv) routing. Technical report, 2003.

273

[145] Byungseok Kang and Hyunseung Choo. An energy-efficient routing scheme by
using gps information for wireless sensor networks. International Journal of Sensor
Networks, 26(2):136–143, 2018.

[146] Rouhollah Rahmatizadeh, Saad Ahmad Khan, Anura P Jayasumana, Damla Turgut,
and Ladislau Boloni. Circular update directional virtual coordinate routing protocol
in sensor networks. In IEEE Global Communications Conference (GLOBECOM),
pages 1–6, 2015.

[147] Xiaofei Cao and Sanjay Madria. An efficient trajectory-based routing using virtual
coordinates for low-power wsns with mobile sinks. In 2019 International Conference
on Distributed Computing in Sensor Systems (DCOSS), 2019.

274

VITA

Xiaofei Cao was born in China. He received a Master of Science in Computer

Science from Missouri University of Science and Technology in May 2015. He received

a Master of Science in Electrical Engineering from Missouri University of Science and

Technology in December 2012. He received a Bachelor of Science in Engineering from

Tianjin University in July 2020.

He obtained hisDoctor of Philosophy inComputer Science fromMissouriUniversity

of Science and Technology under the supervision of Dr. Sanjay Madria in May 2021. His

core research focus was on data management in wireless sensor networks. During his Ph.D.

training, he published several papers in top-tier conference and journals. He also did a

research internship at AFRL in Summer 2018.

	Data and resource management in wireless networks via data compression, GPS-free dissemination, and learning
	Recommended Citation

	tmp.1646069043.pdf.RYtuI

