
CHALLENGES AND SOLUTIONS FOR LOCATION-BASED ROUTING IN

WIRELESS SENSOR NETWORKS WITH COMPLEX NETWORK TOPOLOGY

A Dissertation

by

MYOUNGGYU WON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Radu Stoleru
Committee Members, Jennifer L. Welch

Anxiao Jiang
A. L. Narasimha Reddy

Head of Department, Duncan M. Walker

August 2013

Major Subject: Computer Science

Copyright 2013 Myounggyu Won

ABSTRACT

Complex Network Topologies (CNTs)–network holes and cuts–often occur in

practical WSN deployments. Many researchers have acknowledged that CNTs ad-

versely affect the performance of location-based routing and proposed various CNT-

aware location-based routing protocols. However, although they aim to address prac-

tical issues caused by CNTs, many proposed protocols are either based on idealistic

assumptions, require too much resources, or have poor performance. Additionally,

proposed protocols are designed only for a single routing primitive–either unicast,

multicast, or convergecast. However, as recent WSN applications require diverse

traffic patterns, the need for an unified routing framework has ever increased.

In this dissertation, we address these main weaknesses in the research on location-

based routing. We first propose efficient algorithms for detecting and abstracting

CNTs in the network. Using these algorithms, we present our CNT-aware location-

based unicast routing protocol that achieves the guaranteed small path stretch with

significantly reduced communication overhead. We then present our location-based

multicast routing protocol that finds near optimal routing paths from a source node

to multicast member nodes, with efficient mechanisms for controllable packet header

size and energy-efficient recovery from packet losses. Our CNT-aware convergecast

routing protocol improves the network lifetime by identifying network regions with

concentrated network traffic and distributing the traffic by using the novel concept

of virtual boundaries. Finally, we present the design and implementation details of

our unified routing framework that seamlessly integrates proposed unicast, multicast,

and convergecast routing protocols. Specifically, we discuss the issues regarding the

implementation of our routing protocols on real hardware, and the design of the

ii

framework that significantly reduces the code and memory size to fit in a resource-

constrained sensor mote. We conclude with a proactive solution designed to cope

with CNTs, where mobile nodes are used for “patching” CNTs to restore the network

connectivity and to optimize the network performance.

iii

DEDICATION

To my family.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Radu Stoleru, for his endless support,

encouragement, and guidance throughout the course of my Ph.D. study. I appreciate

that he gladly accepted me to take my first step for becoming a researcher under his

guidance. His patience allowed me to make steady but consistent progress. Whenever

I was stuck on a problem, he has been always with me to give precious advice to

help me move forward. Without his help, I would not have completed this work.

I would also like to thank my committee members, Dr. Jennifer Welch, Dr.

Anxiao Jiang, and Dr. Narasimha Reddy for their insightful comments and support.

Without the knowledge I learned from their classes and their constructive comments,

this work would not have been possible.

My thanks also go to my lab colleagues, Harsha Chenji, Amin Hassanzadeh,

Mahima Suresh, Wei Zhang, and Jay Chen, for gladly taking their time for discussion

and collaboration and making my life at LENSS Lab pleasurable.

I am also very grateful to my wife, Hyunjung Lim, and my precious princess,

Lucy Won, who have been always there for me with their love and understanding.

Last, but not least, I thank my parents, Kyungjae An and Hyunseob Won, and my

brother, Chulgyu Won, for giving me the strongest support and encouragement.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xiv

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Dissertation Statement . 3
1.3 Main Contributions . 3
1.4 Organization . 5

2. CNT DETECTION . 6

2.1 Network Cut Detection . 6
2.1.1 Related Work . 8
2.1.2 Preliminaries and Problem Formulation 12
2.1.3 Main Ideas . 14
2.1.4 Point-to-Point Cut Detection 15
2.1.5 Energy Efficient Cut Detection for Multiple Sinks 22
2.1.6 Large-scale Simulations . 25

2.2 Hole Detection . 38

3. CNT-AWARE LOCATION-BASED UNICAST ROUTING 42

3.1 Motivation . 42
3.2 Related Work . 45
3.3 Preliminaries and Problem Formulation 47
3.4 Local Visibility Graph-based Geographic Routing (LVGR) 49

3.4.1 Overview . 50
3.4.2 Boundary Detection . 52
3.4.3 Polygon Construction . 52
3.4.4 Overlay Network Construction 53
3.4.5 Data Forwarding . 54

vi

3.5 LVGR Protocol Analysis . 60
3.5.1 Path Stretch . 60
3.5.2 Message Complexity . 63
3.5.3 Per-Node State . 64

3.6 Simulation Results . 65
3.6.1 Path Stretch . 67
3.6.2 Communication Overhead . 71
3.6.3 Impact of δ . 73
3.6.4 Impact of Network Density . 74
3.6.5 Impact of DOI . 74

4. CNT-AWARE LOCATION-BASED MULTICAST ROUTING 76

4.1 Motivation . 76
4.2 Related Work . 78
4.3 System Model and Problem Formulation 79
4.4 Proposed Solution . 82

4.4.1 Main Ideas . 82
4.4.2 Energy Efficient and Robust Multicast Routing (RE2MR) . . 83
4.4.3 Trajectory-based Lightweight Hole Detection (TLHD) 85
4.4.4 Energy-efficient Packet Forwarding (EPF) and Multi-Level Fa-

cility Computation . 89
4.4.5 Reliable Packet Delivery . 92

4.5 Theoretical Analysis . 93
4.5.1 Total Number of Branch Nodes 93
4.5.2 Sum of Path Lengths . 95

4.6 Performance Evaluation . 97
4.6.1 Impact of Node Density . 98
4.6.2 Impact of Level of Facilities 99
4.6.3 Impact of Holes . 101
4.6.4 Reliability . 103

5. CNT-AWARE CONVERGECAST AND UNIFIED ROUTING FRAME-
WORK . 106

5.1 CNT-Aware Unified Location-based Routing (CoLoR): Overview . . . 106
5.1.1 Software Architecture . 106
5.1.2 Use Case Scenario . 108

5.2 Experimental Setup . 111
5.3 CoLoR CNT Support . 112

5.3.1 Boundary Detection . 113
5.3.2 Boundary Abstraction . 114
5.3.3 Cut Detection . 116

5.4 CoLoR Routing Engine . 118
5.4.1 1-1 Routing . 118
5.4.2 1-n Routing . 125

vii

5.4.3 n-1 Routing . 131
5.5 Lessons Learned . 135

6. CNT RESTORATION . 137

6.1 Motivations . 137
6.2 Related Work . 140

6.2.1 Relay node placement . 140
6.2.2 Segmented WSNs . 141

6.3 System Model and Problem Formulation 142
6.4 Centralized Connectivity Restoration 144

6.4.1 Initial Population . 145
6.4.2 Evolution and Correction . 146
6.4.3 Search Space Limitation . 148

6.5 Distributed Connectivity Restoration 148
6.5.1 Detection and Abstraction of Segments 149
6.5.2 Movement of a Ferry . 150
6.5.3 Computation of Locally Optimal Solution 151

6.6 Algorithms Analysis . 154
6.7 Simulation Results . 157

6.7.1 Evaluation of CR-GA . 159
6.7.2 Effect of Number of Segments 160
6.7.3 Effect of Sink Location . 161
6.7.4 Effect of Segment Size . 163
6.7.5 Effect of Hole Size . 166

6.8 System Evaluation . 167

7. CONCLUSIONS . 170

7.1 Conclusions . 170
7.2 Future Work . 170

7.2.1 Segmented Sensor Networks 170
7.2.2 Practical Aspects of Node Deployment 172
7.2.3 Local Minimum-Aware Duty Cycling 172
7.2.4 Convergecast as Inverse Multicast 173
7.2.5 Evaluation with Realistic Network Holes 173

REFERENCES . 174

viii

LIST OF FIGURES

FIGURE Page

2.1 An illustration of DSSD algorithm. 13

2.2 An illustration of the virtual grid network. 14

2.3 An illustration of the P2P-CD algorithm. 16

2.4 An illustration of the false positive. 18

2.5 Illustrations of multiple cuts: (a) a new cut sharing boundary (b) an
independent cut. 19

2.6 Example of the ray tracing algorithm. 21

2.7 Experimental setup depicting 2,500 nodes deployed in a 1,000×1,000m2

area. 24

2.8 an illustration of the source of energy consumption. 26

2.9 Accumulated energy measured for long time. 27

2.10 Communication overhead for P2P-CD to detect a cut. 28

2.11 Standard deviation of energy consumption. 29

2.12 Network lifetime for GPSR, GPSR+RE-CDM, and GPSR+P2P-CD. 30

2.13 Network lifetime for GPSR and GPSR+P2P-CD for different duty
cycle ratios. 31

2.14 Impact of parameter δ on the rate of false positives. 32

2.15 Examples of cuts: (a) a cut abstracted with δ = 10 meters; (b) a cut
abstracted with δ = 50 meters. 33

2.16 An illustration of the proof for choosing optimal δ. 34

2.17 Impact of duty cycle ratio on the cut detection delay. 35

2.18 Control packet overhead of P2P-CD and RE-CDM. 36

2.19 Energy consumption for a network with a small number of target
destinations. 37

ix

2.20 Reliability of paths surrounding holes for different pdr. 39

3.1 An illustration of a visibility graph. 43

3.2 Tradeoff between stretch and overhead (GF & VIGOR). 44

3.3 An illustration of LVG for holes H1 and H2. 49

3.4 An illustration of the data forwarding algorithm. 51

3.5 An illustration of the outside-convex routing. 56

3.6 Examples of: (a) inner holes; and (b) entry point selection. 57

3.7 An example for the forwarding algorithm. 59

3.8 An illustration for the bounded stretch of inside-convex routing. . . . 61

3.9 Different hole deployment schemes: (a) scenario 1; (b) scenario 2; (c)
scenario 3; and (d) scenario 4. 64

3.10 Total number of packet transmissions in perimeter-routing mode. . . 65

3.11 The number of s− t pairs for which s and t are inside convex hulls. . 66

3.12 Radio range with DOI=0.4. 67

3.13 CDF graphs of path stretches for each deployment scenarios: (a) sce-
nario 1; (b) scenario 2; (c) scenario 3; and (d) scenario 4. 68

3.14 Average path stretch. 69

3.15 Maximum path stretch. 70

3.16 Overhead for routing table set up. 71

3.17 Overhead for routing path setup. 72

3.18 Impact of δ on storage overhead. 73

3.19 Impact of node density. 74

3.20 Impact of DOI on the average path stretch. 75

4.1 An example of facility nodes and multicast members. 80

4.2 An illustration of hole detection. 86

4.3 An illustration of hole identification. 87

4.4 An illustration of hole reconstruction. 88

x

4.5 An illustration of packet forwarding by a facility node. 90

4.6 An illustration of multi-level facility nodes. 91

4.7 An illustration of inductive step for: a) Lemma 1 and b) Lemma 3. . 94

4.8 Impact of node density on sum of path lengths. 98

4.9 Impact of node density on total number of packets. 98

4.10 Impact of node density on average end-to-end delay. 99

4.11 An example of RE2MR topologies for (a) a single level facility and (b)
two level facilities. 100

4.12 Impact of facility level on sum of path lengths. 101

4.13 Impact of facility level on total number of communications. 101

4.14 Impact of facility level on average end-to-end delay. 102

4.15 Impact of hole size on sum of path lengths. 102

4.16 Impact of hole size on average end-to-end delay. 103

4.17 Reliability measurements as a function ND. 104

4.18 Reliability measurements as a function of NM 104

5.1 Software architecture of CoLoR routing framework 107

5.2 Our testbed with 42 Telosb motes. 110

5.3 The topology of testbed with (a) pdr threshold = .7; (b) pdr threshold
= .9; Unit distance equals 15 cm. 111

5.4 The Topology of the testbed with a large “convex” hole and a large
“concave” hole, with pdr threshold=.8. 112

5.5 Overhead for CNT detection/abstraction. 116

5.6 The accumulated packet transmissions when no cut detection mecha-
nism was used. 117

5.7 Max memory used for the outside-convex + Dijkstra computation. . . 120

5.8 Overhead for the construction of local visibility graphs. 121

5.9 Path length in hop count for the convex hole scenario. 122

xi

5.10 Path length in hop count for the concave hole scenario. 123

5.11 Packet delivery ratio of the 1-1 Routing module for the concave hull
scenario. 124

5.12 Multicast packet format: (a) output packet to the requested node; (b)
output packet to a facility node. 125

5.13 Total sum of path length in terms of hop count for 1-n routing and
HGMR. 127

5.14 Communication overhead for different facility levels. 129

5.15 Comparison of overhead for packet-loss recovery. 130

5.16 The energy hole problem in “hot zones”. 132

5.17 A scenario for evaluation of n-1 Routing. 133

5.18 Energy consumption for convergecast and convergecast based on vir-
tual boundary. 134

6.1 The effects of (a) segment shape, and (b) holes on connectivity restora-
tion. 138

6.2 A representation of a chromosome. 144

6.3 Examples of: (a) initial population generation; (b) generated bridges. 145

6.4 An example of correction of a chromosome: (a) before; and (b) after. 146

6.5 An example of search space limitation. 147

6.6 An example of ferry movement in DCR. 150

6.7 Illustrations of (a) visible edges; (b) bridge placement on holes. 152

6.8 An example for marginal utility computation. 153

6.9 Illustrations for (a) worst case scenario; (b) the domain and codomain
of Pareto Frontier. 155

6.10 Computation speed w/ and w/o VS. 158

6.11 Pareto Optimal set for default settings. 159

6.12 Effect of NS on average path length. 160

6.13 Effect of NS on the number of mobile nodes. 161

xii

6.14 Effect of LS on average path length. 162

6.15 Effect of LS on the number of mobile nodes. 163

6.16 Effect of SS on average path length. 164

6.17 Effect of SS on the number of mobile nodes. 164

6.18 Effect of HS on average path length. 166

6.19 Effect of HS on the number of mobile nodes. 166

6.20 A deployment area at a Disaster Training Facility. 168

6.21 CDF of hop count. 168

6.22 Packet delivery ratio. 169

xiii

LIST OF TABLES

TABLE Page

2.1 Taxonomy for cut detection schemes. 10

2.2 The size of P , in terms of number of vertices. 33

5.1 Sizes of the three main components. 107

5.2 Linear-regression-based abstraction method. 114

5.3 Comparison of required memory space. 119

5.4 Execution time of the facility-node-location solver. 128

xiv

1. INTRODUCTION

1.1 Motivation

The Wireless Sensor Network (WSN) research community has identified and ad-

dressed many important problems for WSNs such as localization, boundary detec-

tion, relay-node placement, routing, and data aggregation. A common assumption

for many of these work is a “uniform network deployment” where a target area is ap-

propriately covered with sensor nodes. However, in practical deployments, we often

encounter regions without deployed nodes (network holes). For example, environ-

mental obstacles like buildings and lakes prevent us from deploying nodes; random

deployment (e.g., deployment from ground/air vehicles) causes irregular node distri-

bution; in some applications, hostile users may destroy part of deployed nodes, and

environmental factors such as wind may relocate deployed nodes, creating network

holes. Network holes, when they are large in size, may even disconnect the network,

causing network cuts. These network holes and cuts are referred to as Complex

Network Topologies (CNTs). CNTs are the motivation of this study.

It is well known that CNTs adversely affect the performance of location-based

routing protocols – CNTs cause arbitrarily long routing paths, unbalanced energy

consumption (i.e., reduced network lifetime), and increased packet loss rates [1, 2]. To

address these issues, many researchers have proposed various location-based routing

protocols designed for WSNs with CNTs, encompassing three main routing primi-

tives: 1-1 (unicast) [3, 1, 2], 1-n (multicast) [4, 5, 6], n-1 (convergecast) [7]. However,

although they aim to address this practical issue caused by CNTs, many proposed

protocols are either based on idealistic assumptions, require too much resources when

implemented on real hardware, or have poor performance. For example, some algo-

1

rithms [8, 9, 2] are based on Unit Disk Graph (UDG) radio model. Some protocols

are designed for continuous space domain [1]. Some protocols do not consider the

limited packet size [5, 4]. Other protocols use a complex geometric algorithm which

requires a large amount of memory space [3]. Even the current hardware implemen-

tation for a simple geographic forwarding algorithm, with face routing [10], requires

relatively large memory space, barely fitting into a contemporary wireless sensor

node [11].

Another important set of issues is that existing location-based routing protocols

have been developed only for a single routing primitive (i.e., one of unicast, multi-

cast, and convergecast). To the best of our knowledge, there is no unified location-

based routing framework that integrates location-based routing protocols developed

for each routing primitive. However, the needs for an unified routing framework has

ever increased recently. In recent wireless sensor network applications [12, 13, 14, 15],

nodes do not just report data to the sink anymore. Peer-to-peer communication

between nodes has become an essential communication method for in-network pro-

cessing, data aggregation, and feedback control. For example, a wireless structural

control, one of the promising cyber physical systems [14] uses peer-to-peer commu-

nication for feedback control; in disaster response applications [12], sensor nodes

communicate with each other for efficiently monitoring victims and buildings. In

addition, nodes not only communicate with peer nodes – they perform peer-to-peer

communication with heterogeneous devices like mobile phones or even electronic gad-

gets [13, 15]. Nodes, in some instances, send packets to a particular set of nodes for

various purposes such as code-update or mission assignment. For example, in a re-

cent application for Smart Building [16], a multicast routing primitive is used for

controlling multiple actuators in a building.

2

1.2 Dissertation Statement

To address the aforementioned main weaknesses of location-based routing in

WSNs, in this dissertation, we propose a suite of algorithms and protocols. Our

thesis is that proposed algorithms and protocols focus on achieving the following

goals.

• Energy-efficient. Developing energy-efficient protocols is of paramount im-

portance for resource constrained WSNs. Therefore, proposed solutions must

be energy-efficient. The energy-efficiency of the solutions must be clearly vali-

dated.

• Scalable. As one of the main advantages of using location-based routing is its

scalability, proposed solutions must also be scalable. Proposed solutions must

conveniently work for large-scale sensor networks.

• Practical. Schemes that have been evaluated through only simulations may

have little impact, although they are theoretically interesting. Therefore, pro-

posed algorithms and protocols must be able to run on resource-constrained

real hardware.

• Modularized. Proposed solutions must be designed such that the integration

of the solutions can be easily done to achieve our goal of creation of the first

unified location-based routing framework.

1.3 Main Contributions

In light of the objectives described above, the contributions of this dissertation

can be summarized as follows: we first present efficient CNT detection and abstrac-

tion algorithms. In particular, we focus on the novel concept of peer-to-peer network

cut detection that enables nodes to detect a network cut with respect to any desti-

nation node; we also address practical issues for contemporary boundary detection

3

and abstraction algorithms arising when implemented on real hardware. Using these

CNT detection and abstraction algorithms, we propose a location-based unicast rout-

ing protocol that achieves the smallest path stretch without relying on unrealistic

assumptions like UDG radio model [2] and precise time synchronization [1], and too

costly assumptions like the “path set-up” process [3]. In particular, we show that our

solution significantly reduces the communication and storage overhead by eliminating

the path-set-up process and by not relying on the construction of the global visibility

graph [3]. We then present a location-based multicast routing protocol which finds

near optimal routing paths from a source node to multicast members. Our multi-

cast protocol allows applications to control packet header size as a parameter. The

local membership management mechanism of our multicast routing protocol allows

more energy-efficient recovery from packet loss. Additionally, our multicast routing

protocol considers CNTs in the network – when CNTs are detected, the boundary

information of detected CNTs is abstracted. The abstract information is sent to the

source node and the source node updates routing paths to multicast members. Next,

we present our location-based convergecast routing protocol. The main motivation

of the development of our location-based convergecast routing protocol is that exist-

ing solutions do not take into account the energy hole problem caused by CNTs in

the network. However, the energy hole problem significantly degrades the network

lifetime. To improve the network lifetime, our convergecast protocol identifies re-

gions with concentrated network traffic caused by CNTs and distributes the traffic

by using a novel concept of virtual boundaries.

We then introduce the design and system implementation of the first unified

location-based routing framework that integrates our proposed routing protocols for

unicast, multicast, and convergecast. A salient feature of the framework is not only

that it has real-world implementation of proposed algorithms and protocols, but more

4

importantly, it has the design that allows each component for the framework to share

as much functionalities as possible so that the resulting code and memory sizes are

significantly reduced, enabling us to fit the framework into a resource constrained

sensor mote. We implemented the framework on real-hardware and performed ex-

tensive experiments on a testbed consisting of 42 TelosB motes.

Finally, we propose a more proactive approach where mobile nodes are used

to “patch” CNTs in the network. In particular, we use mobile nodes to restore

the connectivity of a partitioned network. Unfortunately, the state-of-the-art so-

lutions [17][18] minimize only the number of used mobile nodes for restoring the

connectivity of the network. However, we show that the resulting network perfor-

mance (i.e., in terms of average path length from all nodes to the sink node) must

also be considered, because in some cases minimizing only the number of used mobile

nodes gives very poor performance. Thus, we formulate the problem of using mobile

nodes to restore the network connectivity focusing on optimizing two criteria: the

number of used mobile nodes as well as the resulting network performance. To solve

the problem, we propose both centralized and distributed solutions.

1.4 Organization

This dissertation is organized as follows. In Section 2, we present our CNT detec-

tion algorithms. We then propose location-based unicast, multicast, and convergecast

routing protocols designed for WSNs with CNTs in Section 3, 4, 5, respectively. In

Section 5, a CNT-aware location-based unified routing framework is presented that

integrates proposed routing protocols for unicast, multicast, and convergecast. In

Section 6, we discuss a more proactive approach that uses mobiles nodes to patch

CNTs. We conclude our dissertation in Section 7.

5

2. CNT DETECTION

In this section, we present algorithms and protocols for network cut detection

and hole detection (also known as boundary detection). In particular, our novel

peer-to-peer cut detection (P2P-CD) scheme is presented in details. For boundary

detection, we discuss practical issues encountered during the implementation of the

state-of-the-art location-based boundary detection algorithm on real hardware and

propose our solutions for the issues.

2.1 Network Cut Detection

One of the challenges in Wireless Sensor Networks (WSNs) is to ensure that

the network is connected. The connectivity of the network can easily be disrupted

due to unpredictable wireless channels, early depletion of node’s energy, and physical

tampering by hostile users. Network disconnection, typically referred to as a network

cut, may cause a number of problems. For example, ill-informed decisions to route

data to a node located in a disconnected segment of the network might lead to data

loss, wasted power consumption, and congestion around the network cut.

Several centralized algorithms have been proposed to efficiently detect a cut [19,

20, 21, 22]. These algorithms attempt to detect a cut by assigning the task of network

connectivity monitoring to a subset of nodes. In particular, Shrivastava et al. [22]

proposed an algorithm to detect a linear cut in a WSN, by strategically deploying

specially designated nodes, called sentinels. Some researchers have recently proposed

distributed cut detection algorithms for WSNs [23, 24, 25]. In these schemes, each

*Reprinted with permission from “A Destination-based Approach for Cut Detection in Wireless
Sensor Networks” by Myounggyu Won and Radu Stoleru, 2013. International Journal of Parallel
Emergent and Distributed Systems, Volume 28, Issue 3, Pages 266-288, Copyright 2013 by Taylor
& Francis.

6

sensor node is able to autonomously determine the existence of a cut. A common

aspect of existing cut detection algorithms is that they focus on a “binary problem”:

is there a cut in the network, or not? However, this may not be sufficient since,

in some applications, despite the existence of a cut somewhere in the network, a

sender can still communicate with a target node, if they are not disconnected by

the cut. For example, some WSN applications adopt the strategy to deploy multiple

sink nodes, in order to improve throughput and prolong network lifetime [26, 27]. In

these applications, detecting a cut with respect to one sink node does not necessarily

mean that nodes in the disconnected network segment should refrain from reporting

data, because they may send the data to other connected sink nodes.

In this section, we propose solutions for a more general cut detection problem

– the destination-based cut detection problem. Unlike the traditional cut detection

problem, we attempt to find a network cut between a sender and any node in a set

of given destinations. We first propose Point-to-Point Cut Detection protocol (P2P-

CD). P2P-CD allows a source node to identify a cut with respect to any destination

node. In this protocol, the boundary of a cut is compactly represented as a set

of linear segments. The compact representation of a cut allows the information on

existing cuts (i.e., the shape and location of the cut) to be efficiently distributed

throughout the network with small overhead. A source node, using the distributed

information, locally determines whether any given destination is reachable or not.

P2P-CD is a reactive algorithm; in other words, a cut is reactively detected in

contrast to the proactive solutions that periodically probe the network for potential

cuts; thus, P2P-CD is energy efficient. However, the energy efficiency comes at

the cost of overhead: each node has to store a data structure that contains the

information on the cuts in the network. Thus, we also propose a lightweight cut

detection algorithm, Robust Energy-efficient Cut Detection for Multiple Sinks (RE-

7

CDM), particularly designed for the scenario, where nodes need to detect a cut with

respect to a small number of destinations instead of any destination. This scenario

typically arises in WSN applications with multiple sinks. RE-CDM allows each sensor

node to monitor the connectivity to multiple sink nodes in real time. RE-CDM is a

proactive cut detection algorithm, being less energy efficient than P2P-CD. However,

it does not require nodes to be localized, and nodes do not need to store data on the

partial global topology, which makes a good fit with resource constrained nodes in

WSNs.

2.1.1 Related Work

Many researchers stressed the importance of network partition monitoring prob-

lem [28, 29, 30, 31]. Chong et al. [29] considered the problem as a security issue,

mentioning that cuts can be intentionally created in a hostile environment, and

nodes must detect them. Cerpa and Estrin [30], in their self-configuring topology

scheme, emphasized that the cut detection problem is potentially crucial in many

WSN applications, but left it as future work.

The cut detection problem was first considered in a wired network [19]. Klein-

berg et al. [19] introduced the concept of (ϵ, k)-cut, which is defined as a network

separation into two sets of nodes, namely (1 − ϵ)n nodes and ϵn nodes (n refers

to the total number of nodes), caused by k independently disabled edges. A set of

agents, denoted by a set D, is strategically deployed in the network to detect the

(ϵ, k)-cut. Each agent exchanges a control packet with other agents periodically. A

cut is assumed to be present if the control message loss exceeds some threshold.

The authors are interested in the size of D, and prove that the size of the set D

is O(k3 1
ϵ
log 1

ϵ
+ 1

ϵ
log 1

δ
) to detect (ϵ, k)-cut with probability 1 − δ. Ritter et al. [21]

proposed a cut detection algorithm where a sink node broadcasts an alive message.

8

A cut is detected by border nodes, which are located on the border of network, if

these nodes fail to receive the alive message more than a certain number of times.

Shrivastava et al. [22] recently introduced a protocol to detect a cut in wireless

sensor networks. Their work is largely based on [19]. The protocol deploys sentinels,

a counterpart of agents in [19], to detect ϵ-cut, which is defined as a linear cut that

separates the network into two parts, where one part has at least ϵ-fraction of total

nodes. The paper aims to minimize the number of sentinels based on the assumption

that in sensor networks, linear-shaped or other geometric shaped cuts are more likely

to happen, rather than the cut with k independent edge failures. They prove that

O(1
ϵ
) sentinels are required to detect ϵ-cut with ϵ < 1. The limitations of their

cut detection algorithm is that they consider only the linear cuts, being unable to

detect arbitrarily shaped cuts. Additionally, their algorithm is a centralized solution,

requiring global topology information.

Barooah et al. [24, 25] addressed the issues that previous cut detection algorithms

have. The Distributed Source Separation Detection (DSSD) algorithm is fully dis-

tributed and detects arbitrarily shaped cuts. A positive scalar value, called state,

is maintained by each node. The state of each node is updated based on the states

of its immediate neighbors. If a node is connected to a sink, its state converges to

some positive value. Otherwise, its state converges to zero. The DSSD algorithm,

however, suffers from control message overhead, since the algorithmic iterations for

the convergence depends on the degree of the network. Won et al. [23, 32] introduced

an energy efficient solution called Robust Energy-efficient Cut Detection (RE-CD)

that minimizes the iteration count for the convergence, thereby minimizing the con-

trol message overhead. The main idea is to run the DSSD algorithm on the overlay

network consisting of a small number of representative nodes, called leaders. The

degree of the overlay network is at most 4, allowing the minimal convergence rate.

9

Table 2.1: Taxonomy for cut detection schemes.

Cut detection scheme criterion 1 criterion 2 criterion 3

Flooding k1 1 proactive
Linear Cut Detection [22] k2 1 proactive

DSSD [24] N 1 proactive
RE-CD [23] N 1 proactive
RE-CDM N k3 proactive
P2P-CD N N reactive

However, these algorithms detect cuts with respect to only a single sink node.

Systematically organizing the previously introduced cut detection algorithms not

only helps better understand our contributions, but also provides guidelines for future

research on this topic. We categorize the algorithms based on three criteria. First,

we consider which nodes detect a cut. Some algorithms allow only a small subset

of nodes to detect a cut, whereas some algorithms allow all nodes in the network

to detect a cut. Second, we consider that, with respect to which nodes, a cut is

detected. Such “target” nodes might be the sink node, or for some algorithms, all

nodes. The last criterion describes whether the cut detection algorithm is proactive

or reactive. The proactive solution periodically checks the existence of a cut, whereas

the reactive solution runs the algorithm only when there is a cut; thus, a reactive

solution is a more energy efficient scheme.

Table 2.1 summarizes the taxonomy for existing cut detection algorithms. As

shown, the most basic type of cut detection algorithms is the flooding. In this scheme,

a sink node periodically broadcasts a probing packet throughout the network so that

the receivers can check the network connectivity to the sink. One drawback of this

scheme is that the nodes in the connected network segment cannot detect a cut;

only the k1 number of nodes in the disconnected network segment can detect a cut.

The Linear Cut Detection algorithm proposed by Shrivastava et. al [22] significantly

10

reduces the message overhead caused by broadcasting the probing packet throughout

the network, by allowing only a small subset of nodes, called the sentinels, participate

in the cut detection process; thus, in this scheme, the k2 sentinels detect a cut with

respect to a sink node. The DSSD algorithm [24] operates in a distributed manner

and allows all the N nodes in the network to detect a cut with respect to a sink node.

RE-CD [23] algorithm improves the energy efficiency of the DSSD by minimizing the

convergence rate of the DSSD algorithm. Despite its better energy efficiency, this

algorithm still permits all the nodes in the network detect a cut with respect to a

sink node.

At this point, we note that existing algorithms focus on detecting a cut with

respect to a single node, the sink node, and furthermore they are all proactive so-

lutions. Two proposed algorithms in Section 2 extend the notion of existing cut

detection; specifically, we extend the number of “target” nodes. First of all, RE-

CDM is designed to enable nodes to detect a cut with respect to k3 sink nodes.

This algorithm is distributed, but a proactive solution. Our reactive cut detection

algorithm, P2P-CD then further extends the second criterion, the number of target

destinations, to all the N nodes in a network at the cost of several requirements: 1)

each node has to be localized; 2) additional storage space is required; and 3) part

of global topology information must be known to the nodes in the network. Despite

these requirements, this algorithm, is reactive, thereby being energy efficient.

In sum, P2P-CD realizes the concept of peer-to-peer cut detection. In other

words, in P2P-CD, a source node can detect a cut with respect to any destination;

the RE-CDM is a more lightweight solution that does not rely on the space and

implementation overhead, which suits well for the applications that have a small

number of target nodes, such as the applications for WSN with multiple sinks.

11

2.1.2 Preliminaries and Problem Formulation

We consider a two dimensional network, represented as a connected graph GV =

(V,E), where V = {v1, v2, · · · , vn} is a set of deployed sensor nodes, and E represents

a set of links between nodes in V . We denote a set of sink nodes (i.e., base stations)

by S = {s1, s2, · · · , sn}, S ⊆ V . We assume that each node knows its location

either from an onboard Global Positioning System (GPS), or by employing node

localization protocols [33]. We also assume that a location-based routing protocol

is available, such as [10, 34]. A set Ni ⊆ V denotes the immediate neighbors of a

node vi ∈ V . The term Cv(G) represents the connected component of graph G that

contains a vertex v. From here on we will use the terms “source” and “destination”

for the sender/receiver pair of a unicast communication. As it will become clear

later, destination nodes can be either sink nodes (i.e., base station), or peer nodes.

Now we are ready to formally define the “Destination-based Cut Detection” prob-

lem: Consider a set of destinations, denoted by T = {t1, t2, · · · , tn}, where T ⊆ V .

How can a source node vi ∈ V determine whether any given destination t ∈ T is

in Cvi(GV), in an energy efficient manner? Informally, we aim to develop energy

efficient protocols that allow a node to find its connectivity to any node t ∈ T .

Before presenting our solutions for the destination-based cut detection problem,

we briefly describe some background materials. The DSSD algorithm [24] monitors

the connectivity of a node to a single sink, say s1 ∈ S. For ease of presentation, we

assume that v1 ∈ V is s1. Each node vi ∈ V maintains a positive scalar vi(k), called

the state, which is updated at each iteration of the algorithm as the following, where

k refers to the iteration counter.

vi(k + 1) =

∑
vj∈Ni

vj(k)

|Ni|+ 1
.

12

Figure 2.1: An illustration of DSSD algorithm.

The state of a sink node v1 is updated slightly differently as the following.

v1(k + 1) =

∑
v1∈N1

v1(k) + ω

|N1|+ 1
.

Here the variable ω, called the “sink strength”, is a system parameter. The

algorithm proceeds in iterations, and each node updates its state. If there is no cut

in the network, the state of a node converges to some positive value, otherwise, the

state rapidly converges to 0, allowing a node to detect a cut. Figure 2.1 illustrates

how DSSD algorithm works. When a node is connected to the sink, its state converges

to some positive value. The four nodes in the middle marked as red dotted circles die

at iteration 6, creating a cut. After the cut occurs, the state of the node connected

to the sink converges to new convergence value (i.e., from approximately 11 to 17);

the state of the node that is disconnected from the sink converges to 0, being able

to detect the cut.

The RE-CD [23] algorithm was proposed for reducing the overhead of DSSD. In

RE-CD, as shown in Figure 2.2, a network is divided into a grid of clusters. In each

cluster a leader is elected. In particular, the sink becomes a leader for the cluster

that it belongs to. The DSSD algorithm is then executed on the virtual grid network

consisting of the leaders (represented as triangles in Figure 2.2) and the virtual

13

Leader node

Virtual link

Leader node

Virtual link

Figure 2.2: An illustration of the virtual grid network.

links between them. RE-CD minimizes the convergence rate of the DSSD algorithm,

because the number of neighbors for each leader is at most 4 due to the grid network

topology (note that the convergence rate of the DSSD algorithm depends on the

maximum degree of the network [24]). RE-CD is energy efficient, because only a

subset of nodes participate in the cut detection process.

2.1.3 Main Ideas

Before presenting the details, we first overview the two proposed algorithms with

the tradeoffs between them. Both algorithms are designed for detecting cuts with

respect to a given set of destinations. Our first protocol, Point-to-Point Cut Detec-

tion (P2P-CD), is designed to provide a solution that enables each node to determine

connectivity to any destination. Note that a cut partitions a network into multiple

network segments; we call such network segment a cut region. P2P-CD is based on

the knowledge of partial global topology: it uses the shape and location of a cut

region. An important issue for this algorithm is thus to compactly, yet precisely,

represent the boundary of a cut region. Figure 2.3 illustrates the general idea on

how P2P-CD works. There is a cut in the middle of the network separating the

14

network into two cut regions, denoted by A and B. A packet sent by source node S

reaches the boundary of the cut, vinit in the middle of the figure. This node initiates

the boundary abstraction process. Then, the boundary of a cut region is represented

as a set of line segments. By connecting the line segments, P2P-CD yields a set of

vertices of a polygon covering the cut region. The locations of the vertices of the

polygon are distributed to the nodes in the cut region. Based on the set of received

polygons (there might be multiple cuts in the network), nodes determine whether

a given destination is reachable or not. The second cut detection protocol we pro-

pose, RE-CDM, is suitable for scenarios in which the number of target destinations

is small (e.g., a set of a few sink nodes). RE-CDM can be used by sensor nodes to

autonomously determine connectivity to multiple sink nodes. This protocol does not

require global topology information, nor the location information, thereby reducing

the space and implementation overhead. However, it is suitable only for the applica-

tions with the small number of target destinations, because its overhead grows with

the increasing number of destinations.

2.1.4 Point-to-Point Cut Detection

The point-to-point cut detection (P2P-CD) protocol enables each node in a net-

work to determine the connectivity to any destination. This protocol executes in

two main steps. In the first step, the Cut Boundary Abstraction, the boundary of

a cut region is identified and represented as a polygon P = {p1, p2, · · · , pn}, where

each element of P is the location of a node that represents the vertex of P . Con-

sider Figure 2.3 for an example. In this figure, the polygon corresponding to the cut

region A is P = {v5, v7, v8, v9}. After the polygon P is identified, it is broadcast to

the nodes in the cut region corresponding to the polygon P . In the second step, the

Cut Detection phase, nodes determine whether a destination is reachable based on

15

A

B

δ

s

t
v
init

v
2

v
3

v
4

v
5

v
6

v
7

v
8 v

9

A

B

δ

s

t
v
init

v
2

v
3

v
4

v
5

v
6

v
7

v
8 v

9

Figure 2.3: An illustration of the P2P-CD algorithm.

the following available information: its location, the location of the destination, and

a set of polygons P = {P1, P2, · · · , Pn} that the node has received. Note that a node

might receive multiple polygons when it is involved with multiple cuts. Following

subsections discuss the details of each step of the protocol.

Step 1. Cut Boundary Abstraction:

The cut boundary abstraction algorithm aims to abstract the boundary informa-

tion of a cut region. We call the nodes surrounding the boundary of a cut region

boundary nodes. Our algorithm uses similar technique used in [3] to concisely rep-

resent the boundary of a cut region. When a destination is unreachable, a packet

would reach one boundary node, say vinit. Using the right-hand rule of the face rout-

ing, this packet travels along the boundary of the cut region until it reaches again

vinit, thus detecting the existence of a cut [10, 34]. In particular, we call such node

vinit the initiator. The initiator then sends a probing packet that travels around the

boundary of the cut region. The probing packet contains two fields. The first field is

16

Algorithm 1 Cut Boundary Abstraction (for vi)
Input: F1, F2, δ, and pi.
1: if vi ̸= vinit then
2: Cut id ← id of initiator.
3: // �δ: a rectangle with width δ.
4: if ∀p ∈ F2 ∪ {pi}, p is in �δ then
5: F2 ← F2 ∪ {pi}.
6: forward.
7: else
8: F2 ← ∅.
9: F1 ← F1 ∪ {the last element in F2}.
10: forward.
11: end if
12: else
13: P ← F1.
14: broadcast P .
15: end if

used to store the locations of the vertices of the polygon representing the boundary

of a cut region. We denote the set of such locations by an ordered set F1. The

second field contains all the locations of visited nodes. We denote the locations of

the visited nodes by an ordered set F2.

Algorithm 1 depicts the cut boundary abstraction phase. Upon receiving the

probing packet, a node marks the ID of the currently detected cut as the node ID of

the initiator. The node then finds a rectangle with width δ, a system parameter, that

can cover all the locations in the second field, including the location of the current

node. If such a rectangle exists, the location of the current node is appended to the

end of the second field of the probing packet, and the packet is forwarded to the

next boundary node (Line 2-6). If such a rectangle does not exist, all the locations

in the second field are deleted, and the last element in F2 is appended to the end

of the first field (Line 8-9). The current node then forwards the packet to the next

boundary node. Note that, in order to keep the size of set F2 manageable, if the size

of F2 exceeds a threshold, F2 is emptied and the last element of F2 is appended to

the end of F1. Note that the threshold is determined based on the maximum packet

17

δ

v
1

v
2

v
3

v
4

v
5

Cut region

δ

v
1

v
2

v
3

v
4

v
5

Cut region

Figure 2.4: An illustration of the false positive.

size in order to make the set fit in a packet. Finally, when the probing packet finishes

traversing the boundary, we get a set P = {p1, p2, · · · , pn} in the first field of the

probing packet, representing the polygon covering the cut region. This information

is then broadcast to the nodes in the cut region (Line 14), and used by the nodes

during the second step of the protocol, namely the Cut Detection.

Consider Figure 2.3 for an example. In this figure, source s attempts to send

a packet to destination t. This packet then reaches node vinit and is routed along

the boundary of the cut region A according to the right hand rule of face routing.

The packet then returns to node vinit starting the cut abstraction process by sending

a probing packet to node v2. When the probing packet reaches node v6, the first

field of the probing packet contains set F1 = {vinit} and the second field contains set

F2 = {vinit, v2, v3, v4, v5}. The node v6 then examines if there exists a rectangle with

width δ that can hold all the locations in set F2 ∪ {v6}. Since there does not exist

such a rectangle box, the points in F2 are deleted and F1 becomes {vinit, v5}.

As discussed, the boundary of a cut region is compactly represented as a poly-

gon. Despite its concise representation, a polygon, however, might fail to precisely

describe the boundary of a cut region, causing false positives. Specifically, a false

positive occurs when a polygon fails to cover all the nodes in a cut region. Figure 2.4

illustrates a scenario where the false positive occurs. This figure shows a fraction of

18

Pnew

Pold

a

b

c

d

e f

g

Pnew

Pold

a

b

c

d

e f

g

(a)

P
new

P
old

s

t
1

t
2

P
new

P
old

s

t
1

t
2

(b)

Figure 2.5: Illustrations of multiple cuts: (a) a new cut sharing boundary (b) an
independent cut.

the boundary nodes for cut region A. According to the cut abstraction phase of the

P2P-CD algorithm, nodes v1, v2, and v5 serve as the vertices of the polygon repre-

senting the boundary of the given cut region. We note that this polygon, however,

fails to cover node v3 that is outside the polygon; thus, when a node attempts to

send a packet to node v3, it will determine that node v3 is unreachable, although the

node is reachable, causing the false positive.

In order to eliminate the false positive, our P2P-CD algorithm is slightly modified

at the cost of extra data storage for saving additional vertices. The proposed idea,

named the FPE (False Positive Elimination), is simple, yet effective. Instead of

constructing a polygon by connecting the two nodes at each end of a bounding box,

we build a polygon by connecting the edges of bounding boxes that face the outside of

a cut region. This can be easily done by saving the locations of the previous bounding

box, and calculating the intersecting points with the currently investigated bounding

box in the cut abstraction phase. See Figure 2.4 for an example. In this example,

we use a series of dotted lines as the edges of the polygon covering the cut region,

rather than using the two line segments, which are v1v2 and v2v5.

19

Additional cuts might appear after existing cuts have been detected. Such a cut

either shares the boundary of previously detected cut(s), or is an independent cut

that does not share its boundary with previously detected cuts. Figure 2.5(a) depicts

the former case. The old cut Pold represented by the polygon a− b− c− d− e shares

its boundary with the new cut a− b− c− d− g − f . In this case, when the probing

packet reaches the boundary nodes of previously discovered cut(s), the cut ID(s) of

previously detected cut(s) is recorded in the probing packet, if it has not been done

so. When the probing packet returns to the initiator, the set of recorded cut IDs,

called the UPDATE INDEX set, and the set P representing the polygon for the new

cut are encoded in the broadcast packet, which then is distributed to the nodes in

the cut region. Upon receiving this broadcast packet with the UPDATE INDEX set,

nodes update their database for the detected cuts. The details of this update process

is described in the following subsection.

Figure 2.5(b) illustrates the latter case where a new cut does not share its bound-

ary with previously detected cuts. In this figure, the rectangle with dotted lines

represents the new cut. In this case, the same boundary abstraction algorithm is

used to describe the new cut as a polygon. One difference is that when a probing

packet returns to the initiator, the initiator sets the addition bit of the broadcast

packet, so that the nodes in the cut region add a new polygon to its database, P.

Step 2. Cut Detection:

When the cut boundary abstraction phase is finished, each node in a cut region

recognizes the cut boundary as a polygon, represented as a set P = {p1, · · · , pn}.

Given the locations of source s and destination t, and the collection of polygons, P,

the Cut Detection phase determines whether destination t is reachable from source

s. To find the connectivity between any pair of source and destination, we borrow

an idea from the point-in-polygon (PIP) problem in the computational geometry

20

pp

Figure 2.6: Example of the ray tracing algorithm.

that finds whether a point is inside a given polygon or not. There are two well

known algorithms to solve this problem: ray casting algorithm and winding number

algorithm [35]. We choose to use the ray casting algorithm, because the winding

number algorithm involves costly operations [35] that are not feasible for the sensor

motes with constrained computational capability.

Ray casting algorithm works as follows. Given a point p, the algorithm finds how

many sides of the polygon intersect with the y threshold of the point p. If there

are odd times of intersections on each side of p, p is inside the polygon; otherwise,

if there are even times of intersections on each side of p, p is outside the polygon.

Figure 2.6 illustrates an example. The point p has 3 intersections on its right side

and 3 intersections on its left side; thus, p is determined to be inside the polygon.

We denote the ray casting algorithm by PIP(P, p), where P refers to a polygon, and

p is the point to be tested. We define that if p is inside P , PIP(P, p) > 0, otherwise

PIP(P, p) < 0.

Algorithm 2 depicts the Cut Detection phase of the P2P-CD protocol. As we

described, the type of the broadcast packet can be either the update type or addition

type. If the packet is the update type, from P, we delete the polygons having the cut

IDs specified in the UPDATE INDEX, and add P to P (Line 2-4). In our previous

example, the polygon {a, b, c, d, e} is deleted and a polygon P = {a, b, c, d, g, f}

21

Algorithm 2 Cut Detection
Input: ps, pt,P and UPDATE INDEX
1: upon receiving the broadcast packet:
2: if update type then
3: P← P \ {Pi}, ∀i ∈ UPDATE INDEX
4: P← P ∪ P .
5: else
6: P← P ∪ P .
7: end if
8: upon having a packet to destination at pt:
9: if ∀P ∈ P, (PIP (P, ps) · PIP (P, pt) > 0) then
10: t is reachable.
11: else
12: t is not reachable.
13: end if

is added to P. If the control message is the addition type, it simply adds P to

collection P (Line 6). If there is a packet to send, the Cut Detection phase tests if

the destination is reachable. Specifically, given the location of the source, ps, and the

location of the destination, pt, the algorithm checks if the following condition holds

for each P ∈ P: PIP (P, ps) ·PIP (P, pt) > 0. If the condition holds for all P , ps and

pt are connected (Line 9-13).

In our previous example, we have two cuts, Pold and Pnew, source s, and two desti-

nations t1 and t2. Since both s and t1 are inside Pold, PIP (Pold, ps) ·PIP (Pold, pt1) >

0. However, while s is outside Pnew, t1 is inside Pnew, which gives PIP (Pnew, ps) ·

PIP (Pnew, pt1) < 0; thus t1 is not reachable from s. On the other hand, for t2,

PIP (Pold, ps) ·PIP (Pold, pt2) > 0 and PIP (Pnew, ps) ·PIP (Pnew, pt2) > 0, thereby t2

being reachable from s.

2.1.5 Energy Efficient Cut Detection for Multiple Sinks

As we described, P2P-CD is a suitable protocol for a network with frequent peer

to peer communications. However, this protocol maybe an overkill for a network

scenario where there are a small number of target destinations, because this protocol

requires each node to save the information on partial global topology. For example,

22

in many sensor network applications, sensor nodes transmit the data with perceived

phenomenon only to a sink node, or multiple sink nodes. In other words, the number

of target destinations is limited. For these applications, we develop a lightweight cut

detection algorithm, which relies on neither location information, nor the knowledge

on global topology.

The energy efficient cut detection for multiple sinks, called the RE-CDM, is a

more generic solution that builds on our previous work, RE-CD [23]. RE-CDM

is based on the virtual grid network consisting of the leaders and the virtual link

between them, as in RE-CD. In RE-CDM, however, multiple sink nodes are elected

as leaders, and each leader node now maintains a set of states, as opposed to RE-CD,

in which a single state is maintained. Each state value represents the connectivity to

a sink node. Note that although multiple sink nodes are typically deployed in such

a way that they cover as many sensor nodes as possible, thereby being distant with

each other, if we have more than one sink node in the same grid cell, the one with

higher residual energy becomes the leader. The set of states for multiple sinks are

updated at each iteration of the algorithm. The updated states are then encoded

in the state message, which is then sent to the neighboring leaders. In essence, RE-

CDM overlays the multiple executions of RE-CD for each sink, while using a single

state message.

We describe RE-CDM more formally. Consider multiple sink nodes S = {s1, s2,

· · · , sn}. Let a set L = {ℓ1, ℓ2, · · · , ℓn} be the leaders, and N ℓ
i be the neighboring

leaders of a leader ℓi (i.e., |N ℓ
i | ≤ 4). Each leader node ℓi maintains a set of states,

each of which corresponds to a sink s ∈ S and is denoted by ℓi(s
k), where k is the

iteration count of the RE-CDM algorithm. At each iteration of the algorithm, each

leader node ℓi /∈ S updates the set S as the following.

23

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Y
 [
m

]

X [m]

Figure 2.7: Experimental setup depicting 2,500 nodes deployed in a 1,000×1,000m2

area.

For all s ∈ S, ℓi(s
k+1) =

∑
ℓj∈Nℓ

i
ℓj(s

k)

|N ℓ
i |+ 1

.

Each node ℓi ∈ S update the set S as the following.

For all s ∈ S, ℓi(s
k+1) =

∑
ℓj∈Nℓ

i
ℓj(s

k) + ω

|N ℓ
i |+ 1

Here, ω is a system parameter. A state message is now sequentially encoded

with the states for multiple sink nodes (i.e., from ℓi(s
k+1
1) to ℓi(s

k+1
n)), and sent to

adjacent leaders.

Despite its scalability and energy efficiency, RE-CDM might not work efficiently

for large number of sink nodes, because the state message size grows, and may be

split into multiple packets depending on the number of sinks.

24

2.1.6 Large-scale Simulations

We evaluate the performance of the proposed protocols through simulations. We

implement P2P-CD and RE-CDM in C++, mainly focusing on the topological be-

havior of the protocols. We randomly deploy 2,500 sensor nodes in a network of

1,000×1,000m2 region with a cut, as shown in Figure 2.7. A superimposed 8×8 grid

is used for selecting leader nodes for RE-CDM. The communication radius of a node

is varied from 35m to 75m, resulting in an average number of neighbors from 10.32

to 41.36. We ensure that the network is connected. An event occurs every 10sec at

a random location, and then a node nearest to the event reports the event data to a

random destination.

For accurate energy consumption estimation, we consider an asynchronous duty

cycle network, where each node has a randomly generated periodic schedule. Nodes

periodically wake up and sleep based on the schedule. We assume that a node

knows about the schedules of its neighbors, or the parameters used for the pseudo-

random schedule generator like [36] (i.e., these parameters are used to deduce the

schedules of its neighbors). In order to coordinate the schedule of a node with its

neighbors, we assume that a local synchronization is implemented. The local time

synchronization can be implemented by using a Medium Access Control (MAC)-layer

time stampingf technique [37]. The MAC-layer time stamping technique achieves the

accuracy of 2.24µs at the cost of exchanging a few bytes of packet transmissions with

its immediate neighbors every 5 minutes. This accuracy is by far enough for our

asynchronous duty cycle scheme. Each period of the schedule consists of 100 time

slots. The unit time for each slot is 50ms. The number of time slots during which a

node is active varies according to the duty cycle ratio, which is a system parameter.

To simulate the energy consumption, we assume that each node has a radio with

25

Figure 2.8: an illustration of the source of energy consumption.

250kbps data rate, and maximum packet size of 128B, similar to the Zigbee compliant

CC2420 [38]. We consider the following metrics: total energy consumption, network

lifetime, false positive rate (a false report of “unreachable destination”), probing

packet size, detection delay, and control packet overhead. We vary the following

parameters: δ, communication radius, and duty cycle ratio. We use Greedy Perimeter

Stateless Routing (GPSR) as the underlying routing protocol, and build different

cut detection algorithms on top of it. We compare GPSR+P2P-CD, GPSR+RE-

CDM, GPSR+Flooding, and GPSR with no cut detection scheme. The details of

experimental results are described in the following subsections.

Experiment 1 - Energy Consumption

In an asynchronous duty cycle network, nodes consume energy when they are

awake for either idle listening, or data transmission. Regardless of the protocols run

on the network, the same amount of energy is spent for idle listening, because the

predefined working schedules determine the energy consumption for idle listening;

thus, we consider only the data transmission for the following reasons. First, the

current draw for receive mode and transmit mode are different (the difference depends

on a radio module; for some radio modules, more current is draw for receive mode).

26

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20000 40000 60000 80000 100000

C
u
m

u
la

ti
v
e

 E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

)

Time [sec]

GPSR
GPSR+P2P-CD

Figure 2.9: Accumulated energy measured for long time.

More important reason is that when a node transmits a packet, it may have to use

an additional slot to wake up its radio. Figure 2.8 illustrates this concept. When

node 1 attempts to transmit a packet to its neighbor, node 2, it has to turn on its

radio at slot 5, which was originally scheduled for sleep. This causes extra energy

consumption.

This experiment is designed to see how much energy P2P-CD can save when

P2P-CD is coupled with GPSR. The communication radius was set to 70m, δ to

60m, and duty cycle ratio to 1%. We measure accumulated energy consumption in

Joules for GPSR, GPSR+P2P-CD, and GPSR+RE-CDM, as a function of opera-

tion time. Figure 2.9 depicts the results. P2P-CD significantly reduces the energy

consumption by preventing packet transmissions to unreachable destinations. RE-

CDM is not much helpful for energy saving in this simulation scenario, because it

detects a cut with respect to a small set of destinations; in our network setting of 8

by 8 grids, it detects a cut with respect to 64 nodes. Moreover, the periodic state

27

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

C
u
m

u
la

ti
v
e

 E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

)

Time [sec]

GPSR
GPSR+P2P-CD

Figure 2.10: Communication overhead for P2P-CD to detect a cut.

message exchanges make RE-CDM less energy efficient than P2P-CD. However, as

we prove later, for network scenarios with a small set of destinations, such as a WSN

application with multiple sinks, RE-CDM is as energy efficient as P2P-CD.

The P2P-CD protocol incurs communication overhead. Specifically, a probing

packet is sent along the boundary of a cut region, and a message containing the ob-

tained set P needs to be flooded to the nodes in the cut region. Figure 2.10 shows how

this control packet overhead affects the energy efficiency. The abrupt increases in the

energy consumption for GPSR+P2PCD at 10sec and 40sec represent the overhead

for identifying the cuts. Due to this overhead, consumed energy for GPSR+P2PCD

is higher than GPSR until about 150sec. However, this overhead is compensated by

avoiding unnecessary packet transmissions to unreachable destinations; while con-

sumed energy of GPSR+P2PCD gradually increases, GPSR has frequently arising

rapid increases in the energy consumption, caused by attempting to send a packet

to unreachable destinations. As a result, after 150sec, GPSR exhibits higher energy

28

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 20000 40000 60000 80000 100000

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

m
J
)

Time [sec]

GPSR
GPSR+P2P-CD

Figure 2.11: Standard deviation of energy consumption.

consumption.

Experiment 2 - Network Lifetime

Another important issue (in addition to high energy consumption) caused by

a cut in a network, is unbalanced energy consumption. A packet destined to an

unreachable destination always travels around the boundary of a cut region, thereby

exhausting the energy of the nodes on the boundary faster than other nodes. In order

to verify this unbalanced energy consumption, we measure the standard deviation

of energy consumption of all the nodes in the network. Figure 2.11 depicts the

results. As expected, the unbalance in energy consumption of GPSR is much worse

than GPSR+P2P-CD, and slightly worse than GPSR+RE-CDM. This unbalance

deteriorates as operation time elapses.

This unbalanced energy consumption directly affects the network lifetime, which

is defined as the elapsed time until a node first dies. In this set of experiments, we

are interested in obtaining the expected network lifetimes for GPSR, GPSR+RE-

29

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

35 45 66 65

L
if
e
 t
im

e
 (

h
o
u
rs

)

Communiation radius (m)

GPSR+P2P-CD
GPSR

Figure 2.12: Network lifetime for GPSR, GPSR+RE-CDM, and GPSR+P2P-CD.

CDM, and GPSR+P2P-CD. For this experiment, we assume that a sensor node

is powered by a single AA battery which has capacity of 2000mWh, which is a

usual energy source for modern sensor motes. We measure the network lifetime

by varying the communication radius. As shown in Figure 2.12, we observe slight

increases in network lifetime for all three algorithms (GPSR, GPSR+P2P-CD, and

GPSR+RE-CDM) as we increase the communication radius. One reason is that

higher communication radius helps to increase the network lifetime by using less

number of packet transmissions, but the effect of communication radius is almost

negligible. Comparing network lifetime among these three protocols, we note that

GPSR has the shortest lifetime; GPSR+RE-CDM has slightly better lifetime than

GPSR; and GPSR+P2P-CD highly improves the network lifetime. These results

conform to the distribution of energy consumption in the network.

Higher duty cycle ratios expedite the aging process, because nodes have to be

in the wake-up state for longer period of time. Figure 2.13 shows the impact of the

30

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16 32 64

L
if
e
ti
m

e
 (

h
o
u
rs

)

Duty cycle ratio (%)

GPSR
GPSR+P2P-CD

Figure 2.13: Network lifetime for GPSR and GPSR+P2P-CD for different duty cycle
ratios.

duty cycle ratio on network lifetime. As shown, as the duty cycle ratio increases,

the network lifetime rapidly decreases. One notable observation is that the gap

in the network lifetime between GPSR and GPSR+P2P-CD becomes smaller with

increasing duty cycle ratio. A reason is that when the duty cycle ratio is large, it

is more likely that a node sends a packet to its neighbors by using the predefined

working schedule, instead of using an additional wake-up slot.

Experiment 3 - False Positive Rate

A false positive occurs when a node determines that a destination is unreachable,

even though the destination can actually be reached. This false positive is caused by

the inaccuracy in describing the boundary of a cut region; in other words, when a

polygon representing the cut boundary cannot cover all the nodes in the cut region,

we observe the false positives. The parameter δ can be used to adjust the accuracy

of the boundary description. Smaller δ values permit more precise representation of

the boundary, while incurring higher overhead. We measure the false positive rate

31

 0

 1

 2

 3

 4

 5

 6

 7

 15 20 25 30 35 40 45 50 55

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

δ (m)

P2P-CD
P2P-CD with FPE

Figure 2.14: Impact of parameter δ on the rate of false positives.

from 10,000 random source and destination pairs. Figure 2.14 shows the results. As

expected, the false positive rate increases as the δ value increases; however, even for

small δ values, the false positive persists. To address this issue, we introduced a

FPE (False Positive Elimination) scheme to eliminate the false positives at the cost

of storage overhead. Figure 2.14 depicts the results we obtained after the FPE is

applied. As shown, the false positive is 0% when the FPE algorithm is applied.

Experiment 4 - Packet Size

Smaller δ values allow a precise description of a cut region, because a polygon

with more vertices is used to describe the cut region. However, the size of the control

packet, that is broadcast to nodes in the cut region, must be large to contain more

vertices. In contrast, larger δ values permit smaller control packet size, because

fewer vertices are used to represent the cut region. This, however, is done at the

cost of possible errors, because the bounding box with large width may contain the

nodes that do not belong to the cut region. Figure 2.15(a) and 2.15(b) show how

32

Table 2.2: The size of P , in terms of number of vertices.

δ Cut Region(L) Cut Region(R)

10 69 62
30 16 13
50 12 11

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

Y
 (

m
e

te
rs

)

X (meters)

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000
Y

 (
m

e
te

rs
)

X (meters)

(b)

Figure 2.15: Examples of cuts: (a) a cut abstracted with δ = 10 meters; (b) a cut
abstracted with δ = 50 meters.

the vertices for the polygon are chosen for different δ values, and Table 2.2 presents

the relationship between the δ values and corresponding number of vertices.

Based on the simulation results, we attempt to determine the appropriate δ value

for our experiments. We note that the largest δ value that does not cause errors (i.e.,

finding a bounding box that contains a vertex not within the cut boundary) is
√
3
2
· r,

where r is the communication radius of a node (See Figure 2.16 for proof: Given any

node, say v1, in a bounding box, we attempt to find the position of its neighboring

node, say v2, such that δ, the height of the intersection area, is minimized. The δ is

minimized as
√
3
2
· r, when v2 is located as shown in this figure. Thus the width of a

bounding box can be at most
√
3
2
· r; otherwise, a bounding box may contain a node

that is reachable from neither v1 nor v2). Therefore, in our simulation settings, we

33

δ

v
1v

2

r

bounding box

δ

v
1v

2

r

bounding box

Figure 2.16: An illustration of the proof for choosing optimal δ.

choose
√
3
2
· 70 ≈ 60 meters as our δ value, because the default communication radius

is 70 meters.

Experiment 5 - Detection Delay

Detection delay is defined as the elapsed time between the occurrence of a cut and

the detection of the cut. In RE-CDM, a node detects a cut when its state converges

either to a new positive value, or 0. As Figure 2.17 illustrates, RE-CDM requires 7

iterations until nodes being able to detect a cut, regardless of the duty cycle ratio.

Note that the iteration period of the RE-CDM was set to 100 seconds. These results

indicate that if we use a smaller iteration period, RE-CDM would detect a cut faster;

but, the control packet overhead would increase with the smaller iteration periods.

The P2P-CD algorithm detects a cut when the probing packet finishes traveling

around the boundary of the cut region, and the set of vertices of the polygon repre-

senting the boundary is broadcast to the nodes in the cut region. Figure 2.17 shows

the detection delay for P2P-CD per duty cycle ratio. For larger duty cycle ratio, a

node has more active neighboring nodes. As a result, larger duty cycle ratio allows

the probing packet to travel faster, and thus reducing the detection delay, as the

figure indicates.

34

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8 16 32

D
e
te

c
ti
o
n
 d

e
la

y
 (

s
e
c
)

Duty cycle ratio (%)

RE-CDM
P2P-CD

Figure 2.17: Impact of duty cycle ratio on the cut detection delay.

Experiment 6 - Control Packet Overhead

A control packet refers to a packet used to detect a cut. The P2P-CD algorithm

has two types of control packets: the probing packet, and the broadcast packet used

to distribute the polygon to the nodes in a cut region. In RE-CDM, a control packet

is the packet that carries the state message. In this experiment, we measure the

overhead of this control packet, in the form of the accumulated number of control

packet transmissions. For this experiment, we fix the duty cycle ratio to 1%, and

delta to 60m; and we vary communication radius and operation time.

The P2P-CD algorithm is a reactive solution; thus, once it detects a cut, it does

not incur additional control message overhead, unless different cuts appear in the

network. Figure 2.18 depicts the results. As shown, the control packet overhead

for P2P-CD is constant, because the cut has been detected before 100 second (i.e.,

the time for the first iteration of the RE-CDM algorithm). On the other hand, the

accumulated number of control packet transmissions for RE-CDM continuously in-

35

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 1.5 2 2.5 3 3.5 4 4.5 5A
c
c
u
m

u
la

te
d
 p

a
c
k
e
t
tr

a
n
s
m

is
s
io

n
s

Iteration Cnt

P2P-CD
RE-CDM=30m
RE-CDM=50m
RE-CDM=70m

Figure 2.18: Control packet overhead of P2P-CD and RE-CDM.

creases, because RE-CDM is a proactive solution that periodically scans the network

for detecting a cut. Figure 2.18 depicts the results. In particular, when the com-

munication radius of a node is smaller, the control packet overhead becomes higher,

because a control packet must be transmitted over a larger number of hops to travel

the same distance.

Experiment 7 - Number of Sinks

In the previous experiments, we have focused on a scenario with N target des-

tinations, where N is the number of nodes in the network. Now we consider a new

scenario with fewer target destinations ranging from 1 to 8. Performing simulations

under this new scenario is important because our RE-CDM is specifically designed for

a network with a small number of target nodes (e.g., a wireless sensor network with

multiple sinks). In this set of experiments, we are interested in how our RE-CDM

performs in terms of energy efficiency when there are a small number of target desti-

nations. In particular, we compare RE-CDM with the flooding method, a primitive

36

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7 8

C
u
m

u
la

ti
v
e

 E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

)

Number of sinks

GPSR
GPSR+P2P-CD

GPSR+RE-CDM
GPSR+Flooding

Figure 2.19: Energy consumption for a network with a small number of target des-
tinations.

cut detection algorithm, where each sink node broadcasts a probing packet through-

out the network in order to enable nodes detect a cut. We assume that when an

event occurs (i.e., every 10 seconds at a random location according to the previous

experimental settings), each node reports data to a randomly selected sink node.

We measure the accumulated energy consumption in Joules after 10,000 seconds of

operation time.

Figure 2.19 depicts the results. Compared with the scenario with N target desti-

nations, which is shown in Figure 2.9, RE-CDM performs significantly better, having

as low energy consumption as P2P-CD. Furthermore, unlike P2P-CD, RE-CDM does

not require nodes to maintain global topology information in their storages, nor the

location information of neighboring nodes. Note that, as RE-CDM does not require

location information, it can be coupled with routing protocols that are not based on

node localization. Although the energy consumption of RE-CDM would gradually

increase as operation time elapses due to the periodic state-message exchanges, we

37

believe that it is a proper solution for the applications where nodes have limited

storage and computational capabilities, and appropriate localization methods are

unknown.

Investigating the energy consumption of the flooding method, the simplest cut

detection scheme, allows us to understand where our proposed solutions stand in

terms of energy efficiency. As shown in Figure 2.19, the flooding method shows as

low energy consumption as RE-CDM when there is a single target destination (i.e.,

a sink). However, if we increase the number of sink nodes, consumed energy for the

flooding method linearly increases, because each sink node periodically broadcasts a

probing packet throughout the network. For more than 5 sink nodes, the flooding

method performs even worse than when no cut detection algorithm is used (i.e., the

GPSR). Furthermore, the flooding method suffers from the limitations that only a

part of nodes is able to detect a cut; thus, this method can only be useful for a

network with very small number of target destinations (e.g., a single sink node),

where only the nodes in a disconnected network segment are required to detect a

cut.

2.2 Hole Detection

Hole Detection also commonly called boundary detection algorithms for wireless

sensor networks are largely categorized into three schemes: location-based, topology-

based, and statistical schemes. When node location is known, location-based bound-

ary detection algorithms [8, 9] are useful. Topology-based solutions [39, 40, 41, 42]

do not require node-location; however, these solutions often involve non-negligible

complexity for implementation. There are several algorithms based on statistical ap-

proach [43, 44]. These solutions detect boundaries based on the number of neighbors.

However, these heuristic solutions require very high node-density. In this disserta-

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F

Number of link-layer retx

pdr=.5
pdr=.7

Figure 2.20: Reliability of paths surrounding holes for different pdr.

tion, as node location is known, we adopt the BOUNDHOLE [8], a widely used

location-based boundary detection scheme. The main idea of the BOUNDHOLE

algorithm is as follows: it first identifies “stuck nodes” where a packet may be stuck

in a local minimum during the geographic forwarding process. Once stuck nodes are

identified, one of them for each hole sends a control packet that travels along the

boundary of the hole. While the control packet traverses the boundary, boundary

nodes are detected.

However, running the BOUNDHOLE algorithm on real hardware raises several

challenges:

• The BOUNDHOLE algorithm assumes ideal links (i.e., a simple Unit Disk

Graph (UDG) radio model).

• The BOUNDHOLE algorithm does not consider the link quality that dynam-

ically changes over time.

• The BOUNDHOLE algorithm identifies even very small holes. However, small

39

holes do not affect much the performance of location-based routing.

To address the first challenge (i.e., the UDG model), we design a neighbor discov-

ery module such that it take into account link quality in determining 1-hop neighbors

and use only the 1-hop neighbors with stable symmetric links for running the algo-

rithm. In other words, we aim for having a closed cycle of boundary nodes that are

stably connected with each other. To implement the module, we ensure that nodes

maintain a packet delivery ratio (pdr) for each of its one-hop neighbors and chooses

as its one-hop neighbor only nodes for which the pdr is greater than a predefined

threshold. To choose a proper threshold for the pdr in our experimental environment,

we ran experiments where the BOUNDHOLE algorithm was executed with different

pdr values. To consider varying link qualities over time, we ran the experiments 3

times a day at 12:00 PM, 6:00 PM, and 12:00 AM. We then counted the number

of link-layer retransmissions for nodes used for the operation of the BOUNDHOLE

algorithm. The results are depicted in Figure 2.20. As the figure shows, a low thresh-

old for the pdr resulted in a higher number of link-layer retransmissions, because we

allowed nodes to select neighbors with unstable links. Especially, when we set the

maximum allowable number of link-layer retransmissions to 10, the pdr threshold of

0.5 resulted in some broken links between boundary nodes. We found that in our

experimental setting, generally, pdr > .7 gave reliable boundary. A scheme for auto-

matically determining a proper value for the pdr threshold for various experimental

settings is left as future research.

To address the second challenge (i.e., dynamically changing link quality), we

allow nodes to continually monitor the pdr of links for neighboring boundary ndoes.

Whenever the pdr for a link between boundary nodes becomes smaller than the

threshold, the BOUNDHOLE algorithm reruns and finds new boundaries. The third

issue states that the BOUNDHOLE algorithm identifies even a very small hole –

40

we consider holes with 4 boundary nodes or less as small holes. However, only large

holes are of our interest, because small holes have a small impact on the path stretch.

41

3. CNT-AWARE LOCATION-BASED UNICAST ROUTING

In this section, we present our CNT-aware unified location-based routing protocol

called the Local Visibility Graph based Geographic Routing Protocol (LVGR).

3.1 Motivation

Geographic routing is well suited for large-scale wireless sensor networks (WSNs)

because of its attractive properties: first, it is simple, i.e., a forwarding node simply

sends a packet to the neighbor geographically closest to a destination node, without

relying on control packet propagation [45][46], or beacon node selection [47]; second,

geographic routing is highly scalable, because its per-node state is independent of

network size. These properties make geographic routing protocols play a key role in

many applications for WSNs.

Geographic routing, however, fails when a forwarding node has no neighbor closer

to the destination node – this situation is called the local minimum phenomenon. The

local minimum is often caused by complex topological structures such as network

holes. Kuhn et al. [48] proved that the worst-case path length is Ω(c2), where c is the

optimal path length. A number of protocols [49][8][50][51] have attempted to address

the local minimum problem; however, none of these solutions guarantees bounded

stretch.

Recently, Tan et al. [3] proposed a visibility graph-based geographic routing pro-

tocol (VIGOR) that achieves a path length of Θ(c). In this protocol, holes are

represented as polygons, where each vertex corresponds to a node - we call such

node a VOP (Vertex of Polygon) node. VOP nodes and edges connecting two visible

VOP nodes form a visibility graph as shown in Figure 3.1, where VOP nodes are

represented as small squares, and line segments connecting two visible VOP nodes

42

hole

hole

hole

hole

Figure 3.1: An illustration of a visibility graph.

represent the edges of a visibility graph. The visibility graph serves as an overlay

network on which a distance vector routing algorithm finds a shortest path. The

argued path stretch is, however, only possible with a “path-setup” process: a source

node, to join the visibility graph, must first exchange a message with a destination

node using a default geographic routing protocol (e.g., GPSR or GOAFER+) prior

to beginning its data transmission. Thus, considering the path generated for the

“path-setup” process, the argued stretch is debatable. Besides, VIGOR incurs ad-

ditional communication overhead for running a distance vector routing: VOP nodes

must send messages to neighboring VOP nodes until their routing tables converge –

if two VOP nodes are distant from each other (especially for large-scale networks; see

Figure 3.1), this communication overhead becomes significant. Additionally, storage

overhead for maintaining routing table entries is also an important issue for resource-

constrained sensor nodes.

In Section 3, based on the boundary detection and abstraction algorithms pre-

sented in Section 2, we propose the first routing protocol called Local Visibility

Graph-based Geographic Routing (LVGR) that achieves: 1) guaranteed worst-case

path stretch of O(D
c
), where D is the diameter of the network and c is the com-

munication radius of a node (i.e., the minimum allowable communication range for

43

low high

lo
w

h
ig
h

s
tr
e
tc
h

overhead

GF

VIGOR

(“path set-up”)

LVGR

(no “path set-up”)

low high

lo
w

h
ig
h

s
tr
e
tc
h

overhead

GF

VIGOR

(“path set-up”)

LVGR

(no “path set-up”)

Figure 3.2: Tradeoff between stretch and overhead (GF & VIGOR).

reliable data communication for a realistic communication model); and 2) low com-

munication and storage overhead. LVGR has the smallest bounded stretch for a

large-scale sensor network without an assumption of Unit Disk Graph (UDG) and

without relying on the “path-setup” process. Figure 3.2 shows where LVGR stands

compared with state-of-art. LVGR is inspired by an observation that, if both source

and destination nodes are outside the convex hulls of polygons, representing holes

as convex hulls is sufficient for finding a path with constant stretch. This observa-

tion allows us to use a visibility graph only when we route packets to/from nodes

inside convex hulls. Thus, we can reduce the communication and storage overhead

for building routing tables by decomposing a global visibility graph into subgraphs.

In our scheme, a subgraph, called a local visibility graph, is created for each polygon.

Messages for building routing tables are only locally exchanged among VOP nodes

within the same polygon. In addition, LVGR does not rely on the “path-setup”

process. To achieve this, LVGR strategically switches between two routing modes,

44

namely outside-convex routing and inside-convex routing, depending on where for-

warding and destination nodes are. The outside-convex routing is used as the default

routing-mode. The outside-convex routing generates a set of intermediate destina-

tions along the shortest path to the destination node. When either a source node

finds that it is inside a convex hull, or when a node at a last intermediate destination

finds that a destination node is inside a convex hull, the routing mode is switched

to inside-convex routing. We develop a gateway-based forwarding algorithm for the

inside-convex routing mode, that enables forwarding nodes to either route a packet

out of a convex hull, or to deliver a packet to nodes inside a convex hull along an ef-

ficient routing path. We prove that, by effectively switching between the two routing

modes, LVGR generates paths with guaranteed stretch.

3.2 Related Work

Hierarchical routing protocols and geographic routing protocols are well suited for

large-scale wireless sensor networks [47]. A state-of-art hierarchical routing protocol

S4 has worst-case path stretch of 3 and requires per-node state of O(
√
N), where N is

the total number of nodes. Compared with hierarchical routing protocols, geographic

routing protocols are nearly stateless, thereby being highly scalable. However, a

drawback of geographic routing protocols is that, due to the local minimum caused

by network holes, the path length can be as long as Ω(c2), where c is the optimal

path length [48].

A number of protocols have been proposed to efficiently avoid a local minimum.

Fang et al. [8] developed the TENT rule that nodes use to determine whether they

are in a local minimum. Arad et al. [51] identified the nodes in a local minimum by

using the angle between two adjacent neighbors. However, this heuristic approach

causes frequent failures of the algorithm. Liu et al. [50] addressed the problem by

45

dividing a network into k regions, and allowing each node to maintain a vector of

size k, where the i-th element of the vector indicates whether this node is at a local

minimum with respect to the i-th region. These protocols suffer from the “late

reaction problem” [52] – a routing path is corrected only after a packet reaches a

local minimum, thereby increasing path stretch.

Some protocols propose to use non-local information to address the late reaction

problem and ultimately improve path stretch. Jiang et al. [49] introduced the concept

of “unsafe area” defined around a local minimum. Nodes in an unsafe area are

notified of the existence of the hole, so that the nodes can make an early detour

around the hole before a packet reaches the local minimum. Li et al. [52] introduced

a routing protocol that abstracts a hole as an ellipse. The abstract information is

then broadcast to nodes within h hops from the hole, and used by the nodes to avoid

the hole. Although these protocols succeeded in improving path stretch, they do not

offer guaranteed path stretch.

There have been efforts to achieve guaranteed stretch. Flury et al. proposed an

embedding algorithm that achieves stretch of O(logn) [2]. However, it is a centralized

algorithm based on the Unit Disk Graph (UDG) assumption with the stretch depend-

ing on the network size n. Kermarrec and Tan [1] proposed a decomposition-based

protocol with worst-case stretch of 7, but the stretch is possible by modeling a net-

work in continuous domain, based on a large number of time-synchronized flooding

operations. Tan et al. introduced VIGOR [3], the first geographic routing protocol

for large-scale sensor networks that achieves worst-case path stretch of Θ(1) without

the UDG assumption and time-synchronization. This protocol concisely represents

holes in a network as polygons. VIGOR then builds a visibility graph with VOP

nodes as the vertex set, and line segments connecting two visible VOP nodes as the

edge set. VIGOR achieves the claimed path stretch by using the visibility graph as a

46

backbone network, i.e., running a distance vector routing algorithm on the visibility

graph. However, the path stretch is possible with a “path-setup” process where a

source node first exchanges a message with a destination node using a default ge-

ographic routing, prior to data transmission. This implies that the claimed path

stretch no longer holds if we take the path built for the “path-setup” process into

account. Furthermore, since VOP nodes must iteratively exchange messages with

neighboring VOP nodes until their routing tables converge, non-negligible commu-

nication overhead is involved.

3.3 Preliminaries and Problem Formulation

This section presents terms, notations, and definitions used throughout Section 3,

and formally describes our problem. We consider a static wireless sensor network

consisting of N nodes denoted by a set V = {v1, v2, · · · , vN}. We assume that nodes

have an unique ID; nodes are localized by using either an on-board GPS, or some

node localization mechanism [33]; a source node knows the location of a destination

node based on a location service [53], or hash-functions in a data centric storage

scheme [54]. Throughout Section 3, we denote a source node by s and a destination

node by t.

There are k network holes, denoted by {H1, H2, · · · , Hk}, in a network. Each hole

Hi is represented as a polygon Pi = {p1, p2, · · · , pn}, where each element pi refers

to a VOP node that represents a vertex of the polygon. A set Ci = {c1, c2, · · · , cn}

denotes the convex hull of polygon Pi (i.e., the convex hull of vertex set Pi), where

ci is an extreme point of the convex hull (i.e., Ci ⊆ Pi).

Before we define a visibility graph, we first define “visibility” between two VOP

nodes as follows:

Definition 1 Given two VOP nodes pi and pj, they are visible with each other if

47

and only if line segment pipj does not intersect any polygon Pi in the network. �

A visibility graph and an augmented visibility graph are then defined as follows:

Definition 2 A visibility graph is a graph Gvis = (Vvis, Evis), where the vertex set

Vvis =
∪k

i=1 Pi, and the edge set Evis = {(pi, pj)| pi and pj are visible; pi, pj ∈ Vvis}.

�

Definition 3 An augmented visibility graph for source s and destination t is a

graph G′
vis = (Vvis

∪
{s, t}, E ′

vis), where E
′
vis = {(pi, pj)| pi and pj are visible; pi, pj ∈

Vvis

∪
{s, t}}. �

The Euclidean distance between two nodes vi and vj is denoted by d(vi, vj). We

denote a path between two nodes vi and vj by vi ∼ vj. The length of path |vi ∼ vj|

is defined as the sum of Euclidean distances between two adjacent nodes along the

path; for example, the length of path v1 − v2 − v3 is
∑i=2

i=1 d(vi, vi+1).

Having defined all terms, we can formally describe the visibility graph-based

geographic routing (VG-G), the problem that VIGOR addresses.

Definition 4 Given source s and destination t, the visibility-graph based geo-

graphic routing (VG-G) is to identify a path s ∼ t such that |s ∼ t| is minimized

on the augmented visibility graph for s and t. �

A significant issue for VG-G is that, in order to build an augmented visibility

graph for a pair s and t, source node s must exchange a control packet with des-

tination node t. As we will show later, using the control packet not only incurs

high communication overhead, but also affects the path stretch as it is sent along a

suboptimal path. Thus, our first objective is to develop a solution that does not rely

on an augmented visibility graph (i.e., a solution using only a visibility graph). Our

48

H
1

H
2

H
1

H
2

Figure 3.3: An illustration of LVG for holes H1 and H2.

second objective is to make the size of the visibility graph as small as possible in

order to run a distance vector routing on a resource-constrained sensor mote; thus,

we decompose the global visibility graph into multiple sub-visibility graphs, called

local visibility graphs. Figure 3.3 shows an example of local visibility graphs. We

formally define a local visibility graph as follows:

Definition 5 A local visibility graph for hole Hi is a graph denoted by Gvis,i =

(Pi, Evis,i), where Evis,i = {(u, v)| u, v ∈ Pi; u and v are visible.} �

Now we are ready to formally describe our problem, namely the local visibility

graph based geographic routing (LVG-G):

Definition 6 Given source s and destination t, the local visibility graph-based

geographic routing (LVG-G) identifies a path s ∼ t such that |s ∼ t| is minimized

by using local visibility graphs for holes in a network, without relying on augmented

visibility graphs. �

LVGR implements technical details to solve LVG-G.

3.4 Local Visibility Graph-based Geographic Routing (LVGR)

In this section, we first present an overview of LVGR and then explain the details

of its components.

49

3.4.1 Overview

Before we present an overview of LVGR, we first precisely define a hole. In a

planarized network, each face is surrounded by multiple edges. The size of a face is

defined as the number of surrounding edges. Tan et al. [3] define a hole as a face

with size greater than a predefined threshold ω, a system parameter. Other faces

having fewer edges than the threshold are called small faces and have a relatively

small impact on path stretch; thus they are not considered.

The LVGR protocol consists of four phases: Boundary Node Detection, Polygon

Construction, Overlay Network Construction, and Data Forwarding. In the Bound-

ary Node Detection phase, LVGR identifies the nodes on the surrounding edges of

holes, which are called boundary nodes. We use the boundary detection algorithm

discussed in Section 2. During this phase, one boundary node for each hole is se-

lected as a leader node who is responsible for initiating the next phase: Polygon

Construction. In the Polygon Construction phase, a leader node for each hole sends

a probing packet that travels along the surrounding edges to identify VOP nodes for

the hole. When a probing packet, containing the locations of identified VOP nodes,

returns to a leader, the leader node broadcasts the locations. In the Overlay Network

Construction phase, a local visibility graph is built for each hole. The local visibility

graph represents the internal structure of a hole and is used as an overlay network

for routing a packet optimally inside the convex hull of a hole. Once the Overlay

Network Construction phase is finished, nodes have the locations of VOP nodes in

the network; if they are VOP nodes, they also have the information about the inter-

nal structure of the hole in the form of a routing table. Based on VOP locations and

the information about internal structures, in the Data Forwarding phase, nodes can

send packets along a path with guaranteed path stretch.

50

s

t

Outside-convex routing Inside-convex routing

H
1

H
2

I
4I

3
I
2I

1

E
1

H
3

s

t

Outside-convex routing Inside-convex routing

H
1

H
2

I
4I

3
I
2I

1

E
1

H
3

Figure 3.4: An illustration of the data forwarding algorithm.

We develop a data forwarding algorithm (used in the Data Forwarding phase) for

achieving guaranteed path stretch. It provides two routing modes, namely outside-

convex routing and inside-convex routing. Forwarding nodes use the outside-convex

routing as the default routing mode. More specifically, given source node s and

destination node t, the outside-convex routing determines a set of intermediate des-

tinations along the shortest path – the details on how intermediate destinations are

selected will be discussed in Section 3.4.5. Figure 3.4 shows an example, where

I1, I2, I3, and I4 are intermediate destinations given s and t. If s is inside a convex

hull, our forwarding algorithm switches its mode to the inside-convex routing so that

it can guide a packet out of the convex hull and resume the outside-convex routing.

If s finds that t is inside a convex hull, it first finds intermediate destinations using

the outside-convex routing without considering the convex hull containing t; and

then when the packet reaches the last intermediate destination, the node at the last

intermediate destination switches its mode to the inside-convex routing and delivers

the packet to t inside the convex hull along the locally optimal path according to

the local visibility graph. In our example (Figure 3.4), intermediate destination I4,

upon receiving a packet, changes its mode to inside-convex routing, finds entry point

51

E1, and forwards the packet to E1. Upon receiving the packet, the VOP node at

E1 routes the packet along the optimal path to destination t according to a distance

vector routing running on the local visibility graph.

3.4.2 Boundary Detection

For the Boundary Detection phase, we adopt the boundary detection algorithm

introduced in Section 2. Recall that one node sends a control packet that travels

along the boundary of a hole. This node is called a leader node. A leader node

checks the size of an adjacent face by looking at the number of edges for the face

contained in the returned control packet. If a leader node determines that a face is

a hole (i.e., the size of the hole is greater than predefined threshold ω), it initiates

the next phase; otherwise, it drops the packet.

3.4.3 Polygon Construction

Once the Boundary Detection phase ends, leader nodes initiate the Polygon Con-

struction phase. Each leader node sends a probing packet, which travels along the

closed chain of identified boundary nodes in a clockwise direction and eventually re-

turns to the leader. While traversing the boundary nodes, VOP nodes are identified

among the boundary nodes. The probing packet contains three fields: the first field

stores the locations of VOP nodes identified so far; the second field contains the

locations of visited boundary nodes after the most recently identified VOP node; the

third field has parameter δ that specifies the width of a bounding box used to iden-

tify VOP nodes. To be more precise, upon receiving a probing packet, a boundary

node adds its location to the second field of the packet and checks whether there

exists a bounding box with width δ that contains all locations in the second field of

the probing packet. If such a bounding box exists, the boundary node forwards the

packet to the next boundary node in a clockwise direction; otherwise, the current

52

boundary node is a VOP node; thus, the location of the node is appended to the

first field (i.e., the set of identified VOP nodes) of the packet. Then, the second field

is emptied and the packet is forwarded to the next boundary node. The Polygon

Construction phase also adopts a mechanism [3] for eliminating possible intersecting

edges among polygons.

3.4.4 Overlay Network Construction

After the Polygon Construction phase, the leader node for each hole has the

locations of VOP nodes corresponding to the hole. Leader nodes then broadcast the

locations. Once nodes in a network receive the locations of VOP nodes, a polygon

for each hole can be found by sequentially connecting the VOP nodes for the hole.

Given a polygon, the convex hull representation can be easily computed using a

simple convex hull algorithm. These two types of information (i.e., the polygon

and convex hull representations) are used for the next phase, Data Forwarding. As

described in Section 3.4.1, when both s and t are outside the convex hulls of holes, the

outside-convex routing mode is used; otherwise, i.e., if either s or t is inside convex

hulls, the “internal structure” of a hole is used for the inside-convex routing mode

– the internal structure is represented as a “local visibility graph”. The Overlay

Network Construction phase is responsible for building a local visibility graph so

that VOP nodes inside convex hulls can run a distance vector routing to optimally

route a packet inside convex hulls.

The idea for building an internal structure is the following. Based on a set of

polygons (i.e., holes) in a network, a node can check whether it is inside a convex hull

or not; a node can also find a set of visible nodes by checking whether the line segment

connecting itself and a target node intersects any polygons in the network. VOP

nodes inside a convex hull then exchange their routing tables with their visible VOP

53

nodes within the same convex hull, based on a distance vector routing – we adopt

DSDV [55]. After several iterations of the routing-table-exchanges, their routing

tables converge, finishing the construction of the internal structure of a hole. The

details of how the internal structure is used for optimally routing a packet to a

destination node inside a convex hull – or routing a packet from a source node

inside a convex hull to the outside of the convex hull – are presented in the next

section. One important aspect of this phase compared with the state-of-art is that

the overlay network is constructed locally for each convex hull, instead of building a

global overlay network, which incurs significant communication overhead as we will

show in Section 3.6.

3.4.5 Data Forwarding

This section describes our forwarding algorithm used in the Data Forwarding

phase. Algorithm 3 depicts the pseudocode. The algorithm has two forwarding

modes: outside-convex routing and inside-convex routing, as follows.

Routing Mode 1. Outside-Convex Routing

A visibility graph is a widely used data structure to find a shortest path for

motion-planning of mobile robots [56]. However, computing a shortest path based

on a visibility graph locally in a sensor node is not feasible, because the data structure

requires O(N2) memory [57], where N is the number of vertices of a visibility graph.

Compared with a visibility graph, a tangent visibility graph is a lightweight data

structure used to find a shortest path given convex obstacles [58]. One important

characteristic of a tangent visibility graph is that it is not dependent on the number

of vertices: its memory requirement is O(h2), where h is the number of convex hulls.

This characteristic of being independent of the number of vertices allows for the local

computation of a shortest path in a sensor node. As an extreme example, consider

54

Algorithm 3 Forwarding in LVGR
1: Call outside convex(s, t). // Default routing mode.
2: outside convex(s, t):
3: if ∃i s.t. s and/or t ∈ Ci then
4: Build a tangent visibility graph without Ci.
5: else
6: Build a tangent visibility graph.
7: end if
8: Find intermediate destinations {I1, ...In} by using Dijkstra’s algorithm.
9: Forward to I1 through In.
10: // Routing mode change.
11: if (∃i s.t. s ∈ Ci) || (s = In && ∃i s.t. t ∈ Ci) then
12: Call inside convex(s, t).
13: end if
14: inside convex(s, t):
15: if ∃i s.t. s ∈ Ci then
16: if t ∈ U then
17: Forward to t.
18: else
19: Choose v ∈ U s.t. dv is minimized.
20: Forward to v towards the gateway based on LVG.
21: end if
22: else
23: if t ∈ U then
24: Forward to t.
25: else
26: if g1 /∈ U and g2 /∈ U then
27: Choose v ∈ U s.t. dv is minimized.
28: else
29: Choose v ∈ U geographically closest to t.
30: end if
31: Forward to v towards t based on LVG.
32: end if
33: end if

a network with a large number of holes – say 100 holes with 50 vertices for each

hole; in the worst case, the memory requirement for a tangent visibility graph is

10KBytes, while the memory requirement of a visibility graph is 25MBytes, which

is not acceptable for a typical sensor node with ∼512KB of RAM [59].

Given source node s and destination node t, s uses the outside-convex routing as

the default routing mode (Line 1). When the Overlay Network Construction phase

ends, nodes have the locations of VOP nodes in the network. Based on the locations

of VOP nodes, nodes can compute the convex hull of each polygon. Given the convex

hulls and the locations of s and t, the outside-convex routing first considers both s

55

Convex hull of H1 Convex hull of H2
Convex hull of H3

Edges of tangent visibility

graph

H1
H2 H3s t

Figure 3.5: An illustration of the outside-convex routing.

and t as degenerate convex hulls. Then it builds a tangent visibility graph (Lines

3-6) with the edges as tangent lines between two convex hulls, and the vertices as

tangent points, as shown in Figure 3.5. The time complexity of the construction of

a tangent visibility graph is O(N logN +h) [58]. To find the shortest path from s to

t, the outside-convex routing then applies the Dijkstra algorithm on the computed

tangent visibility graph. Consequently, the outside-convex routing produces a set of

intermediate destinations {I1, I2, ..., In} which are the tangent points on the shortest

path – they are also VOP nodes (Line 7). Source node s then sends a packet to the

first intermediate destination, i.e., I1 (Line 8). If either s finds that it is inside a

convex hull, or the last intermediate destination In finds that t is inside a convex

hull, they change the routing mode (Lines 10-11) to inside-convex routing (which

will be discussed in the following section). The outside-convex routing produces a

path with constant stretch when s and t are outside convex hulls. We provide the

proof in Section 3.5.

Routing Mode 2. Inside-Convex Routing

Nodes change their routing modes to inside-convex routing in the following two

cases: 1) the node at the last intermediate destination finds that the destination

56

Pi

p1

p2
p3

p4 p5

p6 p7

p8 p9

p10

p11

p12

Pi

p1

p2
p3

p4 p5

p6 p7

p8 p9

p10

p11

p12

(a)

hole

g1

g2s (case 1)

vd

s (case 2)

t

hole

g1

g2s (case 1)

vd

s (case 2)

t

(b)

Figure 3.6: Examples of: (a) inner holes; and (b) entry point selection.

node is inside a convex hull; or 2) the source node finds that it is inside a convex

hull. We first explain the first case. In order to understand the inside-convex routing

algorithm, we need to define several terms as follows:

Definition 7 A j-th inner hole of polygon Pi is a set of sequentially ordered VOP

nodes denoted by Pij = {p1, ..., pn}, where Pij ⊂ Pi such that p1 and pn are the

extreme points of convex hull Ci. In particular, p1 and pn are called gateway nodes.

�

Figure 3.6(a) shows an example with four inner holes and eight gateway nodes.

There is a polygon Pi = {p1, ..., p12}, and its convex hull representation denoted by

Ci = {p1, p3, p4, p6, p7, p9, p10, p12}; polygon Pi has four inner holes: Pi1 = {p1, p2, p3},

Pi2 = {p4, p5, p6}, Pi3 = {p7, p8, p9}, and Pi4 = {p10, p11, p12}. The gateways for Pi1,

Pi2, Pi3, and Pi4 are {p1, p3}, {p4, p6}, {p7, p9}, and {p10, p12}, respectively.

To describe how the inside-convex routing works for the first case, we let u be the

node at the last intermediate destination which sends a packet to destination node

t inside convex hull Ci. The objective of node u is to choose a VOP node v (called

an entry point) from its visibility set in Pi (i.e., the set of visible VOP nodes in Pi)

57

such that |u ∼ v| + |v ∼ t| is minimized. Note that the visibility set can be easily

determined by checking whether uv intersects any edge of Pi. If u finds entry point

v, u forwards a packet to it. After reaching v, the packet is transmitted along the

shortest path to t based on the local visibility graph for Pi. Next, we describe the

details of the entry point selection process.

To determine an entry point, the inside-convex routing first finds the two gateways

of the inner hole containing destination node t, which is done based on the sequence of

VOP nodes and a simple polygon-in-point algorithm [60]. Denote the two gateways

by g1 and g2 and let a set U be the visibility set of node u. Now we have to consider

two cases as shown in Figure 3.6(b): 1) both g1 and g2 are not in U (Lines 23-24);

and 2) one of g1 and g2 (or both g1 and g2) is in U (Lines 25-26). In the first case,

we know that the shortest path must pass one of the two gateways. Thus, we find

v ∈ U that minimizes |u ∼ v| + |v ∼ t| as follows: we compute the lengths of two

paths from each v ∈ U to g1 and g2, respectively, by sequentially following the edges

of the convex hull of polygon Pi; let dv denote the shorter distance between the two

lengths (see Figure 3.6(b)); we then choose v ∈ U that minimizes dv. The second

case is a little bit trickier: we cannot simply choose node v ∈ U that is closer to

either of gateways, because in this case, some nodes in U might be inside the inner

hole containing t. A problem is that nodes outside a convex hull do not know about

the internal structure of the hole (i.e., the local visibility graph of the hole); thus, it

is difficult to optimally choose such v ∈ U . To tackle this case, we introduce a simple

heuristic: node u chooses v ∈ U that is geographically closest to t. We will prove in

Section 3.5 that this heuristic method yields the stretch of path u ∼ t bounded by

(π+2)
2c

D, where D is the diameter of the network and c is the communication radius.

Now we explain the second case where the source node is inside a convex hull.

This case includes the scenario where both source and destination nodes are inside

58

g1

g2

g2'

g1'

OC-routingIC-routing IC-routing

P1 P2 P3

s
t

u

w x

Figure 3.7: An example for the forwarding algorithm.

the same convex hull. Note that if source node s does not have interfering holes

(i.e, the line segment connecting s and t does not intersect any polygons), t is the

final destination; otherwise t is the first intermediate destination. Source node s

can find the inner hole that it belongs to, and the two gateways of the inner hole.

The objective of source node s is to choose a node v in its visibility set U that

minimizes the distance |s ∼ v| + |v ∼ t|. Note that, after reaching node v, a packet

is transmitted out of the convex hull along the shortest path following the local

visibility graph. However, source node s cannot make the optimal selection of node

v, because it does not have knowledge of hole’s internal structure; thus, we introduce

a heuristic mechanism. This heuristic algorithm runs as follows. If node t is in U

(Line 14), source node s sends a packet to node t using simple geographic forwarding

(Line 15); otherwise, s chooses v in U such that dv is minimized, i.e., the minimum

distance to either of gateways (Lines 16-18). We will prove in Section 3.5 that this

heuristic algorithm produces paths s ∼ t with bounded stretch of (π+2)
2c

D.

Figure 3.7 shows an example describing the operation of our forwarding algorithm.

Source node s first runs the default outside-convex routing, identifying intermediate

59

destinations w and x. When s wants to send a packet to the first intermediate

destination w, it finds that it is inside a convex hull C1. At the same time, since

t /∈ U , s finds a visible VOP node u that minimizes du. Then, s sends a packet to u.

The packet is forwarded to gateway g2 along the internal local visibility structure.

Once the packet reaches gateway g2, the outside-convex routing is resumed; the

forwarding node at g2 determines the intermediate destinations w and x again. Upon

reaching node x, forwarding node x detects that t is inside a convex hull, so that it

changes its mode to inside-convex routing. Node x then identifies the entry point

g′2 and forwards the packet to it. Upon reaching the entry point, the local visibility

graph for P2 is used to guide the packet to destination t along the shortest path.

3.5 LVGR Protocol Analysis

3.5.1 Path Stretch

In this section, we prove the worst-case stretch of LVGR. Lemma 1 proves the

constant stretch for the outside-convex routing. We then prove the worst-case stretch

for the inside-convex routing in Lemma 2 and Lemma 3. Based on the Lemmas, we

prove the stretch of LVGR in Theorem 1, considering a general case when both

outside-convex and inside-convex routing are used.

Lemma 1 The outside-convex routing when s and t are outside convex hulls has

constant path stretch.

Proof: Given s, t, and convex hulls, the outside-convex routing computes a tangent

visibility graph. The Dijkstra algorithm performed on the tangent visibility graph

yields a shortest path [58], say s ∼ I1 ∼ I2 ∼ ... ∼ In ∼ t; according to Tan et al. [3],

the stretch of a path segment between two VOP nodes, i.e., Ii ∼ Ii+1 including s ∼ I1

and In ∼ t is bounded by constant factor ζ = 16(χ+1)(H +1)(H +1+ 2
π
), where H

60

u

r

v
1

v
2

…

u

r

v
1

v
2

…

u

r

v
1

v
2

…

Figure 3.8: An illustration for the bounded stretch of inside-convex routing.

and χ are system parameters (see [3] for details about parameters). Thus, we obtain

the following: |s ∼ I1 ∼ I2 ∼ ... ∼ In ∼ t| ≤ ζ · |OPT (s, t)|, where |OPT (s, t)| is the

optimal path length. �

Recall that nodes change their routing mode to inside-convex routing when: 1)

node u at the last intermediate destination finds that destination node t is inside a

convex hull; or 2) source node s finds that it is inside a convex hull. We first prove

the worst-case stretch for the first case.

Lemma 2 |u ∼ t| ≤ ((π+2)
2c

D)· |OPT (u, t)|, where |OPT (u, t)| is the optimal path

length of path u ∼ t, D is the diameter of the network, and c is the communication

radius of a node.

Proof: Let n VOP nodes, for hole Pi with diameter r, that are visible from node

u, be denoted by a set U = {v1, v2, ..., vn}, U ⊆ Pi. Our heuristic method allows

node u to select v ∈ U such that d(u, v) + d(v, t) is minimized. Suppose that node

v is not an optimal selection; that is, there exists v′ ∈ U for optimal choice. We are

interested in the maximum distance between v and v′ (which is the price that our

61

heuristic method should pay for the wrong decision). Thus, the problem is to arrange

nodes in U such that all n nodes are visible from u, and the distance
∑n−1

1 d(vi, vi+1)

is maximized. As illustrated in Figure 3.8, we can find that, when we arrange n

nodes along the semicircle with radius r,
∑n−1

1 d(vi, vi+1) is maximized and all n

nodes in U are visible from u. In this case, the worst-case path length becomes

|u ∼ v′| + |v′ ∼ v| + |v ∼ t|. And optimal path length is |u ∼ v| + |v ∼ t|. So the

path stretch is |u∼v′|+|v′∼v|+|v∼t|
|u∼v|+|v∼t| . Thus,

|u ∼ t|
|OPT (u, t)|

≤ |u ∼ v′|+ |v′ ∼ v|
|u ∼ v|

=
|u ∼ v′|
|u ∼ v|

+
|v′ ∼ v|
|u ∼ v|

≤ D

c
+

πr/2

c
≤ D

c
+

πD/2

c
=

(π + 2)

2c
D.

�

It is easy to note that the worst-case stretch for the second case is the same as

Lemma 2, because the proof for the second case is basically to find the maximum cost

for the suboptimal selection. Thus, considering both cases, we obtain the following

result:

Lemma 3 Inside-convex routing has stretch of (π+2)
2c

D, where D is the diameter of

the network, and c is the communication radius of a node.

Now finally, when combining the outside-convex and inside-convex routing, we

obtain the following result:

Theorem 1 LVGR has the worst-case path stretch of O(D
c
), where D is the diameter

of the network, and c is the communication radius of a node.

Proof: Given a s− t pair, we denote the optimal path by OPT (s, t). If convex hulls

containing s and t are not considered, the outside-convex routing produces interme-

62

diate destinations {I1, ...In} along the shortest path connecting s and t. According

to Lemma 1, the outside convex routing produces a path with constant stretch. If we

take the convex hulls containing s and t into account, the stretches of path segments

s ∼ I1 and In ∼ t are affected. Specifically, Lemma 3 describes that the stretch

of such path segment is (π+2)
2c

D, where r′ is the diameter of the largest hole in the

network. Therefore, the length of path P after taking the holes containing s and t

into account is given as follows: |P| ≤ ((π+2)
2c

D) · ζ · |OPT (s, t)|. This proves the

theorem. �

3.5.2 Message Complexity

The message complexity of VIGOR is O(N(V 2
V OPM+C)), where N is the number

of nodes; VV OP is the number of VOP nodes; M is the number of links (i.e., visible

edges) between VOP nodes; and C is the number of holes in the network. First, it

takes O(N) messages to construct VOP polygons. Second, it takes O(NC) messages

to broadcast VOP nodes throughout the network. Third, to set up the distance

vector routing for a visibility graph with VV OP vertices and M edges, O(NV 2
V OPM)

messages are needed, because the message complexity of a general graph with n

vertices and m edges for setting up a distance vector routing is O(n2m) (i.e., until

routing tables converge), and a single message transmission on an edge of a visibility

graph for VIGOR requires at most N messages (i.e., an edge between two VOP

nodes may have at most N hops). Therefore, VIGOR requires O(N(V 2
V OPM + C))

messages in total.

The message complexity of LVGR can be similarly derived. The messages used

for the first and second part (i.e., VOP polygon construction and brodcast of VOP

locations, respectively) are the same asO(N) andO(NC), respectively, The difference

happens in the third step where only VOP nodes within the same hole are involved in

63

(a) (b)

(c) (d)

Figure 3.9: Different hole deployment schemes: (a) scenario 1; (b) scenario 2; (c)
scenario 3; and (d) scenario 4.

the message complexity; thus, for the third step O(NV ′2
V OPM

′) messages are needed,

where N ′
V OP is the number of VOP nodes for the largest hole in the network, and M ′

is the number of links between VOP nodes belonging to the largest hole. Therefore,

LVGR requires O(N(V ′2
V OPM

′ + C)) messages in total. Since M ′ ≤ M and V ′
V OP ≤

VV OP , the message complexity of LVGR is smaller than VIGOR.

3.5.3 Per-Node State

Both VIGOR and LVGR require nodes to keep a routing table. The routing

state per node of VIGOR is O(NV OP) where NV OP is the number of VOP nodes in

64

 0

 100

 200

 300

 400

 500

 600

 700

 800

Scenario1 Scenario2 Scenario3 Scenario4

T
o
ta

l
n
u
m

b
e
r

o
f
tx

 o
n

 p
e
ri
m

e
te

r
ro

u
ti
n
g
 m

o
d
e
 (

K
)

Figure 3.10: Total number of packet transmissions in perimeter-routing mode.

the network, because VIGOR is based on a global visibility graph which requires

a routing table with size of O(NV OP). Meanwhile, the per-node state of LVGR is

O(N ′
V OP), N

′
V OP ≤ NV OP , where N ′

V OP is the number of VOP nodes of the largest

hole in the network. The reason for the smaller per-node state is that LVGR is

based on a local visibility graph which requires nodes to store only the local routing

information within a hole.

3.6 Simulation Results

We implemented LVGR, VIGOR [3], GPSR [10] and a centralized shortest path

routing protocol in C++, mainly focusing on the topological behavior of the pro-

tocols. We randomly deployed 6,000 sensor nodes in a 2,000×2,000m2 area having

holes with different complexities as shown in Figure 3.9. The complexity of a hole

was measured as the total number of packet transmissions in perimeter-routing mode

for 10,000 randomly chosen source and destination pairs. Measured complexities for

different hole-deployment scenarios are depicted in Figure 3.10. As shown, deploy-

65

 0

 2000

 4000

 6000

 8000

 10000

 12000

Scenario1Scenario2Scenario3Scenario4

N
u

m
b

e
r

o
f

s
-t

 p
a

ir

s
t

s and t
none

Figure 3.11: The number of s− t pairs for which s and t are inside convex hulls.

ment scenarios are arranged in increasing order of holes complexity. The complexity

affects how often LVGR changes its routing mode. Figure 3.11 shows that network

scenarios with higher complexity have more source and destination nodes inside con-

vex hulls. To account for realistic communication channels, we employed a radio

model [61], which defines the degree of irregularity (DOI) as maximum radio range

variation in the direction of radio propagation. Figure 3.12 shows radio range for

DOI=0.4.

We compared VIGOR with LVGR and GPSR. Our main interests are to show

that LVGR has lower communication overhead than VIGOR, while maintaining as

good path stretch as VIGOR. In particular, the comparison with GPSR is used to

provide the baseline performance. We measured the following metrics: (1) average

path stretch, (2) maximum path stretch, and (3) communication overhead. Note

that the storage overhead of LVGR and VIGOR can be simply measured as the

number of VOP nodes for the largest hole, and the total number of VOP nodes,

66

 40

 30

 20

 10

 0

 10

 20

 30

 40

 40 30 20 10 0 10 20 30 40

Y
 (

m
e

te
rs

)

X (meters)

DoI=0.0
DoI=0.4

Figure 3.12: Radio range with DOI=0.4.

respectively. The communication overhead consists of two parts: one part measures

the total number of packet transmissions for setting up routing tables; the second

part measures the total number of control packet transmissions to set up routing

paths. We varied the following parameters: (1) δ, (2) DOI, and (3) network density.

Each simulation used 10,000 randomly selected source and destination pairs. The

default network configuration was: DOI=0.4 with radio range of 50m, ω = 15, and

δ = 30. The average degree of the network was approximately 10.

3.6.1 Path Stretch

We measured path stretches for 10,000 randomly selected source-destination pairs

in each network scenario. In this set of experiments we used the following definition of

path stretch: path stretch = measured hop count
minimum hop count

. Given a source and destination pair,

measured hop count refers to the number of hops for the path connecting source s

and destination t; and minimum hop count is the number of hops for the shortest

path between s and t. The shortest path was computed using a centralized shortest

67

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

LVGR

VIGOR

GPSR

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

LVGR

VIGOR

GPSR

(b)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

LVGR

VIGOR

GPSR

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
D

F

Path stretch

LVGR

VIGOR

GPSR

(d)

Figure 3.13: CDF graphs of path stretches for each deployment scenarios: (a) sce-
nario 1; (b) scenario 2; (c) scenario 3; and (d) scenario 4.

path routing.

For each network scenario, we present the CDF of path stretches for 10,000 s− t

pairs. Figures 3.13(a), 3.13(b), 3.13(c), and 3.13(d) depict the CDFs for network

scenarios 1, 2, 3, and 4, respectively. As shown, regardless of the complexity of

deployed holes, more than 90% of the path stretches for both VIGOR and LVGR

were close to 1. The main reason is that both protocols use non-local information

(i.e., the abstract information on holes) to prevent a packet from falling into a local

minimum. Another observation is that the path stretch of LVGR is slightly higher

68

 0

 0.5

 1

 1.5

 2

 2.5

 3

Scenario1 Scenario2 Scenario3 Scenario4

A
v
e
ra

g
e
 p

a
th

 s
tr

e
tc

h

VIGOR
LVGR
GPSR

Figure 3.14: Average path stretch.

compared with VIGOR for the four network scenarios. This is because LVGR makes

a heuristic decision in forwarding a packet when either the source or destination is

inside a convex hull, while VIGOR makes an optimal decision by exchanging a control

packet with a destination node using a default geographic routing. However, as we

will show in Section 3.6.2, the overhead for the control packet poses a significant

problem in large scale deployments. In contrast to the results of VIGOR and LVGR,

GPSR is significantly affected by the complexity of holes; that is, as the complexity

of holes increases from Scenario 1 to Scenario 4, the path stretch of GPSR severely

degrades.

Average and maximum path stretches are statistical measures often used to com-

pare the performance of routing protocols. We summarize the path stretch by means

of the average and maximum path stretch. Figure 3.14 shows the average stretches

of the three routing protocols. We observe that, while the average path stretch of

GPSR increases as the complexity of holes increases, both VIGOR and LVGR show

69

 0

 5

 10

 15

 20

 25

 30

Scenario1 Scenario2 Scenario3 Scenario4

M
a
x
im

u
m

 p
a
th

 s
tr

e
tc

h

VIGOR
LVGR
GPSR

Figure 3.15: Maximum path stretch.

constantly low average path stretches close to 1. In particular, the difference between

the average path stretch of VIGOR and LVGR is almost negligible. Figure 3.15 shows

the maximum path stretches of the three routing protocols. As shown, the maximum

path stretch of VIGOR and LVGR is unexpectedly much greater than 1, despite their

optimal route selection. We found that this high maximum path stretch happened to

paths with very small hop counts (e.g., 1 ∼ 3); more precisely, even a small increase

in a hop count resulted in high path stretch for such paths. We identified that irreg-

ular communication range, and small holes that were not considered by the protocols

were the main causes for such increases in path stretch. Another observation is that

the maximum path stretch of LVGR is relatively higher than VIGOR. The main

reason is the use of the heuristic forwarding algorithm to forward a packet to/from

a node inside a convex hull. It is worth noting that unlike LVGR, for GPSR, the

maximum path stretch is directly influenced by the complexity of holes.

70

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Scenario1Scenario2Scenario3Scenario4

T
o
ta

l
n
u
m

b
e
r

o
f
p
a
c
k
e
t
tx

VIGOR
LVGR

Figure 3.16: Overhead for routing table set up.

3.6.2 Communication Overhead

This section investigates the communication overhead of LVGR and VIGOR.

Figure 3.16 shows the communication overhead for the “routing table set-up” of

both LVGR and VIGOR. We first observe that the communication overhead for

both protocols increases as the complexity of deployed holes increases. The reason is

straightforward: the network requires more VOP nodes to represent more complex

holes. We also note that, by decomposing the global visibility graph into local

visibility graphs, we can reduce the communication overhead; specifically, we can see

that LVGR reduces this type of communication overhead by up to 50% compared

with VIGOR in our simulations. It is worth remarking that, although this type of

communication overhead may not be important for a particular scenario where only

a single hole is present, the communication overhead caused by the control packet

used for the “path-setup” process still persists and has much higher impact on the

performance regardless of hole-deployments.

71

10
0

10
5

10
5

10
5

10
5

10
6

Scenario1 Scenario2 Scenario3 Scenario4

T
o
ta

l
n
u
m

b
e
r

o
f
p
a
c
k
e
t
tx

VIGOR

Figure 3.17: Overhead for routing path setup.

Figure 3.17 depicts the communication overhead for the “path-setup” process.

We measured this type of communication overhead only for unique s − t pairs, be-

cause the same s−t pair can use the previously found routing path. We note that this

type of communication overhead for VIGOR increases as the complexity of deployed

holes increases. The reason is that VIGOR uses its underlying default geographic

routing protocol to deliver the control packet for routing path-setup. As we noted

in Section 3.6.1, the path stretches of traditional geographic routing protocols are

significantly affected by the complexity of holes; therefore the communication over-

head increases with higher complexity of holes. Also note that LVGR does not suffer

from this type of communication overhead, resulting in significant improvements in

energy efficiency. In summary, when considering both types of communication over-

head, LVGR had a total of 28,920 packet transmissions, while VIGOR had 41,614

(overhead for routing table set up) + 1,010,000 (overhead for the “path-setup”) in

Scenario 4. Thus, LVGR had up to 97% smaller communication overhead.

72

 50

 55

 60

 65

 70

 75

 40 60 80 100 120 140 160 180 200

V
is

ib
ili

ty
 g

ra
p
h
 s

iz
e

δ

Figure 3.18: Impact of δ on storage overhead.

3.6.3 Impact of δ

The parameter δ determines the width of a bounding box used to find VOP nodes

of a given hole. Using a bounding box with small δ allows us to represent holes with

more VOP nodes; that is, holes are represented more precisely with smaller δ. We

measured the number of VOP nodes for network Scenario 4 by varying δ. Figure 3.18

depicts the results. As shown, the size of the visibility graph decreases with the first

few decreasing δ values, and the decrease rate slows down with higher δ. These

results indicate that, if δ is sufficiently large, we can represent the visibility graph

using a small number of VOP nodes, leading to lower communication overhead for

routing table set-up for both VIGOR and LVGR. However, this is only possible at

the cost of deteriorated path stretch of the protocol. The reason is that the small

number of VOP nodes imprecisely represent holes, which leads to more packets being

forwarded in perimeter routing mode. Furthermore, high δ may cause crossing edges

among polygons, which also contributes to increased path stretches.

73

 1.21

 1.22

 1.23

 1.24

 1.25

 1.26

 1.27

 1.28

 1.29

 40 45 50 55 60 65 70
 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

A
v
e
ra

g
e
 h

o
p
 s

tr
e
tc

h

N
o
d
e
 d

e
n
s
it
y

Radio range

Avg hop stretch
Network density

Figure 3.19: Impact of node density.

3.6.4 Impact of Network Density

This section investigates how network density affects our protocol. We varied the

radio range for our DOI model from 35m to 60m for Scenario 4. Figure 3.19 shows

the average node density for each radio range; it also depicts the path stretches

for varying radio ranges (i.e., varying network density). As shown, smaller network

density leads to higher path stretches. The reason is that the node density affects the

underlying geographic routing in our protocol. More precisely, when a forwarding

node has fewer neighbors, it is more likely for the node to choose a neighbor on a

suboptimal routing path, thereby increasing the path stretch.

3.6.5 Impact of DOI

As we mentioned in Section 3.6, higher DOI has more irregular communication

ranges. This section investigates how irregular communication ranges affect the

performance of VIGOR and LVGR. We measured the average path stretches of both

74

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 h

o
p
 s

tr
e
tc

h

DOI

VIGOR
LVGR

Figure 3.20: Impact of DOI on the average path stretch.

VIGOR and LVGR by varying DOI for Scenario 4. Figure 3.20 shows the results.

As shown, if we increase DOI from 0 to 0.6, the path stretches of both VIGOR and

LVGR increase by up to 12%. The reason is simple: both VIGOR and LVGR use a

geographic routing protocol as its underlying routing protocol; when DOI is high, it

is more likely that geographic routing protocols select a suboptimal neighbor, which

leads to a suboptimal routing path.

75

4. CNT-AWARE LOCATION-BASED MULTICAST ROUTING

In this section, our CNT-aware location-based multicast routing protocol called

the Robust and Energy-Efficient Multicast Routing protocol (RE2MR) is presented.

4.1 Motivation

Multicast is an essential component in many Wireless Sensor Network (WSN)

applications. Targeted queries, code updates, and mission assignments are well

known examples of multicast services. Unfortunately, traditional tree-based [62]

and mesh-based [63] multicast protocols, mainly designed for mobile ad hoc net-

works (MANET), are not suitable to WSNs. Such topology-based protocols require

periodic flooding of control messages to maintain the underlying overlay structure

up-to-date, thereby causing the early depletion of energy. Additionally, forwarding

nodes have to maintain a routing table for each multicast group. Maintaining, possi-

bly large, state information on a sensor node with limited storage capabilities, is an

impractical design decision for WSNs, especially in large scale WSN deployments.

Location-based multicast routing protocols, usually referred as Geographic Mul-

ticast Routing (GMR), were proposed as a suitable multicast solution for resource

constrained WSNs [64][5][65]. In GMR, the locations of all the subscribers in the

multicast group are encoded in each multicast packet, so that the routing decision

(e.g., whether the path needs to be split or not) is made on the fly, instead of con-

structing and maintaining the global tree/mesh routing structure. Although GMR

addresses the issues encountered by the topology-based multicast protocols, GMR is

not a viable solution for large scale WSN deployments in real environments for sev-

eral reasons. First, in GMR, the packet header size grows significantly as the size of

the multicast group increases. Second, GMR incurs significant computational over-

76

head in forwarding nodes. For example, a forwarding node must compute a heuristic

Euclidean Steiner tree [65] or it needs to consider all possible subsets of multicast

member nodes [64]–an exponential increase in the computational complexity, with

an increase in the multicast group size.

Recently, hierarchical GMR has been proposed as a solution to address the limi-

tations of GMR [4][66][6]. The main idea is to geographically decompose a network

into small cells. A leader in each cell manages the subscribers in that cell. This

hierarchical protocol design allows the header size of a multicast packet to be lim-

ited. However, the limited packet header size comes at the cost of communication

overhead. The control packets are needed for electing a leader in each cell and for

managing the local group membership in a cell. Most importantly, the simple net-

work partition into a set of cells results in sub-optimal routing paths from the root

node to multicast group member nodes.

To address the aforementioned limitations of the state of art multicast routing

solutions, we propose the Robust and Energy-Efficient Multicast Routing (RE2MR)

protocol. RE2MR is a hybrid multicast protocol that combines the strengths of the

topology-based, geographic and hierarchical multicast solutions. RE2MR, using a

solver for the Capacitated Concentrator Location Problem (CCLP), computes the

multicast topology that minimizes the sum of path lengths from the multicast root

node, to multicast members. To account for realistic WSN deployments, where

holes might be present, RE2MR implements a Trajectory-based Lightweight Hole

Detection (TLHD) scheme. TLHD is lightweight since it piggybacks on the regular

multicast communication, and efficient since it provides the compact representation

of a hole. The information on a hole, discovered by TLHD, coupled with an iterative

application of CCLP, enable RE2MR to refine the multicast topology towards near-

optimality. RE2MR improves its energy efficiency by leveraging the broadcast nature

77

of the wireless medium and by a careful packet header design. Additionally, the

multicast topology that RE2MR produces is ideally suited for implementing reliable

multicast packet delivery, through fast and efficient recovery from packet loss.

4.2 Related Work

Conventional multicast protocols can be largely categorized into the tree-based

and mesh-based protocols. The tree-based multicast protocols [62][67] build a tree

structure, either proactively or reactively, to efficiently deliver a packet to subscribers

along this tree. The mesh-based protocols [63][68], to better cope with link failures,

build a mesh overlay instead. These topology-based protocols incur overhead for

constructing the overlay structures and for maintaining the state information about

the overlay structure in each node.

Stateless multicast protocols [64][5][65], based on the locations of nodes, do not

require the construction and maintenance of underlying global structures like a tree

or a mesh. In these protocols, the locations of subscribers are encoded in a packet.

Using this location information, the decision on wether a path needs to be split or

not is made on the fly, instead of relying on the global structures. However, these

protocols are not scalable, because the packet size grows significantly as the number

of subscribers increases. Furthermore, these protocols require high computational

overhead in each forwarding node to find the optimal subset of neighbors to forward

the packet.

To reduce the packet size overhead and ultimately achieve scalability, several

hierarchical geographic multicast protocols have been proposed [4][66][6]. In these

protocols, a network is divided into a set of cells. In each cell, a specially designated

node is elected for managing the group membership. Instead of sending a packet to

all the subscribers, a source sends a packet to the leaders, and the leaders distribute

78

the packet to its members. This way the packet header size is reduced, because

the header contains only the locations of the leaders. However, these protocols

incur additional message and computational overhead for electing the leader and for

managing the subscribers in a cell. Most importantly, a simple clustering into a

group of cells results in sub-optimal path length.

Recent research, mostly related to RE2MR, mitigates the issues faced by different

classes of multicast routing protocols, by designing hybrid multicast schemes [69][70].

For example, the hybrid approach of geographic multicasting and topology-based

(i.e., tree/mesh-based) multicasting [70] is used to find a good tradeoff between state

information storage overhead, communication and computation overhead. Similarly,

[69] proposes the hybrid solution of geographic multicast routing and source multi-

cast routing. However, this recent research fails to find the near-optimal multicast

routing topology, and does not consider the challenges posed by real deployments

(e.g., deployments with obstructions, such as holes).

4.3 System Model and Problem Formulation

We consider a static wireless sensor network consisting of n nodes, denoted by

V = {v1, v2, ..., vn}, uniformly distributed in an area with obstructions, such as holes.

There is one sink node denoted by S that collects data from other nodes. A subset

of nodes G ⊆ V form a multicast group rooted at S. We assume that each node

knows its location and that the locations of multicast members are known to the sink

node S. We also assume that existing multicast group management techniques (e.g.,

join group, leave group, etc.) are available. These techniques have been studied

extensively in the literature. Consequently, in Section 4, we focus exclusively on

the energy efficient and robust multicast packet transmissions to the nodes in the

multicast group.

79

S

f
3

f
4

v
21

v
22

v
11

v
12

v
13

v
42

v
41

v
31

v
32

f
34

f
2

f
1

hole

S

f
3

f
4

v
21

v
22

v
11

v
12

v
13

v
42

v
41

v
31

v
32

f
34

f
2

f
1

hole

Figure 4.1: An example of facility nodes and multicast members.

The problem we address in Section 4 is two-fold. First, we aim to identify the

near-optimal set of routing paths (i.e., near-optimal in the sense of minimizing the

sum of path lengths) from the multicast root node to multicast members. Second,

given the requirements imposed by large scale, real WSN deployments in complex

environments, we aim to limit the packet header size (e.g., make it a system pa-

rameter), reduce the state information maintained by forwarding nodes, reduce the

computational overhead in forwarding nodes, and achieve reliable packet delivery

rate.

Inspired by the Capacitated Concentrator Location Problem (CCLP) [71][72], we

aim to minimize the total sum of path lengths from the multicast root node node S to

each multicast group member, by optimally selecting the locations of facility nodes

fi, as depicted in Figure 4.1 (a facility node–a term adopted from the operations

research–can be thought of as the leader node in the hierarchical multicast routing).

From here on, we will use the term source node to represent the multicast root

80

node, the term facility node to represent nodes aiding in the multicast routing from

the root node to multicast group members, and the term member node to represent

multicast group nodes.

For mathematically formulating our problem, we index the possible locations of

facility nodes by i, and the possible locations of member nodes by j. We denote the

member of a facility node fi by vij and the Euclidian distance between two nodes vi

and vj by d(vi, vj). Our problem can then be formulated as a mixed integer program:

minimize
∑
i

∑
j

d(fi, vij)xij +
∑
i

d(fi, s)yi (4.1)

subject to:
∑
i

xij = 1 for all j, (4.2)

∑
j

xij ≤ siyi for all i, (4.3)

xij = {0, 1} for all i and j, (4.4)

yi = {0, 1} for all i (4.5)

where xij and yi are the indicator variables (i.e., yi = 1 if a facility node is available

at location i, and xij = 1 if a member node at location j is connected to a facility

node at location i); and si is the storage capacity of a facility node at location i,

specifying the maximum number of members it can handle. The first constraint

guarantees that a member node is connected to only one facility node. The second

constraint specifies that no facility node can handle more than its storage capacity.

The third and fourth constraints specify the integrality of xij and yi.

Several challenges remain to be solved when CCLP is applied to large scale WSNs

deployed in realistic environments. First, the holes with various shapes in real world

81

deployments must be efficiently abstracted and taken into account when aiming for

the optimal solution. The reason for including the holes in the protocol design is that

they change the end-to-end communication cost (i.e., d(fi, vij) and d(fi, S) in CCLP).

The classical CCLP formulation assumes no holes in the target region. Thus, we need

to reduce the multicast communication costs by: efficiently and proactively detecting

the holes in the network; abstracting the hole information; and by recomputing the

optimal solution. Second, CCLP assumes a high-speed and zero-cost communication

medium between the source node and each facility; thus, CCLP typically ignores the

communication cost for delivering a packet along the path between the source node

and a each facility node. In our problem, however, the path from a source node to

each facility node consists of multi hop wireless links, having similar characteristics

to the links between facility nodes and their members. Consequently, by iteratively

solving the CCLP problem (i.e., finding the new facility nodes with the existing

facility nodes as new members) one can further optimize the multicast routing paths.

Lastly, a reliable multicast packet delivery is typically required in real world WSN

deployments. The reliability must be ensured with reduced recovery time and the

small number of control packets. The design of RE2MR addresses these problems in

the sections that follow.

4.4 Proposed Solution

In this section we provide an overview of RE2MR, followed by the designs of its

components.

4.4.1 Main Ideas

A key observation is that the topology obtained by solving the CCLP has the

properties that satisfy our goals. In the topology obtained, the sum of Euclidean

distances between a source node and members is near-optimal; the packet header size

82

is limited to the capacity of a facility node (which can be set as a system parameter);

the majority of computation happens at the source node, because the source node

solves the centralized approximation algorithm for the CCLP and finds the set of

facility nodes; facility nodes can be used for implementing reliable multicast packet

delivery with small control packet overhead.

In order to obtain the near-optimal multicast routing path, it is important to

detect/identify holes and provide the information on them (i.e., the size, shape, and

location of the hole) to the source node (which solves the CCLP). Detecting the

holes, however, requires high message overhead. Furthermore, the size of the packet

must be large for precisely describing the information on the holes. One important

observation we make is that only the holes affecting the optimal multicast routing

paths must be detected. Based on theis observation, we propose a Trajectory-based

Lightweight Hole Detection (TLHD) algorithm as part of our multicast protocol.

More aggressive energy savings can be achieved by finding a new set of facility

nodes that serve existing facility nodes. However, to enable this multi-level facility

system, a new message passing mechanism must be developed. Our Energy efficient

Packet Forwarding (EPF) scheme provides an efficient way to deliver a packet to the

facilities in multiple levels with reduced number of packet transmissions, by using

the broadcast nature of wireless communications and careful packet header design.

4.4.2 Energy Efficient and Robust Multicast Routing (RE2MR)

The proposed RE2MR protocol, presented in Algorithm 4, consists of four main

components: the CCLP solver, the TLHD algorithm, the EPF scheme, and Multi-

level Facility computation. As shown, the CCLP solver is used to compute the

locations of the facility nodes in the first level (denoted by F1). Subsequently, a

packet is forwarded to each facility fi ∈ F1 (Line 2-6). The EPF algorithm is used to

83

Algorithm 4 RE2MR Protocol
1: Init: k ← 0, Fk ← G, r ← TRUE
2: while (packets to send) > 0 do
3: if r = TRUE then
4: Fk+1 ← CCLP (Fk)
5: end if
6: Forward a packet to each fi ∈ Fk+1 using EPF
7: // Hole detection (TLHD) started
8: if Feedback received then
9: Update hole info.
10: r ← TRUE
11: continue (i.e., goto Line 3) // Recompute solution
12: else
13: // Multi-level facility
14: if k + 1 < FACILITY LEVEL then
15: k ++
16: r ← TRUE
17: continue (i.e., goto Line 3)
18: end if
19: end if
20: r ← FALSE
21: end while

forward a packet to reduce the total communication costs and to enable the multi-

level facility computation. During the packet transmission to each facility node,

TLHD is used for detecting any holes that interfere with the path from the root

node to the facility node. If a hole is found, a feedback packet is sent immediately

to the root node. This feedback packet is used to efficiently estimate the size, shape,

and location of the hole. If the feedback packet is received, the root node updates

its database of the detected holes and recomputes the solution reflecting the newly

discovered holes (Line 8-11). Otherwise, RE2MR checks if the multi-level facility

computation is enabled (Line 14). If it is enabled, RE2MR recomputes a new solution

F2, in a similar way that it computed previous facilities in F1. Otherwise, RE2MR

keeps forwarding the next packet to the facilities in the first level F1 (Line 14-17).

This recomputation process is repeated until RE2MR finds the facility set Fk, where

k equals FACILITY LEVEL.

In the following subsections, we present the four main components of RE2MR in

84

Algorithm 5 Trajectory Based Hole Detection (TLHD)
1: if feedback bit then
2: if (| ⊥ (vi, st)| > τ) or (local minimum) then
3: Orgx ← xi Orgy ← yi
4: Force Face Routing()
5: end if
6: if |xi − xi−1| > I then
7: find index idxi corresponding to | ⊥ (vi, st)|
8: if xi > xi−1 then
9: encode idxi
10: else
11: encode −idxi
12: end if
13: end if
14: else
15: if (| ⊥ (vi, st)| > τ) or (local minimum) then
16: detect bit ← 1
17: end if
18: Forward()
19: end if

detail.

4.4.3 Trajectory-based Lightweight Hole Detection (TLHD)

The TLHD algorithm, presented in Algorithm 5, consists of the hole detection

phase and hole identification phase.

The hole detection phase is implemented as part of multicast packet transmis-

sion; thus, this phase does not require additional packet transmissions. Figure 4.2

illustrates the hole detection phase (A packet, routed around the hole, measures the

distance d to the line connecting the source S with facility node fi. If the distance

d is greater than a user defined threshold τ , a hole is detected). As shown, if a

forwarding node vi, finds that it is in local minimum, or that the perpendicular dis-

tance to the line Sfi is greater than a given threshold, then node vi sets the hole

detection bit in the packet header and forwards the packet (Lines 15-17). When the

packet reaches facility node fi, the facility node fi checks the hole detection bit. If

this bit is set, then the facility node fi starts to execute the second phase, the hole

identification phase.

85

S f
i

hole

d > τ

v
0

S f
i

hole

d > τ

v
0

Figure 4.2: An illustration of hole detection.

In the hole identification phase, the information about the detected hole (i.e., the

location, size, and shape of the hole) is obtained and concisely represented. Figure 4.3

illustrates the hole identification phase. The facility node fi that has received a

packet with the hole detection bit set, starts this phase by sending a feedback packet

to the source S. If the feedback packet reaches a forwarding node (v0 in Figure 4.3)

either in local minimum, or having a perpendicular distance to the line Sfi greater

than a given threshold (Algorithm 5: Line 2), the forwarding node v0 encodes its

location, (Orgx, Orgy) in the packet and, using face-routing, forwards the packet in

the clockwise direction (Algorithm 5: Line 3-4). We call this forwarding node, an

origin node. Additionally, the origin node sends a copy of the feedback packet in

counter-clockwise direction. These two feedback packets will be routed in opposite

directions around the hole, collect the information about the hole (described below),

and meet at one boundary node of the hole. The collected information is combined

into a one feedback packet, and transmitted back to the source node.

More specifically, while the nodes along the boundary of the hole route the packet,

86

S fi

v0 (Orgx, Orgy)

vk

vk+1

a

v1
hole

S fi

v0 (Orgx, Orgy)

vk

vk+1

a

v1
hole

Figure 4.3: An illustration of hole identification.

they measure the distance between them and the line Sfi. For example, consider

Figure 4.3, where a packet from node v0 reached the next boundary node along

the face, node v1 with location (x1, y1). Node v1 computes the projected distance to

previous node v0 (i.e., |xi−x0|) and checks if this projected distance is greater than I.

If it is greater, node v1 calculates the perpendicular distance to line Sfi, represented

by a in Figure 4.3. The representation of this distance is further abstracted as

a simple index in a table, in which each entry of the table represents a range of

distances. (Algorithm 5: Line 6-7). The matching index is then encoded in the

feedback packet. In order to differentiate the packet forwarding directions (i.e, either

towards the origin node or not), we use a negative representation of the index in the

packet when the packet travels towards the source node (Algorithm 5: Line 8-12).

The feedback packet is kept forwarded to the next boundary node along the hole,

until it crosses line Sfi. For example in Figure 4.3, when the packet is forwarded

from node vk to node vk+1, the line vkvk+1 crosses the line fiS. And then, node vk+1

stops forwarding the feedback packet and waits for the feedback packet coming from

the opposite direction. If that packet arrives, node vk+1 combines the collected data

87

v0 (Orgx, Orgy) v0 (Orgx, Orgy)v0 (Orgx, Orgy)v0 (Orgx, Orgy) v0 (Orgx, Orgy)

Figure 4.4: An illustration of hole reconstruction.

and sends the packet to the source S.

A special case occurs when a facility node is located in a hole. The TLHD

algorithm efficiently handles this situation. Assume that a packet is sent from the

source S to a facility node fi, and that this facility node is inside a hole. This packet

would traverse along the hole, cross the line defined by S and fi at a point p (for

which d(S, fi) < d(S, p)), and then be received by a node, say v′. Finally, node v′

sets its feedback bit, becomes an origin node, and initiates the hole identification

phase to find a new facility node that is not inside a hole.

Upon receiving the feedback packet, the source node S uses the information on

the detected holes for recomputing the optimal path to each member. Source node

S firsts reconstructs a hole by using the data in the feedback packet. Figure 4.4

illustrates this process. The hole is represented as an origin (orgx, orgy) and a set

of perpendicular distances to the line fis as shown in Figure 4.4. Consequently,

source node S is able to represent the hole as a polygon by sequentially connecting

all the end points of the perpendicular lines starting from the origin. This polygon

representation of a hole is used to recompute the shortest path between a facility

node and its members and between the facility node and the source node S. To

compute such shortest path, RE2MR exploits the Visibility Graph, a well known

88

mechanism to compute the shortest path in the presence of polygonal obstacles [73].

4.4.4 Energy-efficient Packet Forwarding (EPF) and Multi-Level Facility

Computation

There are two types of nodes in our protocol, namely facility nodes and non-

facility nodes. In order to save energy by reducing the number of packets transmitted,

RE2MR uses different packet forwarding schemes for different node types. A facility

node forwards a data packet to multiple destinations, either to its members, or to

the facility nodes in the lower level. A naive forwarding scheme for a facility node is

to use multiple unicasts to each destination. However, this method not only incurs

high energy consumption but also causes unbalanced energy distribution. To solve

this problem, our EPF scheme exploits the broadcast nature of wireless transmission

and a careful packet header design. Specifically, a facility node first computes the

best neighbor for each destination (the best neighbor refers to the closest node to a

given destination). The facility node then puts the locations of the destinations in

the header and sequentially inserts the corresponding node id of the best neighbor

for each destination. The first bit of the header is set to 1 so that a receiver treats

this packet differently from a simple forwarding.

Upon receiving a packet, a node checks the first bit of the header. If this bit

is set, the node checks if its node id matches any node ids in the header. In case

of no-match, it just forwards this packet. If its node id matches the i-th node id

in the header, it sets the destination location as the i-th location in the header.

Figure 4.5 illustrates a packet forwarding scenario and the packet header. In this

figure, a facility node has four member nodes with the locations A,B,C, and D

respectively. The facility node first computes the best neighbors: b for C, c for D,

and a for both A and B. It then sets the first bit of header to 1, puts the locations

89

A B

C
D

a

b

c

A B C D a a b c

e
d

A B d e1

0 D

0 A

0 C

0 B

1

A B

C
D

a

b

c

A B C D a a b c

e
d

A B d e1

0 D

0 A

0 C

0 B

1

Figure 4.5: An illustration of packet forwarding by a facility node.

of the destinations, and inserts corresponding ids of best neighbors. Consequently,

we have the header 1, A,B,C,D, a, a, b, c. The facility node broadcasts this packet,

so that all of its neighbors receive this packet. Upon receiving this packet, a node b

finds that it has to forward this packet to C by looking at the header. Similarly, c

forwards the packet to D. However, a node a finds that it has two destinations, A

and B. Node a then applies the same logic to split the packet.

One other type of a node in our protocol is the non-facility node. Unless the

first bit of a packet header is 1, a non-facility node simply forwards the packet to

a destination using simple geographic forwarding, or face-routing for escaping from

the local minimum.

As shown in Lines 14-17 of Algorithm 4, EPF also provides an efficient mes-

sage passing mechanism for multi-level facility system. We illustrate the concept in

Figure 4.6 where f 1
i represents a facility node in the first level, f 2

i means a facility

90

S
v21

v22

v23

v
11

v
12

v
13

v
21 v

22

v
23

v11

v12

v13

f1
1

f1
2

f2
1

f
1

1

f
2

1

S
v21

v22

v23

v
11

v
12

v
13

v
21 v

22

v
23

v11

v12

v13

f1
1

f1
2

f2
1

f
1

1

f
2

1

Figure 4.6: An illustration of multi-level facility nodes.

node in the second level, and so on. Recall that in the single level facility system, a

source node S sends a multicast packet only to the facility nodes in the first level.

In the multi level facility system, a source node S first sends a multicast packet to

the facility nodes f 1
i in the first level; then each facility node f 1

i saves the locations

of its members (which are encoded in the header of the received packet). A source

node S then sends the second multicast packet to the facility nodes f 2
i in the second

level. Similarly, each second-level facility node f 2
i saves the locations of its members

(in this case, the members are the facility nodes in the first level), and forwards the

packet to its members. Upon receiving the second multicast packet from the facility

node in the second level, the facility node in the first level forwards the packet to its

members, using locally stored locations. This process is repeated for higher facility

levels. Consequently, a source node sends a packet to the facility nodes at the highest

level without encoding the locations in the packet header.

Note that adding more facility levels permits higher energy savings. However, in

order to use higher facility levels, more nodes need to maintain state information (i.e.,

91

Algorithm 6 RPD: Code for facility node f
1: Init: B ← ∅
2: On received packet pi:
3: B ← B ∪ {pi}
4: if pi in sequence then
5: Forward to members
6: Start timer Ti
7: else
8: Send NACKj to the root (j:the index of missed packet)
9: end if
10: On timer Ti fired:
11: if NACK not received then
12: B ← B \ {pi}
13: else
14: Retransmit pi
15: Reset timer Ti
16: end if

the locations of members). RE2MR allows the user of a WSN to make the tradeoff

decisions between more aggressive energy savings and smaller state information.

4.4.5 Reliable Packet Delivery

To improve the packet delivery ratio, we employ a slightly modified version of

NACK based retransmission scheme, which is particularly useful for RE2MR. Specifi-

cally, the recovery time from a packet loss is reduced, since the retransmission request

is directly sent to the facility node, not to the source node. Additionally, since the fa-

cility nodes handle packet retransmission requests, we eliminate the bottleneck that

the source node would have been, had it handled all retransmission requests.

Algorithm 6 presents the Reliable Packet Delivery (RPD) scheme implemented

by facility nodes. As shown, upon receiving a packet pi from a source node (or from

a facility node in one level higher than itself, when multi-level facility are used), a

facility node f , checks if the packet pi is in sequence. If it is in sequence, f simply

forwards pi to its members and sets a timer Ti, specifying the waiting time for NACK

packets from its members (Line 4-5). If the facility node identifies a lost packet pj,

then it sends NACKj to the root node (Line 7-9). When the timer Ti fires, f examines

92

if any NACK packets have been received from its members. If no NACK packets

were received, f deletes the packet pi from buffer B (Line 11-12). If a NACKi was

received, f retransmits the packet pi and resets the timer Ti (Line 13-15).

4.5 Theoretical Analysis

In this section, we aim to theoretically investigate our proposed solution before

we perform extensive testbed experiments and TOSSIM simulations. The theoretical

results would provide insights into the experimental and simulation results. We

present analysis of RE2MR and two state of art multicast routing protocols, namely

RSGM [6] and MRBIN [70]. For our analysis, we consider a square-shaped two

dimensional network with a grid topology of varying size, n× n, where n is an even

positive number. The internode distance is a unit distance. Member nodes are

located along the four edges of the network (i.e., 4n members are positioned in the

network of size n× n).

4.5.1 Total Number of Branch Nodes

The total number of branch nodes, denoted by Nb, is an indicator for the amount

of state information maintained in a network. The following results show the total

number of branches when there are N members.

Lemma 4 For MRBIN, maximum Nb = N − 6.

Proof: We prove this by induction on the length of side n of our network.

Base step (n = 2, i.e., 2 × 2 network): it is trivial to see that Nb = 2 for a 2 × 2

network, where the number of members is 8.

Inductive Step: assume that for n = k, Nb = 4k − 6, and consider Figure 4.7(a).

Paths from two members a and b that are adjacent to member c at the corner of the

(n + 1) × (n + 1) network meet at the corner of n × n network, forming a branch.

93

n by n

a

b

c

…

…

…

…

n by n

a

b

c

…

…

…

…

(a)

ss

(b)

Figure 4.7: An illustration of inductive step for: a) Lemma 1 and b) Lemma 3.

There are four such branches at each corner of n × n network. A path from each

member at the corner of (n+ 1)× (n+ 1) network meets with the path from one of

its adjacent members, making four more branches. Except for these members (i.e.,

the members at the corner and their adjacent members in (n+1)× (n+1) network),

all the other members send packets to the adjacent member that is located on the

edge of n × n network as shown in Figure 4.7(a). Thus, the problem is reduced to

counting Nb for n × n network. Therefore, the total number of branches for the

(n+ 1)× (n+ 1) network is given by Nb = (4k − 6) + 8 = 8(k + 1)− 6. �

Lemma 5 For RSGM, maximum Nb =
N
2
− 4.

Proof: In RSGM, a branch node is a leader in a cell. Thus, we need to consider the

total number of cells that have members in them. If the cell size is Cs, in a n × n

network, the total number of cells is n2

Cs
. Next, we need to consider the cells that

contain members (i.e., the cells that are adjacent to the four sides of the network).

The number of cells that do not contain members can be computed as (n−2
√
Cs)2

Cs
.

Thus, the total number of branches is Nb =
n2

Cs
− (n−2

√
Cs)2

Cs
. Next, by replacing n by

94

N
4
and solving the equation for Nb, we obtain Nb = N√

Cs
− 4, where 4 ≤ Cs < N2

16
.

Therefore, the maximum Nb =
N
2
− 4. �

Theorem 2 RE2MR has the lowest Nb, when compared with RSGM and MRBIN.

Proof: In RE2MR, facility nodes are the only branch nodes. Thus, we count the

maximum number of facility nodes. Let Fc be the facility capacity. Since members

are uniformly located along the four sides of the network, ⌈N
Fc
⌉ facilities are selected

such that members around the corners of the network are first covered, thereby

⌈N
Fc
⌉ ≥ 4. The maximum number of facilities is obviously N when the facility

capacity Fc = 1. However, for fair comparison, we must determine the value for Fc.

Note that for RSGM, Lb is minimum when Cs=4, which yields that the capacity of

a leader, specifically the leader of a cell located at the corner of network, is at most

5. For MRBIN, the capacity is at most 4 due to the grid topology. Thus, we choose

5 for Fc and get Nb = ⌈N5 ⌉. By Lemma 1 and Lemma 2, MRBIN (N − 5) > RSGM

(N
2
− 4) > RE2MR (⌈N

5
⌉). �

4.5.2 Sum of Path Lengths

The sum of path lengths is indicative of how much energy is consumed for each

multicast packet transmission. The following analysis estimates the sum of path

lengths as a function of N members.

Lemma 6 The sum of path lengths for MRBIN is N2

16
+ N

2

Proof: We prove this by induction on the length of side n of n by n network.

Basis step (n = 2): the path length is trivially 8.

Inductive step: assume that the claim holds for n = k. Then, the path length of k×k

network is k2+2k = k(k+2), since N = 4k. Now we consider the case with n = k+2,

95

since n is an even positive number. Figure 4.7(b) depicts this case. Note that each

member can reach the inner square, k × k network, in one hop. In particular, the

members at the four corners reach the inner square by forming a branch with one of

its two neighboring members. Thus, we get 4(k + 2) additional path lengths, which

yields that the total path length for n = k+2 is k(k+2)+4(k+2) = (k+2)(k+4).

�

Lemma 7 The sum of path lengths for RSGM is 3
2
(N

2

16
− N

2
+ 8).

Proof: In order to compute the sum of path lengths, we consider a Cartesian co-

ordinate system in which the member at the left bottom corner of the network is

the origin. We first compute the path lengths from the source node S to each

leader. The longest path is the one that connects the source node with the leader

of the cell located at the corner of the network. The coordinates of this leader are

(
√
Cs

2
,
√
Cs

2
), and the coordinates of S are (N

8
, N

8
). The Euclidean distance between

them is
√
2(N

8
−

√
Cs

2
), and thus the actual path length is 2(N

8
−

√
Cs

2
). The shortest

path is of length N
8
−

√
Cs

2
. Thus, the median path length is 3

2
(N
8
−

√
Cs

2
). When taking

into account the total number of leaders, the sum of lengths for the paths connecting

a source to leaders is 3
2
(N
8
−

√
Cs

2
)(N√

Cs
− 4). Now we compute the path lengths from

a leader to members. The longest path connects a leader to its members located at

the left bottom corner of its cell. This member has coordinates (0, 0). The Euclidean

distance between them is
√
2Cs

2
, and thus the actual distance is

√
Cs. The shortest

length of such path is
√
Cs

2
. Thus, the median length is Cs+

√
Cs

4
. Since the total

number of members is N , the sum of lengths of such paths is (Cs+
√
Cs

4
)N . Therefore,

after combining the results for the two cases above, the total sum of path lengths

becomes 3
2
(N
8
−

√
Cs

2
)(N√

Cs
−4)+(Cs+

√
Cs

4
)N . When considering Cs=4, for maintaining

a minimum number of branch nodes for MRBIN, we obtain 3
2
(N

2

16
− N

2
+ 8). �

96

Theorem 3 RE2MR has the shortest sum of path lengths, when compared with

RSGM and MRBIN.

Proof: The maximum distance between a source node S and the facility node is

2(N
8
− 2), when the facility node is located at the point closest to the member

positioned at the corner of network. By Lemma 2, we choose Fc=6. Thus, the sum

of path lengths connecting S and facilities is at most 2(N
8
− 2)N

6
. The maximum

path length between the facility node and its member is thus
√
10. Since there are

N members, the sum of path lengths connecting a facility node to each member is

at most
√
10N . Thus the total sum of path lengths is at most 2(N

8
− 2)N

6
+
√
10N .

�

4.6 Performance Evaluation

We implemented RE2MR in nesC for the TinyOS operating system. The pro-

tocol (implemented in 4,916 lines of code) occupies 7,289B of RAM, and 25,466B

of program memory. We adopted GPSR [10] for the underlying geographic routing

protocol. We compared the performance of RE2MR with two recent, state of art

multicast protocols for WSN: one hierarchical geographic multicast–RSGM [6], and

one hybrid multicast–MRBIN [70]. Due to the relatively large scale network deploy-

ment we need for our evaluation, we performed simulations using TOSSIM. For our

simulations, we deployed 400 nodes in a 20×20 grid, with an inter-node distance of

20m. The radio range of a node was between 30m and 70m. The metrics we used

for our performance evaluation are: the total sum of path lengths (PL), the total

number of packets transmitted (PC), the average end-to-end delay (E2E) and the

packet delivery ratio (PDR). We vary the following parameters: node density (ND),

facility level (FL), and hole size (HS). Each experimental point represents the mean

of five runs.

97

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 30 35 40 45 50 55 60 65 70

S
u
m

 o
f
p
a
th

 l
e
n
g
th

 (
m

)

TX radius (m)

RE
2
MR

RSGM
MRBIN

Figure 4.8: Impact of node density on sum of path lengths.

 40

 60

 80

 100

 120

 140

 160

 30 35 40 45 50 55 60 65 70

T
o
ta

l
n
u
m

b
e
r

o
f
tr

a
n
s
m

is
s
io

n
s

TX radius (m)

RE
2
MR

RSGM
MRBIN

Figure 4.9: Impact of node density on total number of packets.

4.6.1 Impact of Node Density

We expect that node density (ND) affects the performance of RE2MR, RSGM

and MRBIN, because these protocols are based on geographic routing that is known

to be sensitive to node density. We measured PL, PC and E2E by varying ND from

30 to 70. For this experiment, we fixed FL=1, FC=3, and NM=4%. Figure 4.8

depicts the results for PL. One can observe that RE2MR yields shorter path lengths,

98

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 30 35 40 45 50 55 60 65 70A
v
e
ra

g
e
 E

n
d
 t
o
 E

n
d
 D

e
la

y
 (

M
S

)

TX radius (m)

RE
2
MR

RSGM
MRBIN

Figure 4.10: Impact of node density on average end-to-end delay.

by as much as 57%, when compared with both RSGM and MRBIN. As shown, when

ND increases, PL for all the protocols decreases slightly. The explanation for this is

that at higher node densities, geographic routing protocols are able to identify routing

paths more closer to the Euclidian distance between a source and a destination, and,

hence, shorter. Figure 4.9 shows PC as a function of ND. As expected, for larger

communication ranges, the total number of packets exchanged decreases. One can

observe that the PC for RE2MR is the lowest for all the ND values. Figure 4.10

depicts the end-to-end delay E2E for the three protocols as a function of ND. The

results indicate that protocols with lower PL exhibit a lower end-to-end delay. As

shown, RE2MR has an average end-to-end delay shorter by up to 8% when compared

with MRBIN, and by up to 50% when compared with RSGM.

4.6.2 Impact of Level of Facilities

In this subsection, we investigate how the facility level (FL) affects the perfor-

mance of our protocol. Specifically, we measured PL, PC and E2E by varying FL

in different ND settings. For this experiment, we fixed NM=6% and FC=3 and

99

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

Y
 (

m
e
te

rs
)

X (meters)

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

Y
 (

m
e
te

rs
)

X (meters)

(b)

Figure 4.11: An example of RE2MR topologies for (a) a single level facility and (b)
two level facilities.

did not consider the holes. Example topologies for RE2MR with single level and two

level facilities are depicted in Figure 4.11.

Figure 4.12 shows PL for different FL values. As the figure shows, PL slightly

decreases as ND increases, for all FL values. As expected, higher FL results in

shorter PL. The reason is that the path lengths from a source node to facility

nodes are reduced when higher level facility nodes are used. Figure 4.13 depicts PC

as a function of ND for different FL. Note that PC becomes smaller for longer

communication ranges. We also observe that PC for higher FL was lower than

for lower FL. The reason is that higher FL essentially aggregates more paths.

However, as Figure 4.14 depicts, E2E for higher FL is actually higher than for lower

FL. Although the total sum of path lengths is reduced by aggregating more existing

paths using facility nodes in higher levels, the direct path to a facility node in lower

level was no longer used, causing higher end-to-end delay for higher facility level.

100

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 30 35 40 45 50 55 60 65 70

S
u
m

 o
f
p
a
th

 l
e
n
g
th

 (
m

)

TX radius (m)

FL=1
FL=2
FL=3

Figure 4.12: Impact of facility level on sum of path lengths.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 30 35 40 45 50 55 60 65 70

T
o
ta

l
n
u
m

b
e
r

o
f
tr

a
n
s
m

is
s
io

n
s

TX radius (m)

FL=1
FL=2
FL=3

Figure 4.13: Impact of facility level on total number of communications.

4.6.3 Impact of Holes

To investigate the impact of a hole, we created a hole in the middle of our network.

Specifically, the hole is a square shape with the length of a side varying from 80m

to 240m. In this experiment we fixed ND=60, FC=3, FL=1 and we uniformly

deployed 12 members along the upper and right sides of our network, allowing space

for the hole. We measured PL and E2E by varying the size of the hole.

101

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 30 35 40 45 50 55 60 65 70A
v
e
ra

g
e
 E

n
d
 t
o
 E

n
d
 D

e
la

y
 (

M
S

)

TX radius (m)

FL=1
FL=2
FL=3

Figure 4.14: Impact of facility level on average end-to-end delay.

 2200

 2220

 2240

 2260

 2280

 2300

 2320

 2340

 2360

 2380

 2400

 2420

 80 100 120 140 160 180 200 220 240

S
u
m

 o
f
p
a
th

 l
e
n
g
th

 (
m

)

Hole size (m)

RE
2
MR (No hole)

RE
2
MR

RE
2
MR+TLHD

Figure 4.15: Impact of hole size on sum of path lengths.

Figures 4.15 and 4.16 depict the results. When a hole is present, the performance

in terms of PL and E2E degrades, when compared with the scenario when a hole

is not present. As we increase the size of the hole, the performance degradation

increases. The reason for this is that a hole affects the routing cost between a facility

node to the source node, and to members, by making a packet travel along the

face of the hole. Evaluation results demonstrate how our proposed TLHD algorithm

102

 266

 268

 270

 272

 274

 276

 278

 280

 282

 284

 286

 288

 80 100 120 140 160 180 200 220 240

A
v
e
ra

g
e
 e

n
d
 t
o
 e

n
d
 d

e
la

y
 (

M
S

)

Hole size (m)

RE
2
MR (No hole)

RE
2
MR

RE
2
MR+TLHD

Figure 4.16: Impact of hole size on average end-to-end delay.

improves the performance by relocating the facilities. The TLHD algorithm allows

the source node to recalculate the locations of the facility nodes. As we increase the

size of the hole, PL and E2E for RE2MR with TLHD also increase. The impact of

the hole, however, is mitigated by the new set of facilities.

4.6.4 Reliability

In this section, we investigate the reliability of RE2MR by measuring the packet

delivery ratio (PDR). We compared the PDR of RE2MR to that of RSGM and

MRBIN for different ND and NM settings. We fixed NM=6%, FC=3, FL=1 and

measured PDR by varying ND from 30m to 70m. The source node sent 100 packets,

at a rate of 2 packets per second. Each member node computed its own PDR. The

reported PDR was then calculated as the average PDR of all members.

Figure 4.17 depicts our results. As shown, as we increase ND, the PDR values of

all three protocols increase. The reason is that an increased transmission range re-

duces the number of packet transmissions, thus decreasing the probability of packet

collisions. Additionally, a higher node density increases the probability of packet

103

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 30 35 40 45 50 55 60 65 70

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o

TX radius (m)

RE
2
MR

RSGM
MRBIN

Figure 4.17: Reliability measurements as a function ND.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 3 4 5 6 7 8

P
a
c
k
e
t
D

e
liv

e
ry

 R
a
ti
o

Portion of subscribers (%)

RE
2
MR

RSGM
MRBIN

Figure 4.18: Reliability measurements as a function of NM .

delivery. Note that RE2MR’s PDR approaches almost 100%, greatly outperforming

MRBIN and RSGM. The low PDR of state of art multicast protocols suggests that

a packet recovery mechanism must be employed for reliability. An additional obser-

vation is that MRBIN’s PDR is worse than that of RSGM. The number of branch

nodes in RSGM depends on the size of the cell. In our setting, RSGM has more

branch nodes, when compared with MRBIN; thus MRBIN shows relatively better

104

performance in terms of PL, PC and E2E. However, the smaller number of branch

nodes means the higher chance of packet loss, because a single packet carries data to

more members. This also explains why MRBIN’s PDR rate increase is higher than

that of RSGM.

Next, we fixed ND=60, FC=3 and FL to 1, and measured PDR for RE2MR,

RSGM, and MRBIN by varying NM from 2% to 8%. Figure 4.18 shows the result.

As we increase NM , PDR for all protocols decreases. A simple explanation for

this is that higher traffic increases the chance of collisions and interference. Similar

to the result for different ND setting, RE2MR shows the best performance, when

compared with RSGM and MRBIN. Similar to the result shown in Figure 4.17,

MRBIN’s decrease rate in PDR for increasing NM was higher than that of RSGM,

because MRBIN has the smaller number of branch nodes.

105

5. CNT-AWARE CONVERGECAST AND UNIFIED ROUTING FRAMEWORK

In this section, we present the design, implementation details, and experimental

results for our unified location-based routing framework called CoLoR that integrates

our CNT-aware location-based unicast, multicast, and convergecast routing proto-

cols. In particular, the details of our CNT-aware convergecast routing protocol is

also presented.

5.1 CNT-Aware Unified Location-based Routing (CoLoR): Overview

5.1.1 Software Architecture

We start by presenting an overview of CoLoR. We first give a brief description

of the software architecture depicted in Figure 5.1. We then explain how various

pieces of the architecture work together by using an example of a typical deployment

scenario.

The software architecture for CoLoR consists of three main components: CNT

Support, Routing Engine, and Packet Forwarder, as denoted by dotted (green) boxes

in Figure 5.1. The CNT Support component has three modules: Boundary Detec-

tion, Boundary Abstraction, and Cut Detection modules. As shown in Figure 5.1,

the Boundary Detection module uses the Boundary Abstraction module to abstract

detected boundaries into polygons. This abstract information is used by the modules

in Routing Engine as well as the Cut Detection module, thereby significantly sim-

plifying the implementation of Cut Detection. The boundary detection/abstraction

process accesses information on neighboring nodes through the Neighbor module.

When the CNT detection/abstraction process is completed, the abstract CNT infor-

mation is broadcast throughout the network using the Bcast module.

The Routing Engine component is responsible for determining a routing path for

106

WSN Application

1‐11‐n n‐1

GF
Boundary

Detection

Boundary

Abstraction

Cut Detection

CoLoR Routing Engine

CoLoR CNT Support

MAC

CC2420

Network

Neibor

Bcast

CoLoR Forwarder

Figure 5.1: Software architecture of CoLoR routing framework

Table 5.1: Sizes of the three main components.

Forwarder CNT Support Routing Engine
(GF+Nei+Bcast) +Nei+Bcast +CNT Support+GF+Nei+Bcast

ROM 26,120 Bytes 29,112 Bytes 46,594 Bytes
RAM 1,863 Bytes 4,490 Bytes 8,654 Bytes

forwarding a packet. The Routing Engine integrates routing protocols for three ma-

jor routing paradigms: 1-1 (unicast), 1-n (multicast), and n-1 routing (convergecast).

As shown in Figure 5.1, all three modules rely on the abstract CNT information pro-

vided by the CNT Support component. In particular, 1-1 Routing module also uses

the reachability information received from the Cut Detection module. It is impor-

tant to note that both 1-n and n-1 Routing modules reuse the functionalities of 1-1

107

Routing module, thereby reducing the memory size for implementation. The Packet

Forwarder component includes a Neighbor Discovery module, Geographic Forward-

ing (GF) module, and broadcasting (Bcast) module which directly interact with an

underlying MAC protocol. Table 5.1 shows the RAM/ROM sizes of the components

for the CoLoR architecture, when implemented on a TelosB mote running TinyOS

2.1.2. As shown, the entire framework fits in a TelosB mote having very limited

memory space with the ROM size of 48 KBytes and RAM size of 10 KBytes.

5.1.2 Use Case Scenario

Having presented an overview of the CoLoR software architecture, we now con-

sider a simple deployment scenario to explain how various pieces of the routing frame-

work work together. When sensor nodes are first deployed, nodes run the Neighbor

Discovery module and select their neighbors with reliable links. The sink node also

performs the neighbor discovery and joins the network. Based on discovered neigh-

bors, nodes detect CNTs in the network. As the CNT Detection module identifies

boundary nodes, the CNT Abstraction module abstracts the boundary information

into polygons. More specifically, the CNT Abstraction module finds the vertex nodes

for each boundary, i.e., the nodes corresponding to the vertices of a polygon enclos-

ing the boundary. Once the vertex nodes are identified, their locations are broadcast

throughout the network. Note that we refrain from broadcasting the locations of

all boundary nodes to prevent the broadcast-storm problem and also to reduce the

overhead for nodes to store the locations of boundary nodes. Consequently, when the

broadcast is finished, all nodes in the network have the abstract information about

holes in the form of polygons. Using the abstract boundary information, the Cut

Detection module can find whether a given destination is reachable or not by using

a point-in-polygon algorithm. It should be noted that if the sink node knows all

108

the locations of deployed nodes, the sink node can compute the boundary of CNTs

in a centralized manner, thus not having to install the CNT Detection/Abstraction

modules. However, users who are interested in autonomous operations of CNT detec-

tion/abstraction to cope with unexpectedly arising CNTs, e.g., destroyed sensors due

to environmental factors or hostile users, may install the CNT Detection/Abstraction

modules.

Now assume that a source node, say s, sends a packet to a destination node

denoted by t. When source and destination nodes are outside the convex hulls of

holes in the network, we use the convex hulls of holes to determine a path with

guaranteed stretch. More specifically, given the locations of source and destination

nodes, the 1-1 Routing module computes a set of intermediate destinations I1, I2, ...

for node s; node s then sends the packet first to I1; upon the packet reaching I1,

node I1 sends the packet to the next intermediate destination I2, and so on, until the

packet reaches the destination t. This way the 1-1 Routing module guides the packet

along a path with guaranteed stretch. We will discuss the details of the 1-1 Routing

module in Section 5.4.1. When either source or destination (or both) is inside the

convex hull of a hole, a network infrastructure, called local visibility graph, is used

for guiding a packet optimally (i.e., in terms of path length) to the destination node.

We defer the details on the local visibility graph until Section 5.4.1.

When source node s wants to send a packet to a multicast group, say M , node

s uses the 1-n Routing module. Due to the limited memory space of a sensor mote,

and assuming that the sink has abundant resources, we choose a design in which

the sink node manages the multicast group – nodes join/leave a multicast group

by sending a short control packet to the sink node. So in our 1-n routing design,

the computation of paths to multicast members is done at the sink node. Our 1-n

Routing module ensures that nodes find optimal routing paths to multicast members

109

Figure 5.2: Our testbed with 42 Telosb motes.

without requiring the nodes to encode all locations of multicast members in a header.

The 1-n Routing module also allows for energy-efficient recovery from packet loss and

offers functionality for achieving higher energy efficiency at the cost of more storage

overhead. The details of the 1-n Routing module will be discussed in Section 5.4.2.

One distinctive characteristic of wireless sensor networks compared to other net-

works is the traffic pattern called convergecast (i.e., n-1 routing) where all nodes

report data to the sink. This unique traffic pattern, when there are holes in a net-

work, creates regions with higher traffic called hot zones. The motivation behind

designing the n-1 Routing module is to avoid hot zones, thereby increasing the net-

work lifetime. Thus, when source node s wants to send a packet to the sink, it uses

the n-1 Routing module that reduces the impact of the hot zones. The details on the

n-1 Routing module will be discussed in Section 5.4.3. Note that we did not adopt

the current implementation of a widely used convergecast algorithm like CTP [74]

because of limited memory space – instead we reuse part of functionalities for our

110

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

y

x

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

y

x

(b)

Figure 5.3: The topology of testbed with (a) pdr threshold = .7; (b) pdr threshold
= .9; Unit distance equals 15 cm.

1-1 Routing module for implementing our n-1 Routing module.

5.2 Experimental Setup

Before we describe the details of each component for CoLoR framework, we

present our experimental setup used for evaluating our implementation. Our testbed

consists of 42 TelosB motes attached to the ceiling of an office as shown in Figure 5.2.

The ceiling is about 2.7 meters high and the size of the office is 6 by 4.5 meters. The

motes form a 7 by 6 grid network, where inter-node distance is approximately 30 cm.

The motes are programmed and powered via USB cables connected to a main PC

running Ubuntu 12.04 with AMD Opteron Processor 252 and 16 GBytes of RAM.

The transmit power of motes is fixed to 1 (i.e., CC2420 DEF RFPOWER is set to

1 for TinyOS). Consequently, the network is at most 7 hops (without holes). We

debugged our work on the central PC by allowing motes to send debug messages

through USB interfaces.

Figure 5.3(a) and Figure 5.3(b) depict the testbed topology with different pdr

thresholds. The pdr threhold means the minimum allowable packet reception ratio

111

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

y

x

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

y

x

(b)

Figure 5.4: The Topology of the testbed with a large “convex” hole and a large
“concave” hole, with pdr threshold=.8.

over a given link. In other words, a link with smaller pdr than a threshold is not

considered as a neighbor. We created two types of holes – convex and concave holes.

The topologies with holes are shown in Figure 5.4(a) and Figure 5.4(b) for convex

and concave holes, respectively. To create holes, we artificially disabled links crossing

the holes. For the experiments we set the pdr threshold to .8. The reason for this

particular threshold is specified in Section 5.3.

5.3 CoLoR CNT Support

This section describes the implementation details of the CNT Support compo-

nent. The CNT Support component detects CNTs in the network and abstracts the

boundary of CNTs as abstract data types (i.e., polygons and convex hulls). The com-

ponent also provides reachability information on whether a given destination node is

reachable or not. The CNT Support component consists of three modules: Boundary

Detection, Boundary Abstraction, and Cut Detection. Following subsections present

the details of each module.

112

5.3.1 Boundary Detection

For the implementation of the Boundary Detection module, we use our boundary

detection algorithm introduced in Section 2. The following is the nesC interface for

the Boundary Detection module:

interface BoundaryDetection {

command error t initBoundaryDetection();

command location t* getVertices(uint8 t idx);

command location t* getVirtualVertices(uint8 t idx);

command uint8 t getNumHoles();

command error t setVirtualVertices(location t*,

uint8 t idx);

event void boundaryDetectionDone();

}

The command initBoundaryDetection() implements the boundary detection algo-

rithm called the BOUNDHOLE algorithm. As described in Section 2, the BOUND-

HOLE algorithm identifies “stuck nodes” where a packet can be stuck in a local

minimum during the geographic forwarding process. Once stuck nodes are identi-

fied, one of them for each hole sends a control packet that travels along the boundary

of the hole. While the control packet traverses the boundary of a hole, boundary

nodes are detected. As we will show in the following section, as the control packet

traverses, the boundary abstraction is also performed. The boundary is abstracted

as a set of vertices of a polygon that surrounds the hole. Once the boundary de-

tection completes (i.e., the abstraction is also done), the boundaryDetectionDone()

event is triggered and the locations of discovered vertices are broadcast throughout

the network using the Bcast module. After nodes obtain the vertices of polygons for

113

Table 5.2: Linear-regression-based abstraction method.

Code Size (Lines) Time Memory

Linear-regression 88 O(N) O(N)
State-of-the-art [3] 578 O(N2 logN) O(N)

holes, modules in CNT Routing Engine component can use various commands such

as getVertices(), getVirtualVertices(), setVirtualVertices(), isReachable() and getNum-

Holes() for their operations. What these commands do and when they are called will

be clarified as we present the details of each module for our framework that uses the

commands.

As mentioned in the beginning of this section, while the control packet is for-

warded by the boundary nodes of a hole, the boundary abstraction process is also

executed. The details for the boundary abstraction process are presented in the

following section.

5.3.2 Boundary Abstraction

While the control packet for the BOUNDHOLE algorithm traverses the bound-

ary nodes of a hole, the boundary nodes receiving the control packet perform the

CNT abstraction process (i.e., a process for abstracting the boundary into a poly-

gon). We, however, noted that the state-of-the-art CNT abstraction algorithm [3]

cannot be directly applied to a real-world setting. Its operation is conceptually sim-

ple (see [3] for details; due to limited space, we omit the details of their protocol),

but it requires complex implementation with much higher time complexity mostly

due to non-trivial geometric algorithms (i.e., a problem of finding arbitrarily ori-

ented minimum bounding box). As Table 5.2 shows, it is interesting to note that

when compared with our solution, the state-of-the-art abstraction algorithm requires

nearly 7 times longer code size – thus taking a lot more program memory – and higher

114

time complexity for computation. For a resource-constrained sensor mote, we found

that the implementation of the algorithm on a mote was a very challenging task.

Furthermore, the state-of-the-art CNT abstraction requires the control packet to po-

tentially store all locations of visited boundary nodes (while traversing the boundary

nodes for a hole). This requirement poses a significant limitation as the maximum

packet size for 802.15 is only 133 Bytes including all headers [75]. Therefore, to make

the CNT abstraction properly work in a real-world setting, we have to control the

packet size and simplify the implementation to reduce the ROM size. To address

these challenges, we develop a linear-regression-based CNT abstraction. It requires

the control packet to contain only k (in our experimental setting, k = 10) locations

of visited boundary nodes, where k is a user-specified parameter. When receiving the

control packet, nodes perform a linear regression on at most k locations. When the

correlation coefficient for the linear regression is larger than a predefined threshold,

it selects the last node as a vertex and stores the location of the vertex in the control

packet. Thus, when the control packet finishes traversing the boundary nodes and

returns to the initiator, all vertices are identified and stored in the control packet.

The following nesC code shows the interface of the Boundary Abstraction module:

interface BoundaryAbstraction {

command bool leastSqrRegression

(location t* visitedNodes, uint16 t nodeSize);

}

Recall that the CNT Abstraction module is used by the CNT Detection module –

the leastSqrRegression() command is called by a boundary node receiving the control

packet for the BOUNDHOLE algorithm to see if it is a vertex node. The parameter

visitedNodes contains the set of nodes in the control packet to be tested for linear

115

 0

 2

 4

 6

 8

 10

T
o

ta
l
#
 o

f
P

k
t

T
x

Node Id

Flooding
Boundary Detection

Figure 5.5: Overhead for CNT detection/abstraction.

regression and the parameter nodeSize is the number of the nodes (< k).

Figure 5.5 shows the overhead for CNT detection/abstraction in terms of the

number of packet transmissions including the link-layer retransmissions. As shown,

the overhead consists of two parts: overhead for forwarding the control packet and

overhead for flooding the locations of discovered vertices. Remarkably, the per-node

packet transmissions was 2.26 on average in our experimental setting, which we

believe is a reasonable overhead.

5.3.3 Cut Detection

The Cut Detection module is used by the 1-1 Routing module to determine

whether a given destination is reachable or not. The Cut Detection module allows

nodes to find a cut with respect to any node, i.e., realizing the peer-to-peer cut

detection. The implementation of peer-to-peer cut detection is based on the P2P-CD

algorithm presented in Section 2. One important reason why we choose the P2P-CD

algorithm is that we can significantly simplify the implementation as the peer-to-peer

116

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

A
c
c
u
m

u
la

te
d
 #

 o
f
P

k
t
T

x

Seconds

Figure 5.6: The accumulated packet transmissions when no cut detection mechanism
was used.

cut detection algorithm relies on abstract CNT information, and the CNT Detection

module already implements the CNT detection/abstraction.

More specifically, the Cut Detection module uses the CNT Detection/Abstraction

module, i.e., it uses the boundary information in the form of a polygon. Given the

locations of source node s and destination node t, the decision on whether the two

nodes can reach each other is based on an application of a point-in-polygon (PIP)

problem, which finds whether a point is inside a given polygon or not. The following

nesC code is the interface of the Cut Detection module:

interface CutDetection {

command bool isReachable(location t dest);

}

The command isReachable() uses the getVertices() command to get the abstract

CNT information; based on the abstract CNT information, it performs cut detection

117

and returns TRUE if the destination at location dest is reachable. As mentioned,

the implementation of the Cut Detection module is significantly simplified, taking

only 100 lines of codes, because it implements much of its functionality by reusing

code from the CNT Support component. However, the benefits are significant. Fig-

ure 5.6 depicts the accumulated number of packet transmissions when no cut detec-

tion mechanism is used. More specifically, we sent a packet from a fixed source node

to a randomly selected destination node every 10 seconds. We observed that when

the destination node is unreachable, packets traveled around the outer boundary

of the disconnected segments of the network until the maximum TTL is reached,

causing a significant number of unnecessary packet transmissions.

5.4 CoLoR Routing Engine

This section presents the details of the Routing Engine component – 1-1, 1-n,

and n-1 Routing modules.

5.4.1 1-1 Routing

The focus of unicast location-based routing has been on achieving guaranteed

small stretch. The implementation of the 1-1 Routing module is based on our LVGR

protocol presented in Section 3. The 1-1 Routing module provides the following nesC

interface:

interface Unicast {

command error t initLocalVis();

command error t sendPacket(location t dest,

void* msg, uint16 t msg size, bool, virtual);

event error t packetReceived(void *msg,

uint16 t msg size);

}

118

Table 5.3: Comparison of required memory space.

ROM RAM

Forwarding w/o Face Routing 26,120 Bytes 1,863 Bytes
GPSR [10] 30,291 Bytes 3,371 Bytes
CLDP [11] 38,278 Bytes 4,338 Bytes

The command sendPacket() sends a message to the destination node at location dest

using outside and/or inside convex routing modes (details on the routing modes will

be explained shortly). The command first obtains the abstract CNT information

(i.e., information about holes in the form of polygons) by calling CNT Support’s

getVertices(). If the abstract CNT information is not available, the sender uses the

underlying Geographic Forwarder component to send a packet. Otherwise, the sender

first checks whether the destination is reachable or not by calling CNT Support’s

isReachable() command. Then, if the destination is reachable, based on the abstract

CNT information, it finds out whether the sender is inside or outside the convex hulls

of holes in the network. Depending on its location, the sender uses either the inside-

convex or outside-convex routing. The parameters of the sendPacket() command are

self explanatory, except for virtual, for which we defer the details until Section 5.4.3.

The packetReceived() event is signaled on a destination node when a unicast packet

reaches it. The command initLocalVis() is used to initiate the construction of a

visibility graph.

By the time the 1-1 Routing module runs, the CNT support component may

or may not have completed the CNT detection/abstraction process. When the ab-

stract CNT information is unavailable, the 1-1 Routing module uses the Geographic

Forwarder module to send a packet. In particular, for the implementation of un-

derlying geographic forwarder for the 1-1 Routing module, we reduce the RAM and

119

 0

 200

 400

 600

 800

 1000

 1200

 1400

 20 40 60 80 100

U
s
e
d
 m

e
m

o
ry

 (
b
y
te

s
)

Total # of vertices for convex hulls

Figure 5.7: Max memory used for the outside-convex + Dijkstra computation.

ROM sizes of the Forwarder module compared with other well-known implementa-

tions [10, 11] by not using Face Routing [10]. Instead, as proposed in [8], we use

the cycle of discovered boundary nodes for routing around holes. More specifically,

when a packet is stuck at a local minimum, the packet is forwarded to the neighbor-

ing boundary node according to the right-hand rule [8] until greedy routing can be

resumed. Table 5.3 compares the ROM and RAM sizes for the implementations of

different forwarding schemes. As shown, our implementation reduced the ROM and

RAM sizes, in particular the RAM size significantly, by not implementing the face

routing.

To prove the feasibility for running the outside-convex routing locally in a mote,

we measured the maximum used memory for the outside-convex Routing module

by varying the number of vertex nodes. We depict the results in Figure 5.7. It is

interesting to note that our results match the theoretical bound [58] – the maximum

used memory linearly increases as the number of vertices increases. As the figure

120

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 20 40 60 80 100

P
a
c
k
e
t
T

ra
n
s
m

is
s
io

n
s

Seconds

Average
Maximum

Figure 5.8: Overhead for the construction of local visibility graphs.

shows, the memory overhead for the real-world implementation is reasonable, taking

up about 1 KBytes for a very large number of vertices of about 100.

We implement a distance vector routing to construct a local visibility graph. More

specifically, for each hole, vertex nodes in the convex hull of the hole set their visible

vertex nodes in the same convex hull as their virtual neighbors. Each node maintains

a routing table where each entry contains a destination vertex node, the next vertex

node to which a packet should be sent to reach the destination vertex node, and

the cost in terms of Euclidean distance to reach the destination vertex node. This

routing table is periodically – in our setting, every 10 seconds – exchanged with

virtual neighbors. Since two visible neighbors might be multiple hops away from

each other, to send a routing table to neighbors, we used our Geographic Forwarder.

The routing table exchanges are continued until the routing table converges. This

local visibility graph construction is initiated by initLocalVis() command, which is

called by the application when the boundary detection finishes.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Hop count

1-1 Routing
VIGOR
GPSR

Figure 5.9: Path length in hop count for the convex hole scenario.

To measure the overhead for building a local visibility graph, we ran our 1-1 Rout-

ing module in the concave-hole scenario. Figure 5.8 depicts the per-node communi-

cation overhead – the average accumulated number of packet transmissions and the

maximum accumulated packet transmissions (including link-layer retransmissions)

for building the local visibility graph. We found that in our experimental environ-

ment the convergence of the routing tables was achieved relatively quickly, i.e., with

small amount of overhead. More specifically, all nodes finished constructing the lo-

cal visibility graph at the 6-th iteration, and the average per-node communication

overhead was about 10 packets.

Once vertex nodes have routing tables that converged – local visibility graphs are

constructed and nodes can use the inside-convex routing. Given the visibility graphs

and the mechanisms for switching routing modes, our 1-1 Routing module achieves

a bounded path stretch of O(r), where r is the diameter of the largest hole in the

network. Due to space constraints, we omit the proof for the analytical bound.

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Hop count

1-1 Routing
VIGOR
GPSR

Figure 5.10: Path length in hop count for the concave hole scenario.

To show that our 1-1 Routing module generates a path with small stretch, we

compared the path lengths (in terms of hop counts) for our 1-1 Routing module

with state-of-the-art geographic unicast routing protocol called VIGOR [3]. Note

that to obtain routing paths for VIGOR, we ran VIGOR in a C++ simulator and

obtained intermediate destinations off-line, and then ran VIGOR on our testbed. We

also measured the path length for GPSR as a base line. We performed experiments

for both scenarios for convex and concave holes. We randomly selected 20 pairs

of source and destination nodes. For the same set of source-destination pairs, we

measured hop counts for different routing protocols. Figures 5.9 and 5.10 depict the

results for convex-hole scenario and concave-hole scenario, respectively. Interestingly,

for both scenarios, our 1-1 Routing module achieved very close path lengths to the

state-of-the-art protocol, without requiring the source node to send a control packet

to a destination node using a default geographic routing protocol (e.g., GPSR),

which is the main drawback of the state-of-the-art protocol [3]. Another interesting

123

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.25 0.5 1 2 4

P
a
c
k
e
t

D
e
liv

e
ry

 R
a

te
 (

%
)

Packet Arrival Rate (Pkts/Sec)

Buf=100 Buf=10

Figure 5.11: Packet delivery ratio of the 1-1 Routing module for the concave hull
scenario.

observation was that GPSR performed worse in the concave-hole scenario compared

with convex-hull scenario. The reason is that for the concave-hole scenario, GPSR

relied more on routing along the boundary of a hole than the convex-hole scenario,

especially when sending a packet to nodes inside a convex hull.

We now show that our 1-1 Routing module has reliable packet delivery ratio. To

measure the packet delivery ratio, we fixed our packet size to 90 Bytes (including the

header) and varied the buffer size. Figure 5.11 shows the results. We observed that

our 1-1 routing achieved reliable packet delivery ratio, mostly because it is based on

underlying geographic forwarder, although with a small buffer size of 10, the packet

delivery ratio decreased due to dropped packets. Interestingly, this result also proves

that the underlying geographic forwarder works quite well without Face Routing.

124

fi vi1 vi2 vik...f1 f2 fk...

(a) (b)

MID MID

Figure 5.12: Multicast packet format: (a) output packet to the requested node; (b)
output packet to a facility node.

5.4.2 1-n Routing

This section presents the details of our 1-n Routing module. Nodes use 1-n rout-

ing when they send a packet to a group of nodes (i.e., a multicast group). Based

on abstract CNT information received from the CNT Support component, the 1-n

Routing module finds a path to each multicast member (i.e., a node belonging to

a particular multicast group) such that the total sum of path lengths to all multi-

cast members, for a multicast group, is minimized. The implementation of the 1-n

Routing module is based on our REGMR algorithm introduced in Section 4.

Protocol Design and Implementation

Given the limited memory space of a sensor node, we choose a design in which

the sink node manages multicast members. In other words, the sink node stores

the IDs and locations of multicast members for each multicast group. When a node

wants to join a multicat group, it sends a Join Message containing the multicast

group ID, and its ID and location, to the sink node; similarly when a node wants

to leave from a multicast group, it sends a Leave Message with the multicast group

ID and its ID to the sink node. When a node needs to send a packet to a set of

nodes in a multicast group, it sends a Request Message, containing its location, the

multicast group ID, and the level (we will discuss the details on “levels” shortly)

to the sink node. Upon receiving the request packet, the sink node computes the

optimal path to each multicast member and sends the result to the requested node.

125

The 1-n Routing module has the following nesC interface:

interface Multicast {

command error t sendPacket(uint8 t mcastID,

uint8 t level);

command error t join (uint8 t mcastID,location˙t myLoc,

uint16 t ID);

command error t leave (uint8 t mcastID, uint16 t ID);

event uint8 t mcastPktReceived (void *msg,

uint16 t msg size);

}

A node joins a multicast group by calling the join() command which sends a Join

Message to the sink. Similarly, a node leaves a multicast group by calling the leave()

command. In the leave() command, the Leave Message is sent to the sink. A node

calls sendPacket() command to send a packet to a multicast group. The sendPacket()

command obtains the locations of facility nodes from the sink node by sending the

Request Message to the sink. When the sink node receives the request message, it

computes the locations for facility nodes based on abstract CNT information obtained

by calling CNT Support’s getVertices() command. Upon finishing the selection of

facility nodes, the sink, using the 1-1 Routing modules’s sendPacket() command,

sends the locations of facility nodes to the requested source node, and transmits the

locations of member nodes to corresponding facility nodes. Figure 5.12 shows the

structure for this output packet. The packet of type (a) containing the locations of

facility nodes denoted by fi is sent to the source node, and the packet of type (b)

containing the locations of the member nodes for facility fi, denoted by vij is sent to

the facility node. Here MID represents multicast group ID. Note that the packet size

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20

C
D

F

Sum of path length (hop count)

1-n Routing
HGMR

Figure 5.13: Total sum of path length in terms of hop count for 1-n routing and
HGMR.

is limited to the capacity of a facility node, i.e., the maximum number of multicast

members that can be assigned to a facility node. When receiving the locations of

facility nodes from the sink (i.e., the 1-1 Routing modules’s packetReceived() event

is triggered), the source node sends the packet to the facility nodes using the 1-1

Routing module’s sendPacket() command. If facility nodes receive the locations of

assigned member nodes, the facility nodes store the locations so that they can later

distribute a multicast packet to their members. The event mcastPktReceived() is

triggered when a multicast packet reached the destination node (i.e., either a facility

node or a multicast member node). If the receiving node is a multicast member, the

multicast transmission process is complete. If the receiving node is a facility node,

the facility node distributes the received packet to its multicast members using the

1-1 Routing module’s sendPacket() command.

Facility Node Selection

We implemented an exact solver for the problem of optimally locating facility

127

Table 5.4: Execution time of the facility-node-location solver.

100 200 300 400

Execution time for 0 hole (sec) 1.7 6.5 21.7 54.2
Execution time for 1 hole (sec) 1.2 21.3 27 45.5
Execution time for 3 hole (sec) 2.1 13.5 35 41.7

nodes using MATLAB 2011b 64 bit on a PC running Windows7 64 Bit with Intel

i7 920 Processor and 24 GBytes of RAM. Table 5.4 shows the computation time

for different number of multicast members and holes. As shown, our exact solver

computes facility locations quite quickly for a relatively large number of multicast

members. We also advise that, for a very large network with thousands of member

nodes, users may adopt a heuristic solvers for capacitated facility location prob-

lem [76, 77]. We then evaluated the performance of the 1-n routing by measuring

the total sum of path lengths for a given set of multicast members and compare it

to the state-of-the-art hierarchical geographic multicast routing called HGMR [4].

For this set of experiments, we used 6 different sets of randomly selected multicast

members and ran a multicast routing 20 times for each set in a concave-hole scenario.

Figure 5.13 shows the results. As shown, our 1-n Routing module produced paths

with smaller sum of path lengths compared with HGMR. Interestingly, we observed

that HGMR produced much worse path lengths than expected. The reasons are:

first, HGMR does not optimize the path length when determining APs (i.e., the

corresponding concept for our facility node) to multicast members; second, maybe

more importantly, HGMR does not consider holes in the network.

Multi-level Facility Node Selection

The 1-n Routing module employs the multi-level facility mechanism to achieve

higher energy savings – by reducing the total sum of path length to multicast mem-

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20

C
D

F

Total number of packet tx

level=1
level=2

Figure 5.14: Communication overhead for different facility levels.

bers. Recall that the basic idea is that after running our solver for finding the

first-level facility nodes, we run our solver again, with the selected facility nodes

in the first-level as multicast members, obtaining the facility nodes in the second

level, and so on. The sink node then sends the locations of selected facility nodes

in the highest level to the source node (packet type (a)) and sends the locations of

either assigned member nodes or facility nodes in the lower levels to selected facility

nodes (packet type (b)). A source node, when calling the command sendPacket(),

specifies the desired level as a parameter, so that the sink computes the multi-level

appropriately.

Using higher facility levels permits higher energy savings by reducing the number

of packet transmissions. However, in order to use higher facility levels, more nodes

need to maintain state information (i.e., the locations of members). To see the

benefits of using higher facility levels, we allowed a source node to send a packet to

8 pre-selected multicast members. We then measured the total number of packet

129

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000

A
c
c
u
m

u
la

te
d
 #

 o
f
P

k
t
T

x

Seconds

Source-based recovery
Direct recovery

Figure 5.15: Comparison of overhead for packet-loss recovery.

transmissions for both facility level of 1 and facility level of 2. Figure 5.14 shows the

results. As expected, the figure shows that when we used a higher level, we could

reduce the number of packet transmissions by aggregating some paths to multicast

members. However, we must note that higher facility levels require more nodes to

work as facility nodes, increasing the storage overhead in the network.

Packet Recovery

The design of 1-n Routing module has an additional benefit for packet-loss recov-

ery. For recovery from packet losses, we adopt a widely used NACK-based algorithm.

More specifically, assume that a node received packets with sequence numbers 1, 2,

and 4. The receiver finds that packet 3 is missing and may request retransmission to

a source node. The 1-n Routing module makes this retransmission mechanism more

energy efficient (in terms of number of packet transmissions used for packet-loss

recovery) by allowing the receiver to request retransmissions directly to a nearby

facility node. To verify the advantage of the “direct packet-loss recovery” from a

130

facility node, we artificially caused packet losses at multicast members with proba-

bility .9. A source node sent a packet to four multicast members every second. We

then counted the total number of accumulated packet transmissions for both the

“direct packet loss recovery” and the “packet loss recovery from the source node”.

Figure 5.15 shows the results. As the result shows, the direct packet-loss recovery

from a facility node significantly reduced communication overhead. An interesting

observation is that this performance difference becomes larger and larger as time

elapses – at only 1000 second, we reduced the number of packet transmissions by up

to 70% even in our small test-bed environment.

5.4.3 n-1 Routing

This section describes the details of our n-1 Routing module. The n-1 routing,

also called convergecast, is an important routing primitive for wireless sensor net-

works because major part of network traffic is for nodes to report their observations

to a single point, the sink node. One can observe that we can implement our n-1

Routing module by simply using the 1-1 Routing module. However, as briefly men-

tioned in Section 5.1, there are issues to be addressed when implementing our n-1

Routing module using our 1-1 Routing module. One important issue is the energy

hole problem [78]: since all nodes send packets to the sink, the nodes around the sink

consume higher energy because they handle higher network traffic. Fortunately, this

type of energy hole problem has received sufficient attention, and many solutions

have been proposed [78, 7]. However, when there are holes in the network, especially

large ones, the energy hole problem occurs in overlooked regions other than around

the sink node. To illustrate this scenario, see Figure 5.16, where there is a large hole

in the network. In this scenario, nodes in region denoted by A, when they use our

1-1 Routing module, will send packets along the paths that are designed to optimally

131

Hot zone
Sink

Original boundary

paths

Hole

nodes Virtual boundaryArea A

Hot zone
Sink

Original boundary

paths

Hole

nodes Virtual boundaryArea A

Figure 5.16: The energy hole problem in “hot zones”.

detour the hole. A problem is that all such paths pass through common areas de-

noted by red zones called “hot zones”. An energy hole problem arises in these hot

zones.

Therefore, the design of our n-1 Routing module is focused on addressing the en-

ergy hole problem around “hot zones”. The main idea is to allow nodes to use virtual

boundaries when they send a packet to the sink. The virtual boundary is formed

by extending the original boundary of a hole – more precisely, the convex polygon

of the hole, which is obtained by calling the underlying CNT Detection module’s

getVertices() command. Figure 5.16 shows an example of the 2-level virtual bound-

ary, which extends the original boundary also called level-1 boundary. When the

computed virtual boundary intersects level-1 boundaries (i.e., original boundaries),

the virtual boundary is not used, to prevent concentrated traffic on the level-1 bound-

aries; however, intersection with other virtual boundaries with levels greater than 1

is allowed. Also, depending on the locations of virtual boundaries, it is possible that

132

28 30 34 33 32 31 29

0 1 6 5 3 2 4

27 23 21 22 26 24 25

12 11 13 7 8 9 10

18 15 16 20 14 17 19

40 36 35 39 38 41 37

Virtual boundary

Original boundary

28 30 34 33 32 31 29

0 1 6 5 3 2 4

27 23 21 22 26 24 25

12 11 13 7 8 9 10

18 15 16 20 14 17 19

40 36 35 39 38 41 37

Virtual boundary

Original boundary

Figure 5.17: A scenario for evaluation of n-1 Routing.

there is no node at the location of the vertex for a virtual boundary. In this case,

our geographic forwarder sends a packet to the closest node to the location of the

vertex. The maximum level for virtual boundary is given as a system parameter.

The following code is the nesC interface for our n-1 Routing module:

interface Convergecast {

command error t sendPacket(void* msg,

uint16 t msg˙size);

event error t packetReceived(void* msg,

uint16 t msg˙size);

}

The sendPacket() command is used to send a packet to the sink. This command

allows nodes to send a packet to the sink by using different levels of boundaries al-

ternatively, thereby distributing the network traffic. More specifically, to implement

this command, we first compute the virtual boundary by calling the command setVir-

tualBoundary() of the CNT Detection module. Then the command sendPacket() of

133

 0
 100
 200
 300
 400
 500
 600
 700

 0 5 10 15 20 25 30 35 40

T
o

ta
l
#

 o
f

p
k
t

tx

Node ID

Default (Stddev=139)
Virtual Boundary (Stddev=107)

Figure 5.18: Energy consumption for convergecast and convergecast based on virtual
boundary.

the 1-1 Routing module is invoked with the VIRTUAL flag set to TRUE. The 1-1

Routing module, upon receiving the command with the VIRTUAL flag being TRUE,

obtains the virtual boundary by calling the command getVirtualBoundary() of the

CNT Detection module and performs its unicast routing process based on the ob-

tained virtual boundaries. Once the 1-1 Routing module determines a next interme-

diate destination, it forwards the decision to the underlying Forwarder component

with the VIRTUAL flag set to TRUE. As the packet is forwarded, the forwarder checks

whether there is a node at the location of given intermediate destination. When there

is no such node, it forwards the packet to the closest node to the location. When

the packet reaches the sink node, the 1-1 Routing module’s packetReceived() event

is triggered and the 1-1 Routing module signals the sendPacket() event for the n-1

Routing module.

To evaluate the performance of our n-1 Routing module, we placed a hole in the

network as shown in Figure 5.17. In this figure, the virtual boundary for the hole is

represented as red dotted convex polygon. We made nodes with IDs {28, 30, 34, 33,

32, 31, 29, 4, 25, 10, 19, 37} send a packet to the sink node with ID 40. We mea-

sured the total number of packet transmissions including link-layer retransmissions.

134

Figure 5.4.3 shows the results. As shown, when our virtual boundary mechanism

was not used, the network traffic was concentrated on the boundary of the hole and

on the path to the sink. However, when the virtual boundary mechanism was used,

the energy consumption was more evenly distributed, resulting in the reduction of

the standard deviation for the total number of packet transmissions from 139 to 107

– achieving a 23% decrease.

5.5 Lessons Learned

It was a challenging task to fit the entire framework in a mote. To achieve

this, first, each module is designed to implement only its core functionalities, while

sharing as much code as possible with other modules. For example, we offloaded

codes for the selection of facility nodes and management of multicast members to

the sink node, thereby simplifying the implementation on a regular node. Also,

the n-1 Routing module implemented only the virtual boundary mechanism and

reused the unicast functionality from the 1-1 Routing module. Similarly, the 1-

1 Routing module, except for its functionalities for switching routing modes and

computing intermediate destinations, reused the code from Geographic Forwarder

module. Another useful technique we adopted to reduce the code size was to use the

latest version of TinyOS (2.1.2 as of March 2013). This way we could reduce the

total ROM size by up to 25%.

When we deployed TelosB motes on our testbed, we had to estimate the com-

munication range of a mote (with power level 1) to get an idea about where to

place motes. For this measurement, we powered a mote with 2 AA batteries. How-

ever, when we finished placing motes and powered them via USB interfaces, they

had smaller communication ranges. We found that the reason was because multiple

motes were connected to a single USB interface, because we used a USB hub to

135

connect many motes to a central PC. We also found that the orientation of TelosB

motes affect the communication ranges. More specifically, we found that motes com-

municate longer when they are located back to back than when they are located side

by side.

136

6. CNT RESTORATION

In this section, we present a more proactive approach to handle CNTs in the

network – we use mobile nodes to “patch” CNTs for better performance. More

specifically, we use mobile nodes to restore the connectivity of the network and to

maximize the network performance in terms of average path length from all nodes

to the sink node.

6.1 Motivations

As the cost and form factor of wireless sensor nodes shrink, we envision significant

growth in the demand for enterprise-scale wireless sensor networks (WSNs). An

enterprise-scale WSN consists of disconnected subnetworks called segments, each

serving its own purpose. One example application is an enterprise-scale WSN for

disaster management [12], in which one sensor subnetwork identifies victims under a

rubble pile, while another subnetwork monitors the stability of a damaged building.

An enterprise-scale WSN may also appear in typical WSN applications. An example

is a volcano monitoring application. Since it is difficult to cover the entire area

of a target mountain with nodes, a plausible design option is to deploy a number

of disconnected sub-sensor networks in only critical regions. To enable a system-

wide analysis, data generated in each subnetwork must be efficiently transmitted to a

remote base station. Consequently, mechanisms for optimally connecting segments

are of paramount importance for enterprise-scale WSNs.

Besides segmentation in enterprise-scale WSNs because of sparse deployments,

networks can often be unexpectedly segmented if many sensors become disabled. For

example, unexpected network segmentation may occur when hostile users destroy

sensors; when parts of the network are destroyed after a disaster, or even when

137

s1

s2

MN

SN

Sink

Sink

Hole
s1

s2

(a) (b)

p

q r

pq r

s1

s2

MN

SN

Sink

Sink

Hole
s1

s2

(a) (b)

p

q r

pq r

Figure 6.1: The effects of (a) segment shape, and (b) holes on connectivity restora-
tion.

environmental factors, such as wind, may arbitrarily relocate/disable sensors. It is

important that the connectivity of these segmented networks must be immediately

restored for correct operation.

Proactive protocols for connectivity restoration of a segmented sensor network

have recently received attention [17][18]. These protocols use more powerful nodes,

called mobile/relay nodes, to build “bridges” among segments, so that the net-

work becomes connected. These mobile nodes can be of various forms – simple

wifi switches, or devices that can even fly [79]. Paying attention to the cost of mo-

bile nodes, these schemes have focused on minimizing the number of mobile nodes.

However, building bridges with the minimum number of mobile nodes may lead to

suboptimal routing paths between nodes and the sink (i.e., the path length). In fact,

bridges must be carefully placed by considering several aspects of a segmented network

– the sizes and shapes of segments, and even possible holes in segments.

Two examples depicted in Figures 6.1(a) and 6.1(b) show how the geometric

information of segments, and holes in segments affect the solution of connectivity

138

restoration obtained based on the minimum number of mobile nodes, respectively.

For ease of presentation, we denote static nodes by SNs, and mobile nodes by MNs

hereafter. If we are to minimize the number of MNs, a single MN (denoted by triangle

p) can be deployed, as shown in Figure 6.1(a). In this case, the average hop count

for all SNs in segment s1 to reach the sink is 9.5. However, if we connect segments

s1 and s2 through a bridge consisting of two MNs, denoted by triangles q and r, the

average hop count to reach the sink is reduced to 3.5, at the cost of one more MN.

Furthermore, existing connectivity restoration schemes do not consider possible holes

in a network, which may negatively influence the average hop count. Figure 6.1(b)

illustrates an example. A connectivity restoration scheme based on the minimum

number of MNs will place a single MN denoted by triangle p. A notable fact is

that some packets may have to unnecessarily travel along the perimeter the hole.

However, by deploying two more MNs, denoted by triangles q and r, the average hop

count can be reduced (i.e., packets can now be routed over the shortcut, to reach

MN p).

Additionally, protocols for connectivity restoration must be able to cope with un-

expected network segmentation. More precisely, such protocols must provide mech-

anisms to autonomously identify network segmentation, abstract the information

about segments and utilize it for optimal connectivity restoration. State-of-art pro-

tocols [17][18] do not offer such mechanisms.

To address the above issues, first, we define a problem called the Optimal Connec-

tivity Restoration Problem (OCRP) for a segmented WSN. OCRP minimizes both

the number of deployed mobiles and the average path length from nodes to the sink

such that the connectivity of the segmented network is restored. This problem is for-

mulated as a multi-objective optimization problem. Based on the observation that

the problem is NP-Hard, for solving it, we propose a centralized heuristic algorithm

139

called the Connectivity Restoration Genetic Algorithm (CR-GA). The algorithm

is designed for fast convergence towards the Pareto Optimal set by using a novel

scheme for efficiently generating initial solutions, fast evaluation of solution valid-

ity (based on the concept of virtual sensor) and a reduction of the solution search

space. Furthermore, in order to handle scenarios when the global network topology,

i.e., the locations of nodes and their neighbors, is not known (e.g., when a network is

unexpectedly segmented) we propose a Distributed Connectivity Restoration (DCR)

algorithm. DCR autonomously detects network segmentation and establishes bridges

to an adjacent segment without relying on the global topology. The distributed al-

gorithm has lower computation overhead than CR-GA, at the cost of a suboptimal

solution, i.e., longer average path length from nodes to the sink and/or more mo-

bile nodes used – through a theoretical analysis, we demonstrate that DCR has a

bounded worst case performance, when compared with the globally optimal solution.

Lastly, we demonstrate the efficiency and feasibility of proposed solutions through

extensive simulations and a proof-of-concept system implementation, respectively.

6.2 Related Work

6.2.1 Relay node placement

The relay node placement problem (RNP) determines where to deploy relay nodes,

RNs in short, in order to achieve various objectives. These objectives include provid-

ing connectivity [80][81], fault tolerance [82][83][84], and network lifetime [85][86][87].

Lin and Xue [88] proved the hardness of the relay node placement problem for

connectivity and proposed 5-approximation algorithm. Cheng et al. [81] proposed a

faster randomized 2.5-approximation algorithm. Lloyd and Xue [80] then studied a

more general problem with R ≥ r, where R is the communication radius of RNs, and

r is the communication radius of sensors. These algorithms, however, focus only on

140

minimizing the number of relay nodes.

Some prior work pursued fault tolerance by ensuring that a given network is

k-connected after deploying RNs [82][83][84]. Bredin et al. [83] presented an O(1)-

approximation algorithm for k ≥ 2. Kashyap et al. [82] studied the fault tolerance

with k = 2 and proposed 10-approximation algorithm. For more general case with

R ≥ r, Zhang et al. [84] proposed 14-approximation algorithm when k = 2.

Some researchers [85][86][87] focused on improving the network lifetime by de-

ploying RNs. Hou et al. [85] jointly considered the energy provisioning and relay

node placement with the objective of prolonging network lifetime. Wang et al. [86]

studied the performance of dense WSNs when RNs are mobile. They showed that,

with one mobile RN, the network lifetime can be increased by up to a factor of four.

Wang et al. [87] considered the case with varying traffic, and provided an algorithm to

deploy RNs such that the network lifetime is maximized with traffic considerations.

These algorithms, however, do not consider a disconnected (segmented) network.

6.2.2 Segmented WSNs

Abbasi et al. [89] proposed two decentralized algorithms for solving the connec-

tivity restoration problem caused by single node failure. The algorithm coordinates

the movement of mobile nodes in a cascading manner with the objective of mini-

mizing the distance moved. Several work proposed to restore the connectivity of

a segmented network caused by multiple nodes’ failure. Almasaeid and Kamal [90]

designed a scheme that models the movement of a mobile agent to make a seg-

mented network connected over time. However, it is infeasible to assume that mobile

nodes continuously move, because mobility consumes significant energy. Lee and

Younis [17][18] considered the problem of federating disjoint segments. Especially,

they focused on minimizing the number of relay nodes required to restore the connec-

141

tivity. Noting that the connectivity-restoration problem is NP-hard, they provided

a heuristic algorithm. Senel et al. [91] tackled the same problem by establishing a

bio-inspired spider-web topology. However, these schemes focus only on minimizing

the number of relay nodes.

6.3 System Model and Problem Formulation

We consider a disconnected wireless sensor network consisting of a set of segments

denoted by S = {s1, s2, ..., sn}. Each segment may have holes (defined as regions

without deployed nodes). In a segmented network, there are two types of deployed

nodes: static nodes (SNs) denoted by the set X = {SN1, SN2, ..., SNN}, and mobile

nodes (MNs) denoted by the set Y = {MN1,MN2, ...,MNM}. We assume that each

node knows its location. The MNs are uniformly distributed in all segments. As

we will clarify in Section 6.5, we uniformly distribute MNs in segments, so that the

WSN can autonomously cope with unexpected network segmentation. Considering

deployed SNs and MNs, we represent our segmented network as a HCG (Hybrid

Communication Graph), formally defined as follows:

Definition 8 A hybrid communication graph HCG(r,X ,Y) is an undirected graph

with vertices X
∪
Y, and edges defined as follows. Edge exy, where x, y ∈ X

∪
Y,

exists if and only if d(x, y) < R, where d(x, y) is the Euclidean distance between

nodes x and y, and R is the communication range of a node. �

Each SNi periodically senses the area of interest. Sensed data from each sensor

is transmitted to the sink through the shortest path. We denote by Pi the path

from SNi to the sink and by |Pi| the length of path Pi. We assume that MNs

have significantly higher energy in comparison with SNs. Having defined our system

model, we now formally describe the Optimal Connectivity Restoration Problem

(OCRP), as follows:

142

Definition 9 Given a set of SNs X and a set of segments S with holes, OCRP places

a set of mobiles Y (Y ⊆ Y) satisfying the following three conditions: 1)
∑

i∈X |Pi|
|X | (i.e.,

the average path length of all SNs) is minimized; 2) |Y| is minimized; and 3) induced

HCG is connected. �

In particular, the second condition of OCRP ensures the robustness against unex-

pected network segmentation; more specifically, by keeping more spare MNs (i.e.,Y−

Y) uniformly distributed in segments, we improve the chance of autonomous network

connectivity restoration (as it will be described in Section 6.5).

We discretize the problem by dividing the network into grid regions, where each

grid is a square with side R
2
√
2
ensuring that a MN in a grid can reach MNs in

neighboring grids. Grids can be created by pre-computing a rectangular region that

wraps a target area and dividing the rectangular region. Each node then easily

determines in which grid it is located based on its location. Now the OCRP problem

is to decide the grid regions where MNs will be deployed. This decision is represented

by a binary variable yij, where yij = 1 means a MN is placed and yij = 0 means

no MN is placed, on the grid located at (i, j). OCRP is then formulated as a multi-

objective optimization problem as follows:

Minimize

[∑
i∈X |Pi|
|X |

,
∑
i,j

yij

]
.

HCG is connected. (6.1)

yij ∈ {0, 1};
∑
i,j

yij ≤M. (6.2)

143

1 2 3

5 6 7

9 10 11

0 0 0 0 0 1 0 0 0

4

8

12

13 14 15 16

0 0 0 0 0 0 0

MN

SN

Sink

Grid Index

Chromosome

s1

= (2 + 3 + 3) / 3

= 1|| y

hop count for grid 7, 8, 11,

respectively.

|| S

Pi∑

Figure 6.2: A representation of a chromosome.

The first constraint ensures network connectivity, and second constraint specifies the

ranges of variables. Finding the minimum number of MNs for restoring network

connectivity is NP-Hard [17]. Hence, OCRP is NP-Hard.

6.4 Centralized Connectivity Restoration

In this section we present a centralized algorithm, called Connectivity Restoration

Genetic Algorithm (CR-GA), for solving OCRP. Given global topology information,

CR-GA finds a near-optimal set of locations for MNs. Genetic algorithms are well

suited for solving multi-objective optimization problems, because they can find a set

of non-dominated solutions in parallel by maintaining a population of solutions [92]

and they can efficiently approximate NP-Hard problems [93]. Since our problem is

an NP-Hard multi-objective optimization problem, we propose a genetic algorithm

called CR-GA. CR-GA is designed for fast convergence to a close-to-optimal solution

and uses a novel initial solution generation scheme, a virtual sensor-based solution

evaluation scheme, and solution search space limitation.

144

(a) (b)

Randomly selected

point in a segment

2π/k1

Figure 6.3: Examples of: (a) initial population generation; (b) generated bridges.

6.4.1 Initial Population

Genetic algorithms represent solutions to given problems as chromosomes. A

chromosome is encoded as a bit string. In our problem, each bit represents a grid in

the network. A bit is set to 1 when a MN is placed in the corresponding grid; oth-

erwise, the bit is set to 0. Given global topology information, CR-GA computes the

average path length and the number of used MNs for each chromosome (i.e., chromo-

some’s fitness or solution’s optimality). However, computing the shortest paths for

all SNs for each chromosome to obtain the average path length is computationally

intensive. CR-GA thus uses an optional scheme for reducing the computation over-

head, when nodes are relatively uniformly distributed. Consider Figure 6.2, which

shows two segments (one containing the sink, and the other one containing five SNs)

and a MN connecting the two segments. CR-GA represents the SNs in each grid as a

virtual SN at the center of the grid. CR-GA then calculates the average path length

by considering the shortest paths only for the virtual SNs in the grid network.

Having explained how the chromosome is constructed and how it’s fitness is eval-

uated, we introduce a scheme for generating initial population of k chromosomes,

where k is a system parameter. Producing high-quality, yet diverse, initial popu-

145

(a) (b)

Figure 6.4: An example of correction of a chromosome: (a) before; and (b) after.

lation is critical for fast convergence. We propose a scheme which consists of two

steps. In the first step, we randomly choose a point from each segment. In the second

step, we select k1 ∈ N, a parameter, and divide the 2π angle around the sink into

2π/k1 sets. Figure 6.3(a) shows an example with k1 = 4, where different polygons

represent segments. We then apply a heuristic Minimum Steiner Tree algorithm for

each subregion. The first step of the scheme ensures diversity, i.e., diverse bridge

locations are considered; the second step of the scheme aims to obtain high-quality

initial population, i.e., the average path length from the randomly selected points

to the sink are locally minimized in subregions. Figure 6.3(b) shows the results as a

tree. We then set the bits of a chromosome corresponding to the grids intersecting

with the resulting tree, if the grids are either outside segments, or inside holes in

segments. We repeat the above process k times, obtaining k chromosomes – our

initial population.

6.4.2 Evolution and Correction

A sequence of evolutionary processes – selection, crossover, and mutation – are

applied to the initial population to produce a higher quality population. We apply

146

Convex Hull

a

b

c

Figure 6.5: An example of search space limitation.

the well-known rank-based selection algorithm [92] to implement the selection; more

specifically, we rank each chromosome based on the number of dominations, e.g., if a

chromosome is dominated by three chromosomes (i.e., both the number of used mo-

bile nodes and the average path length are smaller than the three chromosomes), its

rank is 3, and chromosomes with rank 0 are called the non-dominated chromosomes.

We sort all k chromosomes in increasing rank order and select the first half. After

the selection process, we randomly choose two chromosomes, say p1 and p2, from

the selected chromosomes to perform a crossover operation. We select a position

uniformly at random in a chromosome, say r. We then build a new chromosome

by taking the first r bits from p1, and the remaining bits from p2. We repeat this

operation k
2
times, creating a new set of k chromosomes. We then perform the mu-

tation for the generated chromosomes, where we randomly select k2 bits and switch

them. After evolutionary processes are applied, some chromosomes might not satisfy

our constraints. As shown in Figure 6.4(a), some segments are not connected to the

sink. To address this problem, we first identify disconnected grids. For each such

grid, we find the closest disconnected grid and connect them. Figure 6.4(b) shows

147

the chromosome after the patching process. This evolution and correction process

iterates until the set of non-dominated solutions converges, e.g., the algorithm stops

when the set does not change for k3 consecutive iterations.

6.4.3 Search Space Limitation

In order to reduce the convergence time of our algorithm, we propose to limit

the search space. More precisely, we consider the placement of MNs only within the

convex hull of all segments (see Figure 6.5 for an example) based on the following

theorem:

Theorem 4 The optimal solution does not place MNs outside the convex hull of

network segments.

Proof: Assume the optimal solution placed MNs outside the convex hull. Say one

such grid outside the convex hull is b as shown in Figure 6.5. Then, there must

be some grid that intersects the convex hull, because bridges are built toward the

sink which is inside (or on the boundary of) the convex hull; say such grid is c. A

contradiction arises, because there always is a better path connecting a directly to

c, instead of connecting a to b, and then to c.

As described, if information about global topology is given, CR-GA obtains a

set of non-dominated solutions for OCRP. However, such information may not be

available, especially when a network is unexpectedly segmented due to, for example,

a large number of disabled sensors by hostile users. The following section describes

distributed heuristic algorithms that allow for autonomous connectivity restoration.

6.5 Distributed Connectivity Restoration

This section presents a distributed heuristic algorithm called the Distributed

Connectivity Restoration (DCR) algorithm. The DCR algorithm establishes locally

148

optimal bridge(s) between two adjacent segments without considering all segments

in a network; thus, DCR has lower overhead (when compared with CR-GA), at the

cost of a suboptimal solution (possibly longer paths from nodes to the sink and/or

more MNs used), allowing any MN to compute the solution for OCRP. We first

describe an overview of the algorithm.

The DCR algorithm consists of mainly three phases. In the first phase, nodes

autonomously detect network segmentation and find the boundary information of

the segment they belong to. The second phase delivers the boundary information

to an adjacent segment. Since this information can not be delivered via packet

transmissions because the network is segmented, our protocol uses the concept of

ferrying – one MN in a disconnected segment stores the boundary information and

moves towards the sink until it meets an adjacent segment. It is important to observe

that since mobility involves very high energy consumption, it may be difficult to move

all the way to the sink, especially for large scale networks. Upon reaching an adjacent

segment, the ferry performs the third phase, where it finds the locally optimal (i.e.,

between two adjacent segments) solution for OCRP. The following sections describe

the details of each phase.

6.5.1 Detection and Abstraction of Segments

Nodes can detect segmentation through various methods, such as distributed

network cut detection algorithms [23]. Once a node detects network segmentation, it

broadcasts a control packet to nodes in the disconnected segment it belongs to. Upon

receiving this control packet, nodes in the disconnected segment execute a boundary

detection algorithm, e.g., [94] to find the boundary nodes of the segment. When the

boundary node detection phase is finished, the boundary node with the largest ID

becomes the leader. This leader node stores the locations of the boundary nodes and

149

sink

s1
s2

s3

s4

c

ad
b

Figure 6.6: An example of ferry movement in DCR.

then broadcasts its ID to the MNs in the segment.

6.5.2 Movement of a Ferry

Upon receiving the ID of the leader, MNs inform the leader of their remaining

energy. The leader then selects a MN with the largest remaining energy and sends

the locations of the boundary nodes to the selected MN. The selected MN, after

receiving this information, starts the ferrying process, by traveling towards the sink

until it meets an adjacent segment.

When a ferry reaches an adjacent segment, it checks the state of the segment – A

segment’s state is disconnected when all nodes in the segment are disconnected from

the sink; otherwise, connected. If the state is connected, then the ferry executes the

third phase of the DCR algorithm, which finds a locally optimal set of locations for

MNs, that connects the two adjacent segments. If the state is disconnected, the ferry

waits until the state changes to connected.

Consider Figure 6.6 for an example. Assume that network segmentation resulted

in four segments denoted by {s1, s2, s3, s4}. Assume that s2 first sends a ferry along

150

Algorithm 7 DCR: code for ferry f
1: if sc reached then
2: // Step 1; VisEdge(sc, sd): Return grids on visible edges of sc and sd.
3: {Vc, Vd} ← VisEdge(sc, sd).
4: // Step 2
5: for each gd ∈ Vd, compute h(gd).
6: if sc is connected then
7: // Step 3
8: for each (gd, gc) pair, gd ∈ Vd, gc ∈ Vc,
9: compute (nm, pl).
10: for each nm, find plmin.
11: for each nm, compute µ.
12: find (gd, gc, h(gd)) s.t. µ is maximized.
13: else
14: wait until s2 is connected.
15: end if
16: end if

the dotted line towards the sink. This ferry meets a node at point d and checks

the state of segment s4, which is disconnected, because it is not yet connected to

the segment containing the sink. Thus, this ferry waits until the state changes to

connected. Next, assume that segment s4 sends a ferry. This ferry reaches the

segment containing the sink, and decides the location of bridge ab. The state of

segment s4 changes to connected ; and the waiting ferry sent from segment s2 now

builds a locally optimal bridge by running the third phase of the DCR algorithm,

described in the following section.

6.5.3 Computation of Locally Optimal Solution

This section explains the details of the third phase, summarized in Algorithm

1. The computation of a locally optimal solution involves three major steps: 1)

candidate grids selection; 2) bridge placement on holes; and 3) bridge selection.

We are given two adjacent segments: one in a disconnected state denoted by sd,

and the other one in a connected state denoted by sc. A ferry sees a network as a set

of grid regions, as explained in Section 6.3 (See Figure 6.7(a)). Define a set of grids

that are contained in segments sd and sc by Gd and Gs, respectively. In particular,

151

a

sd

sink

b c
d

e f

sc

a

sd

sink

b c
d

e f

sc

(a)

p

p1 p2g

gd

hi

sd

d

e f

p3

(b)

Figure 6.7: Illustrations of (a) visible edges; (b) bridge placement on holes.

one grid in sc is called the destination grid and denoted by t. The destination grid

is either a grid containing the sink when the sink is in sc, or a grid containing the

entry point of a bridge that connects to other connected segment when the sink is

not in sc.

The first step of the algorithm is to find a set of target grids for adjacent segments

sc and sd. Given sd and sc, we first find edges visible to each other. Consider

Figure 6.7(a) for an example. The two segments are represented by triangles △abc

and △def . In this example, the visible edges are {bc, ca} for segment sc, and {de}

for segment sd. Target grids are the grids that are located on the visible edges of the

two segments. We denote the set of target grids for sd by Vd, and for sc by Vc.

In the second step, the algorithm places bridges over holes in the segment. For

each gd ∈ Vd and each hole hi, invisible edges of hole hi from gd are identified. See

Figure 6.7(b) for an example. By drawing two tangent lines from gd to hole hi, we

can find that line segments p1p2 and p2p3 are the invisible edges. Define the set of

152

nm pl

4

4

6

7

5 4

6 4

6 3

nm plmin

4

5

6

4

6 3

2

1.5

-

µ

nm pl

4

4

6

7

5 4

6 4

6 3

nm plmin

4

5

6

4

6 3

2

1.5

-

µ

Figure 6.8: An example for marginal utility computation.

grids on the invisible edges for hole hi by Vhi
. Now for each g ∈ Vhi

, we consider a

line starting from gd, passing through g. We denote the farthest intersection with

the edges of segment sd by p as shown in Figure 6.7(b) (there may exist multiple

such intersections). If line segment gp intersects other holes, hi is not considered. We

then consider two tangent lines from p to hole hi. These two tangent lines, with the

edges of hole hi and possibly with the edges of segment sd, create a region Ag, which

represents the number of grids that will contribute to the reduction of the average

path length by placing the bridge on that hole. For example, the two tangent lines

from p (i.e., −→pp1 and −→pp2) create a region Ag = {p, p1, p2}. We then select g′ from Vhi

such that Ag is maximized. We denote such grid g′ for each gd(∈ Vd) by h(gd).

In the third step, we consider line segment gdgc for each gd(∈ Vd) and gc(∈ Vc)

as a bridge connecting two adjacent segments sd and sc. If line segment gdgc inter-

sects any of the visible edges, the line segment is not considered. Now for each pair

(gd, gc), representing a bridge, we compute the average path length denoted by pl and

the number of used MNs denoted by nm as follows: pl =
∑

g∈Gd
(d(g,gd)+d(gd,gc)+d(gc,t))

|Gd|
,

153

where nm represents the number of grids on gdgc. Here the term d(p, q) refers to the

length of the shortest path connecting p and q. In particular, for computing d(g, gd),

we consider two cases: (1) placing bridges on holes according to pre-computed h(gd)

(i.e., placing MNs on line segment gdh(gd) that is within hole(s)); (2) not placing

bridges on holes. After computing pl and nm for all (gd, gc) pairs, we have a set

of (nm, pl) pairs (the table on the left-hand side of Figure 6.8 gives an example).

Different from CR-GA (which produces a Pareto Frontier), due to the lack of com-

putational capabilities, the DCR algorithm chooses one pair that maximizes the

marginal utility. Marginal utility shows the incremental contribution of each added

MN to the average path length. Choosing the solution with maximum marginal

utility thus leads to the most economic decision. For example, for each nm, we first

find the minimum pl, denoted by plmin. The table on the right-hand side shows pairs

(mn, plmin). For each pair (mn, plmin), we then compute the marginal utility, denoted

by µ, as follows: µ = pl−plmin

nm−nmmin
. In our example, from all the pairs (mn, plmin), our

DCR algorithm selects (5, 4), the most economic decision.

6.6 Algorithms Analysis

As presented in Section 6.5, the DCR algorithm finds a locally optimal solution for

two adjacent segments. If we consider all segments in a network, however, a simple

combination of locally optimal solutions may not guarantee optimal performance.

Thus, in this section, we address the following research question: how much worse is

the performance of the DCR algorithm, when compared with the centralized CR-GA?

For answering the question, we consider a network with a circular shape centered

at the sink. The radius of the network is r, where r ≫ 1. As mentioned in Section 6.3,

there are n segments in the network. Considering a very large network (i.e., r ≫ 1)

for deriving worst-case bounds, segments and MNs are represented as points in the

154

r

sink…

…

(a) (b)
M

H

r

nr

nr

f

r

sink…

…

(a) (b)
M

H

r

nr

nr

f

Figure 6.9: Illustrations for (a) worst case scenario; (b) the domain and codomain of
Pareto Frontier.

network.

We first identify the worst case scenario for the DCR algorithm and analyze how

much worse it is, when compared with the globally optimal solution. The following

lemma proves the worst-case average path length and number of used MNs for the

DCR algorithm.

Lemma 8 The DCR algorithm shows the worst performance when n segments are

uniformly positioned on the circumference of the network.

Proof: Figure 6.9(a) shows the worst case scenario. It is easy to note that, for this

scenario, the average path length is r, and the number of used MNs is nr. Assume by

contradiction that there is a scenario with either the average path length greater than

r, or the number of used MNs greater than Nr. In order to have the average path

length greater than r, there must be at least one segment with its path length greater

than r. Since, for this scenario, the DCR algorithm places a bridge as a straight line

towards the sink, the path length cannot be greater than r, i.e., a contradiction.

Similarly, in order to have the number of used MNs greater than nr, we must have

155

at least one bridge with more than r MNs; a bridge with more than r MNs is no

longer a straight line. �

We define a two dimensional Cartesian coordinate system with the domain (i.e.,

X-axis, and denoted by M) representing the number of used MNs and the codomain

(i.e., Y-axis, and denoted by H) representing the average path length. Then, the

Pareto frontier, i.e., the solution of CR-GA, is a curve represented by a function

f : M → H. We are interested in the maximum distance between any point on

the curve (a CR-GA solution) and the point that represents the worst-case DCR

solution (i.e., as obtained by Lemma 8). We call this distance performance gap. The

main idea for obtaining the maximum performance gap is to bound the domain and

codomain of function f . The following two lemmas find the bounds for the domain

and codomain of function f , respectively.

Lemma 9 The domain M of f is bounded by 0 < M ≤ nr.

Proof: Since the path length from any segment to the sink for CR-GA is greater or

equal to r, the average path length for CR-GA is greater or equal to r, i.e., H ≥ r.

Assume by contradiction that M > nr. Then, we have M > nr and H ≥ r, which

means that any solution for CR-GA (i.e., points on the curve f) is worse than the

solution obtained by the DCR algorithm (i.e., both the number of used MNs and

average path length are greater than the DCR algorithm). �

Lemma 10 The codomain M of f is bounded by r ≤ H ≤ nr.

Proof: By Lemma 9, we know that H ≥ r. Since the domain of f is bounded by nr,

the average path length is maximized when all paths from segments are aggregated

into a single path of length nr. �

Theorem 5 The performance gap is bounded by nr
√

1 + (n−1
n
)2

156

Proof: Based on Lemma 9 and Lemma 10, the Pareto optimal curve f can be one

of any possible curves defined in 0 < M ≤ nr and r < H ≤ nr, as shown in

Figure 6.9(b). Thus, the maximum distance from point (nr, r) to curve f is the

distance from point (nr, r) to point (0, nr), which is nr
√
1 + (n−1

n
)2. �

Theorem 5 shows that the performance of DCR degrades asymptotically linearly

with the number of segments n and the network diameter r. The interpretation of

this result is that, since DCR builds bridges based on adjacent segments without

taking into account all segments in the network, the overall performance degrades

when there are more segments. Besides, if the diameter of a network is large, the

distances between segments and the sink are more likely to be longer; thus, the

performance degrades, because a better solution may be found by aggregating such

long paths. However, this result also proves that the performance does not degrade

arbitrarily, only linearly with the number of segments and the network diameter.

6.7 Simulation Results

For performance evaluation, we consider a 2,000m × 2,000m area with randomly

generated segments of different sizes and shapes. Sensor nodes are uniformly deployed

in each segment. To account for more realistic wireless communication, we adopt

the radio model [61], which defines the degree of irregularity (DOI) as the maximum

radio range variation in the direction of radio propagation. In our experiments,

the radio range of a node is 40m with DOI=0.4, resulting in a network density of

approximately 8 nodes/radio range.

We implemented DCR, CR-GA, and the state-of-art cut restoration scheme called

Cell-based Optimized Relay node Placement (CORP) [17] in C++. CORP is a state-

of-the-art centralized heuristic algorithm for restoring network connectivity by using

the fewest MNs possible. For fair performance comparison between DCR and CR-

157

 10

 20

 30

 40

 50

 60

 70

 80

 90

 9 10 11 12 13 14E
x
e
c
u
ti
o
n
 t
im

e
 p

e
r

it
e
ra

ti
o
n
 (

S
e
c
.)

Network density

Default
Virtual-Sensor

Figure 6.10: Computation speed w/ and w/o VS.

GA, we select a CR-GA solution on the Pareto Optimal set (i.e., an average path

length and the corresponding number of used MNs) with the largest marginal utility.

We used the following values for CR-GA: k1 = 4, k2 = 10 % of total bits, and k3 = 15.

CR-GA was executed on a PC with 64bit Ubuntu, Intel Core i7 CPU, and 8 GByte

memory.

For our evaluation, we measured the average path length in hops and the number

of used MNs by varying several properties related to a segmented sensor network:

Segment Size (SS), Number of Segments (NS), Location of Sink (LS), and Hole Size

(HS). A segment was represented as a polygon. The vertices of the polygon were

selected within a randomly located circle with radius SS. SS is thus used to control

the size of a segment. We ensure that the area covered by a segment is at least 20%

of that of a circle with radius SS. The parameter LS represents the distance between

the sink and the center of the network. The default values for our parameters were:

SS=200, NS=4, LS=0, HS=0.

158

 32

 32.5

 33

 33.5

 34

 34.5

 35

 182 184 186 188 190

A
v
g
.
p
a
th

 l
e
n
g
th

 (
m

)

Number of used MNs

Pareto

Figure 6.11: Pareto Optimal set for default settings.

6.7.1 Evaluation of CR-GA

In each iteration of CR-GA, a set of chromosomes are generated. CR-GA com-

putes the rank of each chromosome based on the average path lengths and numbers

of MNs of the set of chromosomes. Our proposed virtual sensor (VS) can signifi-

cantly reduce the time to compute chromosome’s rank, when nodes are uniformly

distributed. To verify this, we compared the time taken by CR-GA for computing

ranks when VS is used, with the time taken when VS is not used. Figure 6.10 presents

the results. As shown, the average rank-computation time increased linearly with

the number of nodes. In contrast, CR-GA that uses VS showed a constantly small

average rank computation time.

Figure 6.11 shows the Pareto Optimal Set obtained for a network with the default

setting. Each point of the graph represents a feasible solution. As the graph shows,

when we can afford a large number of MNs, we can achieve a better average path

length by placing more MNs; in contrast, a solution that uses a small number of

159

 30

 32

 34

 36

 38

 40

 42

 44

 4 5 6 7 8 9 10 11 12

A
v
g
.
p
a
th

 l
e
n
g
th

 (
m

)

NS

CR-GA
DCR

CORP

Figure 6.12: Effect of NS on average path length.

MNs has a longer average path length, but the spare MNs can be used for detecting

unexpected network separation, increasing robustness.

6.7.2 Effect of Number of Segments

In this section we investigate how the Number of Segments (NS) affects the

performance of the three protocols. We varied NS from 4 to 12, while having all other

parameters set to default values. Figure 6.12 and Figure 6.13 show the average path

length and the number of used MNs for the three protocols, respectively. Comparing

CR-GA and CORP, we observed that both used a similar number of MNs regardless

of NS. However, CR-GA produced much smaller average path length up to 20%. The

reason is that, while CORP tries to minimize only the number of used MNs, CR-GA

minimizes both the average path length and the number of used MNs. It should be

noted that CR-GA involves higher computation than CORP, because it is based on

a genetic algorithm. However, what really important is higher network performance

achieved by optimizing both the number of MNs and average path length, because

160

 150

 200

 250

 300

 350

 400

 450

 500

 550

 4 5 6 7 8 9 10 11 12

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

NS

CR-GA

DCR

CORP

Figure 6.13: Effect of NS on the number of mobile nodes.

the computation of CR-GA is performed only once in a powerful device. Comparing

CR-GA and DCR, we observe that DCR produced a slightly smaller average path

length, i.e., about 4%. The reason is that DCR builds multiple bridges towards the

sink without merging them. The smaller average path length, however, required a

significantly higher (about 35%) number of used MNs. An interesting observation

was that the difference in the number of MNs used by the two protocols increased as

NS increased. We believe this result confirms our theoretical analysis which shows

that the performance gap between CR-GA and DCR increases with the number of

segments.

6.7.3 Effect of Sink Location

In this section we investigate how the Location of the Sink (LS) affects the per-

formance of the three protocols. We select sink locations to be LS meters away

from the center of the network, towards one corner of the network. We set all other

parameters to their default values. Figure 6.14 and Figure 6.15 show the average

161

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 100 200 300 400 500 600 700 800

A
v
g
.
p
a
th

 l
e
n
g
th

 (
m

)

LS (m)

CR-GA
DCR

CORP

Figure 6.14: Effect of LS on average path length.

path length and the number of used MNs for the three protocols, respectively. One

immediate observation was that the average path length and the number of used

MNs for all three protocols increased as we increased LS. This is simply because

when the sink is located far from the center of the network, a packet must travel

longer distance to reach it. Comparing CR-GA and CORP, we found that the two

protocols used a similar number of MNs. However, CR-GA produced much smaller

average path lengths up to 75%. An interesting observation was that CORP’s perfor-

mance was more significantly affected by LS, than CR-GA; more precisely, while the

average path length of CR-GA gradually increased with increasing LS, the average

path length of CORP increased more steeply. The reason is that CORP is designed

to build bridges towards the center of the network. Next, we compared CR-GA with

DCR. While they achieved similar average path lengths, DCR used more MNs up to

20%. The reason is the same as above, namely that DCR builds bridges towards the

sink without merging them. In fact, CR-GA finds a balance between the number of

162

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

LS (m)

CR-GA
DCR

CORP

Figure 6.15: Effect of LS on the number of mobile nodes.

MNs and the average path length by appropriately merging bridges. An interesting

observation was that the difference between the number of MNs used by DCR and

CR-GA increased with increasing LS. The reason is that, since DCR favors building

a direct bridge towards the sink, if the sink is far, it requires more MNs to connect

the segment to the sink.

6.7.4 Effect of Segment Size

In this section we investigate the effect of Segment Size (SS). Figure 6.16 and

Figure 6.17 depict the average path length and the number of used MNs for the three

protocols, respectively. An immediate observation was that as we increased SS, both

the average path length and the number of used MNs decreased for all protocols. The

reason is simply that larger segments take more space in the network, leaving fewer

empty spaces. Thus fewer MNs are required for connectivity restoration. Comparing

CR-GA and DCR, we observed that both showed a similar performance in terms of

the average path length. The difference comes from the number of used MNs, as CR-

163

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 200 250 300 350 400 450 500

A
v
g
.
p
a
th

 l
e
n
g
th

 (
m

)

SS (m)

CR-GA
DCR

CORP

Figure 6.16: Effect of SS on average path length.

 80

 100

 120

 140

 160

 180

 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

SS (m)

CR-GA
DCR

CORP

Figure 6.17: Effect of SS on the number of mobile nodes.

164

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

A
v
g
.
p
a
th

 l
e
n
g
th

 (
m

)

HS (m)

CR-GA
DCR

CORP

Figure 6.18: Effect of HS on average path length.

GA used about 10% fewer MNs on average, a relatively small improvement. This

result is not surprising since the number of segments was the default value of 4.

With few segments, DCR builds bridges quite well. Second, we compared CR-GA

and CORP. We observed that the average path length of CORP was worse than

CR-GA by up to 25%. The reason is that CORP does not consider the average

path length. An interesting observation was that the difference in the number of

MNs between CORP and CR-GA became larger as SS increased. We believe the

reason is that CORP chooses a representative node (i.e., the starting point of bridges,

selected for each segment) without considering the size and shape of segments in

a network. Therefore, the impact of sub-optimally selected representative nodes

becomes greater as the segment size becomes larger (i.e., more possible locations for

selecting representative nodes).

165

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
u
s
e
d
 M

N
s

HS (m)

CR-GA
DCR

CORP

Figure 6.19: Effect of HS on the number of mobile nodes.

6.7.5 Effect of Hole Size

To evaluate the impact of holes on protocols’ performance, we consider a scenario

with two large rectangular-shaped segments (200m × 1,000m), and place holes of

varying sizes in them. In each segment we create a bar-shaped hole, of varying heights

(i.e., bars with different sizes of 100m × [0, 800]m). Figure 6.18 and Figure 6.19

depict the average path length and the number of used MNs for the three protocols,

respectively. As shown in Figure 6.18, for all three protocols, the average path length

increased with an increasing hole size. The reason is that larger holes result in longer,

detoured routing paths. It should be noted that, although DCR and CR-GA place

bridges on holes, depending on the locations of bridges, there are still nodes that

use detoured paths, thereby showing small increases. Comparing CR-GA and DCR,

we observed that CR-GA produced about 9% smaller path length by using more

MNs. The reason is that, while DCR places only a single, straight-line bridge over

a hole, CR-GA places multiple bridges, or even merge bridges. Comparing CR-GA

166

Figure 6.20: A deployment area at a Disaster Training Facility.

and CORP, we observed that although CR-GA places MNs on a hole, CORP used

more MNs for restoring the connectivity. The reason is the large sizes of the two

segments used in this experiment. As we mentioned previously, CORP more likely

to choose representative nodes far from the sink, when the size of a segment is large.

This suboptimal selection of representative nodes results in a large number of MNs.

Furthermore, since CORP does not handle holes, it has longer average path length.

6.8 System Evaluation

As a proof-of-concept system, we implemented our DCR algorithm in TinyOS

2.1.1 for the TelosB platform and compared it with CORP. We deployed 10 TelosB

motes in each of two segments in a disaster training facility of approximately 150m by

150m, as shown in Figure 6.20. Routing paths from motes to the sink were obtained

using CTP [74]. Motes reported events, with varying reporting rates, i.e., 250msec,

167

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 3 3.5 4 4.5 5 5.5 6 6.5 7

C
D

F

Hop Count

DCR
CORP

Figure 6.21: CDF of hop count.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5

P
D

R

Packet Arrival Rate (sec)

DCR
CORP

Figure 6.22: Packet delivery ratio.

168

500msec, 1sec, and 5sec, by sending a packet. We manually placed TelosB motes on

the computed bridges based on DCR and CORP, using TelosB motes as MNs. As

Figure 6.20 shows, the solid line represents the bridges for CORP, and the dotted

line the bridges for DCR; filled circles represent MNs. We measured the path length

in hops and computed the packet delivery ratio at the sink.

Figure 6.21 shows the cumulative distribution function for path length (in hops)

for DCR and CORP. As shown, DCR has a smaller hop count. The reason is that

CORP, to reduce the number of MNs, merged two bridges, resulting in longer paths.

We then compared the Packet Delivery Ratio (PDR) of DCR and CORP. Figure 6.22

shows the results. For both protocols, the PDR decreased as the packet arrival

interval decreased. A notable observation was that the PDR of CORP more rapidly

decreased. We believe that the reason is because the merged paths increased the

chance of collisions and possible congestion.

169

7. CONCLUSIONS

7.1 Conclusions

In this dissertation, we presented challenges and solutions for location-based rout-

ing in wireless sensor networks with complex network topologies. Efficient CNT

detection/abstraction algorithms are developed to find the boundary information

of CNTs in the network and abstract the boundary information into user-specified

data types. Using proposed CNT detection/abstraction algorithms, we developed

CNT-aware location-based routing protocols for main routing primitives: unicast,

multicast, and convergecast. These routing protocols are then seamlessly integrated

into an unified location-based routing framework to cope with the recent calls for a

routing protocol that can handle diverse traffic patterns. We presented the system

design and implementation details of the framework. Finally, we considered a more

proactive approach where mobile nodes are used to restore the connectivity of the

network such that resulting performance is maximized.

7.2 Future Work

7.2.1 Segmented Sensor Networks

As the cost and form factor of sensor nodes shrink, we envision that demand for

enterprise-scale wireless sensor networks will increase. Enterprise-scale sensor net-

works consist of a multitude of smaller, potentially disconnected, sensor networks.

An example is a WSN application for disaster response. In this application, a sen-

sor network may be deployed on a rubble pile for monitoring victims, while another

sensor network may be deployed for monitoring the stability of a building. These

potentially disconnected sub-sensor networks, called segments, are connected by plac-

170

ing “bridges” (consisting of stronger devices, e.g., Wi-Fi switches) in-between. This

new type of network consisting of segments and bridges is called a segmented sensor

network. A segmented sensor network may also appear in typical WSN applications.

An example is a volcano monitoring application. Since it is difficult to cover the

entire area of a target mountain with nodes, a plausible design option is to deploy

a number of disconnected sub-sensor networks in only critical regions, creating a

segmented sensor network. Sometimes a segmented sensor network appears because

of a large number of node failures. For example, environmental factors such as wind

may relocate nodes; hostile users may destroy part of deployed nodes. For correct

operations, the connectivity of the network must be immediately restored by placing

bridges.

Segmented sensor networks offer a vast amount of research opportunities. For

example, the capacity of a segmented sensor network is unknown. The capacity

analysis of a segmented sensor network is fundamentally different from the tradi-

tional capacity analysis, because the capacity of a segmented network, unlike general

wireless sensor networks, depends on the sizes and shapes of segments, as well as the

properties of bridges, e.g., the number, length, and bandwidth of bridges. Energy

provision to nodes comprising bridges is also a potential research problem, because

the nodes handle higher traffic and thus consume higher energy. Possible approaches

include building redundant bridges, employing self-recharging schemes, and allow-

ing for duty-cycling. However, no optimal method is known. In addition, segmented

sensor networks require fundamental changes to existing algorithms. For example, in

a segmented sensor network, even a simple greedy routing shows poor performance,

because it does not properly handle the scenario where a packet crosses a bridge.

171

7.2.2 Practical Aspects of Node Deployment

Random deployment (e.g., from a ground/air vehicle) is an often used method

for deploying nodes. When nodes are randomly deployed, it is difficult to expect

that all nodes stand in an upright position for the best performance. In other words,

the antennas of nodes tend to have different orientations. Given randomly deployed

nodes, a potential research question is: “If we consider the orientation of an antenna

as a random process in a WSN, what would be the performance of the WSN?”

More specifically, we are interested in analyzing various performance metrics such

as the capacity, throughput, and delay, given a WSN consisting of nodes with their

antenna-orientations modeled as a stochastic process. A more interesting aspect is

to verify the analytical results by comparing them to the real-world experimental

results obtained by actually deploying nodes randomly. Eventually, this future work

may propose a novel hardware design that guarantees the best performance under

the circumstances of random deployment.

7.2.3 Local Minimum-Aware Duty Cycling

The lifetime of a WSN is dramatically improved when nodes are duty-cycled.

However, few geographic routing protocols adopt duty-cycling. Only recently, geo-

graphic routing in a duty-cycled WSN is considered, in which a scheduling algorithm

is developed to allow as many nodes as possible to be in the sleep mode, while

maintaining desired connectivity and routing latency. The motivation behind this

algorithm is that the uniform node degree is essential for the optimal performance of

a geographic routing protocol. However, as long as a local minimum is involved, es-

pecially when a network has holes, maintaining the uniform node degree is no longer

an efficient solution. The main reason is because if we reduce the degree of nodes

near holes, the probability for a packet to be stuck in a local minimum increases.

172

Thus, this future work proposes a new approach for strategically putting nodes into

the sleep mode considering the impact on the probability that a packet is stuck in a

local minimum.

7.2.4 Convergecast as Inverse Multicast

Intuitively, convergecast routing can be seen as inverse multicast routing. Based

on this intuition, our future work is to apply the main idea for our geographic multi-

cast routing protocol, i.e., the concept of the facility node, to the development of our

convergecast routing protocol. More specifically, given a source node and all other

nodes, a set of facility nodes are selected such that the total sum of path lengths from

all nodes to the source node is minimized. This way, nodes, when they report data to

the source node, they will first send a packet to a facility node; the facility node will

then forward the packet to the source node. A more interesting aspects are: first,

in designing the inverse multicast routing protocol, i.e., for selecting facility nodes,

the concept of virtual boundary nodes can be used; in other words, different sets of

facility nodes will be selected based on different sets of boundary nodes. Second, a

facility node can be used as a data aggregation point, which will significantly reduce

the communication overhead.

7.2.5 Evaluation with Realistic Network Holes

In a real-world deployment, a network may have various numbers of holes with

different shapes. Thus, in order to obtain more credible results, it is important to

evaluate our proposed protocols for a sufficiently large number of “randomly gener-

ated” hole shapes and placements to approximate realistic network holes.

173

REFERENCES

[1] A.-M. Kermarrec and G. Tan, “Greedy geographic routing in large-scale sen-

sor networks: a minimum network decomposition approach,” in Proc. of ACM

MobiHoc, Chicago, Illinois, USA, 2010, pp. 161–170.

[2] R. Flury, S. Pemmaraju, and R. Wattenhofer, “Greedy routing with bounded

stretch,” in Proc. of IEEE INFOCOM, Rio de Janeiro, Brazil, 2009, pp. 1737–

1745.

[3] G. Tan, M. Bertier, and A.-M. Kermarrec, “Visibility-graph-based shortest-path

geographic routing in sensor networks,” in Proc. of IEEE INFOCOM, Rio de

Janeiro, Brazil, 2009, pp. 1719–1727.

[4] D. Koutsonikolas, S. M. Das, Y. C. Hu, and I. Stojmenovic, “Hierarchical

geographic multicast routing for wireless sensor networks,” Wireless Network,

vol. 16, no. 2, pp. 449–466, 2010.

[5] J. Sanchez, P. Ruiz, and I. Stojmnenovic, “Gmr: Geographic multicast routing

for wireless sensor networks,” in Proc. of IEEE SECON, Reston, Virginia, USA,

2006, pp. 20–29.

[6] X. Xiang, X. Wang, and Y. Yang, “Stateless multicasting in mobile ad hoc

networks,” IEEE Transactions on Computers, vol. 59, pp. 1076–1090, 2010.

[7] H. Zhang and H. Shen, “Balancing energy consumption to maximize network

lifetime in data-gathering sensor networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 20, no. 10, pp. 1526–1539, 2009.

174

[8] Q. Fang, J. Gao, and L. J. Guibas, “Locating and bypassing holes in sensor

networks,” in Proc. of IEEE INFOCOM, Hong Kong, 2004, pp. 2458–2468.

[9] M. Fayed and H. T. Mouftah, “Localised alpha-shape computations for bound-

ary recognition in sensor networks,” Ad Hoc Networks, vol. 7, no. 6, pp. 1259 –

1269, 2009.

[10] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless

networks,” in Proc. of ACM MOBICOM, Boston, Massachusetts, USA, 2000,

pp. 243–254.

[11] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic routing made

practical,” in Proc. of USENIX NSDI, Berkeley, California, USA, 2005, pp.

217–230.

[12] S. M. George, W. Zhou, H. Chenji, M. Won, Y. Lee, A. Pazarloglou, R. Stoleru,

and P. Barooah, “DistressNet: a wireless AdHoc and sensor network architec-

ture for situation management in disaster response,” IEEE Communications

Magazine, vol. 48, no. 3, Mar. 2010.

[13] U. Park and J. Heidemann, “Data muling with mobile phones for sensornets,”

in Proc. of ACM Sensys, Seattle, Washington, USA, 2011, pp. 162–175.

[14] B. Li, Z. Sun, K. Mechitov, G. Hackmann, chenyang Lu, chirley Dyke, G. Agha,

and B. Spencer, “Realistic case studies of wireless structural control,” in Proc.

of ACM/IEEE ICCPS, Philadelphia, Pennsylvania, USA, 2013, pp. 112–121.

[15] M2M, http://en.wikipedia.org/wiki/Machine to machine, 2013.

175

[16] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a zero-configuration wire-

less sensor network architecture for smart buildings,” in Proc. of ACM BuildSys,

Berkeley, California, USA, 2009, pp. 31–36.

[17] S. Lee and M. Younis, “Optimized relay placement to federate segments in

wireless sensor networks,” IEEE Journal on Selected Areas in Communications,

vol. 28, no. 5, pp. 742–752, 2010.

[18] ——, “Recovery from multiple simultaneous failures in wireless sensor networks

using minimum steiner tree,” Journal of Parallel Distributed Computing, vol. 70,

no. 5, pp. 525–536, 2010.

[19] J. Kleinberg, “Detecting a network failure,” in Proc. of IEEE SFCS, Redondo

Beach, California, USA, 2000, pp. 31–36.

[20] J. Kleinberg, M. Sandler, and A. Slivkins, “Network failure detection and graph

connectivity,” in Proc. of ACM SODA, New Orleans, Louisiana, USA, 2004, pp.

76–85.

[21] H. Ritter, R. Winter, and J. Schiller, “A partition detection system for mobile

ad-hoc networks,” in Proc. of IEEE SECON, New Orleans, Louisiana, USA,

2004, pp. 76–85.

[22] N. Shrivastava, S. Suri, and C. Tóth, “Detecting cuts in sensor networks,” ACM

Transactions on Sensor Networks, vol. 4, no. 2, pp. 1–25, 2008.

[23] M. Won, M. George, and R. Stoleru, “Towards robustness and energy efficiency

of cut detection in wireless sensor networks,” Elsevier Ad Hoc Networks, vol. 9,

no. 3, pp. 249–264, 2011.

176

[24] P. Barooah, “Distributed cut detection in sensor networks,” in Proc. of IEEE

CDC, Cancun, Mexico, 2008, pp. 1097–1102.

[25] P. Barooah, H. Chenji, R. Stoleru, and T. Kalmar-Nagy, “Cut detection in wire-

less sensor networks,” IEEE Transactions on Parallel and Distributed Systems,

vol. 23, no. 3, pp. 483–490, 2012.

[26] E. Oyman and C. Ersoy, “Multiple sink network design problem in large scale

wireless sensor networks,” in Proc. of IEEE ICC, Paris, France, 2004, pp. 3663–

3667.

[27] A. Das and D. Dutta, “Data acquisition in multiple-sink sensor networks,” SIG-

MOBILE Mob. Comput. Commun. Rev., vol. 9, pp. 82–85, July 2005.

[28] V. Park and M. Corson, “A highly adaptive distributed routing algorithm for

mobile wireless networks,” in Proc. of IEEE ICC, Kobe, Japan, 1997, pp. 1405–

1413.

[29] C.-Y. Chong and S. Kumar, “Sensor networks: evolution, opportunities, and

challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247 – 1256, 2003.

[30] A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring sensor networks

topologies,” IEEE Transactions on Mobile Computing, vol. 3, no. 3, pp. 272–285,

2004.

[31] M. Jorgic, M. Hauspie, D. Simplot-Ryl, and I. Stojmenovic, “Localized algo-

rithms for detection of critical nodes and links for connectivity in ad hoc net-

works,” in Proc. of IEEE Med-Hoc-Net, Bodrum, Turkey, 2004, pp. 360–371.

177

[32] M. Won, M. George, and R. Stoleru, “RE2-CD: Robust and energy efficient

cut detection in wireless sensor networks,” in Proc. of WASA, Boston, Mas-

sachusetts, USA, 2009, pp. 80–93.

[33] R. Stoleru, J. Stankovic, and S. Son, “On composability of localization protocols

for wireless sensor networks,” IEEE Network, vol. 22, no. 4, pp. 21 –25, 2008.

[34] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with guaranteed

delivery in ad hoc wireless networks,” Wireless Networks, vol. 7, no. 6, pp.

609–616, 2001.

[35] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A characterization of

ten hidden-surface algorithms,” ACM Comput. Surv., vol. 6, pp. 1–55, March

1974.

[36] L. Tang, Y. Sun, O. Gurewitz, and D. Johnson, “Pw-mac: An energy-efficient

predictive-wakeup mac protocol for wireless sensor networks,” in Proc. of IEEE

INFOCOM, Shanghai, China, 2011, pp. 1305–1313.

[37] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time synchro-

nization protocol,” in Proc. of ACM SenSys, Baltimore, Maryland, USA, 2004,

pp. 39–49.

[38] CC2420 Data Sheet, http://www.chipcon.com, 2009.

[39] A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer, “Deterministic boundary

recognition and topology extraction for large sensor networks,” in Proc. of ACM

SODA, Miami, Florida, USA, 2006, pp. 1000–1009.

178

[40] Y. Wang, J. Gao, and J. S. Mitchell, “Boundary recognition in sensor networks

by topological methods,” in Proc. of ACM MobiCom, Los Angeles, CA, USA,

2006, pp. 122–133.

[41] D. Dong, Y. Liu, and X. Liao, “Fine-grained boundary recognition in wireless ad

hoc and sensor networks by topological methods,” in Proc. of ACM MobiHoc,

New Orleans Lousiana, USA, 2009, pp. 135–144.

[42] S. Funke, “Topological hole detection in wireless sensor networks and its appli-

cations,” in Proc. of ACM DIALM-POMC, Cologne, Germany, 2005, pp. 44–53.

[43] S. P. Fekete, A. Kroeller, D. Pfisterer, S. Fischer, and C. Buschmann,

“Neighborhood-Based Topology Recognition in Sensor Networks,” in Proc. of

ALGOSENSORS, Turku, Finland, 2004, pp. 34–55.

[44] S. P. Fekete, M. Kaufmann, A. Kroeller, and K. Lehmann, “A New Ap-

proach for Boundary Recognition in Geometric Sensor Networks,” eprint

arXiv:cs/0508006, pp. 135–144, 2005.

[45] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a scalable

and robust communication paradigm for sensor networks,” in Proc. of ACM

MobiCom, Boston, Massachusetts, USA, 2000, pp. 56–67.

[46] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,”

in Proc. of USENIX WMCSA, New Orleans, Lousiana, USA, 1999, pp. 90–100.

[47] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith, “S4: Small state and small

stretch compact routing protocol for large static wireless networks,” IEEE/ACM

Transactions on Networking, vol. 18, no. 3, pp. 761–774, 2010.

179

[48] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc rout-

ing: of theory and practice,” in Proc. of ACM PODC, Boston, Massachusetts,

USA, 2003, pp. 63–72.

[49] Z. Jiang, J. Ma, and W. Lou, “An information model for geographic greedy

forwarding in wireless ad-hoc sensor networks,” in Proc. of IEEE INFOCOM,

Phoenix, Arizona, USA, 2008, pp. 825–833.

[50] C. Liu and J. Wu, “Destination-region-based local minimum aware geometric

routing,” in Proc. of IEEE MASS, Pisa, Italy, 2007, pp. 1–9.

[51] N. Arad and Y. Shavitt, “Minimizing recovery state in geographic ad hoc rout-

ing,” IEEE Transactions on Mobile Computing, vol. 8, pp. 203–217, 2009.

[52] P. Li, G. Wang, J. Wu, and H.-C. Yang, “Hole reshaping routing in large-scale

mobile ad-hoc networks,” in Proc. of IEEE GLOBECOM, Honolulu, Hawaii,

USA, 2009, pp. 1–6.

[53] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A scalable

location service for geographic ad hoc routing,” in Proc. of ACM MOBICOM,

Boston, Massachusetts, USA, 2000, pp. 120–130.

[54] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,

“GHT: a geographic hash table for data-centric storage,” in Proc. of WSNA,

Atlata, Georgia, USA, 2002, pp. 78–87.

[55] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-

vector routing for mobile computers,” in Proc. of ACM SIGCOMM, London,

United Kingdom, 1994, pp. 234–244.

180

[56] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer Academic

Publishers, 1991.

[57] Y. Gao and B. Zheng, “Continuous obstructed nearest neighbor queries in spa-

tial databases,” in Proc. of ACM SIGMOD, Providence, Rhode Island, USA,

2009, pp. 577–590.

[58] M. Pocchiola and G. Vegter, “Topologically sweeping visibility complexes via

pseudotriangulations,” Discrete and Computational Geometry, vol. 16, no. 4,

pp. 419–453, 1996.

[59] Wikipedia, http://en.wikipedia.org/wiki/List of wireless sensor nodes, 2008.

[60] M. Won and R. Stoleru, “Destination-based cut detection in wireless sensor

networks,” in Proc. of IEEE/IFIP EUC, Melbourne, VIC, Australia, 2011, pp.

55–62.

[61] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free

localization schemes for large scale sensor networks,” in Proc. of ACM MobiCom,

Sandiego, California, USA, 2003, pp. 81–95.

[62] J. G. Jetcheva and D. B. Johnson, “Adaptive demand-driven multicast routing

in multi-hop wireless ad hoc networks,” in Proc. of ACM MobiHoc, Pittsburgh,

Pennsylvania, USA, 2001, pp. 90–100.

[63] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-demand multicast routing protocol,”

in Proc. of IEEE WCNC, New Orleans, Louisiana, USA, 1999, pp. 1298–1302.

[64] M. Mauve, H. Fussler, J. Widmer, and T. Lang, “Position-based multicast rout-

ing for mobile ad-hoc networks,” SIGMOBILE Mob. Comput. Commun. Rev.,

vol. 7, no. 3, pp. 53–55, 2003.

181

[65] S. Wu and K. Candan, “GMP: Distributed geographic multicast routing in

wireless sensor networks,” in Proc. of IEEE ICDCS, Lisboa, Portugal, 2006, pp.

49–58.

[66] S. M. Das, H. Pucha, and Y. C. Hu, “Distributed hashing for scalable multicast

in wireless ad hoc networks,” IEEE Transactions on Parallel Distributed System,

vol. 19, no. 3, pp. 347–362, 2008.

[67] X. Zhang and L. Jacob, “Multicast zone routing protocol in mobile ad hoc

wireless networks,” in Proc. of IEEE LCN, Bonn, Germany, 2003, pp. 150–159.

[68] C.-C. Chiang, M. Gerla, and L. Zhang, “Forwarding group multicast protocol

(FGMP) for multihop, mobile wireless networks,” Cluster Computing, vol. 1,

no. 2, pp. 187–196, 1998.

[69] S. Song, D. Kim, and B.-Y. Choi, “AGSMR: Adaptive geo-source multicast

routing for wireless sensor networks,” in Proc. of WASA, Boston, Massachusetts,

USA, 2009, pp. 200–209.

[70] S. Song, B.-Y. Choi, and D. Kim, “MR.BIN: Multicast routing with branch in-

formation nodes for wireless sensor networks,” in Proc. of IEEE ICCCN, Zurich,

Switzerland, 2010, pp. 1–6.

[71] R. Sridharan, “The capacitated plant location problem,” European Journal of

Operational Research, vol. 87, no. 2, pp. 203–213, 1995.

[72] H. Pirkul, “Efficient algorithms for the capacitated concentrator location prob-

lem,” Comput. Oper. Res., vol. 14, no. 3, pp. 197–208, 1987.

182

[73] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, “Linear time

algorithms for visibility and shortest path problems inside simple polygons,” in

Proc. of SCG, Yorktown Heights, New York, USA, 1986, pp. 1–13.

[74] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree

protocol,” in Proc. of ACM SenSys, Berkeley, California, USA, 2009, pp. 1–14.

[75] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving wi-fi in-

terference in low power zigbee networks,” in Proc. of ACM Sensys, Zurich,

Switzerland, 2010, pp. 309–322.

[76] D. B. Shmoys, E. Tardos, and K. Aardal, “Approximation algorithms for facility

location problems,” in Proc. of ACM STOC, New York, USA, 1997, pp. 274–296.

[77] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a local search

heuristic for facility location problems,” in Proc. of ACM SODA, San Francisco,

California, USA, 1998, pp. 1–10.

[78] X. Wu, G. Chen, and S. Das, “Avoiding energy holes in wireless sensor net-

works with nonuniform node distribution,” IEEE Transactions on Parallel and

Distributed Systems, vol. 19, no. 5, pp. 710–720, 2008.

[79] A. Pruhit, Z. Sun, F. Mokaya, and P. Zhang, “Sensorfly: Controlled-mobile

sensing platform for indoor emergency response applications,” in Proc. of

ACM/IEEE IPSN, Chicago, Illinois, USA, 2011, pp. 223–234.

[80] E. Lloyd and G. Xue, “Relay node placement in wireless sensor networks,” IEEE

Transactions on Computers, vol. 56, no. 1, pp. 134–138, 2007.

[81] X. Cheng, D.-Z. Du, L. Wang, and B. Xu, “Relay sensor placement in wireless

sensor networks,” Wireless Networks, vol. 14, no. 3, pp. 347–355, 2008.

183

[82] A. Kashyap, S. Khuller, and M. Shayman, “Relay placement for higher or-

der connectivity in wireless sensor networks,” in Proc. of IEEE INFOCOM,

Barcelona, Spain, 2006, pp. 1–12.

[83] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, “Deploying sensor net-

works with guaranteed capacity and fault tolerance,” in Proc. of ACM MobiHoc,

Urbana-Champaign, Illinois, USA, 2005, pp. 309–319.

[84] W. Zhang, G. Xue, and S. Misra, “Fault-tolerant relay node placement in wire-

less sensor networks: Problems and algorithms,” in Proc. of IEEE INFOCOM,

Anchorage, Alaska, USA, 2007, pp. 1649–1657.

[85] Y. Hou, Y. Shi, H. Sherali, and S. Midkiff, “Prolonging sensor network lifetime

with energy provisioning and relay node placement,” in Proc. of IEEE SECON,

Santa Clara, California, USA, 2005, pp. 295–304.

[86] W. Wang, V. Srinivasan, and K.-C. Chua, “Extending the lifetime of wireless

sensor networks through mobile relays,” IEEE/ACM Transactions on Network-

ing, vol. 16, no. 5, pp. 1108–1120, 2008.

[87] F. Wang, D. Wang, and J. Liu, “Traffic-aware relay node deployment: Maxi-

mizing lifetime for data collection wireless sensor networks,” IEEE Transactions

on Parallel and Distributed Systems, vol. 22, no. 8, pp. 1415–1423, 2011.

[88] G.-H. Lin and G. Xue, “Steiner tree problem with minimum number of steiner

points and bounded edge-length,” Information Processing Letters, vol. 69, no. 2,

pp. 53–57, 1999.

[89] S. Wang, X. Mao, S.-J. Tang, M. Li, J. Zhao, and G. Dai, “On movement-

assisted connectivity restoration in wireless sensor and actor networks,” IEEE

184

Transactions on Parallel and Distributed Systems, vol. 22, no. 4, pp. 687–694,

2011.

[90] H. M. Almasaeid and A. E. Kamal, “Data delivery in fragmented wireless sensor

networks using mobile agents,” in Proc. of ACM MSWiM, Chania, Crete Island,

Greece, 2007, pp. 86–94.

[91] F. Senel, M. Younis, and K. Akkaya, “Bio-inspired relay node placement heuris-

tics for repairing damaged wireless sensor networks,” IEEE Transactions on

Vehicular Technology, vol. 60, no. 4, pp. 1835–1848, 2011.

[92] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective opti-

mization: Formulation discussion and generalization,” in Proc. of ICGA, Berke-

ley, California, USA, 1993, pp. 86–94.

[93] H. Kim and K. Shin, “Asymmetry-aware real-time distributed joint resource

allocation in ieee 802.22 wrans,” in Proc. of IEEE INFOCOM, San Diego, Cal-

ifornia, USA, 2010, pp. 1–9.

[94] F. Li, J. Luo, C. Zhang, S. Xin, and Y. He, “Unfold: Uniform fast on-line

boundary detection for dynamic 3d wireless sensor networks,” in Proc. of ACM

MobiHoc, Paris, France, 2011, pp. 1–11.

185

