1,602 research outputs found

    Electrical permittivity and resistivity time lapses of multiphase DNAPLs in a lab test

    Get PDF
    Dense Non-Aqueous Phase Liquids (DNAPLs) induce variation in electromagnetic characteristics of the ground e.g. electric permittivity and resistivity. The most used indirect methods in the mapping of these physical characteristics are electrical resistivity and ground penetrating radar. To better understand the effect of DNAPL release on electrical permittivity and resistivity in a water saturated medium, we carried out a controlled laboratory experiment where the host material was simulated by glass beads and the DNAPL by HFE-7100 (hydrofluoroether). The experiment measured the electric resistivity and permittivity of each fluid, the multi-phase fluid system, and the host material, along with time-lapse electrical resistivity and GPR measurements in a controlled cell. We found that the different phases of DNAPL within a saturated medium (free, dissolved and gaseous phase) affect the physical characteristics differently. The reflection pull-up behind contaminated sediments, which is normally detected by GPR, was mainly inferred from the HFE free phase. The dissolved phase causes small variations in electric permittivity not usually readily detected by GPR measurements. Both the dissolved and free HFE phases induce variation in resistivity. The study showed that GPR and electrical resistivity differ in sensitivity to the different HFE phases, and can be complementary in the characterization of DNAPL contaminated sites

    The Role of Probe Attenuation in the Time-Domain Reflectometry Characterization of Dielectrics

    Get PDF
    The influence of the measurement setup on the estimation of dielectric permittivity spectra from time-domain reflectometry (TDR) responses is investigated. The analysis is based on a simplified model of the TDR measurement setup, where an ideal voltage step is applied to an ideal transmission line that models the probe. The main result of this analysis is that the propagation in the probe has an inherent band limiting effect, and the estimation of the high-frequency permittivity parameters is well conditioned only if the wave attenuation for a round trip propagation in the dielectric sample is small. This is a general result, holding for most permittivity model and estimation scheme. It has been verified on real estimation problems by estimating the permittivity of liquid dielectrics and soil samples via an high-order model of the TDR setup and a parametric inversion approac

    A review of new TDR applications for measuring non-aqueous phase liquids (NAPLs) in soils

    Get PDF
    The time domain reflectometry (TDR) technique is a geophysical method that allows, in a time-varying electric field, the determination of dielectric permittivity and electrical conductivity of a wide class of porous materials. Measurements of the volumetric water content (θw) in soils is the most frequent application of TDR in Soil Science and Soil Hydrology. In last four decades several studies have sought to explore potential applications of TDR. Such studies (except those conducted on θw estimation) mainly focused on monitoring soil solute transport. In more recent times, innovative TDR approaches have also been implemented to extend current TDR fields of application to the problem of monitoring non-aqueous phase liquids (NAPLs) in variable saturated soils. NAPLs are organic compounds with low solubility in water and are characterised by a high mobility in the vadose zone. Due to their high toxicity, NAPLs constitute a severe geo-environmental problem, thus making detection and observation of such substances in soils an increasingly important issue. The present paper deals with these studies and aims to provide an up-to-date review of the main NAPL-TDR studies. To date, the literature has focused on TDR applications in three main fields: (i) NAPL monitoring in homogeneous, variable saturated soils, (ii) NAPL monitoring in layered variable saturated soils, and (iii) NAPL monitoring during soil decontamination processes. For an exhaustive and complete overview of TDR research in this field, we also recall the basic principles of TDR signal propagation, the functioning of a typical TDR device, and the dielectric mixing models that are widely used to interpret the dielectric response of NAPL-contaminated soils

    A Comparative Analysis Between Customized and Commercial Systems for Complex Permittivity Measurements on Liquid Samples at Microwave Frequencies

    Get PDF
    In this paper, different customized systems for microwave permittivity measurements on liquid samples, based on reflectometric measurements, are presented and analyzed. Their performance is compared against the one deriving from the most widely adopted commercial measurement setup. The systems are designed with the aim of providing less expensive solutions without compromising measurement accuracy. The purpose of the first proposed solution is to replace the commercial measurement software exploiting a reformulation of the classical theory. Based on this alternative formulation, a "homemade" probe is built by properly modifying an N-type coaxial connector, thus providing a system requiring a lower quantity of liquid under test. Moreover, a different experimental approach which uses time-domain reflectometry (TDR) instrumentation is presented. Such solution is by far the least expensive, as it allows avoiding the use of costly instrumentation (such as a vector network analyzer). In order to metrologically characterize the proposed solutions, a series of repeated measurements is performed on a set of well-referenced liquids. After extracting the Cole-Cole parameters through each of the considered measurement methods, the resulting type A uncertainty is evaluated. Finally, comparison with literature data allows the estimation of measurement bias. The analysis evidences that custom solutions generally exhibit an accuracy comparable to the one of the commercial solution, with a slight degradation of performance for the TDR-based setup, which, however, compensates for this drawback with its appealing low cost

    On the use of dielectric spectroscopy for quality control of vegetable oils

    Get PDF
    Quality control of vegetable oils is becoming more stringent, and related laws are being enforced especially for avoiding adulteration. As a result, there is a substantial need for methods of analysis that could provide real-time in-situ monitoring, especially for quality control purposes during production process. In this regard, the present paper investigates the possibility of monitoring qualitative characteristics of vegetable oils through microwave dielectric spectroscopy, which is a highly versatile investigative approach. In particular, the Cole & Cole frequency-domain dielectric parameters are known to be strongly related to the compositional characteristics of various substances. This way, starting from traditional Time Domain Reflectometry measurements performed on oils, the corresponding frequency domain information is retrieved. Successively, through a minimization routine, the Cole & Cole parameters of each considered oil are extrapolated. Results show that different dielectric characteristics can be associated with different oils. It is important to point out that the characteristics of the proposed procedure can be automated and, therefore, it may represent a promising solution for practical monitoring applications

    Dielectric Response of a Variable Saturated Soil Contaminated by Non-Aqueous Phase Liquids (NAPLs)

    Get PDF
    AbstractIn recent years, several studies have been conducted both in saturated and unsaturated soils to detect non-aqueous phase liquid (NAPL) hydrocarbon contamination in soils and groundwater by means of the time domain reflectometry (TDR) technique. This technique is widely used for measuring the dielectric permittivity and bulk electrical conductivity of multiphase systems. Only accurate knowledge of the dielectric response of soil matrix- water-NAPL (saturated condition) or soil matrix-air-water-NAPL (unsaturated condition) systems can allow the volumetric NAPL content (θNAPL) to be determined in the soil. This paper investigates the influence of NAPL contamination (corn oil, a non-volatile and non-toxic NAPL, was used) on TDR measurement in a volcanic soil, relating dielectric permittivity of the multiphase soil system to volumetric fluid content θf (i.e. water+NAPL). The soil samples were oven dried at 105°C and passed through a 2mm sieve. Known quantities of soil, water and oil were mixed and repacked into plastic cylinders (15cm high and 9.5cm in diameter); 40 different combinations of water and oil were tested, with θNAPL varying from 0.05 to 0.40 by 0.05cm3/cm3 increments. A volumetric mixing model with three (soil matrix-water-NAPL) or four (soil matrix-air-water-NAPL) phases permitted conversion from a dielectric permittivity domain into a θf domain. The results show that, the amount of contaminant in soil can be inferred if the total volume of pore fluid θf and the dielectric permittivity of the contaminated soil are known. Further work will be built on this initial study, concentrating on: i) enhancing the model linkage and validating it with new laboratory results; ii) validating the developed TDR interpretation tool with field results

    A FDR Sensor for Measuring Complex Soil Dielectric Permittivity in the 10–500 MHz Frequency Range

    Get PDF
    Mechanical details as well as electrical models of FDR (frequency domain reflectometry) sensors for the measurement of the complex dielectric permittivity of porous materials are presented. The sensors are formed from two stainless steel parallel waveguides of various lengths. Using the data from VNA (vector network analyzer) with the connected FDR sensor and selected models of the applied sensor it was possible obtain the frequency spectrum of dielectric permittivity from 10 to 500 MHz of reference liquids and soil samples of various moisture and salinity. The performance of the analyzed sensors were compared with TDR (time domain reflectometry) ones of similar mechanical construction

    The Ultrasonic Densitometer Time Domain Response

    Get PDF
    Experiments were undertaken to investigate the feasibility of using propagating ultrasonic waves to find the speed of sound and density of solutions contained in opaque, sealed containers. A portable design is proposed which consists of 3 ultrasonic transducers aligned on a single plane along the surface of a tank. The content is then examined by measuring the time it takes for a signal to reflect off the back wall of the tank and return to another transducer. This time domain response approach delivered a very accurate analysis, with a low spread of results. This report demonstrates that by using this technique, very small changes in density can be observed. The final error in the density has been found to be less than 2%, which is adequate to reliably tell the difference between salt and fresh water.JRC.DG.E.9-Nuclear security (Ispra

    Microwave TDR for Real-Time Control of Intravenous Drip Infusions

    Get PDF
    none5This paper explores the use of a microwave-reflectometry- based system for the automatic control and real-time monitoring of the flow and of the liquid level in intravenous (IV) medical infusions. In medical and hospital contexts, other kinds of devices, mainly based on the optical detection and counting of the infusion drops, are used. Nevertheless, the proposed system is aimed at circumventing some typical drawbacks deriving from the adoption of these traditional methods, thus allowing an efficient alternative for automatically monitoring the instantaneous flow of IV medical solutions. To this purpose, the proposed system combines microwave time-domain reflectometry (TDR) measurements with a noninvasive sensing element (i.e., strip electrodes directly attached to the external surface of the infusion bottle). Experimental results confirm that, by using low-cost portable TDR devices, the solution flow process can be controlled with acceptable accuracy. Therefore, the proposed method can be regarded as a promising control tool for in-hospital patient management as well as for telemedicine programs.A. Cataldo; G. Cannazza; N. Giaquinto; A. Trotta; G. AndriaCataldo, Andrea Maria; Cannazza, Giuseppe; N., Giaquinto; A., Trotta; G., Andri
    corecore