12,746 research outputs found

    A framework and tool to manage Cloud Computing service quality

    Get PDF
    Cloud Computing has generated considerable interest in both companies specialized in Information and Communication Technology and business context in general. The Sourcing Capability Maturity Model for service (e-SCM) is a capability model for offshore outsourcing services between clients and providers that offers appropriate strategies to enhance Cloud Computing implementation. It intends to achieve the required quality of service and develop an effective working relationship between clients and providers. Moreover, quality evaluation framework is a framework to control the quality of any product and/or process. It offers a tool support that can generate software artifacts to manage any type of product and service efficiently and effectively. Thus, the aim of this paper was to make this framework and tool support available to manage Cloud Computing service quality between clients and providers by means of e-SCM.Ministerio de Ciencia e Innovación TIN2013-46928-C3-3-RJunta de Andalucía TIC-578

    Conceptual Design and Implementation of a Cloud Computing Platform Paradigm

    Get PDF
    In recent times, organizations all over the world have stopped expanding infrastructures and building competencies in IT for enhanced efficiencies. Rather, they focus on their primary lines of businesses and “simply” connect to an existing IT cloud in the neighborhood or on the internet for their IT demands. Cloud computing is a new paradigm of large-scale distributed computing that centralizes the data and computation on the virtual “super computer” with unprecedented storage and computing capabilities. This paper focuses on the design of a conceptual framework and implementation of a cloud computing platform. This study attempts to design a platform on which users can plug-in anytime from anywhere and utilize enormous computing resources at a relatively low cost. Alongside the design, the mathematical model structures that support the design of the framework are explicitly described. The study is of paramount importance because the new framework provides opportunity to avoid network congestions that degrade performance among other shortcomings being experienced in some implementation cases. Keywords: Cloud Computing, Framework, Platform, Paradig

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience

    Get PDF
    The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met

    New Data Formats and Interface Frameworks for Twinscan System Interfaces

    Get PDF

    Reactive Microservices - An Experiment

    Get PDF
    Os microserviços são geralmente adotados quando a escalabilidade e flexibilidade de uma aplicação são essenciais para o seu sucesso. Apesar disto, as dependências entre serviços transmitidos através de protocolos síncronos, resultam numa única falha que pode afetar múltiplos microserviços. A adoção da capacidade de resposta numa arquitetura baseada em microserviços, através da reatividade, pode facilitar e minimizar a proliferação de erros entre serviços e na comunicação entre eles, ao dar prioridade à capacidade de resposta e à resiliência de um serviço. Esta dissertação fornece uma visão geral do estado da arte dos microserviços reativos, estruturada através de um processo de mapeamento sistemático, onde são analisados os seus atributos de qualidade mais importantes, os seus erros mais comuns, as métricas mais adequadas para a sua avaliação, e as frameworks mais relevantes. Com a informação recolhida, é apresentado o valor deste trabalho, onde a decisão do projeto e a framework a utilizar são tomadas, através da técnica de preferência de ordem por semelhança com a solução ideal e o processo de hierarquia analítica, respetivamente. Em seguida, é realizada a análise e o desenho da solução, para o respetivo projeto, onde se destacam as alterações arquiteturais necessárias para o converter num projeto de microserviços reativo. Em seguida, descreve-se a implementação da solução, começando pela configuração do projeto necessária para agilizar o processo de desenvolvimento, seguida dos principais detalhes de implementação utilizados para assegurar a reatividade e como a framework apoia e simplifica a sua implementação, finalizada pela configuração das ferramentas de métricas no projeto para apoiar os testes e a avaliação da solução. Em seguida, a validação da solução é investigada e executada com base na abordagem Goals, Questions, Metrics (GQM), para estruturar a sua análise relativamente à manutenção, escalabilidade, desempenho, testabilidade, disponibilidade, monitorabilidade e segurança, finalizada pela conclusão do trabalho global realizado, onde são listadas as contribuições, ameaças à validade e possíveis trabalhos futuros.Microservices are generally adopted when the scalability and flexibility of an application are essential to its success. Despite this, dependencies between services transmitted through synchronous protocols result in one failure, potentially affecting multiple microservices. The adoption of responsiveness in a microservices-based architecture, through reactivity, can facilitate and minimize the proliferation of errors between services and in the communication between them by prioritizing the responsiveness and resilience of a service. This dissertation provides an overview of the reactive microservices state of the art, structured through a systematic mapping process, where its most important quality attributes, pitfalls, metrics, and most relevant frameworks are analysed. With the gathered information, the value of this work is presented, where the project and framework decision are made through the technique of order preference by similarity to the ideal solution and the analytic hierarchy process, respectively. Then, the analysis and design of the solution are idealized for the respective project, where the necessary architectural changes are highlighted to convert it to a reactive microservices project. Next, the solution implementation is described, starting with the necessary project setup to speed up the development process, followed by the key implementation details employed to ensure reactivity and how the framework streamlines its implementation, finalized by the metrics tools setup in the project to support the testing and evaluation of the solution. Then, the solution validation is traced and executed based on the Goals, Questions, Metrics (GQM) approach to structure its analysis regarding maintainability, scalability, performance, testability, availability, monitorability, and security, finalized by the conclusion of the overall work done, where the contributions, threats to validity and possible future work are listed
    corecore