
Reactive Microservices - An Experiment

JOSÉ PEDRO RIBEIRO DA COSTA FERREIRA
Junho de 2022

Reactive Microservices

An Experiment

José Pedro Ribeiro da Costa Ferreira

Dissertation for obtaining a Master's Degree in

Informatics Engineering, specialization area

Software Engineering

Advisor: Isabel Azevedo

Porto, June 2022

ii

iii

“Design and programming are human activities, forget that and all is lost”

Bjarne Stroustrup

iv

v

Resumo

Os microserviços são geralmente adotados quando a escalabilidade e flexibilidade de uma

aplicação são essenciais para o seu sucesso. Apesar disto, as dependências entre serviços

transmitidos através de protocolos síncronos, resultam numa única falha que pode afetar

múltiplos microserviços. A adoção da capacidade de resposta numa arquitetura baseada em

microserviços, através da reatividade, pode facilitar e minimizar a proliferação de erros entre

serviços e na comunicação entre eles, ao dar prioridade à capacidade de resposta e à resiliência

de um serviço.

Esta dissertação fornece uma visão geral do estado da arte dos microserviços reativos,

estruturada através de um processo de mapeamento sistemático, onde são analisados os seus

atributos de qualidade mais importantes, os seus erros mais comuns, as métricas mais

adequadas para a sua avaliação, e as frameworks mais relevantes.

Com a informação recolhida, é apresentado o valor deste trabalho, onde a decisão do projeto

e a framework a utilizar são tomadas, através da técnica de preferência de ordem por

semelhança com a solução ideal e o processo de hierarquia analítica, respetivamente. Em

seguida, é realizada a análise e o desenho da solução, para o respetivo projeto, onde se

destacam as alterações arquiteturais necessárias para o converter num projeto de

microserviços reativo.

Em seguida, descreve-se a implementação da solução, começando pela configuração do projeto

necessária para agilizar o processo de desenvolvimento, seguida dos principais detalhes de

implementação utilizados para assegurar a reatividade e como a framework apoia e simplifica

a sua implementação, finalizada pela configuração das ferramentas de métricas no projeto para

apoiar os testes e a avaliação da solução.

Em seguida, a validação da solução é investigada e executada com base na abordagem Goals,

Questions, Metrics (GQM), para estruturar a sua análise relativamente à manutenção,

escalabilidade, desempenho, testabilidade, disponibilidade, monitorabilidade e segurança,

finalizada pela conclusão do trabalho global realizado, onde são listadas as contribuições,

ameaças à validade e possíveis trabalhos futuros.

Palavras-chave: Microserviços, Reatividade, Arquitetura de Software, Design Orientado ao

Domínio, Framework Lagom

vi

vii

Abstract

Microservices are generally adopted when the scalability and flexibility of an application are

essential to its success. Despite this, dependencies between services transmitted through

synchronous protocols result in one failure, potentially affecting multiple microservices. The

adoption of responsiveness in a microservices-based architecture, through reactivity, can

facilitate and minimize the proliferation of errors between services and in the communication

between them by prioritizing the responsiveness and resilience of a service.

This dissertation provides an overview of the reactive microservices state of the art, structured

through a systematic mapping process, where its most important quality attributes, pitfalls,

metrics, and most relevant frameworks are analysed.

With the gathered information, the value of this work is presented, where the project and

framework decision are made through the technique of order preference by similarity to the

ideal solution and the analytic hierarchy process, respectively. Then, the analysis and design of

the solution are idealized for the respective project, where the necessary architectural changes

are highlighted to convert it to a reactive microservices project.

Next, the solution implementation is described, starting with the necessary project setup to

speed up the development process, followed by the key implementation details employed to

ensure reactivity and how the framework streamlines its implementation, finalized by the

metrics tools setup in the project to support the testing and evaluation of the solution.

Then, the solution validation is traced and executed based on the Goals, Questions, Metrics

(GQM) approach to structure its analysis regarding maintainability, scalability, performance,

testability, availability, monitorability, and security, finalized by the conclusion of the overall

work done, where the contributions, threats to validity and possible future work are listed.

Keywords: Microservices, Reactive, Software Architecture, Domain Driven Design, Lagom

Framework

viii

ix

Acknowledgements

I would like to express my gratitude to both my advisor Isabel Azevedo and professor Susana

Nicola for all of their help up to this point, as well as their willingness to answer my questions

whenever I needed them.

Thank you to professor Ciro Martins for his detailed revision and remarks in the intermediate

evaluation of this dissertation, helping me correct and improve some crucial aspects of the

paper.

I would also like to thank my family and friends for all the support during the development of

my dissertation.

A special thank you to my colleagues André Madureira, Gustavo Ferreira, João Fonseca, and

João Dias for all their aid and for sharing my hardships along this journey.

x

xi

Table of Contents

1 Introduction ... 1

1.1 Context ..1

1.2 Problem Statement ..1

1.3 Objectives ...2

1.4 Research Methodology ...2

1.5 Document Structure ...2

2 State of the Art ... 5

2.1 Traditional Microservices vs Reactive Microservices5

2.2 Building Reactive Microservices ..7

2.3 Software Engineering Systematic Mapping ...7
2.3.1 Definition of research questions ...8
2.3.2 Conducted search criteria ..8
2.3.3 Screening of papers for inclusion and exclusion8
2.3.4 Keywording using abstracts ... 10
2.3.5 Data extraction and mapping of studies .. 11

2.4 Data Analysis .. 13
2.4.1 RQ1 - What are the most important concerns that developers should pay

special attention to when implementing reactive microservices? 13

2.4.1.1 Quality Attributes ... 13

2.4.1.2 Challenges .. 14

2.4.2 RQ2 - What should be avoided in the implementation of reactive

microservices? .. 17

2.4.2.1 Architectural Technical Debt .. 17

2.4.2.2 CI/CD .. 18

2.4.3 RQ3 - What metrics should be used to evaluate reactive microservices? 20
2.4.4 RQ4 - What are the most relevant frameworks to build reactive microservices?

 .. 23

2.4.4.1 Frameworks .. 23

2.4.4.2 Comparison Criteria ... 24

2.5 Summary ... 29

3 Value Analysis ... 31

3.1 Project Selection ... 31

3.2 Framework Decision ... 34
3.2.1 Hierarchic Division ... 34
3.2.2 Priority Definition .. 35
3.2.3 Logic Consistency .. 37

xii

3.2.4 Results Analysis ... 38

3.3 Summary .. 39

4 Analysis and Design .. 41

4.1 Requirements Engineering .. 41

4.2 Domain Modelling ... 42
4.2.1 Context Mapper .. 43

4.3 C4 Model and 4+1 Views .. 44
4.3.1 Use Case View .. 44
4.3.2 Context Level ... 45
4.3.3 Container Level ... 47
4.3.4 Component Level ... 48
4.3.5 Code Level .. 50

4.4 Summary ... 51

5 Solution Implementation .. 53

5.1 Project Setup ... 53
5.1.1 Creation of the Project Skeleton .. 53
5.1.2 Dependency Setup ... 55
5.1.3 Containerization of the Solution ... 55

5.2 Implementation Details ... 56
5.2.1 Service Discovery and Registry ... 57
5.2.2 API Gateway .. 58
5.2.3 CQRS and Event Sourcing.. 59
5.2.4 SAGA Pattern ... 60
5.2.5 Circuit Breaker ... 61

5.3 Testing ... 63
5.3.1 Unit Testing ... 63
5.3.2 Property-Based Testing .. 64
5.3.3 Integration Testing ... 65
5.3.4 Acceptance Testing .. 66

5.4 Metrics Setup ... 68
5.4.1 SonarQube ... 68
5.4.2 Lightbend Telemetry (Cinnamon) .. 68

5.4.2.1 OpenTracing ... 69

5.4.2.2 Jaeger.. 71

5.4.2.3 Prometheus .. 72

5.4.2.4 Grafana ... 73

5.5 Summary .. 74

6 Testing and Evaluation .. 75

6.1 Goals, Questions, Metrics ... 75
6.1.1 Maintainability .. 76

xiii

6.1.2 Scalability ... 78
6.1.3 Performance .. 79
6.1.4 Testability ... 79
6.1.5 Availability .. 80
6.1.6 Monitorability ... 80
6.1.7 Security .. 80

6.2 Summary ... 81

7 Conclusion ... 83

7.1 Contributions ... 83

7.2 Threats to Validity ... 84

7.3 Future Work ... 84

Annex A Value Analysis .. 95

Business Process & Innovation ... 95

Function Analysis System Technique ... 97

Annex B Domain Model .. 99

Annex C Implementation Details ... 101

Annex D Testing and Evaluation Details ... 103

xiv

Table of Figures

Figure 1. Comparison of a monolithic and microservice architecture (Fowler & Lewis, 2014) ... 6

Figure 2. Steps to a systematic mapping review (Petersen et al., 2008) 7

Figure 3. Screening of papers procedure ... 9

Figure 4. Building the Classification Scheme (Petersen et al., 2008) ... 11

Figure 5. Number of selected studies per year of creation ... 12

Figure 6. Number of occurrences in selected studies per theme .. 13

Figure 7. Tactics to use in each quality attribute (Li et al., 2021) .. 14

Figure 8. Hierarchic division ... 35

Figure 9. Domain Model ... 43

Figure 10. Context mapper model ... 44

Figure 11. Use case diagram .. 45

Figure 12. Logic view at the context level diagram .. 45

Figure 13. Logic view of the interaction with other systems at the context level 46

Figure 14. Updated logic view of the interaction with other systems at the context level 46

Figure 15. Alternative logic view of the interaction with other systems at the context level ... 47

Figure 16. Updated logic view at the container level .. 47

Figure 17. Current logic view of the consumer service component .. 48

Figure 18. New logic view of the consumer service component ... 49

Figure 19. New implementation view of the consumer service component............................. 49

Figure 20. New process view of the order management requirement at the component level 50

Figure 21. New process view of the order management requirement at the code level 51

Figure 22. New implementation view of the order management requirement at the code level

 .. 51

Figure 23. Lagom project structure (Lightbend, 2022c)... 54

Figure 24. Docker deployment diagram... 56

Figure 25. Service discovery and registry (Cusimano, 2022) ... 57

Figure 26. Lagom Akka Discovery modules (Schlothauer, 2019) ... 58

Figure 27. API Gateway flow (Consul, 2022) .. 59

Figure 28. Lagom CQRS flow (Calus, 2020) .. 60

Figure 29. Example of event list stored in Cassandra .. 60

Figure 30. Circuit breaker flow between states (Lightbend, 2022b) .. 62

Figure 31. Categories of software testing (Hamilton, 2022) .. 63

Figure 32. Restaurant management flow tests .. 65

Figure 33. Fragment of the FTGO environment in Postman .. 66

Figure 34. Example run snippet of the restaurant tests .. 66

Figure 35. SonarQube project’s view ... 68

Figure 36. Lightbend Telemetry information flow (Lightbend, 2022f) 69

Figure 37. Order creation flow - OpenTracing diagram ... 70

Figure 38. Jaeger information flow from the application (Gökalp, 2019). 71

Figure 39. Prometheus flow of information (Prometheus, 2022) ... 72

xvi

Figure 40. Grafana Kubernetes capacity dashboard (Grafana, 2022) .. 73

Figure 41. Analysis of dependent libraries ... 81

Figure 42. Innovation process phases (Koen et al., 2014) .. 95

Figure 43. New concept development model (Koen et al., 2014) ... 96

Figure 44. FAST frame diagram (Dannana, 2020) .. 97

Figure 45. FAST application in reactive microservices ... 98

Figure 46. Domain Model ... 99

Figure 47. Class diagram code level separation of the API and Implementation projects 101

Table of Tables

Table 1. Research questions .. 8

Table 2. Employed screening criteria ... 9

Table 3. List of papers obtained following the screening procedure .. 9

Table 4. Outlined research topics .. 11

Table 5. Development of reactive microservices ... 11

Table 6. Pitfalls developing reactive microservices ... 12

Table 7. Metrics to evaluate reactive microservices ... 12

Table 8. Tools to implement reactive microservices ... 12

Table 9. Evaluation of a manual vs a container-based deployment (Lehmann & Sandnes, 2017)

 .. 19

Table 10. Metrics by quality attributes .. 21

Table 11. Framework comparison.. 26

Table 12. TOPSIS decision matrix ... 32

Table 13. TOPSIS normalized and weighted decision matrix ... 33

Table 14. TOPSIS closeness to ideal solution. .. 34

Table 15. Importance levels of comparisons (Saaty, 1980) ... 35

Table 16. Criterion comparison matrix .. 36

Table 17. Weight of the criteria ... 36

Table 18. Weight of alternatives by maturity .. 36

Table 19. Weight of alternatives by ease of implementation .. 37

Table 20. Weight of alternatives by features ... 37

Table 21. Random consistency index values for n dimensions .. 38

Table 22. Consistency ratios of the comparison matrices produced ... 38

Table 23. Functional requirements (Richardson, 2018b) ... 41

Table 24. Non-functional requirements ... 42

Table 25. Primary dependencies of the application .. 55

Table 26. Acceptance Test 1 – Successful creation of a new order ... 67

Table 27. Acceptance Test 2 – Unavailable restaurant service .. 67

Table 28. Goals, questions, metrics ... 75

Table 29. LOC per microservice .. 76

Table 30. Degree of coupling of each microservice ... 77

Table 31. Open interface evaluation of each microservice ... 77

Table 32. Usage frequency of each microservice .. 78

Table 33. Number of synchronous requests per microservice .. 78

Table 34. Evaluation results ... 82

Table of Code

Code 1. Registration of the restaurant microservice in build.sbt .. 54

Code 2. RestaurantService excerpt of order validation with SAGA (Ferreira, 2022e) 61

Code 3. Circuit Breaker default configuration .. 62

Code 4. AddressMapperTest class excerpt .. 64

Code 5. AddressMapperPropertyTest class excerpt .. 64

Code 6. OpenTracing configuration excerpt from Restaurant Service 71

Code 7. Jaeger configuration excerpt from Restaurant Service .. 72

Code 8. Prometheus configuration excerpt from Restaurant Service 73

Code 9. Edit consumer authorization check .. 81

Code 10. Creation of the project skeleton through sbt ... 101

Code 11. Excerpt of the OpenAPI endpoint response, available in the Order microservice ... 103

xx

Acronyms and Symbols

Acronyms

ACID Atomicity, Consistency, Isolation, Durability

ACM Association for Computing Machinery

AHP Analytic Hierarchy Process

API Application Programming Interface

ATD Architectural Technical Debt

AWS Amazon Web Services

BASE Basically Available, Soft State, Eventually Consistent

C4 Context, Containers, Components, and Code

CAP Consistency, Availability, Partitioning

CI Consistency Index

CI/CD Continuous Integration (CI) and Continuous Delivery (CD)

CPU Central Processing Unit

CQRS Command and Query Responsibility Segregation

CR Consistency Ratio

DC/OS Data Centre Operating System

DNS Domain Name System

DTO Data Transfer Object

FAST Function Analysis System Technique

FCFS First Come First Serve

FFE Fuzzy Front End

FTGO Food To Go

GQM Goals, Questions, Metrics

HTML HyperText Markup Language

xxii

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

ISEP Instituto Superior de Engenharia do Porto – translated to Oporto Higher

Institute of Engineering

JVM Java Virtual Machine

KPI Key Performance Indicator

LOC Lines of Code

NPD New Product Development

OCI Oracle Cloud Infrastructure

OHS Open Host Service

OWASP Open Web Application Security Project

PL Published Language

REST Representational State Transfer

RI Random Consistency Index

RPC Remote Procedure Call

RQ Research Question

RSS Resident Set Size

SDLC Software Development Life Cycle

SLA Service Level Agreement

SQL Structured Query Language

SSL Secure Sockets Layer

TD Technical Debt

TOPSIS Technique of Order Preference by Similarity to Ideal Solution

UML Unified Modelling Language

xxiii

Symbols

𝜆 Lambda

∆ Delta

1

1 Introduction

This chapter provides the context for the work accomplished, followed by the problem to be

solved, and the objectives to achieve, before concluding with the research methodology of the

paper. Finally, a summary of the document's structure is provided.

1.1 Context

Each year, as the need for distributed and flexible software grows, more and more people are

studying and adopting microservices, not only to improve their software, through high

maintainability and testability, low coupling, and ease of deployment but also to optimize the

resource allocation and flow of information, by organizing its teams around business

capabilities and allowing for more diverse teams (Richardson, 2021). Microservices

development, on the other hand, is not trivial. Many companies try to use this architecture in

projects where it is completely inappropriate. That's why choosing the best architecture for a

project and how to implement it is such a crucial stage in assuring its viability.

1.2 Problem Statement

Beyond the characteristics of reactive systems is their capability to remain responsive in the

face of failure and under variable workloads (Bonér et al., 2014). Microservices are generally

adopted when the scalability and flexibility of an application are essential to its success. Despite

this, dependencies between services transmitted through synchronous protocols, result in one

failure potentially affecting multiple microservices. The adoption of responsiveness in a

microservices-based architecture can facilitate and minimize the proliferation of errors

between services and in the communication between them, by prioritizing the responsiveness

and resilience of a service. Some open-source frameworks can be used to obtain reactive

microservices, such as Lagom, Spring Reactive, Micronaut, and Quarkus. However, it is not fully

understood what the effects of responsiveness on some quality attributes are.

2

1.3 Objectives

In this dissertation, four main assignments were set to explore and evaluate reactive

microservices:

1. Explore and document the most frequent and relevant concerns, pitfalls, metrics, and

frameworks in reactive microservices;

2. Study and choose a microservices project, to be migrated to reactive microservices;

3. Explore and document the journey of its migration and lessons learned;

4. Evaluate the migrated project with the studied metrics.

1.4 Research Methodology

The study methodology utilized to address the above-mentioned question consisted of the

following phases:

1. Bibliographic research on the current state of the art comprised by:

i. The most relevant concerns for developers when using reactive microservices

(see sections 2.4.1);

ii. What to avoid in the implementation of reactive microservices (see sections

2.4.2);

iii. Metrics to use on reactive microservices evaluation (see section 2.4.3);

iv. The most optimal frameworks for developing reactive microservices (see

section 2.4.4);

2. Conduct a value analysis of the proposed solution (see Annex A);

3. Identify and perform key decisions that must be made to create and implement the

intended solution (see section 3);

4. Analyse the requirements and design the architecture of the proposed solution (see

section 4);

5. Implement and document the process of migration of the chosen project (see section

5);

6. Formulate and execute the tests and evaluations to be had, based on the previous

metrics gathered (see section 6).

1.5 Document Structure

This paper is divided into eight sections:

1. Introduction – This is the current chapter. Here its firstly given a context of the problem,

followed by the problem itself, the objectives traced and the research methodology,

finalized by the main outcomes and this document structure.

2. State of the art – Next is the state of the art, which contains a brief overview of what a

traditional microservice and a reactive one, followed by a systematic literature review,

3

where 4 research questions are formulated and investigated, followed by a summary

on what was discovered.

3. Value analysis – In this chapter, the value of the proposed solution is determined, as

well as the choices for the project and framework to use and its reasoning.

4. Analysis and Design – In this chapter, it is documented the initial analysis and design of

the proposed solution.

5. Solution Implementation – In this chapter, the implemented solution will be

showcased, focusing on the necessary project setup for a smooth development

environment, the implementation details relative to the traced requirements, the

employed tests, the setup for the metrics to be used in tests and evaluation and finally

the summary of this migration process and some lessons learned.

6. Tests and Evaluation – Next, the evaluation process and tests are formulated and

executed, following the previously gathered metrics per quality attribute in the state of

the art, finalized with the analysis of its results.

7. Conclusion – Finally a conclusion of the overall work is made, starting with the main

contributions of this project, followed by the recorded threats to the validity of the

project, the future work to be had to minimize some of these threats and further

improve its value, concluded by some final remarks on the process to achieve this

report as a whole.

8. Annex – This supplementary chapter contains part of the value analysis, which was

developed for an intermediary delivery, some of the diagrams which size was too big to

be easily read in the body of the document and some of the implementation code and

diagrams aid with the understanding of the solution.

4

5

2 State of the Art

This chapter details the results of research into reactive microservices, their most common

practices and guidelines. This includes a systematic literature review documenting four research

questions, as a foundation for the work to be done, as well as pattern identification to aid the

future development of the value analysis.

2.1 Traditional Microservices vs Reactive Microservices

Monolithic applications can be effective, but as more applications are moved to the cloud,

consumers are becoming increasingly frustrated with them. Because change cycles are

intertwined, a change to a small component of the program necessitates rebuilding and

deploying the entire monolith. It's generally difficult to maintain a solid modular structure over

time, making it more difficult to keep changes that should only affect one module within that

module. Scaling an application demands scaling the complete application rather than just the

bits that require more resources (Fowler & Lewis, 2014).

These frustrations prompted the creation of the microservice architectural style, which is a

means of building a single application as a collection of small services, as shown in Figure 1,

each of which operates in its process and interacts through lightweight mechanisms, most

frequently a hypertext transfer protocol (HTTP) resource application programming interface

(API). These services are based on business capabilities and can be deployed by completely

automated software. These services may be written in separate programming languages, use

different data storage methods, and can even be developed by different teams, having the bare

minimum of centralized management (Fowler & Lewis, 2014).

6

Figure 1. Comparison of a monolithic and microservice architecture (Fowler & Lewis, 2014)

Reactive microservices are a subset of these microservices that increase their flexibility,

scalability, and decoupling. This makes them more adaptable to change and easier to build.

They are far more tolerant of failure, and when it does happen, they handle it gracefully rather

than with tragedy. Reactive Systems are quick to respond and provide users with useful

interactive feedback. (Bonér et al., 2014)

Reactive systems are based on 4 principles:

• Responsiveness: Responsiveness is the foundation of usability and utility, but it also

means that faults can be discovered promptly and successfully dealt with. Rapid and

consistent reaction times are the emphasis of responsive systems, which set reliable

upper bounds to provide a consistent level of service (Bonér et al., 2014);

• Resilience: In the event of a failure, the system remains responsive. Replication,

containment, isolation, and delegation are used to achieve resilience. Failures are

contained within each component, isolating them from one another and ensuring that

sections of the system can fail and recover without affecting the entire system. Each

component's recovery is assigned to another external component, and high availability

is provided where necessary through replication. A component's client does not handle

its failures (Bonér et al., 2014);

• Elasticity: The system stays responsive under varying workloads. Changes in the input

rate might cause reactive systems to increase or decrease the resources allocated to

service these inputs. This entails architectures with no contention points or central

bottlenecks, allowing for the sharding or replication of components and the distribution

of inputs among them. By providing appropriate live performance measures, reactive

systems support both predictive and reactive scaling algorithms. They achieve elasticity

on commodity hardware and software platforms at a minimal price (Bonér et al., 2014);

7

• Message Driven: Asynchronous message-passing is used in reactive systems to create

a border between components that assures loose coupling, isolation, and location

transparency. This barrier also allows failures to be delegated as messages. By

structuring and monitoring the message queues in the system and providing back-

pressure as appropriate, explicit message-passing offers load management, flexibility,

and flow control. As a means of communication, location transparent messaging allows

failure management to work with the same syntax and semantics throughout a cluster

or within a single host. Non-blocking communication allows recipients to consume

resources only when they are actively using them, resulting in lower system overhead

(Bonér et al., 2014).

2.2 Building Reactive Microservices

A systematic mapping review was used to gain a better understanding of reactive microservices,

their challenges, good and bad practices, and which tools are better suited to build and evaluate

them.

As demonstrated in Figure 2, our systematic mapping study's process phases begin with the

creation of research questions, followed by a search for relevant articles, screening of papers,

keywording of abstracts, and ultimately data extraction and mapping. Each process step has a

result, with the systematic map representing the finishing result of the process (Petersen et al.,

2008).

Figure 2. Steps to a systematic mapping review (Petersen et al., 2008)

2.3 Software Engineering Systematic Mapping

A systematic map is a strategy used in software engineering to provide an overview of a

research topic and determine the number, type, and quantity of research and findings present

within it, generally seeking patterns by mapping the frequency of publishing across time

(Petersen et al., 2008).

8

2.3.1 Definition of research questions

To begin, research questions must be formulated to indicate what the researcher wishes to

achieve with his investigation. Table 1 provides all the information about the research question

identifier (RQx), for future use, as well as the question itself and its reasoning.

Table 1. Research questions

Id Question Reasoning

RQ1 What are the most relevant concerns for
developers when using reactive
microservices?

To have a better grasp of how to create
and maintain reactive microservices.

RQ2 What should be avoided in the
implementation of reactive
microservices?

To learn from the errors and difficulties
that others have encountered.

RQ3 What metrics should reactive
microservices be evaluated on?

To be able to properly assess and
compare the state of reactive
microservices.

RQ4 What are the optimal frameworks for
developing reactive microservices?

To increase the quality and performance
of reactive microservices development
and their overall condition.

2.3.2 Conducted search criteria

To obtain a broader set of study, all sources of information were digital libraries, which are the

most utilized resource for software engineering-related issues. Institute of electrical and

electronics engineers (IEEE) Explore, Google Scholar, and the association for computing

machinery (ACM) Digital Library were the databases used for this search. The following queries

were used:

• microservices AND reactive AND (challenges OR practices OR patterns);

• microservices AND reactive AND (pitfalls OR difficulties OR problems);

• microservices AND reactive AND (metrics OR evaluation OR quality);

• microservices AND reactive AND (framework OR tool).

2.3.3 Screening of papers for inclusion and exclusion

It is required to do a screening after completing the search and obtaining a list of findings. As

shown in Figure 3, this implies first removing duplicate studies from the set and then using

inclusion and exclusion criteria to narrow down the studies that are relevant (Petersen et al.,

2008).

9

Figure 3. Screening of papers procedure

Table 2 shows the criteria that were considered to obtain the results:

Table 2. Employed screening criteria

Screening Criteria

Inclusion

Reactive microservice patterns, practices and challenges reported by
experienced practitioners

Practical case studies where reactive microservice methodologies were
applied

The benefits and disadvantages of reactiveness when compared with
traditional microservices

Research on evaluating microservices, and reactiveness

Investigation of frameworks or tools to develop reactive microservices

Exclusion

Commercial publications

Papers that are not written in either English or Portuguese

Papers that are not in the software engineering scope and neither explicitly
refer to microservices or reactiveness

The paper must be accessible to ISEP academic department

Papers that do not offer evidence for the perspective of the author

After deleting duplicates and applying the criteria to the findings, the studies in Table 3 were

obtained:

Table 3. List of papers obtained following the screening procedure

ID TITLE REFERENCE

1 Understanding and addressing quality attributes of
microservices architecture: A Systematic literature review

(Li et al., 2021)

2 An extensible data-driven approach for evaluating the quality
of microservice architectures

(Cardarelli et al., 2019)

3 The applicability of palladio for assessing the quality of cloud-
based microservice architectures

(Klinaku et al., 2019)

4 From a Monolithic Big Data System to a Microservices Event-
Driven Architecture

(Laigner et al., 2020)

10

ID TITLE REFERENCE
5 The Saga Pattern in a Reactive Microservices Environment (Stefanko et al., 2019)
6 A Framework for Evaluating Continuous Microservice Delivery

Strategies
(Lehmann & Sandnes,
2017)

7 Architectural technical debt in microservices: a case study in
a large company

(de Toledo et al., 2019)

8 Development Frameworks for Microservice-based
Applications: Evaluation and Comparison

(DInh-Tuan et al.,
2020)

9 Designing Distributed, Scalable and Extensible System Using
Reactive Architectures

(Tovarnitchi, 2019)

10 Reactive Microservices Architecture Using a Framework of
Fault Tolerance Mechanisms

(Rasheedh & Saradha,
2021)

11 Microservices: A Mapping Study for Internet of Things
Solutions

(C. Santana et al.,
2018)

12 Reactive microservices for the internet of things: a case study
in fog computing

(C. J. L. de Santana et
al., 2019)

13 Asynchronous Queue Based Approach for Building Reactive
Microservices

(Brilhante et al., 2017)

14 Investigating Performance Metrics for Scaling Microservices
in CloudIoT-Environments

(Gotin et al., 2018)

15 A Black-box Monitoring Approach to Measure Microservices
Runtime Performance

(Brondolin &
Santambrogio, 2020)

16 A Comparative Study of Microservices Frameworks
in IoT Deployments

(du Plessis et al., 2021)

17 Attributes Assessing the Quality of Microservices
Automatically Decomposed from Monolithic Applications

(Cojocaru et al., 2019)

2.3.4 Keywording using abstracts

Keywording is a technique for shortening the time it takes to construct a categorization scheme

while also guaranteeing that the system considers previous research. There are two phases to

keywording. The reviewers begin by reading the abstracts and looking for keywords and themes

that indicate the paper's contribution. While doing so, the reviewer also determines the

research's context. When this is completed, the set of keywords from several articles is

integrated to produce a high-level understanding of the research's nature and significance. This

aids reviewers in defining a collection of categories that is reflective of the whole population.

When abstracts are too inadequate to allow for significant keyword selection, reviewers might

opt to look at the paper's introduction or conclusion instead. Once a final set of keywords has

been selected, they may be grouped and utilized to create the map's categories (Petersen et al.,

2008).

11

Figure 4. Building the Classification Scheme (Petersen et al., 2008)

Four research topics are defined in the study, as shown in Table 4:

Table 4. Outlined research topics

Research Topics Description
Development of reactive
microservices

Explore techniques, guidelines and principles utilized in
the development of reactive microservices

Pitfalls developing reactive
microservices

Examine problems and anti-patterns to avoid during the
implementation of reactive microservices

Metrics to evaluate reactive
microservices

Study what metrics, tools or attributes to focus on while
developing and maintaining reactive microservices.

Tools to implement reactive
microservices

Investigate development frameworks or tools to
implement reactive microservices.

2.3.5 Data extraction and mapping of studies

The data from the articles were collected and represented in a collection of concerns for each

of the issues listed in Table 4 previously mentioned. The first column of each table represents

these issues, with the second column containing the studies that back them up.

Table 5. Development of reactive microservices

Description Reference paper ID
Quality attributes 1, 2, 3, 4, 9, 10, 11, 17

Challenges 2, 4, 9, 10, 11, 12, 14

Service communication 4, 9, 10

Transaction processing 5, 9

12

Table 6. Pitfalls developing reactive microservices

Description Reference paper ID
Drawbacks 4, 6

Risks and issues 7, 10, 12, 13

Architectural technical debt 7

Cascading failure between microservices 10

Table 7. Metrics to evaluate reactive microservices

Description Reference paper ID
Evaluation of software quality attributes 1, 2, 6, 8, 10, 12, 13, 17

Maintenance tools 2, 3, 6, 8, 10, 13

Evaluation of quantifiable metrics 1, 6, 8, 10, 13, 14, 17

Application assessment with continuous delivery 6, 7

Application Monitoring 14

Table 8. Tools to implement reactive microservices

Description Reference paper ID
Development framework or tool comparison 8, 16

Development framework or tool analysis 8, 10, 16

After meticulously documenting and segmenting each study, the patterns and common themes

and subjects between the papers can now be uncovered. As seen in Figure 5, although

microservices and reactivity are both well-known topics, the integration of reactive principles

in microservices is relatively new, 75% of the findings were produced in the last three years,

and all publications were issued in the last five years.

Figure 5. Number of selected studies per year of creation

0

2

4

6

8

2021 2020 2019 2018 2017

N
u

m
b

er
 o

f
st

u
d

ie
s

Year

13

Another interesting pattern identified is the most popular sectors where reactive microservices

are being employed, with the Internet of Things (IoT) having a 50% occurrence rate in the

research, followed by cloud applications having a 40% occurrence rate and finally big data

having a 10% occurrence rate, as pictured in Figure 6.

Figure 6. Number of occurrences in selected studies per theme

These correlations are supported by the high synergy between microservices and cloud

computing, which can amplify some of the benefits of microservices through tools such as

autoscaling and high availability. Regarding IoT, its correlation to reactive microservices can be

explained by the similarity of their core principles, which both seek to decentralize the

application to provide higher flexibility and scalability.

2.4 Data Analysis

Once the data has been retrieved and mapped into the appropriate categories within each

categorization system, it is feasible to assess how the obtained findings answer the study

questions stated in section 2.3.1.

2.4.1 RQ1 - What are the most important concerns that developers should pay

special attention to when implementing reactive microservices?

2.4.1.1 Quality Attributes

Starting with the quality attributes, according to the research carried out by Li et al., despite the

rapid expansion and adoption of microservices, the influence on quality attributes, particularly

which quality criteria are more difficult to implement, remains unexplored and unclear. A

thorough literature analysis was conducted, with 72 articles reviewed, to clarify and expand the

0

1

2

3

4

5

6

7

8

IOT Cloud Big Data Other

N
u

m
b

er
 o

f
u

n
iq

u
e

o
cu

rr
en

ce
s

Themes

14

knowledge on quality attributes and the techniques that should be used to improve them in a

project. (Li et al., 2021).

Scalability and performance were the two most concerning quality aspects in the analysed

research, followed by availability, monitorability, and security, with testability being the least

significant. Quality attributes such as the trade-off between performance and scalability, or the

reliance between monitorability and scalability, were also discovered to be related. Figure 7

illustrates which techniques should be used to refine these quality attributes (Li et al., 2021):

Figure 7. Tactics to use in each quality attribute (Li et al., 2021)

2.4.1.2 Challenges

Regarding the challenges found, Laigner et al. and Gotin et al. dive deeply into a set of

challenges found throughout the development life cycle of reactive microservices:

Defining microservices

According to Laigner et al., two seemingly domain concepts that generate distinct domain

events lead to duplicate concepts, which resulted in redundant efforts on each requirement

modification when new information is obtained during the development life cycle. As a lesson

learned, it was recommended to follow Fowler's suggestion, which advocates for the

Monolithic-First method, according to which a project “shouldn’t start with microservices, even

if you’re sure your application will be big enough to make it worthwhile.” (Fowler, 2015). It's

critical to wait for requirements to develop before adequately defining microservices. Emerging

research, on the other hand, examines model-driven development of microservice-based

systems, which might help ease some of the impediments to microservices development

(Laigner et al., 2020).

15

Data modelling

Another issue faced by Laigner et al. was the fast-paced development process, which made

accurate data modelling difficult due to the adoption of new technologies. They had to use APIs

to encapsulate schema-less and denormalized data models rather than the normalized data

models and data consistency assurances found in monolithic systems because of the distributed

architecture. Furthermore, while using domain events to communicate with services increases

the domain's expressiveness, the variety of services and technologies made debugging

problems difficult for developers. The application's convoluted data flow frequently led to

misunderstandings and slowed the process of identifying the source of problems (Laigner et al.,

2020).

Embracing failure

Some microservices-oriented frameworks, such as Spring, lack comprehensive support for

failure management in processes that span numerous microservices. In the absence of

distributed transactions, for example, the developer should hard-code recovery logic for such

workflows. Additionally, they argue for a programming paradigm that defines fault-tolerance

attributes that can be reasoned about on requests spanning many microservices, given the low

granularity nature of microservice instances and the difficulties of thinking about each

microservice local state globally (Laigner et al., 2020).

Service Communication

To fully understand the service communication issues encountered by Gotin et al., first, there

must be introduced a set of concepts related to queue growth and state (Gotin et al., 2018).

There are three basic states for a queue regarding the difference between the number of

messages received and processed, indicated by ∆m:

• Steady, when the number of messages received is the same as the messages processed

(∆m = 0);

• Filling, when the number of messages received is higher than the messages processed

(∆m > 0);

• Draining, when the number of messages received is lower than the messages processed

(∆m < 0);

Because its policy is first-come-first-served (FCFS), a filling state causes a delay on the

application layer due to a wait time for each message in the queue. The queue is said to be

congested when the time it takes for a message to transit through it approaches the maximum

desired time. When the time it takes for a message to flow through a queue exceeds the

maximum length that the message broker system can handle, the queue is said to be flooded.

(Gotin et al., 2018).

16

The underlying issue of a congested or flooded queue is based on the provisioning of consuming

microservices. Under provisioned microservices lead to a filling queue state since the

consumption rate is lower than the production rate. For this reason, it eventually transits to a

congested or flooded state inducing a performance degradation on the application layer and

may result in reliability issues such as a rejection of messages. Overprovisioned microservices

have a low utilization but do not degrade the message queue state since the consumption rate

exceeds the production rate, but its costs will increase unnecessarily, being crucial to balance it

out. However, due to the typical pay-as-you-go cost model of cloud infrastructure, each

provisioned resource increases the operating costs, being necessary to gather information

relative to the queue health and to balance its power accordingly (Gotin et al., 2018).

Transaction Processing - The Saga Pattern

A saga is a collection of operations that can be linked with one another. Each operation in the

saga symbolizes a unit of work that the compensatory action has the potential to undo. The

saga ensures that either all operations succeed or the corresponding compensating actions for

all performed operations are conducted to cancel the incomplete processing (Stefanko et al.,

2019).

An operation is a section of the saga that reflects a specific work phase. Each saga can be broken

down into a series of operations, each of which can be executed as a transaction with complete

atomicity, consistency, isolation, and durability (ACID) guarantees. Each operation must have

its compensation action. The compensation action's goal is to undo the previous operation's

work semantically. It is important to highlight that this may not be the opposite action that

restores the system to its previous condition before the operation or the saga began (Stefanko

et al., 2019).

The saga pattern, in contrast to the conventional transaction paradigm, softens the ACID

constraints to provide availability and scalability while also including built-in failure

management. Because the saga commits each action separately, updates to the saga that aren’t

yet fully committed are immediately visible to other parallel activities, breaking the isolation

property. The consistency, availability, and partitioning (CAP) theorem is an alternative BASE

model that prioritizes availability over the consistency granted by ACID (Stefanko et al., 2019).

The specified system properties are:

• Basically Available – The system guarantees availability with regards to the CAP

theorem;

• Soft State – Due to eventual consistency, the state may change over time even if no

immediate modification request is made;

• Eventual Consistency – The system's state is allowed to be inconsistent, but if no

additional update requests are received, the state will gradually return to the consistent

state (Stefanko et al., 2019).

17

The concept of sagas can be naturally extended to distributed systems. As an architectural

pattern, the saga pattern emphasizes on integrity, reliability, and quality, as well as

communication patterns between services. This enables the saga definition in distributed

systems to be recast as a series of requests sent to specified participants invocations. These

demands may give ACID assurances, but they are not limited and must be ensured by each

participant. Similarly, each participant must expose the idempotent compensating action

request handler. Distributed saga management, like centralized saga management,

necessitates a transaction log and a saga execution component, both of which must be

distributed and durable in an optimal environment. Because all components are now

distributed, the saga management system must deal with new issues that did not exist in the

localized context, the most significant of which being network and participant failures that can

occur between remote invocations. However, typical principles from a non-distributed setting

continue to be applicable (Stefanko et al., 2019).

2.4.2 RQ2 - What should be avoided in the implementation of reactive

microservices?

To find out what to avoid in the implementation of reactive microservices, several research and

case studies were analysed. Two of the most interesting cases were from de Toledo et al. who

evaluated the impact of architectural technical debt in reactive microservices and Lehmann &

Sandnes, which investigated and compared different microservice delivery strategies.

2.4.2.1 Architectural Technical Debt

Starting with the de Toledo et al. study, and introducing the concept of technical debt (TD):

The term technical debt was initially used to inform non-developers about the threats of

delivering "not quite right code". TD is a sub-optimal design or implementation that provides

short-term gains but raises the system's long-term costs, compromising its evolvability and

maintainability (de Toledo et al., 2019).

The definition of TD includes three key concepts (de Toledo et al., 2019):

• Debt – the presence of sub-optimal solutions. A system's debt can be measured as the

number of sub-optimal implementations compared to the ideal option;

• Interest – due to the existence of a debt, an additional payment must be paid. It can

also be seen as the amount that would be saved if the debt didn't exist;

• Principal – the cost of developing the system while staying out of debt, or the cost of

refactoring it. Accumulating debt may be advantageous if the interest rate is low.

As a result, when to accrue or pay off the debt is a key question in the study. Two further ideas

were used in this case study to reason about what affected the choice to correct TD and how

to achieve so:

18

• Risks – they have the potential to influence today's decision-making or to be a cause

of concern in the future. Fear of things going wrong might influence the likelihood of

making that option;

• Solution – A strategy for resolving TD or lowering the amount of interest paid(de

Toledo et al., 2019).

Architectural Technical Debt (ATD) is a subset of TD that is concerned with the architecture of

a system. Some of the issues that ATD created in the case study are:

• Coupling between services;

• In the communication layer, it is necessary to deal with a lot of information regarding

services;

• Unnecessary dependencies between development teams;

• Unnecessary implementation of transformations and filters;

• Too many different data types to manage (de Toledo et al., 2019).

This led to the conclusion that, while some TD may not be harmful to the development of

reactive microservices, it must be actively measured and analysed to prevent losing some of

the key benefits of this architectural approach, such as strong decoupling of services and even

software teams.

2.4.2.2 CI/CD

Continuous delivery is a term that combines two concepts: continuous integration and

continuous deployment, CI/CD. Continuous integration is the practice of integrating changes

into the mainline early, such as the master branch, if the team uses Git versioning tools. The

process of releasing changes to end-users as soon as they reach the mainline is known as a

continuous deployment (Lehmann & Sandnes, 2017).

When these components are linked, a development workflow emerges in which developers

merge their modifications into the production-ready version of the code base regularly, and

those changes are promptly delivered to end-users. (Lehmann & Sandnes, 2017)

In the framework developed by Lehmann & Sandnes, various microservices CI/CD approaches

were assessed using seven criteria (Lehmann & Sandnes, 2017):

• Testability ease – qualitative variable defined by 3 levels:

o Trivial, if it requires a single setup per project and properly mirrors the

production environment;

o Time-consuming, if it needs setup per machine but still properly mirrors the

production environment;

o Uncertain, if it involves setup per machine and does not properly mirror the

production environment.

• Abstraction expressiveness – qualitative variable defined by 3 levels:

19

o Highly expressive, if there are no error-prone manual stages, and just a small

amount of learning is necessary;

o Somewhat expressive, if there are some manual stages;

o Manual, if there are many error-prone manual stages.

• Environment parity – qualitative variable defined by 3 levels:

o Equal, if any software bug can be found in any environment;

o Distinguishable, if there are a few minor differences that can be quickly

addressed;

o Disparate, if all development, testing, and production machines must be

manually checked for parity.

• Number of manual steps – integer value of the number of manual steps;

• Minutes to build, verify, and deploy – average overall time to deploy a service, in

minutes;

• Availability adequacy – qualitative variable defined by 3 levels:

o Adequate, if there is automatic scaling of computing nodes in response to

increased and decreased server load with zero downtime installations;

o Excessive, if there are deployments with no downtime and simple manual

scaling of computing nodes;

o Error-prone, if the deployment or resource scaling involves a lot of error-prone

manual steps.

The results achieved from the comparison of a manual deployment strategy and a Kubernetes-

based deployment, made by Lehmann & Sandnes, are shown in Table 9:

Table 9. Evaluation of a manual vs a container-based deployment (Lehmann & Sandnes, 2017)

Manual deployment

strategy
Container-based

deployment
Testability ease Uncertain Trivial

Abstraction expressiveness Manual High

Environment parity Disparate Distinguishable

Number of manual steps 80 per day 0

Minutes to build, verify, and
deploy

Unknown Unknown

Availability adequacy Error-prone Adequate

Concluding, while creating reactive microservices, the significance of a well-structured and well-

thought deployment plan is critical to avoiding long-term complications. Although it can slow

down initial development by requiring more technologies and processes to set up and

investigate, which aren't the primary goals, it can completely obstruct the ability to deploy and

scale an application in the long run. As more microservices are introduced to the deployment,

20

the knowledge base and the number of mistakes grow exponentially, making this process

extremely hard to share with new team members and coordinate between teams.

2.4.3 RQ3 - What metrics should be used to evaluate reactive microservices?

Following the challenges presented by Gotin et al., this research also gives a range of

assessment methods aimed at optimizing the service communication layer and resolving some

of the issues reported. It's worth noting that this project was carried out in a cloud environment,

which provides features like threshold-based rules auto-scaling, which make the process of

scaling up or down a service much simpler.

Because the internal status of the message broker system provided a barrier in this research,

they wish to examine the usefulness of depending directly on message queue metrics for scaling

choices instead of the standard central processing unit (CPU) measure. Queue-specific metrics

like arrival rate (ingress), departure rate (egress), and queue length may be monitored by

several message brokers. Because the arrival rate and departure rate are not feasible for scaling

options due to the threshold-based rules auto-scaling configurations, they analyse the end-to-

end latency between message transmission and receipt in a consuming microservice to

estimate the queueing delay. The arrival rate, for example, is unaffected by scaling decisions

and so provides no feedback. As a result, they look at the growth of the queue, which contains

both measures (Gotin et al., 2018).

The metrics that were evaluated were the average CPU utilization, the number of enqueued

messages – length of the message queue – the difference between arrival and departure rate–

message queue growth – and the wait time for a message in the queue before it was processed

– message queue delay (Gotin et al., 2018).

Furthermore, the research made by Cojocaru et al. aids in connecting a quality attribute with

measurable metrics. Two categories of analysis techniques were established to evaluate the

metrics:

• Static analysis is an approach that does not require the examined application to be run.

Without incurring the complexity of executing the program, scanning a microservice's

code before exposing it to other microservices can help find and mitigate issues and

vulnerabilities.

• Dynamic analysis is a technique that necessitates the execution of the software to be

assessed and can identify flaws in the application’s behaviour and code logic.

Table 10 summarizes the findings by relating the quality attributes previously exposed in 2.4.1

with their respective metrics, which can either be a quantifiable statistic or simply the existence

of a given tool or attribute, and its type of analysis (Cojocaru et al., 2019; Gotin et al., 2018; Li

et al., 2021):

21

Table 10. Metrics by quality attributes

Quality
Attribute

Metric /
Attribute

Description
Analysis

Technique

M
ai

n
ta

in
ab

ili
ty

Granularity

Also referred to as the size of each microservice.
Although it can be measured through the number
of lines of code (LOC), a more useful application
of this metric is by determining the relative size
between microservices.

Static

Cohesion

Reflects the extent to which a microservice's
operations focus on a single functionality.
Measuring cohesion systematically can be
difficult due to its semantic essence but a
comparison between microservices can be done
to determine the components with low cohesion.

Static

Coupling

The degree of coupling is measured by dividing
the number of calls to a microservice by the
number of invocations the microservice makes to
other microservices.

Static

Open
interfaces

Can also describe the granularity of the service
through the number of tasks and their
parameters open through exposed interfaces.

Static

Ease of
deployment

A common scenario entails the deployment of
completely automated containers, each of which
runs a microservice. Execution timelines and
instance graphs, as well as use-case and
sequence unified modelling language (UML)
diagrams, are commonly used to test it.

Dynamic

Sc
al

ab
ili

ty

Usage
frequency

The percentage of requests made to the
evaluated microservice compared to all requests
made throughout the whole system.

Dynamic

Number of
synchronous
requests

The number of synchronous requests is
supported by the exposed interfaces. A
significant diversity of requests suggests a lack of
scalability.

Dynamic

Horizontal/
vertical
scalability

The ability of a microservice to continue to
function appropriately when its size changes,
either horizontally or vertically, without incurring
performance penalties.

Dynamic

Isolation
The isolation of the microservice from others,
with whom it should only communicate through
the disclosed interfaces. Similar to low coupling.

Dynamic

P
e

rf
o

rm
an

ce

Response
time

The expected time between when a request to a
microservice is submitted and when the result is
provided. It only considers the execution time,
not the network delay time. When monitoring
synchronous calls, the longest response time is
used, but for asynchronous calls, the average
time spent is used.

Dynamic

22

Quality
Attribute

Metric /
Attribute

Description
Analysis

Technique

The average
size of
messages

The average message size in each queue. Can be
used comparatively between queues to pinpoint
the less performant ones.

Dynamic

Queue
growth

The difference between message arrival and
departure rate.

Dynamic

Average CPU
utilization

Average CPU utilization, to be compared
between each service.

Dynamic

Te
st

ab
ili

ty

API
documenta-
tion and
management

The existence of a streamlined API
documentation and management page allows
the automation of test procedures.

Dynamic

Test
automation

Automatic microservice testing process to
support the continuous integration of
microservices.

Dynamic

A
va

ila
b

ili
ty

Uptime
percentage

The percentage of time a microservice is
available within a certain time frame. Most
modern cloud platform Service Level Agreements
(SLA) offer 99.9999% or higher availability, which
corresponds to 31.56 seconds of unscheduled
downtime per year.

Dynamic

Successful
execution
rate

The capacity of a service provider to successfully
fulfil requests within a particular time frame is
measured by the ratio of successful requests to
the total number of requests.

Dynamic

Fault
detection

To identify or predict the occurrence of a defect
before the system may take action to recover
from faults, applications require continuous
monitoring so that their health can be studied to
react to failures automatically and responsively
with little human intervention, by implementing
tools such as fault monitors.

Dynamic

Health
management

A quality trait characterizing a microservice’s
capacity to cope with failures is also known as
resilience to failure. A microservice conforms to
this criterion by preserving the internal state and
automatically resuming while loading the most
recent state before the failure.

Dynamic

M
o

n
it

o
ra

b
ili

ty
 Data

generation
and storage

Each service must be capable of generating
universal logs, distributed tracing and
applicational metrics, and storing them in either
a centralized or decentralized storage system.

Dynamic

Data
presentation

The saved data from the application must be
presentable in its singular or aggregable state,
and viewable through open-source analytics and
monitoring solutions.

Dynamic

23

Quality
Attribute

Metric /
Attribute

Description
Analysis

Technique
Se

cu
ri

ty

Third-party
weaknesses

Regards the security of each dependency, which
can directly impact the security of the
application.

Dynamic

Security
monitor

Security monitor is a strategy that uses monitors
at various levels to observe anomalous behaviour
or assaults on microservices.

Dynamic

Authenticati
on and
authorization

Authentication is the process of confirming a
user's or a party's identity, and authorization is
the means through which a principal is mapped
to the activity that an identity is allowed to do.
The microservices resilience to attacks is
strengthened by applying these policies in the
application.

Dynamic

2.4.4 RQ4 - What are the most relevant frameworks to build reactive

microservices?

2.4.4.1 Frameworks

A few exclusion criteria were established before discovering and analysing the most applicable

frameworks for building reactive microservices. To be relevant to the study, a framework must

be open source, offer explicit support for reactivity, and support a programming language that

the researcher has previously studied.

The list, the criteria and comparison of frameworks made in Table 11 are based on studies

conducted by du Plessis et al., DInh-Tuan et al. and Rasheedh & Saradha, and updated with the

most recent information from each framework's GitHub and documentation pages. The

following frameworks were evaluated:

Lagom

Lagom is a Java and Scala framework that uses Akka and Play in its underlying system. For

communicating between decoupled microservices, Lagom preferentially utilizes Kafka, while

data persistence is handled using Event Sourcing and Command Query Responsibility

Segregation (CQRS). Lagom may be run on Kubernetes, data centre/operating system (DC/OS),

or any other cloud/on-premises deployment platform that allows for private networking

between servers. By default, Lagom is asynchronous, and it includes a service registry and

discovery implementation(Lagom, 2016b) (Lagom, 2016a).

Spring Boot

Spring Boot eliminates many of the configuration pains that come with utilizing Spring, allowing

for swifter application development. Although Spring Boot was not created specifically for

reactive microservices, it enables the rapid and efficient creation of several microservices and

24

supports reactivity, making it one of the most popular Java frameworks for reactive

microservices (Spring, 2014a, 2014b).

Quarkus

Quarkus is a full-stack, Kubernetes-native Java framework that runs on the Java virtual machine

(JVM). Quarkus promises to offer a quick start-up time and low resident set size (RSS) memory

consumption, which enhances scalability and memory utilization. It is suitable for the creation

of a variety of Java applications, including reactive, serverless, microservices, and containers. It

is written in Java and was created by Red Hat. Support for Web/representational state transfer

(REST) services, databases, communications, and security are just a few of the key features

(Quarkus, 2019a, 2019b).

Vert.x

Vert.x is a reactive, event-driven, polyglot software development toolkit that runs on the JVM

and was created by Eclipse developers. Support for concurrent and asynchronous

communication, database support, event streams, and registries are among its key features.

Although Vert.x is developed in Java, it also supports the building of applications in Groovy,

JavaScript, Ceylon, and Ruby (Vert.x, 2012b, 2012a).

Micronaut

Micronaut is a full-stack framework for constructing microservices and serverless applications

that are built on the JVM. It was created by OCI (Oracle cloud infrastructure) and has faster

start-up times and lower memory consumption than other JVM-based microservices

frameworks. This is accomplished by pre-compiling the framework, which reduces the amount

of computation necessary during runtime. Built-in cloud support, unit testing, service discovery,

and reactive programming support, both client and server-side, are some of the characteristics

of the Micronaut framework. Micronaut, like Vert.x, is written in Java, but it also supports

development in Groovy and Kotlin (Micronaut, 2018a, 2018b).

Moleculer

Moleculer is advertised as a Node.js microservices framework that facilitates the creation of

efficient, dependable, and scalable services. Moleculer has several features, including a built-in

service registry and dynamic service discovery, as well as modular transporters and serializers.

When compared to other Node.js microservices frameworks, Moleculer is written in Javascript

and has a very high request time performance (Moleculer, 2017b, 2017a).

2.4.4.2 Comparison Criteria

In terms of comparison criteria, three major groups were identified: maturity, which is used to

assess how refined a framework is, ease of implementation, which is used to assess the depth

25

of documentation, tools, guides, and the overall community, and features, which is the most

technical category.

Maturity

To evaluate the maturity of an open-source framework, metrics such as the release cycle and

analytics from open-source code hosting services like GitHub were chosen. Several criteria can

be used to determine the maturity of software, four of these aspects have been chosen: release

date, number of Github commits, the number of Github releases and number of Github

contributors (du Plessis et al., 2021) (DInh-Tuan et al., 2020).

Ease of Implementation

Most developers emphasize ease of implementation when choosing a framework because it

has a direct impact on productivity. To determine the ease of implementation, five criteria were

chosen: The first is the breadth and depth of the documentation offered. The second is the level

of information and scope of tutorials or usage guidelines supplied for new framework

developers. The third parameter is the base/core programming language, and the fourth

parameter is the amount of Stackoverflow tags, which indicates the extent of community

support for a certain framework. The existing development environment/build tools are the

final consideration (du Plessis et al., 2021) (DInh-Tuan et al., 2020).

Features

The features that are provided by a framework are another important consideration when

selecting a framework. The features selected as criteria in this paper have been chosen due to

their relevance to reactive microservices (du Plessis et al., 2021) (DInh-Tuan et al., 2020):

• Essential services – APIGateway, service discovery and registry, load balancing, and

serialization are examples of essential services; some of these will just be identified as

supported in this category and will be fully detailed in another.

• Databases – include support for multiple databases, either shared or per-service, as

well as CQRS and event sourcing.

• Observability – Support for log aggregation, performance metrics, distributed tracing,

and health checks is included.

• Cross-cutting concerns – Service registry, client and server-side discovery, external

configuration, and deployment platforms are among the utility services that connect

and manage the various microservices, included in this category.

• Communication – supported communication protocols are either synchronous,

asynchronous, or remote procedure invocations.

• Fault tolerance – contains support for circuit breaker, timeout, and retry concepts.

• Other features – Other aspects that don't fit into any of the other categories but are

still important to emphasise, such as utility tools (Interactive CLI and web dashboard),

caching, security and required software, are included.

26

Table 11. Framework comparison

Framework
Criteria

Lagom Spring Boot Quarkus Vert.x Micronaut Moleculer

M
at

u
ri

ty
 Release date

March 3rd,
2016

July 10th, 2014
March 20th,

2019
January 29th,

2012

October 23rd,
2018

February 16th,
2017

Github commits 2955 35916 28129 5250 11276 3909

Github releases 48 122 159 140 114 68

Github contributors 142 875 586 218 333 99

Ea
se

 o
f

Im
p

le
m

e
n

ta
ti

o
n

Documentation Moderate Extensive Moderate Extensive Moderate Limited

Tutorials and usage guidelines Extensive Extensive Moderate Moderate Limited Limited

Base programming language Java/Scala Java Java Java Java JavaScript

Stackoverflow tags 336 193535 2298 2312 1273 70

Development
environment

and build
tools

Build tool and
dependency
management

sbt, Maven
Maven, Gradle,

Ant
Maven, Gradle Maven, Gradle

Maven, Gradle,
SDKMan

npm

Hot reload Yes Yes, not default Yes Yes Yes, not default Yes

Project template
generator

Lagom Tech
Hub Project

Starter
Spring Initialzr

code.quarkus.i
o

start.vertx.io
micronaut.io/

launch
moleculer-cli

Interactive CLI sbt dev console N/A N/A N/A N/A REPL console

Fe
at

u
re

s

Es
se

n
ti

al

Se
rv

ic
es

 APIGateway Supported Supported Supported Supported Supported Supported

Service discovery Supported Supported Supported Supported Supported Supported

Service Registry Supported Supported Supported Supported Supported Supported

27

Framework
Criteria

Lagom Spring Boot Quarkus Vert.x Micronaut Moleculer

Load balancing Akka
Spring Cloud

Load Balancer
Stork Supported

Client-side load
balancing

Server-side
load balancing

Serialization Supported Supported Supported Supported Supported Supported

D
at

ab
as

es

Database per
service

Supported Supported Supported Supported Supported Supported

Shared database Discouraged Supported Supported Supported Supported Discouraged

CQRS / event
sourcing

Supported Supported Supported Supported Supported N/A

O
b

se
rv

ab
ili

ty

Log aggregation
Logback-based
SLF4J, Log4J2

Logback, Java
Util, Log4J2

Java Util, JBoss,
SLF4J, Apache

Java Util,
Log4J2, SLF4J

Log4J
Pino, Bunyan,

Log4js,
Datadog

Performance
metrics

Lightbend
Prometheus,

Datadog,
Netflix Atlas

Micrometer,
SmallRye

Micrometer,
Dropwizard

Micrometer,
Datadog

Prometheus,
StatsD,

Datadog

Distributed
tracing

OpenTracing
Spring Cloud

Sleuth
OpenTracing

Zipkin,
OpenTracing

Jaeger, Zipkin Built-in

Health check Through Akka Spring Actuator SmallRye Built-in Built-in Built-in

C
ro

ss
-c

u
tt

in
g

co
n

ce
rn

s External
configuration

N/A
Spring Cloud

Netflix,
Archaius

N/A Built-in Built-in
Moleculer-

runner

Service registry Built-in
Netflix Eureka,
configurable

SmallRye Stork Built-in Consul, Eureka Built-in

Client-side
discovery

ServiceLocator Ribbon Built-in Built-in Consul, Eureka N/A

Server-side
service discovery

Supported N/A Built-in Built-in Consul, Eureka Built-in

28

Framework
Criteria

Lagom Spring Boot Quarkus Vert.x Micronaut Moleculer

Deployment
platform

Docker, Kubernetes, Cloud Foundry, Azure, Heroku, Amazon AWS, OpenShift, Boxfuse, Mesosphere
DC/OS

C
o

m
m

u
n

ic
at

io
n

Synchronous
messaging

Supported Supported Supported Supported Supported Supported

Asynchronous
messaging

Websocket,
Kafka, MQTT,

AMQP

Websocket,
Kafka, MQTT,

AMQP

Websocket,
Kafka, MQTT,

AMQP

Websocket,
Kafka, MQTT,

AMQP

Websocket,
Kafka, MQTT,

AMQP, STOMP

NATS, Kafka,
Redis, MQTT,

AMQP

Remote
procedure
invocation

Akka gRPC
library

HTTP/JSON

RMI, Spring’s
HTTP Invoker,

Hessian, Burlap
Built-in gRPC Built-in gRPC

Built-in gRPC,
RabbitMQ RPC

Built-in RPC

Fa
u

lt
 T

o
le

ra
n

ce
 Circuit breaker Built-in Netflix Hystrix SmallRye Built-in Built-in Built-in

Retry N/A Spring-retry SmallRye Built-in Built-in
Exponential

back-off retry

Timeout
Circuit breaker:
call and reset

timeouts

For HTTP
components

SmallRye Built-in Built-in
Set timeout
values for
requests

O
th

er
 F

ea
tu

re
s

Caching Play
Through

dependencies
Built-in Built-in Built-in

built-in cache,
customizable

Minimum
software

requirements
Java 8, sbt 1.2

Java 8, Maven
3.2 or Gradle 4

Java 11, Maven
3.2 or Gradle 4

Java 8, Maven
3, Curl/HTTPie

Java 8
NodeJS 10,
npm/yarn

Security SSL
Basic security,

via
dependency

SSL,
authentication,
authorization

SSL
SSL,

authentication,
authorization

SSL,
authentication,
authorization

29

Starting the analysis of Table 11 with the maturity criteria, the most popular and active

frameworks were Quarkus and Spring. Lagom, Spring, and Vert.x have the most detailed

documentation and guidance in terms of ease of implementation, however, Spring had a

distinct lead in terms of Stackoverflow activity. To sum up the features, all frameworks provided

the stated core services and were robust in all areas.

2.5 Summary

To summarize the findings, a better understanding of how to build and maintain reactive

microservices through RQ1 was accomplished, starting with the most important quality

attributes and how to ensure them, and progressing through all of the challenges identified in

other studies, containing valuable knowledge from previous experiences. In RQ2, some of the

most common issues in implementing reactive microservices were identified, as well as how to

avoid them, by studying some of the defects and anomalies reported in previous studies. The

best metrics and approaches for qualifying and assessing reactive microservices were published

in RQ3, backed up by some of the previously mentioned outcomes, allowing for a more accurate

future evaluation and overall knowledge of reactive microservices. Finally, concerning RQ4, the

information gathered and summarized in Table 11 provided a broader understanding of the

various frameworks for building reactive microservices. Through this chapter, it is possible now

to not only design and implement the application with the right attributes and tools in mind,

but also prepare the evaluation of the software with the gathered metrics.

31

3 Value Analysis

The fundamental goal of value analysis is to determine how a product's or idea's value may be

maximized while keeping costs to a minimum without sacrificing quality. To do so, it considers

three major components of the product: its utility, the customer's aesthetic and subjective

worth, and the price the market is willing to pay for it (Nicola, 2020c).

The value analysis reflected in this chapter is divided into two phases: first, the project selection

will be conducted through the TOPSIS method, followed by the framework selection using the

analytic hierarchy process (AHP), a structured technique for organizing and analysing complex

decisions. The opportunity analysis phase and the logical connections of the project were added

into Annex A as they do not directly contribute to this project’s work but can help to understand

its value.

3.1 Project Selection

The technique of order preference by similarity to ideal solution (TOPSIS) was used to

determine which project should be used for the migration to reactive microservices. TOPSIS is

a systematic procedure based on three attributes or criteria: qualitative, quantitative, and cost,

all of which may be weighted either positively or negatively. TOPSIS chooses the option that is

the most identical to the ideal solution and the least similar to the negative ideal alternative

(Nicola, 2020b). To apply the TOPSIS method and find which of these projects is most

appropriate, 5 criteria were setup, with their respective weight and explanation:

1. Documentation - positive criteria with 0.25 weight, as it is the project’s first contact and

will provide most of its necessary context.

2. Community relevance, GitHub stars, forks and people watching - positive criteria with

0.15 weight. The existence of a strong community around a project can help highlight

some of its value.

32

3. Project activity, Number of contributors and commits - positive criteria with 0.15 weight.

The activity of a project can help in avoiding outdated software and practices.

4. The practice of microservice-related features - positive criteria with 0.25 weight. The

existence of common microservice patterns shows the correctness of the project and

helps to avoid initial maintenance.

5. The practice of microservice anti-patterns - negative criteria with 0.2 weight. The

existence of anti-patterns may require entire components to be rebuilt increasing the

workload of the project.

Then, regarding the projects considered, the list curated by Rahman et al., 2019 was the starting

point for the selection. This list is based on input from various platforms as well as a list of

microservices-based projects described in academic articles and is composed of over 50

projects. Next, a few criteria were set to filter the projects, to ease the migration process and

not compromise the analysis to be done. The projects must:

• Be implemented in a programming language known to the researcher and compatible

with the aforementioned frameworks in Table 11;

• Have between 3 and 10 microservices;

• Not employ the reactive principles;

• Have documentation regarding the design process;

• Be written in either English or Portuguese.

Resulting in the following list:

1. FTGO - Restaurant Management (Richardson, 2018a);

2. Eberhard Wolff's 11 Systems (Wolff, 2015);

3. Cloud Native Strangler Example (Bastani, 2016);

4. Kenzan Million Song Library (Perkins, 2018);

5. Tap-And-Eat-MicroServices (Ferrater, 2017).

Finally, with all the information necessary gathered, the criteria can be applied to the

alternatives, as shown in Table 12:

Table 12. TOPSIS decision matrix

 Documentation
Community
relevance

Project
activity

Practice of
microservice

related
features

Practice of
microservice
anti-patterns

FTGO -
Restaurant

Management
8 4 2 8 3

33

 Documentation
Community
relevance

Project
activity

Practice of
microservice

related
features

Practice of
microservice
anti-patterns

Eberhard
Wolff's 11
Systems

2 7 7 8 3

Cloud Native
Strangler
Example

4 9 7 8 6

Kenzan
Million Song

Library
2 2 9 7 4

Tap-And-Eat-
MicroServices

3 2 3 8 4

To discover its closeness to the ideal answer, this matrix must first be normalized and then

weighted, as can be seen in Table 13:

Table 13. TOPSIS normalized and weighted decision matrix

 Documentation Community
relevance

Project
activity

Practice of
microservice

related
features

Practice of
microservice
anti-patterns

FTGO -
Restaurant

Management
0.203 0.048 0.022 0.115 0.065

Eberhard
Wolff's 11
Systems

0.051 0.085 0.076 0.115 0.065

Cloud Native
Strangler
Example

0.102 0.109 0.076 0.115 0.129

Kenzan
Million Song

Library
0.051 0.024 0.097 0.100 0.086

Tap-And-Eat-
MicroServices

0.076 0.024 0.032 0.115 0.086

Finally, with the matrix normalized and weighted, the distance from the ideal and negative ideal

solutions can be determined, to find the alternative closest to the ideal solution.

34

Table 14. TOPSIS closeness to ideal solution.

Separation from

the ideal solution
Separation from the

negative ideal solution
Closeness to the

ideal solution

FTGO - Restaurant
Management

0.097 0.168 0.634

Eberhard Wolff's 11
Systems

0.156 0.104 0.402

Cloud Native
Strangler Example

0.122 0.113 0.481

Kenzan Million Song
Library

0.176 0.087 0.331

Tap-And-Eat-
MicroServices

0.167 0.053 0.241

As demonstrated in Table 14, the "FTGO - Restaurant Management" project is the best

candidate for migration since it is the closest to the ideal solution.

3.2 Framework Decision

To find the most appropriate framework to use the Analytic Hierarchy Process was employed.

AHP was designed by Professor Thoma L. Saaty in 1980 (Saaty, 1980) and is one of the most

widely used approaches in the discrete multicriteria decision-making environment. In the

evaluation process, this method allows for the use of both qualitative and quantitative criteria.

The fundamental idea behind this strategy is to break down the choice problem into levels,

making it easier to comprehend and evaluate. (Nicola, 2018)

3.2.1 Hierarchic Division

Starting with the hierarchic division of the process, its main objective was to find the most

appropriate framework to implement reactive microservices. Following Figure 8 and according

to the prior research made in Table 11, the solution should take into account three primary

criteria: maturity, ease of implementation, and framework features. On the last level, the

alternatives considered were Lagom, Spring, Quarkus, Vert.x, Micronaut, and Moleculer, also

based on Table 11.

35

Figure 8. Hierarchic division

3.2.2 Priority Definition

To find out each criterion’s priority, a pairwise matrix was utilized, as shown in Equation 1:

Equation 1. Criteria comparison base equation

𝐴 = [𝑎𝑖𝑗] = [

1 𝑎12 ⋯ 𝑎1𝑛

1/𝑎12 1 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
1/𝑎1𝑛 1/𝑎2𝑛 ⋯ 1

] 𝑖 = 1,2,… , 𝑛; 𝑗 = 1,2,… , 𝑛

The criteria are compared between one another, indicating if it is either more, less important

or of equal importance, following the levels indicated in Table 15.

Table 15. Importance levels of comparisons (Saaty, 1980)

Level of
importance

Definition Explanation

1 Equal importance
The two activities contribute equally to the
objective

3 Weak importance
Experience and judgement favour slightly one
activity over the other

5 Strong importance
Experience and judgement
strongly favour one activity over the other

7 Very strong importance
One activity is very strongly favoured over the
other

9 Absolute importance
Evidence favours one activity over
another with the highest degree of certainty

2,4,6,8 Intermediary value
When looking for a compromise condition
between two definitions

36

As displayed in Table 16, the framework's features were regarded as the most significant, with

a strong to very strong importance compared to maturity and a somewhat stronger relevance

compared to the simplicity of implementation, since these two factors are more of quality-of-

life criteria. The ease of implementation, when contrasted to the maturity criterion was

determined to be of weak importance.

Table 16. Criterion comparison matrix

Maturity

Ease of
Implementation

Features

Maturity 1 1/2 1/6

Ease of
Implementation

2 1 1/4

Features 6 4 1

Then, the matrix needs to be normalized to obtain the weights or eigenvalues of each criterion.

Table 13 states the results.

Table 17. Weight of the criteria

Criteria
Relative Priority -

Weight
Importance

Maturity 0.106 Low

Ease of
Implementation

0.193 Medium

Features 0.701 Highest

The frameworks may now be compared once each criterion has been appropriately ranked.

Starting with the maturity criteria in Table 18, Spring and Quarkus were deemed the most

mature frameworks, having the greatest number of GitHub commits, releases and contributors,

followed by Micronaut, Vert.x and lastly, Lagom and Moleculer.

Table 18. Weight of alternatives by maturity

Maturity Lagom Spring Quarkus Vert.x Micronaut Moleculer Weight

Lagom 1 1/4 1/4 1/2 1/2 1 0.071

Spring 4 1 1 2 2 4 0.284

Quarkus 4 1 1 2 2 4 0.284

Vert.x 2 1/2 1/2 1 1/2 2 0.128

Micronaut 2 1/2 1/2 2 1 2 0.163

Moleculer 1 1/4 1/4 1/2 1/2 1 0.071

Regarding the ease of implementation criteria, although Spring had the most extensive

documentation, tutorials and Stackoverflow tags, Lagom was deemed the easiest framework to

implement, based on its development environment, build tools and the ability to be developed

37

on Scala, followed by Spring, Vert.x, Quarkus, Micronaut and lastly Moleculer because of its

limited documentation and base programming language.

Table 19. Weight of alternatives by ease of implementation

Ease of
Implementation

Lagom Spring Quarkus Vert.x Micronaut Moleculer Weight

Lagom 1 2 3 2 4 5 0.338

Spring 1/2 1 3 2 4 5 0.267

Quarkus 1/3 1/3 1 1/2 2 3 0.112

Vert.x 1/2 1/2 2 1 2 3 0.160

Micronaut 1/4 1/4 1/2 1/2 1 2 0.075

Moleculer 1/5 1/5 1/3 1/3 1/2 1 0.049

Finally, Table 20 is shown the comparison of the feature criteria. Even though the majority of

the frameworks were quite robust, the built-in inclusion of features was judged more important

as a method to differentiate the framework's emphasis on reactivity. As a result, Lagom was

determined to be the framework with the best feature set, followed by Quarkus, Vert.x,

Micronaut, Spring, and lastly Moleculer.

Table 20. Weight of alternatives by features

Features Lagom Spring Quarkus Vert.x Micronaut Moleculer Weight

Lagom 1 3 1 2 2 4 0.284

Spring 1/3 1 1/2 1 1 2 0.124

Quarkus 1 2 1 2 2 4 0.263

Vert.x 1/2 1 1/2 1 1 2 0.132

Micronaut 1/2 1 1/2 1 1 2 0.132

Moleculer 1/4 1/2 1/4 1/2 1/2 1 0.066

3.2.3 Logic Consistency

Before skipping to conclusions, first, the logical consistency of the process executed must be

assessed. This is achieved by calculating the consistency ratio (CR) by dividing the consistency

index (CI) by the random consistency index (RI), as shown in Equation 2. If the RC is greater than

0.1, the judgments are unreliable because they are too close for the comfort of randomness,

resulting in inconsistent values.

Equation 2. Consistency ratio calculation

𝐶𝑅 =
𝐶𝐼

𝑅𝐼

38

The consistency index can be calculated with the value of 𝜆max, which denotes the biggest

eigenvalue of matrix A, using the Equation 3:

Equation 3. Consistency index calculation

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1

Then, the random consistency index is a fixed value depending on the matrix dimensions, as

shown in Table 21.

Table 21. Random consistency index values for n dimensions

Finally, the logic consistency can be assured, as all the CR values are below 0.1, as registered in

Table 22.

Table 22. Consistency ratios of the comparison matrices produced

Comparison matrix Consistency Ratio (CR)
Criterion 0.010

Alternative’s maturity 0.009

Alternative’s ease of implementation 0.021

Alternative’s features 0.003

3.2.4 Results Analysis

To reach the final decision, each framework's criteria weight must be properly merged.

Equation 4 shows the matrix multiplication executed to reach these results.

Equation 4. The final weight of each alternative

[

𝐿𝑚 𝐿𝑒 𝐿𝑓

𝑆𝑚 𝑆𝑒 𝑆𝑓

𝑄𝑚 𝑄𝑒 𝑄𝑓

𝑉𝑚 𝑉𝑒 𝑉𝑓

𝑀𝑖𝑚 𝑀𝑖𝑒 𝑀𝑖𝑓
𝑀𝑜𝑚 𝑀𝑜𝑒 𝑀𝑜𝑓]

× [

𝑚
𝑒
𝑓

] <=>

[

0.071 0.338 0.284
0.284 0.267 0.124
0.284 0.112 0.263
0.128 0.160 0.132
0.163 0.075 0.132
0.071 0.049 0.066]

× [
0.106
0.193
0.701

] =

[

0.272
0.168
0.236
0.137
0.124
0.063]

It can be concluded that Lagom is the most appropriate framework to implement reactive

microservices.

Matrix dimension 1 2 3 4 5 6 7 8 9 10

Random consistency
index

0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

39

3.3 Summary

Through the conducted value analysis, the framework and project to use were chosen, using

the AHP and TOPSIS methods respectively, reducing some potential bias from the decision, and

optimizing the judgment's quality. Through the application of these methods and the previously

gathered knowledge in the state of the art, in chapter 2, two of the most important choices in

this project can safely be called calculated and established options.

40

41

4 Analysis and Design

With all the pre-requisites gathered, in this chapter, the previously chosen project “FTGO -

Restaurant Management” will be deeply analysed. This is an auxiliary project for the book

“Microservice Patterns”, written by Chris Richardson, a recognized thought leader in

microservices who speaks regularly at international conferences. Chris is the creator of

Microservices.io, a pattern language for microservices. He provides microservices consulting

and training to organizations around the world that are adopting the microservice architecture

(Richardson, 2018b). Firstly, some of its initial requirements will be studied, followed by new

reactive-related requirements. Then an examination of its architecture will be conducted,

highlighting the key changes to be done through various perspectives and levels of granularity,

to achieve a reactive implementation.

4.1 Requirements Engineering

The project documents the management of a restaurant, from the restaurant information to its

orders, deliveries and all the logistics in between, and covers the process of moving a typical

monolithic application into a microservice architecture. Table 23 and Table 24 showcase the

functional and non-functional requirements respectively. Because it is not the focus of this

study, no additional function requirements were added, but certain non-functional

requirements were introduced to better record and guarantee the practice of reactive patterns.

Table 23. Functional requirements (Richardson, 2018b)

Id Functional requirement Description Maturity

FR1 Courier management Manage courier information Old

FR2
Restaurant information
management

Managing restaurant menus and other
information, including location and open
hours

Old

FR3 Consumer management Managing information about consumers Old

FR4 Order management
Enabling consumers to create and manage
orders.

Old

42

Id Functional requirement Description Maturity

FR5
Restaurant order
management

Managing the preparation of orders at a
restaurant

Old

FR6
Courier availability
management

Managing the real-time availability of
couriers to delivery orders

Old

FR7 Delivery management Delivering orders to consumers Old

FR8 Consumer accounting Managing the billing of consumers Old

FR9 Restaurant accounting Managing payments to restaurants Old

FR10 Courier accounting Managing payments to couriers Old

FR11 Kitchen management Manage kitchen order tickets Old

Table 24. Non-functional requirements

Id
Non-functional

requirement
Description

Maturity

NFR1 Usage of API Gateway
All services must be addressed through the
API Gateway.

Old

NFR2
Usage of the command
query responsibility
segregation (CQRS)

All microservices must utilize CQRS. New

NFR3 Usage of the SAGA pattern
SAGA transactions must be adopted
between all microservices.

Old

NFR4 Usage of service registry
All services must register themselves on
the API Gateway.

Old

NFR5
Message-based internal
communication

All communications between
microservices must be asynchronous and
message-driven to respect reactive
principles.

New

NFR6 Usage of the circuit breaker
To improve fault tolerance, a circuit
breaker must be used.

New

NFR7 Usage of the fault monitor
To improve fault tolerance, a fault monitor
must be used.

New

4.2 Domain Modelling

Regarding the domain model, as shown in Figure 9, the application was constructed following

the domain driven design and consists of seven aggregates (Richardson, 2018b):

1. Consumer – manages the common consumer information.
2. Restaurant – manages the restaurant menu and overall information.
3. Order – manages the order information.
4. Kitchen – manages the ongoing tickets of the restaurant.
5. Courier – manages the order delivery and its general status.
6. Accounting – manages the accounts and payments for the restaurants, consumers, and

couriers.

43

Figure 9. Domain Model

4.2.1 Context Mapper

Next, by employing the context mapper tool, a modular and extensible modelling framework

for domain driven design, the current context definition and some of the high-level

communication protocols used can be better visualized, ensuring that the reactive principles

are correctly utilized in every step of the process. As can be seen in Figure 10, no necessary

changes were identified through this view, as these definitions do not constrict the

synchronisation of the communication. The protocols specified are:

• Upstream(U)-downstream(D): represents the flow of information.

• Open host service (OHS): describes the function of a bounded context in supplying

specific functions that are required by several contexts.

• Published language (PL): the published language describes the shared knowledge two

bounded contexts need for their interaction.

44

Figure 10. Context mapper model

The consumer context will provide data such as its address and payment info to its orders and

also for accounting purposes. The order context will communicate to the restaurant its order

items to be validated and then added to its kitchen. After the order context receives the

information that its order is ready, it then informs the courier context for it to be delivered. The

courier and the restaurant also provide their information to the accounting context, for

accounting purposes.

4.3 C4 Model and 4+1 Views

The C4 model is a hierarchical set of diagrams of four levels: context, containers, components,

and code, assisting to describe the architecture with different granularities (Brown & Betts,

2018), and the 4+1 views, which consists of describing the architecture in five different views:

logical, process, implementation, physical, and use cases. The name 4+1 derives from the use

case perspective, which is crucial at the start of the design but superfluous at the end (Staveley,

2011). The application may be examined on numerous scopes and perspectives thanks to the

synergy of these tools, eliminating possible ambiguities and enabling the migration to reactive

microservices by easily locating required adjustments.

4.3.1 Use Case View

Before starting the documentation of the various C4 levels, the use case view must be first built,

as its foundation. Figure 11 illustrates the outlined functional requirements in 4.1:

45

Figure 11. Use case diagram

4.3.2 Context Level

Starting with the most abstract level, the context of the system, 5 categories of actors are

identified in the logic view: restaurant staff, kitchen staff, consumers, accountants, and couriers,

as seen in Figure 12.

Figure 12. Logic view at the context level diagram

Regarding the interaction with other systems, the current implementation uses third-party

payment systems, two databases, MySQL for relational data and DynamoDB as a NoSQL

document database for event sourcing and better performance on reading data, and Kafka as

the messaging bus system, as can be seen in Figure 13.

46

Figure 13. Logic view of the interaction with other systems at the context level

Due to DynamoDB being a closed source dependency, two alternative migrations were idealized:

• In Figure 14, the chosen alternative, DynamoDB was replaced by Cassandra, a NoSQL

database reasonably similar to DynamoDB which is natively supported by Lagom and

complies with the reactive principles and the BASE transaction principles, while providing

linear scalability and high performance (Bekker, 2018).

• Furthermore, the Akka and Play dependencies are added as foundations for tools such as

service discovery and CQRS persistence strategies in Lagom (Lightbend, 2018).

• In Figure 15, the only difference in comparison with the first alternative is that the MySQL

dependency is removed, and Cassandra is used for both the read and write side of the

application, providing a simpler implementation and better development curve, but giving

away some of the benefits of CQRS, such as a specialized database for reads, MySQL, and a

high performance write database for events, Cassandra.

Figure 14. Updated logic view of the interaction with other systems at the context level

47

 Figure 15. Alternative logic view of the interaction with other systems at the context level

4.3.3 Container Level

Next, the system is expanded to the container level, in Figure 16. Through this granularity, the

seven idealized microservices are materialized and coordinated with each external dependency

as well as the APIGateway and the service discovery components. Because of the large number

of connections, some were left off, such as connecting all business microservices to the Play,

Akka, Cassandra, and Kafka interfaces, since this would provide no additional information and

make the diagram even more convoluted. It's worth noting that the business microservices

don't have any direct interdependencies since they all communicate via asynchronous Kafka

messaging. The current container level diagram is not shown as the only differences are the

external dependencies, already highlighted at the context level.

Figure 16. Updated logic view at the container level

48

4.3.4 Component Level

Moving to the third level, the focus shifts to an individual container to show its integral

components. The consumer service was selected for demonstration as it is the most extensive

service. The current architecture, represented in Figure 17, is divided into 3 layers:

• Controller layer, responsible for handling the read requests of each microservice,

through the provided HTTP REST API and forwarding them to the service layer;

• Messaging layer, responsible for handling the incoming Kafka messages and forwarding

them to the service layer;

• Service layer, responsible for the domain object validation, safe keep and execution of

its actions.

Figure 17. Current logic view of the consumer service component

To improve readability and code flexibility, an auxiliary mapper package and an extra layer were

added, and some of the behaviour was shifted between layers and objects:

• Controller layer, similar to the old controller layer but is supported by data transfer

objects (DTO);

• Messaging layer, similar to the old messaging layer, encompasses the CQRS division.

Also supported by DTOs;

• Service layer, similar to the old service layer, but the object storage responsibility was

moved to repository layer.

• Repository layer, responsible for managing the information and its integrity.

49

Figure 18. New logic view of the consumer service component

Now, through the implementation view, the system is observed with more focus on the

relationships and flow of the various components, as can be seen in Figure 19:

Figure 19. New implementation view of the consumer service component

50

Ultimately, the process view can be used to demonstrate the concrete flow of a request

according to the architecture idealized, while maintaining the level of abstraction indicated.

Functional requirement 4, “Order management”, was chosen to explain this, in Figure 20. As

the customer sends a request to create a new order, it is validated and saved in the respective

service. Then, the success of this creation is then propagated to other services through its Kafka

queue, allowing asynchronous communication of this information to related businesses,

demonstrating how the domain model's bounded context interdependencies are handled,

lowering coupling between services, and ensuring the message-driven principle of reactivity.

Figure 20. New process view of the order management requirement at the component level

4.3.5 Code Level

Finally, at the most concrete level of the C4 model, the system is extended to the context of the

functional requirements. Functional requirement 4, “Order management”, was chosen to

expand the logic previously addressed at the component level.

In Figure 21, the process view, explains in more detail, some of the planned code improvements,

such as the use of mappers to streamline the transformation of the various data types and the

repository layer, allowing for a clear division between the service and repository capabilities.

The use of CQRS can also be seen, as the creation request is segregated to the command

controller.

51

Figure 21. New process view of the order management requirement at the code level

In Figure 22, the component implementation view is materialised into the order management

classes and its dependencies can be traced. Through this view, some of the domain model

elements are now evidently connected with the rest of the system.

Figure 22. New implementation view of the order management requirement at the code level

4.4 Summary

To summarize, some of the changes to be made are distinctly tracked and assessed through the

dissection of the present and new architectures, enabling a smoother migration process by

reducing any ambiguities throughout the design. By designing both the new changes and the

previous information it is possible to better assess some of the shared code and

communications between the microservices.

53

5 Solution Implementation

The implemented solution will be examined in this chapter, beginning with the software's setup,

first by creating an application skeleton using the Lagom project template generator, then by

listing the main dependency versions and the reasoning behind them, and finally by

containerizing the application. Next, the methods and patterns used during implementation, as

well as how the framework helps implementation will be discussed. Following that, the tests

created to check the application's quality and correctness will be displayed, finalized by the

integration of the metrics tools, which will be used in chapter 6. To aid the reader, the source

code can be consulted at https://bitbucket.org/Jose_Ferreira_1171169/ftgo-reactive.

5.1 Project Setup

Lagom provides an out-of-the-box solution to the project setup, offering an embedded instance

of all the needed external services. Although this is a great way to start the development of the

solution, a better environment must be set up to mimic a user-ready production environment

and to improve the solution assessment.

5.1.1 Creation of the Project Skeleton

For the creation of the project, Lagom makes use of the sbt template resolver mechanism.

Through the sbt “new” command and Gitter8, a templating project originally started by Nathan

Hamblen in 2010 which uses a Git repository to host the templates (sbt, 2022), the project

skeleton can easily be configured, as can be seen in Annex C - Code 10.

Then, each microservice idealized in 4.2 must be integrated in build.sbt in order to allow sbt to

create all the necessary packages and configurations, as shown in Code 1:

1 lazy val restaurantApi = (project in file("restaurant-api"))
2 .settings(
3 version := "1.0-SNAPSHOT",
4 libraryDependencies ++= Seq(

54

5 lagomScaladslApi
6)
7)
8 .dependsOn(ftgoCommon)
9 .aggregate(ftgoCommon)
10
11 lazy val restaurantImpl = (project in file("restaurant-impl"))
12 .enablePlugins(LagomScala, Cinnamon)
13 .settings(
14 version := "1.0-SNAPSHOT",
15 libraryDependencies ++= Seq(
16 lagomScaladslPersistenceCassandra,
17 lagomScaladslPersistenceJdbc,
18 lagomScaladslKafkaBroker,
19 lagomScaladslTestKit,
20 lagomScaladslAkkaDiscovery,
21 macwire,
22 scalaTest
23),
24 commonSettings
25)
26 .settings(cinnamonSettings)
27 .dependsOn(restaurantApi, orderApi, ftgoCommon)
28 .aggregate(ftgoCommon)

Code 1. Registration of the restaurant microservice in build.sbt

It is important to highlight that Lagom forces the splitting of a generic API from its

implementations, exemplified in Figure 23, attaining a higher level of service decoupling,

allowing the existence of several implementations of the same API, and reducing duplicated

code (Lightbend, 2022c). This was a necessary adaptation of the architecture that does not

affect any of the process views and only slightly impacts the implementation view at the code

level displayed in 4.3.5. Nevertheless, a new representation of this diagram was included in

Annex C - Figure 47.

Figure 23. Lagom project structure (Lightbend, 2022c)

55

5.1.2 Dependency Setup

Regarding the application's dependencies, an attempt was made to use the most recent stable

version of each module without impacting other dependencies or the application's overall

performance and security. After numerous trials, Table 25 outlines all of the project's major

dependencies.

Table 25. Primary dependencies of the application

Dependency Description Version

sbt
The dependency manager of the project. Version 1.4.9 was
used to minimize java compatibility issues.

1.4.9

Java JVM version to be used by the Scala compiled code. 11.0.15

Scala
The programming language used for the project. The version
used was the latest compatible version with Lagom.

2.13.8

Lagom
The framework of this project is based. This is the current latest
stable version of the framework.

1.6.7

Scalafmt
Scala code formatter is used to uniformize all the written code
and to lessen the number of bugs and code smells in the
application.

2.4.2

Cinnamon
Lightbend Telemetry sbt plugin, to ease the compilation of
metrics and statistics.

2.16.0

Sonar-Scala SonarQube connector for Scala applications. 2.3.0

MySQL
connector

MySQL connector for Scala applications. 8.0.29

Macwire Dependency Injection tool, auxiliary to the Lagom framework. 2.5.7

ScalaTest Scala testing framework. 3.2.12

ScalaCheck Scala property-based testing library. 1.16.0

Akka discovery Service discovery tool, auxiliary to the Lagom framework. 1.6.7

5.1.3 Containerization of the Solution

Completing the initial setup of the application, Docker was used to mimic a production-level

environment through containerization, with the help of the sbt-native-packager plugin, which

allows the generation of a docker image of every existing service (Lightbend, 2022e).

The deployment diagram in Figure 24 summarizes all the different services and their

dependencies added in the docker-compose (Ferreira, 2022b). This diagram is divided into three

logical layers: a dependency layer at the bottom, the domain service layer, which will use all of

these dependencies, and the application management services, such as service discovery and

APIGateway services, which will rely on the domain service layer and supply all external

communication.

56

Figure 24. Docker deployment diagram

5.2 Implementation Details

Moving to the implementation details of the solution, the execution of the key non-functional

requirements previously listed in Table 24 will be explained and connected with the framework

as well as how it eases their implementation.

First, the service discovery and registry component of the application will be showcased,

followed by how the APIGateway connects and streamlines the communication between

microservices as well as the end-user. Next, the implementation of CQRS and event sourcing

will be discussed, highlighting how the usage of these patterns enables the asynchronous

message-based communication between services. Finally, the implementation of the SAGA

pattern will be reviewed.

57

5.2.1 Service Discovery and Registry

Due to the nature of microservices, the number of instances of a service and its locations

constantly change and adapt to the current characteristics of the system. As seen in Figure 25,

the service discovery and registry mechanism allow for reliable access between services, by

serving both as a registry where components can register and de-register themselves based on

their statuses (Cusimano, 2022).

Figure 25. Service discovery and registry (Cusimano, 2022)

Lagom provides by default a static implementation of a mock service discovery module that

does not allow the registration of new services or even changes to existing services. Although

this solution does not provide great scalability and requires a full reboot of the application if

any of the registered services move to a different internet protocol (IP) address, possibly

damaging the fault tolerance of the application, it allows for a quick start-up of the development

process. It is important to highlight this feature as it permits the developers to delay as much

as possible some of the more technical requirements, which usually change with the growth of

the project, and focus on the core of the application.

To achieve a more dynamic and robust implementation of the service discovery and registry,

Lagom provides built-in integration with Akka Discovery that allows the aggregation of multiple

discovery methods, such as through configuration file and domain name space (DNS) discovery

(Lightbend, 2022a). The Akka management kit also adds flexibility to the program, enabling

developers to pick which modules to include, as seen in Figure 26 (Schlothauer, 2019).

58

Figure 26. Lagom Akka Discovery modules (Schlothauer, 2019)

5.2.2 API Gateway

Aided by the service discovery and registry component, the API Gateway completes the front-

facing layer to external clients by hiding how the backend services are partitioned in the

architecture, not only by forwarding requests but by performing the orchestration or

aggregation of these services. These characteristics allow for cleaner client-side code, by

removing the need to invoke and know multiple services, reduce the number of requests and

roundtrips needed, grant increased security by reducing the exposed elements to the outside

world and increased scalability, by balancing the load between the registered instances of each

service (Cusimano, 2021).

Although Lagom does not provide any production implementation for an API Gateway, generic

services, such as Consul and HAProxy, can easily be integrated into the ecosystem. For this work,

a Consul implementation was chosen due to its simplistic approach and built-in load balancing,

as shown in Figure 27.

59

Figure 27. API Gateway flow (Consul, 2022)

5.2.3 CQRS and Event Sourcing

When designing your microservices, remember that each service should own its data and have

direct access to the database. Other services should then use the API Gateway to interact with

the data. There must be no sharing of databases across different services since that would result

in a too-tight coupling between the services. (Lightbend, 2022d)

Lagom's persistence module encourages the usage of event sourcing and CQRS to create this

decoupled design. The approach of recording all changes as domain events, which are

immutable truths about what has happened, is known as event sourcing. For an Aggregate Root,

such as a restaurant with a specific restaurant id, Event Sourcing is employed. Within the

aggregate, the write-side is completely consistent. This makes things like preserving invariants

and verifying incoming instructions simple to think about. When using this architecture, keep

in mind that while the aggregate may respond to requests for a given identifier, it cannot be

used to serve queries that span many aggregates. As a result, you'll need to develop a new view

of the data that's suited to the service's requests. (Lightbend, 2022d)

Stored events are read and optionally acted on by event stream processors, other services, or

clients. Persistent read-side processors and message broker topic subscribers are supported by

Lagom. (Lightbend, 2022d)

60

Figure 28. Lagom CQRS flow (Calus, 2020)

As previously mentioned in chapter 4.3.2, Cassandra was used for the write side of the

application, to save the incoming commands into events. Using the restaurant aggregate as an

example, the companion object RestaurantState (Ferreira, 2022c), was used to save the current

status of a specific restaurant instance and all its processed commands. Figure 29 contains the

result of multiple operations as Cassandra rows, containing the event, its timestamp and

associated entity, allowing the replayability of the events.

Figure 29. Example of event list stored in Cassandra

After each event is handled by the write side, it will then be sent to the

RestaurantEventProcessor (Ferreira, 2022d), to be carried by the read side and stored in MySQL.

To do this, Slick was utilized, a functional relational mapping library for Scala that accelerates

the development time of table construction and entity saving and allows database queries to

be written in Scala rather than SQL, taking use of Scala's static checking, compile-time safety,

and compositionality. Contrary to the Cassandra column-oriented database, through SQL the

overall data and its relationships can be written with a lot more structure and depth, granting

the ability to better organize and filter our data, by sacrificing some of the write performance.

5.2.4 SAGA Pattern

As mentioned previously in 2.4.1, although the usage of SAGA provides more scalability and

built-in failure management, it requires the tailored development of each operation and its

respective compensating action. Due to this factor, Lagom does not provide an out-of-the-box

implementation for the SAGA transaction, but with the usage of the underlying Akka cluster

61

system, through the persistent entity registry, Kafka topics and HTTP requests a verbose

implementation of this pattern is accomplished.

1 orderController.orderTopic.subscribe
2 .withGroupId(RestaurantController.RESTAURANT_GROUP).atLeastOnce {
3 Flow[OrderMessage]
4 .map { case OrderCreatedMessage(orderUUID, orderDto) =>
5 persistentEntity
6 .entityRefFor(RestaurantState.typeKey, orderDto.restaurantId)
7 .ask[Confirmation](replyTo =>
8 validateOrder(orderDto, replyTo))(Timeout(10.seconds))
9 .map {
10 case Accepted => Done
11 case Rejected =>
12 persistentEntity
13 .entityRefFor(OrderState.typeKey, orderUUID.toString)
14 .ask[Confirmation](replyTo => DeleteOrderCommand(orderUUID,

replyTo))(Timeout(10.seconds))
15 .map(confirmation => mapConfirmation(confirmation, "Could

not remove invalid Order"))
16 }
17 Done
18 }
19 }

Code 2. RestaurantService excerpt of order validation with SAGA (Ferreira, 2022e)

Code 2 showcases an implementation of the order item validation in RestaurantService with

the SAGA pattern. First, in lines 1-2 the order topic is subscribed with the restaurant group id,

to be aware of the creation of new orders but avoid duplicate consumption of the same

method, in this case, two restaurant instances consuming the same order creation. It is also

important to highlight that through the usage of atLeastOnce the message consumption will

be retried in case of any failure (Ferreira, 2022e).

Then, in lines 4-8, the order validation process will be conducted, followed by an analysis of

the achieved response. If the persistent entity returns the Accepted confirmation, the process

will simply end as this validation was successful. If the response is Rejected, the respective

rollback action is sent back to the order service, asynchronously, as shown in lines 9-16.

5.2.5 Circuit Breaker

In distributed systems, a circuit breaker is employed to maintain stability and prevent cascade

failures. To avoid the failure of a single service from taking down other services, they should be

used in conjunction with appropriate timeouts at the interfaces between services (Lightbend,

2022b).

Figure 30 illustrates the various states the circuit breaker can be in and the flow between them.

A circuit breaker is in the closed state during normal operation, with exceptions or calls

exceeding the defined timeout incrementing the failure counter and successes resetting it to

62

zero. The circuit breaker is triggered into an open condition when this counter hits the number

of maximum failures set.

All calls fail quickly in the open state, except for the first one that indicates the circuit breaker

is open. The circuit breaker reaches a half-open condition after a defined reset timeout. In this

state, the first call attempted is allowed through without failing fast, but all other calls fail with

the same exception as in the open state. If the call allowed through succeeds, the circuit breaker

is reset back to the closed state, but otherwise, it is sent back to the open state for the

configured timeout (Lightbend, 2022b).

Figure 30. Circuit breaker flow between states (Lightbend, 2022b)

Circuit breakers are used by default on all service calls with Lagom service clients. On the client-

side, circuit breakers are utilized and configured, but the service provider defines the granularity

and configuration identifiers. By default, all calls to another service are handled by a single

circuit breaker instance. To utilize a distinct circuit breaker instance for each method, set a

unique circuit breaker identifier for each method. Using the same identifier on many methods

may also be used to group similar methods (Lightbend, 2022b). Code 3 reveals the configuration

used throughout all the microservices of the project.

1 lagom.circuit-breaker {
2
3 default {
4
5 enabled = on
6
7 max-failures = 10
8
9 call-timeout = 10s
10
11 reset-timeout = 15s
12
13 exception-whitelist = []
14 }
15 }

Code 3. Circuit Breaker default configuration

63

5.3 Testing

Three methods of testing were established to guarantee the application's correct

implementation. The use of Scala for unit testing will be demonstrated first, followed by

property-based testing and how it complements the former. Finally, integration testing will be

presented as a method of validating the use cases flow and service integration.

5.3.1 Unit Testing

Individual units or components of the software are tested in unit testing, which is a subtype of

software testing. The goal is to ensure that each unit of software code works as intended. This

category is the bedrock of all software testing, as displayed in Figure 31, achieving a thorough

examination of each unit of the software, allowing the detection of bugs and problems early in

the software development life cycle (SDLC) (Hamilton, 2022).

Figure 31. Categories of software testing (Hamilton, 2022)

Scala test library offers simple and verbose test clauses to ensure that all the written code is

unambiguous and accessible to new developers. In Code 4 an excerpt of the

AddressMapperTest class is displayed where it is possible to observe these characteristics:

16 class AddressMapperTest extends AnyFlatSpec with should.Matchers {
17
18 def AddressMapper = new AddressMapper
19
20 "Address mapper" should "map an address domain to dto" in {
21 val address = Address(
22 id = UUID.fromString("96b9cbf5-509b-442b-aef7-0c98f3904fdd"),
23 street1 = "Avenida Visconde de Barreiros",
24 street2 = "34",
25 city = "Maia",
26 state = "Porto",
27 zip = "4470-151"
28)
29 val result = AddressMapper.domainToDto(address)
30
31 result.id.orNull should be("96b9cbf5-509b-442b-aef7-0c98f3904fdd")
32 result.street1 should be("Avenida Visconde de Barreiros")
33 result.street2 should be("34")
34 result.city should be("Maia")

64

35 result.state should be("Porto")
36 result.zip should be("4470-151")
37 }
38 }

Code 4. AddressMapperTest class excerpt

5.3.2 Property-Based Testing

Property-based testing can be seen as a subset of the unit testing category. While the

aforementioned example-based test in Code 4 can be useful to ensure specific edge cases are

covered and secure, it is human to fail to anticipate edge cases that may cause errors or

unwanted behaviours in the application. Property-based testing solves this issue by detaching

the test cases from concrete examples and replacing them with a set of higher-level properties

that describe the intended behaviour (Malheiro, 2021).

To implement these properties in Scala, the ScalaCheck library was used, which provides the

possibility to create generator type objects, Gen. Through natively supported generators such

as Gen.uuid which generates a random UUID and Gen.alphaNumStr which generates a random

alphanumeric string, it is possible to build an Address entity generator, as shown in lines 5-12

of Code 5.

1 class AddressMapperPropertyTest extends Properties("AddressMapper") {
2
3 def addressMapper = new AddressMapper
4
5 val genAddress: Gen[Address] = for {
6 id <- Gen.uuid
7 street1 <- Gen.alphaNumStr
8 street2 <- Gen.alphaNumStr
9 city <- Gen.alphaNumStr
10 state <- Gen.alphaNumStr
11 zip <- Gen.alphaNumStr
12 } yield Address(id, street1, street2, city, state, zip)
13
14 property("any valid domain address can be mapped to a dto") = {
15 forAll(genAddress)(address => {
16 val result = addressMapper.domainToDto(address)
17
18 result.id.orNull.equals(address.id.toString) &&
19 result.street1.equals(address.street1) &&
20 result.street2.equals(address.street2) &&
21 result.city.equals(address.city) &&
22 result.state.equals(address.state) &&
23 result.zip.equals(address.zip)
24 })
25 }
26 (…)
27 }

Code 5. AddressMapperPropertyTest class excerpt

65

With this generator, it is now possible to map a property that will evaluate if any valid domain

address can be mapped to a dto, as shown in lines 14-24 of Code 5. By default, each property is

tested with 100 randomly generated cases, ensuring the correct functioning of the examined

behaviour.

5.3.3 Integration Testing

Next, integration tests were employed to cover and regulate not only each microservice, by

examining its flows with a black-box approach, but also its integration with other microservices.

To automate this process, Postman’s collections and environments were used.

Figure 32 showcases the collection setup and how each of them analyses their respective

services without compromising the existing application data, by removing every created object

during the execution of the collection.

Figure 32. Restaurant management flow tests

Figure 33 depicts the environment that was utilized, which enabled the persistence of several

variables across tests and simple access to all data handled, giving more in-depth testing and

analysis of the application.

66

Figure 33. Fragment of the FTGO environment in Postman

Finally, Figure 34 shows the automatic execution of the restaurant library, which enables the

possibility of a combination of these test suites with CI/CD practices.

Figure 34. Example run snippet of the restaurant tests

5.3.4 Acceptance Testing

Acceptance Testing is a type of software testing in which a system is evaluated for its

acceptability. The primary goal of this test is to determine whether the system complies with

the business requirements and whether it is suitable for delivery (Patel, 2019). Due to the

67

inability to assess and test some of the requisites planned, such as the circuit breaking, tracing

and the SAGA pattern, two acceptance tests were drawn.

In the first test, the order creation use case was used to support the testing of both the correct

tracing of the application’s communications and the healthy state of its circuit breakers. Table

26 exposes the steps and criteria used in its evaluation.

Table 26. Acceptance Test 1 – Successful creation of a new order

Acceptance Test 1 – Successful creation of a new order

Procedure
Through the order service API, create a new order with an existing restaurant
ID, the created order state, payment and delivery information, and a valid
menu item from the chosen restaurant.

Criteria

1. Jaeger correctly shows the data flowing between order and restaurant
service;

2. Circuit breaker stays closed throughout the whole operation;

3. Grafana correctly shows the metrics relative to the entire process.

The second test involves a failure scenario where a service becomes unreachable to test the

circuit breaker in an open and half-open state. To do this, an asynchronous request between

the order service to an unavailable restaurant service was made. Table 27 shows the

assessment procedure and criteria.

Table 27. Acceptance Test 2 – Unavailable restaurant service

Acceptance Test 2 – Unavailable restaurant service

Procedure

After deactivating the restaurant service, create a new order through the
order service API with an existing restaurant ID, the created order state,
payment and delivery information, and a valid menu item from the chosen
restaurant. After 60 seconds, activate the restaurant service and send the
same request.

Criteria

1. After failing the request 10 times, the circuit breaker switches to an
open state, as shown in Grafana;

2. Jaeger shows that the order request did not arrive at the restaurant
service;

3. After 15 seconds, the circuit breaker switches to a half-open state, as
shown in Grafana;

4. After waiting 60 seconds and sending a new request, the circuit
breaker switches back to a closed state, as shown in Grafana;

5. Jaeger shows that the order request did arrive at the restaurant
service;

68

5.4 Metrics Setup

Concluding the solution implementation, the tool’s setup will be presented, emphasizing the

metrics to be collected from each tool and how Lagom, Scala and sbt aid in this process.

5.4.1 SonarQube

SonarQube is a code review tool that automatically detects bugs, vulnerabilities, and code

smells in your code (SonarSource, 2006). Its integration with the project is done through the sbt

Sonar-Scala plugin, which automatically registers both the global project and its subprojects for

multiple views on the overall code quality, as can be seen in Figure 35. Each given metric will

be further analysed in the Testing and Evaluation chapter.

Figure 35. SonarQube project’s view

5.4.2 Lightbend Telemetry (Cinnamon)

Lightbend Telemetry, also known as Cinnamon, offers information on Lightbend-based

applications. As seen in Figure 36, it accomplishes this by instrumenting frameworks and

toolkits such as Akka, Scala, Play, and Lagom-based applications. A Java agent does the

instrumentation when the program first starts up. Lightbend Telemetry gathers data about the

application in real-time depending on a specified configuration. (Lightbend, 2022f)

69

Figure 36. Lightbend Telemetry information flow (Lightbend, 2022f)

Three open-source integrations were chosen to retrieve, process and showcase the data of each

microservice:

• OpenTracing, built-in Lagom through an extension. Used for distributed tracing;

• Prometheus, added to Lagom through a backend plugin. Used for event monitoring,

querying, and alerting;

• Grafana, Web application for multi-platform open-source analytics and interactive

visualization. It delivers web-based charts, graphs, and alarms, supported by

Prometheus metrics.

5.4.2.1 OpenTracing

OpenTracing is a vendor-independent API that allows developers to seamlessly integrate tracing

into their applications. Many tracing software vendors are supporting OpenTracing as a

standardized approach to instrument distributed tracing. OpenTracing aims to provide a shared

understanding of what a trace is and how to use it in our applications. This enables the

simulation of processes such as application interaction, internal operations, or asynchronous

jobs, depicted as spans, in a directed acyclic graph (OpenTracing, 2022).

The following state is encapsulated by each Span:

• The name of the operation;

• A start timestamp;

• A finish timestamp;

• A collection of zero or more key-value span tags with strings as keys and strings,

booleans, or numeric types as values;

• A collection of zero or more span logs, each of which is a key-value map with a

timestamp. The values can be of any type, but the keys must be strings;

70

• A SpanContext, which holds any OpenTracing-implementation-dependent state (such

as trace and span ids) required to refer to a separate span across a process boundary,

and baggage Items, which are key-value pairs that traverse process boundaries;

• References to zero or more causally related Spans (via the SpanContext of those related

spans) (OpenTracing, 2022).

The OpenTracing data model is illustrated in Figure 37 for the flow of a new order being created

in the order service, propagated to the restaurant, and finally to the kitchen service. It is feasible

to trace the whole order process across all systems and show it in a uniform diagram using the

OpenTracing spans (OpenTracing, 2022).

Figure 37. Order creation flow - OpenTracing diagram

For configuring tracing, or integrating tracing with Lagom, Code 6 lists all the necessary setups.

In lines 5-10 the Kafka tracing is enabled through the Akka library Alpakka, for the underlying

Akka operations lines 14-20 record the necessary configurations and finally lines 23-44 present

the configurations to trace Lagom HTTP calls.

1 cinnamon {
2
3 application = "restaurant"
4 (…)
5 opentracing {
6 alpakka.kafka {
7 consumer-spans = on
8 consumer-continuations = on
9 trace-consumers = on
10 trace-producers = on
11 }
12 }
13
14 akka.actors {
15 default-by-class {
16 includes = "/user/*"
17 report-by = class
18 excludes = ["akka.http.*", "akka.stream.*"]
19 }
20 traceable = on
21 }
22
23 lagom.http {
24 servers {
25 "*:*" {
26 paths {
27 "*" {

71

28 metrics = on
29 traceable = on
30 }
31 }
32 }
33 }
34 clients {
35 "*:*" {
36 paths {
37 "*" {
38 metrics = on
39 traceable = on
40 }
41 }
42 }
43 }
44 }

Code 6. OpenTracing configuration excerpt from Restaurant Service

5.4.2.2 Jaeger

Uber Technologies has developed Jaeger, an OpenTracing compliant distributed tracing system.

It analyses distributed context propagation, transaction monitoring, root cause analysis, service

dependency analysis, and performance optimization to monitor and troubleshoot microservice-

based distributed systems (Jaeger, 2022). Figure 38 depicts the Jaeger information flow starting

from the application’s jaeger agent sending an HTTP request into the Jaeger server, to be stored

in its database.

Figure 38. Jaeger information flow from the application (Gökalp, 2019).

Because Jaeger just functions as a gateway for OpenTracing, transforming and processing its

data into monitoring and troubleshooting information, the majority of setups are done on the

OpenTracing side. Code 7 represents the Jaeger host's required declaration.

72

1 cinnamon {
2
3 application = "restaurant"
4 (…)
5 opentracing {
6 (…)
7 jaeger {
8 host = restaurant
9 }
10 }

Code 7. Jaeger configuration excerpt from Restaurant Service

5.4.2.3 Prometheus

Prometheus is characterized by its multi-dimensional data format, which includes time series

data identified by metric name and key/value pairs, as well as PromQL, a sophisticated query

language for leveraging this dimensionality. Its simple integration through an HTTP pull method

and the ability to register targets via service discovery fit in seamlessly with the Lagom

architecture, as displayed in Figure 39 (Prometheus, 2022).

Figure 39. Prometheus flow of information (Prometheus, 2022)

Code 8 describes the necessary configuration to enable the HTTP server and start to receive the

application metrics. In lines 7-13, the Prometheus server is registered with the restaurant

keyword as its host, to be mapped by Docker, and in lines 14-36 the intent to record the API’s

metrics is declared.

1 cinnamon {
2
3 application = "restaurant"
4
5 chmetrics.reporters += "slf4j-reporter"
6
7 prometheus {
8 exporters += http-server
9
10 http-server {
11 host = restaurant

73

12 }
13 }
14 lagom.http {
15 servers {
16 "*:*" {
17 paths {
18 "*" {
19 metrics = on
20 traceable = on
21 }
22 }
23 }
24 }
25 clients {
26 "*:*" {
27 paths {
28 "*" {
29 metrics = on
30 traceable = on
31 }
32 }
33 }
34 }
35 }
36 }

Code 8. Prometheus configuration excerpt from Restaurant Service

5.4.2.4 Grafana

Grafana is an open-source web-based analytics and interactive visualization software. It allows

data to be ingested from several sources, searched, and displayed on customisable charts for

ease of interpretation, as displayed in Figure 40 (Tendonge, 2021).

Figure 40. Grafana Kubernetes capacity dashboard (Grafana, 2022)

74

It also is simple and quick to set up alerts to be notified of unusual behaviour and other desired

events. Grafana aids in the creation of graphics from the massive volumes of performance

metric data collected by Prometheus beforehand. This will allow you to draw conclusions and

take action to keep your application stack healthy (Tendonge, 2021).

5.5 Summary

Concluding the implementation of the designed solution, through Lagom it was possible to

implement all the planned features that support reactive microservices with little to no extra

effort, due to their high level of framework abstraction. Although the framework heavily

contributes to simplifying the process to implement reactiveness in microservices, throughout

the implementation of the process it is clear that the framework's maturity and popularity are

nowhere near some of the most used such as Spring and Quarkus, and when some

implementation details fall outside of the scope of the framework’s documentation, it is

extremely hard to find examples or evidence that support it, which slows down the

development process.

75

6 Testing and Evaluation

In this chapter, the tests and evaluation methods to be applied in the future implementation

will be documented. As stated in section 2.4.1 the key quality criteria identified were

maintainability, scalability, performance, testability, availability, monitorability and security. To

evaluate these criteria, goals, questions, and metrics (GQM) approach was conducted, following

the metrics listed in 2.4.3.

6.1 Goals, Questions, Metrics

The GQM methodology is a tested technique for implementing goal-oriented metrics across a

software project. It begins by identifying the goals to achieve with GQM, then clarifying the

questions to answer with the data to collect, as shown in Table 28. A comprehensive picture of

the environment can be created and clearly describe how the evaluation process will be done

by connecting business objectives and goals to data-driven indicators (LeadingAgile, 2017).

Table 28. Goals, questions, metrics

Quality
Attribute

Goals Questions

Maintainability
The solution should have high
availability.

Can the application achieve the
maintainability metrics traced in
2.4.3?

Scalability
The solution should be easily scalable. Can the application achieve the

scalability metrics traced in
2.4.3?

Performance
The solution should perform under
heavier workloads.

Can the application achieve the
performance metrics traced in
2.4.3?

Testability
The solution testability should not be
affected by implementing reactive
microservices.

Can the application achieve the
testability metrics traced in
2.4.3?

76

Quality
Attribute

Goals Questions

Availability
The application offers high availability
and fault tolerance.

Can the application achieve the
availability metrics traced in
2.4.3?

Monitorability
The solution provides high
monitorability.

Can the application achieve the
monitorability metrics traced in
2.4.3?

Security
The solution offers security regarding
its API and data management.

Can the application achieve the
security metrics traced in 2.4.3?

6.1.1 Maintainability

Regarding maintainability, SonarQube was used to automatically measure the static attributes

such as lines of code (LOC), the number and time of code smells and the total of technical debt

existing in each project, as previously mentioned in 5.4.1.

Starting with the granularity of each microservice, Table 29 lists each microservices and their

composing subprojects. The results present a median of 757.33 LOC, a minimum of 521 and a

maximum of 937.

Table 29. LOC per microservice

Microservice LOC in API Project
LOC in

Implementation
Project

Total LOC

Accounting 103 478 581

Consumer 96 425 521

Courier 120 685 805

Kitchen 126 718 844

Order 177 679 856

Restaurant 146 791 937

Total 768 3776 4544

Although the LOC between the accounting and consumer microservices and the rest seem to

be slightly lower than the other microservices, this follows their rationale, as they can be seen

as supporting microservices to the primary flow of the application, the creation and delivery of

orders. For this fact, the granularity of the microservices can be considered fairly uniform.

Following up with the cohesion and coupling of the application, these two attributes are usually

seen together due to their high synergy. On average, when an application has high cohesion,

that also means they have low coupling, since each microservice focuses on a single

functionality, and vice-versa, when an application has low cohesion, that typically means they

have high coupling due to their microservices executing multiple tasks and functionalities. Due

to the ambiguity of evaluating the cohesion, these attributes will be assessed together, starting

77

with the number of calls to a microservice compared to the number of invocations the

microservice makes to other microservices, exposed in Table 30.

Table 30. Degree of coupling of each microservice

Microservice Number of Calls to a
Microservice

Number of Invocations
to Other Microservices

Accounting 0 3

Consumer 2 0

Courier 1 1

Kitchen 1 0

Order 1 2

Restaurant 2 1

Total 7 7

The number of calls to a microservice and of invocations to other microservices is equal to the

planned communication protocols in 4.2.1 and the division of the calls per invocation equals 1,

meaning that the software presents low coupling heightened by the fact that all

communications made between microservices are asynchronous. This also hints at the fact that

each microservice presents high cohesion, which can be supported by its process of division

through bounded contexts in domain driven design. By establishing the dividing lines of each

microservice based on the domain of the application and DDD principles, it is assured that each

microservice represents a single aggregate root of the domain which can translate to its focus

on a single functionality.

Moving on to open interfaces, by analysing the number of operations and their parameters

available through exposed interfaces it is possible to evaluate the readability and granularity of

a microservice’s API, as shown in Table 31.

Table 31. Open interface evaluation of each microservice

Microservice Number of Operations Types of parameters

Accounting 7 String, AccountDTO

Consumer 5 String, ConsumerDTO

Courier 6 String, CourierDTO

Kitchen 8 String, KitchenDTO, TicketDTO

Order 5 String, OrderDTO, OrderLineItemDTO

Restaurant 7 String, RestaurantDTO, MenuItemDTO

Through Lagom’s separation of the generic API code and its implementations, we can assure

the uniformity of requests and their responses, which allied to the REST principles, assure

streamlined readability and uniform granularity of the open interfaces.

78

Finally, regarding the ease of deployment, through the automatic generation of docker images

and the usage of a docker-compose file, explained in 5.1.3, we can achieve a smooth, single-

action generation of containers and deployment.

6.1.2 Scalability

Next, involving scalability and starting the analysis with the usage frequency, Jaeger was the

chosen tool to track distributed tracing, as previously explained in 5.4.2.2, and evaluate the

percentage of requests made to the evaluated microservice compared to all requests made

throughout the whole system. A single request was made to each available operation in the

exposed APIs, to discover subsequent requests made, which were recorded in Table 32.

Table 32. Usage frequency of each microservice

Microservice Number of Operations Number of Invocations
to Other Microservices

Accounting 7 0

Consumer 5 0

Courier 6 0

Kitchen 8 2

Order 5 8

Restaurant 7 0

Total 38 10

The results show that the ratio between the requests made to the system and the total requests

made to the whole system is only 8.60% which, supported by the fact that these subsequent

requests are all made asynchronously, guarantees the scalability of the application.

Next, regarding the number of synchronous requests, Table 33 showcases the number of

operations and the corresponding synchronous requests:

Table 33. Number of synchronous requests per microservice

Microservice Total Number of
Requests

Number of
Synchronous Requests

Accounting 7 4

Consumer 5 2

Courier 6 3

Kitchen 8 4

Order 5 2

Restaurant 7 2

Total 38 17

The results show that the ratio between the number of synchronous requests and the total

number of requests is 44.74%, which although may seem a high number, only read requests are

79

made synchronously, and through the usage of a separate database for read and write

operations, showcased in 4.3.2, the scalability of the write side flow of the application is

completely detached from its read side, removing any possible compromise from one another.

Moving on to horizontal and vertical scalability, it is necessary to guarantee that a microservice

continues to function normally, without performance penalties, when its size or number of

instances changes. The usage of event sourcing assures that, by allowing the replayability of all

the events, achieving a uniform state between all instances, regardless of their status. By using

the underlying Akka cluster in Lagom applications, it is also possible to easily manage all the

instances of the microservices.

Finalizing with the isolation of the microservices, through the Lagom’s division of microservices

in API and Implementation projects, only the disclosed interfaces in the API project can be

utilized by other microservices, and the implementation code of each microservice contains

dependencies only to the API projects of microservices, as shown in the build.sbt file (Ferreira,

2022a).

6.1.3 Performance

Regarding performance, although Grafana could be used to review real-time applicational

metrics such as response time, the average size of messages, queue growth and average CPU

utilization, as previously explained in 5.4.2.4, it was not possible to acquire a stable test

environment where the performance of the application could not be affected by third party

systems, common in a personal computer.

6.1.4 Testability

In terms of testability, starting with the API documentation and management, Lagom supports

the automatic generation of OpenAPI documentation, which is a language-independent

interface to RESTful APIs that lets both people and machines explore and comprehend the

service's capabilities without access to source code, documentation, or network traffic analysis

(Apache, 2022). Through the combination of the OpenAPI plugin with the swagger annotation

plugin, it is possible to also generate a hypertext markup language (HTML) page to aid in the

exploration of API, as seen in Annex D - Code 11.

Moving to test automation, as previously shown in chapter 5.3, Scala provides resources to

create and automate both unit and property-based testing, and Postman allows the generation

of generic collections, which execution can also be automated. Although currently the

acceptance tests designed cannot be automated, due to their highly technical scope, these tests

exist to display and prove some of the technical aspects employed in this project, and their

automation is not required to guarantee the test automation of the software itself.

80

6.1.5 Availability

Involving availability, to ensure fault detection multiple systems are in effect. First, the circuit

breaker, mentioned in 5.2.5, will automatically detect a faulty instance or microservice and

block its usage by switching it to an open state, protecting the system from potential data

corruption or even attacks. Then, the logs and metrics gathered by Prometheus can be

transformed into alarms in Grafana and, in case there is an unwanted situation, such as a critical

bug or unexpected downtime of a service, an automatic notification can be sent to a developer,

reducing the time to fix this unwanted situation. Through these two tools, fault detection and

rectification can be ensured in each microservice.

Moving on to the health management, through the usage of event sourcing it is possible to

ensure the microservice’s capacity to cope with failure, by allowing the replayability of all the

existing events, achieving a uniform state between all instances, regardless of their current

situation. Exemplifying, if an instance of a microservice loses its connectivity to the network for

an unknown reason but it is capable to preserve its internal state, it will simply switch to an

open state in the circuit breaker until it can regain its connectivity and proceed to consume the

existing events, from its initial state before the problem.

Finalizing with the uptime percentage and successful execution rate, these metrics require

similar conditions to the performance metrics, such as a production-level deployment, to

remove possible external factors from their evaluation, and a continuous assessment for several

months and therefore cannot be reviewed with the conditions of this project.

6.1.6 Monitorability

To ensure the monitorability of the application, first, the data generation is automatically

managed by Lagom’s underlying system that produces several generic logs and metrics through

the cinnamon plugin, explained in 5.4.2. Then, they’re sent to the existing OpenTracing and

Prometheus instances which will manage the data storage, as explained in 5.4.2.1 and 5.4.2.3

respectively. Finally, regarding data presentation, the Jaeger and Grafana instances will

consume and process this data to provide the user with several different views and monitors,

as shown in 5.4.2.2 and 5.4.2.4 respectively.

6.1.7 Security

Finally, starting the analysis of security with the third-party vulnerabilities, the sbt dependency

check plugin was used to gather the whole dependency tree of the project to be analysed for

known, published vulnerabilities. The plugin achieves this by using the Open Web Application

Security Project (OWASP) dependency check library which already offers several integrations

with other build and continuous integration systems. Figure 41 displays the results of the

conducted analysis.

81

Figure 41. Analysis of dependent libraries

Although an effort was made to reduce as much as possible the number of vulnerabilities of the

project, through upgrading and even downgrading some dependencies, the value of

weaknesses amounted was too big for a project to be openly used without being exploited. For

this reason, this metric was not considered to be guaranteed. It is important to highlight that

these vulnerabilities are not related to reactivity itself but the chosen dependencies and

framework.

Moving on to the security monitor, Grafana is flexible enough to use the existing logs of the

application to generate detailed graphics and monitors at various levels to observe and even

alert of anomalous behaviour and assaults at each microservice, certainly guaranteeing this

metric.

Regarding authentication and authorization, the Lagom pac4j library provides an easily

configurable authentication and authorization system. Code 9 exemplifies an authorization

check on the edit consumer endpoint which only allows the consumer to update its information.

1 override def editConsumer: ServiceCall[ConsumerDto, Done] = {
2 authorize(
3 requireAnyRole[CommonProfile]("consumer"),
4 (profile: CommonProfile) =>
5 ServerServiceCall { consumer: ConsumerDto =>
6 consumerService.createConsumer(consumer)
7 }
8)
9 }

Code 9. Edit consumer authorization check

6.2 Summary

Summing up the evaluation made in Table 34, a total of 24 metrics were idealized and

considered, with 17 metrics being deemed attained, represented by the checkmark (✔), 6 failing

82

to gather the essential circumstances to be assessed, symbolized by the question mark (❔), and

just 1 failing to be assured, indicated by the cross (✖).

Table 34. Evaluation results

Quality Attribute Metric Result

Maintainability

Granularity ✔

Cohesion ✔

Coupling ✔

Open interfaces ✔

Ease of deployment ✔

Scalability

Usage frequency ✔

Number of synchronous requests ✔

Horizontal/vertical scalability ✔

Isolation ✔

Performance

Response time ❔

Average size of messages ❔

Queue growth ❔

Average CPU utilization ❔

Testability
API documentation and management ✔

Test automation ✔

Availability

Uptime percentage ❔

Successful execution rate ❔

Fault detection ✔

Health management ✔

Monitorability
Data generation and storage ✔

Data presentation ✔

Security

Third-party weaknesses ✖

Security monitor ✔

Authentication and authorization ✔

It is possible to conclude the designed and implemented solution can completely accomplish

the traced goals relative to the maintainability, scalability, testability, and monitorability and

strongly answer some of the most common challenges and adversities found in microservices

with flexibility and efficiency, but it still necessary to execute further testing to ensure its

performance and availability and resolve the weaknesses found through its dependencies to

guarantee the security of the application.

83

7 Conclusion

In this final chapter, the contributions of this project will be showcased and related to the

initially traced objectives, followed by the detected threats to the validity of this work and its

causes. Finally, the future work to be had is listed to minimize some of the analysed threats and

further improve the value of this project.

7.1 Contributions

Some key objectives to be achieved with this dissertation were defined in chapter 1.3. The

following contributions describe its outcomes and how they were achieved:

1. Research on reactive microservices development experiences, challenges, and

mistakes: through the systematic literature review made in the state of the art, it was

possible to highlight some of the most significant and prevalent obstacles and errors

encountered while implementing and maintaining reactive microservices (see sections

2.4.1 and 2.4.2);

2. Research on the metrics to evaluate reactive microservices: through the same

literature review, it was possible to determine the most essential and widely used

criteria to assess reactive microservices (see section 2.4.3);

3. Research on the most relevant frameworks to implement reactive microservices: as

the final question made in the literature review, it was achievable to compile a list of

the most relevant frameworks used to construct reactive microservices (see section

2.4.4);

4. Design and implementation of a project migration to reactive microservices: after

conducting the research mentioned in the previous items, a framework was chosen, as

well as an existing microservice application, to be migrated. Through this process, it was

possible to document the key changes to be made to a microservice application in both

its design, code, and supported functionalities as well as the experience of the author

and its learned lessons (see sections 4 and 5);

84

5. Evaluation of the implemented solution: finally, using the selected metrics applied to

the developed solution, the project was evaluated regarding multiple quality attributes

and its validity, possible improvements, and limitations were determined (see section

6).

7.2 Threats to Validity

Some difficulties have been detected in the manner this dissertation was constructed, raising

concerns about the solution's applicability to other projects and situations. They are as follows:

• Due to the limited academic resources available, it was not possible to develop an

isolated testing environment, and the consistency and validity of some tests cannot be

assured, so they may not be used to certify the solution.

• Because this dissertation focuses on a single application and framework, the results

cannot be generalized. To do this, further case studies with other systems,

requirements and frameworks would be required, to emphasize its strong and weak

elements in each situation.

7.3 Future Work

The study presented in this document is intended to provide answers to the goals modelled in

section 1.3. Additional development would be required to make this project usable and

practical in the real world, as well as to carry out the remaining planned testing. Some of the

topics that might demand more examination are as follows:

1. Remove dependency vulnerabilities. To deploy the application publicly, it is first

needed to ensure its safety by performing a meticulous analysis of the detected

vulnerabilities to assess their validity and possible fix;

2. Implement a stable testing environment. After the application is successfully secured,

a stable testing environment must be setup, preferably through a third-party cloud

computing platform, such as Amazon Web Services (AWS), to ensure its stability and

security;

3. Execute the remaining tests. Then, the application can be tested against the planned

performance and availability metrics, and even expanded to public API testing to

remove some possible user bias;

4. Refactor and document the code. Regarding the code of the application, due to its

highly experimental nature, some of the existing functions and classes are currently not

being utilized. All the application code can be analysed and refactored to improve both

its readability and cohesion;

85

5. Further empirical validation. While this project attempted to justify the use of

reactiveness in microservices, it is only one of many different sorts of implementations

that this technique intends to tackle. Case studies with other systems, ideally software

in different languages, frameworks, architectures, and potentially even communication

protocols, would be needed to enhance confidence in the validation. It would also be

noteworthy to undertake some research in production environments.

87

References

Apache. (2022). OpenAPI Specification - Version 3.0.3 | Swagger. Swagger.Io.

https://swagger.io/specification/

Bastani, K. (2016). Microservices: Cloud Native Legacy Strangler Example [Source code].

Github.Com. https://github.com/kbastani/cloud-native-microservice-strangler-example

Bekker, A. (2018). DynamoDB vs. Cassandra: from “no idea” to “it’s a no-brainer” - KDnuggets.

ScienceSoft. https://www.kdnuggets.com/2018/08/dynamodb-vs-cassandra.html

Bonér, J., Farley, D., Kuhn, R., & Thompson, M. (2014). The Reactive Manifesto.

Reactivemanifesto.Org, 2(16 September 2014). https://www.reactivemanifesto.org/

Brilhante, J., Costa, R., & Maritan, T. (2017). Asynchronous Queue Based Approach for Building

Reactive Microservices. Proceedings of the 23rd Brazillian Symposium on Multimedia and

the Web, 373–380. https://doi.org/10.1145/3126858

Brondolin, R., & Santambrogio, M. D. (2020). A Black-box Monitoring Approach to Measure

Microservices Runtime Performance. ACM Transactions on Architecture and Code

Optimization (TACO), 17(4). https://doi.org/10.1145/3418899

Brown, S., & Betts, T. (2018). The C4 Model for Software Architecture. InfoQ.

https://www.infoq.com/articles/C4-architecture-model/

Calus, B. (2020). Event Sourcing and CQRS with Lagom! | by Ben Calus | Reaktika | Medium.

Medium. https://medium.com/reaktika/event-sourcing-and-cqrs-with-lagom-

b7190d92c78e

Cardarelli, M., di Salle, A., Iovino, L., Malavolta, I., di Francesco, P., & Lago, P. (2019). An

Extensible Data-Driven Approach for Evaluating the Quality of Microservice

Architectures. Proceedings of the ACM Symposium on Applied Computing, Part F1477,

1225–1234. https://doi.org/10.1145/3297280.3297400

Cojocaru, M. D., Oprescu, A., & Uta, A. (2019). Attributes assessing the quality of

microservices automatically decomposed from monolithic applications. Proceedings -

2019 18th International Symposium on Parallel and Distributed Computing, ISPDC 2019,

84–93. https://doi.org/10.1109/ISPDC.2019.00021

Consul. (2022). Control access with Consul API Gateway. Consul.Io.

https://www.consul.io/use-cases/api-gateway

Cusimano, S. (2021). API Gateway vs. Reverse Proxy | Baeldung on Computer Science.

Baeldung. https://www.baeldung.com/cs/api-gateway-vs-reverse-proxy

88

Cusimano, S. (2022). Service Discovery in Microservices | Baeldung on Computer Science.

Baeldung. https://www.baeldung.com/cs/service-discovery-microservices

Dannana, S. (2020). Function Analysis and System Technique - FAST diagram - ExtruDesign.

Extrudesign. https://extrudesign.com/function-analysis-and-system-technique-fast-

diagram/

de Santana, C. J. L., de Mello Alencar, B., & Serafim Prazeres, C. v. (2019). Reactive

microservices for the internet of things: A case study in Fog Computing. Proceedings of

the ACM Symposium on Applied Computing, Part F147772, 1243–1251.

https://doi.org/10.1145/3297280.3297402

de Toledo, S. S., Martini, A., Przybyszewska, A., & Sjoberg, D. I. K. (2019). Architectural

technical debt in microservices: A case study in a large company. Proceedings - 2019

IEEE/ACM International Conference on Technical Debt, TechDebt 2019, 78–87.

https://doi.org/10.1109/TECHDEBT.2019.00026

DInh-Tuan, H., Mora-Martinez, M., Beierle, F., & Garzon, S. R. (2020). Development

Frameworks for Microservice-based Applications: Evaluation and Comparison.

PervasiveHealth: Pervasive Computing Technologies for Healthcare, 12–20.

https://doi.org/10.1145/3393822.3432339

du Plessis, S., Mendes, B., & Correia, N. (2021). A Comparative Study of Microservices

Frameworks in IoT Deployments. 86–91. https://doi.org/10.1109/YEF-

ECE52297.2021.9505049

Ferrater, J. (2017). Tap-And-Eat-MicroServices [Source code]. Github.Com.

https://github.com/jferrater/Tap-And-Eat-MicroServices

Ferreira, J. (2022a). Jose_Ferreira_1171169 / ftgo-reactive / build.sbt — Bitbucket.

Bitbucket.Org. https://bitbucket.org/Jose_Ferreira_1171169/ftgo-

reactive/src/master/build.sbt

Ferreira, J. (2022b). Jose_Ferreira_1171169 / ftgo-reactive / docker-compose.yml — Bitbucket.

Bitbucket.Org. https://bitbucket.org/Jose_Ferreira_1171169/ftgo-

reactive/src/master/docker-compose.yml

Ferreira, J. (2022c). Jose_Ferreira_1171169 / ftgo-reactive / restaurant-impl / src / main /

scala / dei / isep / ftgo / impl / messaging / event / RestaurantState.scala — Bitbucket.

Bitbucket.Org. https://bitbucket.org/Jose_Ferreira_1171169/ftgo-

reactive/src/master/restaurant-

impl/src/main/scala/dei/isep/ftgo/impl/messaging/event/RestaurantState.scala

Ferreira, J. (2022d). Jose_Ferreira_1171169 / ftgo-reactive / restaurant-impl / src / main /

scala / dei / isep / ftgo / impl / repository / slick / RestaurantEventProcessor.scala —

Bitbucket. Bitbucket.Org. https://bitbucket.org/Jose_Ferreira_1171169/ftgo-

89

reactive/src/master/restaurant-

impl/src/main/scala/dei/isep/ftgo/impl/repository/slick/RestaurantEventProcessor.scala

Ferreira, J. (2022e). Jose_Ferreira_1171169 / ftgo-reactive / restaurant-impl / src / main /

scala / dei / isep / ftgo / impl / service / RestaurantService.scala — Bitbucket.

Bitbucket.Org. https://bitbucket.org/Jose_Ferreira_1171169/ftgo-

reactive/src/master/restaurant-

impl/src/main/scala/dei/isep/ftgo/impl/service/RestaurantService.scala

Fowler, M. (2015). MonolithFirst. https://martinfowler.com/bliki/MonolithFirst.html

Fowler, M., & Lewis, J. (2014, March 25). Microservices.

https://martinfowler.com/articles/microservices.html

Gökalp, G. (2019). Distributed Tracing with OpenTracing API of .NET Core Applications on

Kubernetes. Gokhan-Gokalp.Com. https://www.gokhan-gokalp.com/en/distributed-

tracing-with-opentracing-api-of-net-core-applications-on-kubernetes/

Gotin, M., Lösch, F., Heinrich, R., & Reussner, R. (2018). Investigating Performance Metrics for

Scaling Microservices in CloudIoT-Environments. Proceedings of the 2018 ACM/SPEC

International Conference on Performance Engineering. https://doi.org/10.1145/3184407

Grafana. (2022). Grafana® Features | Grafana Labs. Grafana.Com.

https://grafana.com/grafana/

Hamilton, T. (2022). Unit Testing Tutorial: What is, Types, Tools & Test EXAMPLE. Guru99.

https://www.guru99.com/unit-testing-guide.html

Jaeger. (2022). Jaeger documentation. Jaegertracing.Io.

https://www.jaegertracing.io/docs/1.11/

Klinaku, F., Bilgery, D., & Becker, S. (2019). The applicability of palladio for assessing the

quality of cloud-based microservice architectures. PervasiveHealth: Pervasive Computing

Technologies for Healthcare, 2, 34–37. https://doi.org/10.1145/3344948.3344961

Koen, P., Ajamian, G., Boyce, S., & Clamen, A. (2014). Fuzzy front end: Effective methods, tools,

and techniques. Academia.edu.

https://www.academia.edu/4878240/1_Fuzzy_Front_End_Effective_Methods_Tools_an

d_Techniques

Lagom. (2016a). Lagom - Microservices Framework. https://www.lagomframework.com/

Lagom. (2016b). Lagom [Source code]. Github.Com. https://github.com/lagom/lagom

Laigner, R., Kalinowski, M., Diniz, P., Barros, L., Cassino, C., Lemos, M., Arruda, D., Lifschitz, S.,

& Zhou, Y. (2020). From a Monolithic Big Data System to a Microservices Event-Driven

Architecture. Proceedings - 46th Euromicro Conference on Software Engineering and

90

Advanced Applications, SEAA 2020, 213–220.

https://doi.org/10.1109/SEAA51224.2020.00045

LeadingAgile. (2017). GQM Approach: Agile Metrics - LeadingAgile.

https://www.leadingagile.com/2017/05/agile-metrics-gqm-approach/

Lehmann, M., & Sandnes, F. E. (2017). A framework for evaluating continuous microservice

delivery strategies. ACM International Conference Proceeding Series, 17.

https://doi.org/10.1145/3018896.3018961

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., & Babar, M. A. (2021).

Understanding and addressing quality attributes of microservices architecture: A

Systematic literature review. In Information and Software Technology (Vol. 131, p. 23).

Elsevier. https://doi.org/10.1016/j.infsof.2020.106449

Lightbend. (2018). Lightbend Podcast: When To Use Play, Lagom, Or Akka HTTP For Your

Project | Lightbend. https://www.lightbend.com/blog/lightbend-podcast-when-to-use-

play-lagom-or-akka-http

Lightbend. (2022a). Lagom - Akka Discovery Integration. Lagomframework.Com.

https://www.lagomframework.com/documentation/1.6.x/scala/AkkaDiscoveryIntegratio

n.html

Lightbend. (2022b). Lagom - Consuming services. Lagomframework.Com.

https://www.lagomframework.com/documentation/1.6.x/java/ServiceClients.html

Lightbend. (2022c). Lagom - Defining a Lagom build. Lightbend.

https://www.lagomframework.com/documentation/1.6.x/java/LagomBuild.html

Lightbend. (2022d). Lagom - Managing data persistence. Lagomframework.Com.

https://www.lagomframework.com/documentation/current/scala/ES_CQRS.html

Lightbend. (2022e). Lagom - Production Overview. Lagomframework.Com.

https://www.lagomframework.com/documentation/1.6.x/scala/ProductionOverview.ht

ml

Lightbend. (2022f). Lightbend Telemetry. Developer.Lightbend.

https://developer.lightbend.com/docs/telemetry/current//home.html

Malheiro, N. (2021). Property Based Testing. In Departamento de Engenharia Informática

Instituto Superior de Engenharia do Porto.

https://moodle.isep.ipp.pt/pluginfile.php/96639/mod_resource/content/7/TAP_T_FP_

W6_1_PBT.pdf

Micronaut. (2018a). Micronaut Framework. https://micronaut.io/

Micronaut. (2018b). Micronaut [Source code]. Github.Com. https://github.com/micronaut-

projects/micronaut-core

91

Moleculer. (2017a). Moleculer - Progressive microservices framework for Node.js.

https://moleculer.services/

Moleculer. (2017b). Moleculer [Source code]. Github.Com.

https://github.com/moleculerjs/moleculer

Nicola, S. (2018, November). Método de Análise Hierárquica. Instituto Superior de Engenharia

Do Porto.

https://moodle.isep.ipp.pt/pluginfile.php/187507/mod_resource/content/1/Análise_Val

or_Aula_4_21NOV_2018_1hora_AHP.pdf

Nicola, S. (2020a). Análise de Valor (Value Analysis) FAST and QFD Techniques.

Nicola, S. (2020b). TOPSIS. Instituto Superior de Engenharia Do Porto.

Nicola, S. (2020c, November). Análise de valor. Instituto Superior de Engenharia Do Porto.

OpenTracing. (2022). OpenTracing specification. Opentracing.Io.

https://opentracing.io/specification/

Patel, P. (2019). Acceptance Testing | Software Testing - GeeksforGeeks. Geeksforgeeks.Org.

https://www.geeksforgeeks.org/acceptance-testing-software-testing/

Perkins, R. (2018). Kenzan Million Song Library [Source code]. Github.Com.

https://github.com/TheDigitalNinja/million-song-library

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic Mapping Studies in

Software Engineering. 12th International Conference on Evaluation and Assessment in

Software Engineering, EASE 2008. https://doi.org/10.14236/EWIC/EASE2008.8

Prometheus. (2022). Overview | Prometheus. Prometheus.Io.

https://prometheus.io/docs/introduction/overview/

Quarkus. (2019a). Quarkus - Getting Started With Reactive. https://quarkus.io/guides/getting-

started-reactive

Quarkus. (2019b). Quarkus [Source code]. Github.Com. https://github.com/quarkusio/quarkus

Rahman, M. I., Panichella, S., & Taibi, D. (2019). A curated List of project that migrated to

microservices. In Joint Proceedings of the Inforte Summer School on Software

Maintenance and Evolution (Vol-2520). CEUR-WS.

https://github.com/davidetaibi/Microservices_Project_List

Rasheedh, J. A., & Saradha, S. (2021). Reactive Microservices Architecture Using a Framework

of Fault Tolerance Mechanisms. Proceedings of the 2nd International Conference on

Electronics and Sustainable Communication Systems, ICESC 2021, 146–150.

https://doi.org/10.1109/ICESC51422.2021.9532893

92

Richardson, C. (2018a). FTGO example application [Source code]. Github.Com.

https://github.com/microservices-patterns/ftgo-application

Richardson, C. (2018b). Microservices patterns. Manning Publications.

https://learning.oreilly.com/library/view/microservices-patterns/9781617294549/

Richardson, C. (2021). What are microservices? Red Hat, Inc. https://microservices.io/

Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource

Allocation. McGraw-Hill International Book Company.

https://books.google.pt/books?id=Xxi7AAAAIAAJ

Santana, C., Alencar, B., & Prazeres, C. (2018). Microservices: A mapping study for internet of

things solutions. NCA 2018 - 2018 IEEE 17th International Symposium on Network

Computing and Applications. https://doi.org/10.1109/NCA.2018.8548331

sbt. (2022). sbt Reference Manual — sbt new and Templates. Scala-Sbt.Org.

https://www.scala-sbt.org/1.x/docs/sbt-new-and-Templates.html

Schlothauer, S. (2019). Build reactive microservices in latest Lagom release v1.5.0. Jaxenter.

https://jaxenter.com/lagom-update-1-5-158203.html

SonarSource. (2006). SonarQube Documentation. https://docs.sonarqube.org/latest/

Spring. (2014a). Spring | Reactive. https://spring.io/reactive

Spring. (2014b). Spring Boot [Source code]. Github.Com. https://github.com/spring-

projects/spring-boot

Staveley, A. (2011). The “4+1” View Model of Software Architecture - DZone Java. DZone.

https://dzone.com/articles/“41”-view-model-software

Stefanko, M., Chaloupka, O., & Rossi, B. (2019). The saga pattern in a reactive microservices

environment. ICSOFT 2019 - Proceedings of the 14th International Conference on

Software Technologies, 483–490. https://doi.org/10.5220/0007918704830490

Tendonge, R. (2021). What is Grafana? | MetricFire Blog. MetricFire.

https://www.metricfire.com/blog/what-is-grafana/

Tovarnitchi, V. M. (2019). Designing distributed, scalable and extensible system using reactive

architectures. Proceedings - 2019 22nd International Conference on Control Systems and

Computer Science, CSCS 2019, 484–488. https://doi.org/10.1109/CSCS.2019.00088

Vert.x. (2012a). Eclipse Vert.x. Vertx.Io. https://vertx.io/

Vert.x. (2012b). Vert.x [Source code]. Github.Com. https://github.com/eclipse-vertx/vert.x

Wolff, E. (2015). Microservice Sample [Source code]. Github.Com.

https://github.com/ewolff/microservice

93

95

Annex A Value Analysis

Business Process & Innovation

The innovation process may be separated into three parts: the fuzzy front end (FFE), the new

product development (NPD) phase, and commercialization, as shown in Figure 42. The first

section, the FFE, is often considered one of the most promising areas for improving the whole

innovation process. The value, volume, and likelihood of success of high-profit concepts

entering product development and commercialization are increasingly being focused on the

front-end activities that precede this formal and organized process (Koen et al., 2014).

Figure 42. Innovation process phases (Koen et al., 2014)

However, it is seen as an experimental aspect of the creative process, one that is fraught with

uncertainty and unexpected, or fuzziness. To eliminate this ambiguity, Koen et al. identified the

crucial phases and qualities that played a vital part in the Frontend of the innovation process.

As a result, the New Concept Development Model (NCD) was created, a comprehensive

framework for managing the front end of innovation that identifies the most efficient

approaches (Koen et al., 2014).

The NCD model shown in Figure 43 consists of three key layers (Koen et al., 2014):

• The organization's leadership, culture, and business strategy drive the five essential

factors that are controllable by the company, which is known as the engine or

central section.

• The FFE's five controlled activity aspects - opportunity discovery, opportunity analysis,

idea generation and enrichment, idea selection, and concept definition - are

determined by the inner radius region.

• Organizational capabilities, the outside environment - distribution channels, law,

government policy, consumers, rivals, and the political and economic climate - and the

enabling sciences that may be engaged are all contributing variables. These variables

have an impact on the whole innovation process, from conception through

commercialization. The business has little influence over these contributing elements.

96

Figure 43. New concept development model (Koen et al., 2014)

This concept is shown as a circle to represent the flow of ideas across all five aspects, as well as

the arrows pointing inside the opportunity. The phases of identification, idea creation and

enrichment are the most common beginning points for initiatives and ideas (Koen et al., 2014).

Using the NCD model, it can be deduced that this project was at the opportunity identification

stage.

The opportunity to deliver this study came from the surge of popularity in areas such as the

Internet of things, cloud computing and big data, where companies adopting them were looking

for software characteristics such as fault tolerance, resilience, responsiveness, scalability,

performance, modularity and elasticity, which are heavily linked to both microservices and

reactivity, creating this correlation, as previously seen in Figure 6.

Following the model's flow, in the opportunity analysis stage, past implementations of reactive

microservices were studied in section 2.4, providing a grasp of their merits, downsides, common

practices and pitfalls. This output led to the idea generation and enrichment, where several

frameworks were gathered for subsequent analysis and study in the Idea Selection phase, in

section 3.2, where the analytic hierarchy process was used to determine the most appropriate

framework to use, increasing both the productivity of the development process and the overall

quality of the value given.

Finally, after obtaining a solid foundation in how to implement reactive microservices and

choosing a framework to use, in the concept definition phase the development of a proof of

concept will be created to demonstrate the advantages of constructing reactive microservices

over other microservice archetypes and to compare their characteristics.

97

Function Analysis System Technique

FAST, or function analysis system technique, is a graphical interpretation of the logical

connections between the functions of a project, product, process, or service based on the

questions “how” and “why”, assisting in objectively thinking about the problem and establishing

the scope of the project. The FAST diagram may be used to determine if and how a proposed

solution meets the project's requirements, as well as to identify any unneeded, redundant, or

missing processes (Nicola, 2020a), as shown in Figure 44.

Figure 44. FAST frame diagram (Dannana, 2020)

Three key questions are addressed in a FAST diagram (Nicola, 2020a):

• How do you achieve this function?

• Why do you perform this task?

• What additional tasks must you complete while performing this function?

With these questions in mind and the frame diagram from Figure 44, the execution of this

technique was realized in Figure 45.

98

Figure 45. FAST application in reactive microservices

99

Annex B Domain Model

Figure 46. Domain Model

101

Annex C Implementation Details

Figure 47. Class diagram code level separation of the API and Implementation projects

1 PS C:\Users\JosePedroFerreira\IdeaProjects> sbt new lagom/lagom-scala.g8
2 name [Hello World]: ftgo
3 organization [com.example]: dei.isep
4 version [1.0-SNAPSHOT]: 1.0-SNAPSHOT
5 package [dei.isep.ftgo]: dei.isep.ftgo

Code 10. Creation of the project skeleton through sbt

103

Annex D Testing and Evaluation Details

1 {
2 "openapi": "3.0.1",
3 "info": {
4 "title": "Order API",
5 "version": "1.0.0"
6 },
7 "paths": {
8 "post": {
9 "summary": "Create new order",
10 "operationId": "createOrder",
11 "requestBody": {
12 "content": {
13 "application/json": {
14 "schema": {
15 "$ref": "#/components/schemas/OrderDto"
16 }
17 }
18 }
19 },
20 "responses": {
21 "200": { "description": "Order creation command sent." },
22 "400": { "description": "Malformed order." }
23 }
24 }
25 },
26 (…)
27 "/order/{orderId}": {
28 "get": {
29 "summary": "get order by id",
30 "operationId": "getOrderById",
31 "responses": {
32 "200": {
33 "description": "",
34 "content": {
35 "application/json": {
36 "schema": {
37 "$ref": "#/components/schemas/OrderDto"
38 }
39 }
40 }
41 },
42 "400": { "description": "Malformed ID." },
43 "404": { "description": "Order not found." }
44 }
45 }
46 } (…)

Code 11. Excerpt of the OpenAPI endpoint response, available in the Order microservice

