168 research outputs found

    A Networked Dataflow Simulation Environment for Signal Processing and Data Mining Applications

    Get PDF
    In networked signal processing systems, dataflow graphs can be used to describe the processing on individual network nodes. However, to analyze the correctness and performance of these systems, designers must understand the interactions across these individual "node-level'' dataflow graphs --- as they communicate across the network --- in addition to the characteristics of the individual graphs. In this thesis, we present a novel simulation environment, called the NS-2 -- TDIF SIMulation environment (NT-SIM). NT-SIM provides integrated co-simulation of networked systems and combines the network analysis capabilities provided by the Network Simulator (ns) with the scheduling capabilities of a dataflow-based framework, thereby providing novel features for more comprehensive simulation of networked signal processing systems. Through a novel integration of advanced tools for network and dataflow graph simulation, our NT-SIM environment allows comprehensive simulation and analysis of networked systems. We present two case studies that concretely demonstrate the utility of NT-SIM in the contexts of a heterogeneous signal processing and data mining system design

    Virtual Platform-Based Design Space Exploration of Power-Efficient Distributed Embedded Applications

    Get PDF
    Networked embedded systems are essential building blocks of a broad variety of distributed applications ranging from agriculture to industrial automation to healthcare and more. These often require specific energy optimizations to increase the battery lifetime or to operate using energy harvested from the environment. Since a dominant portion of power consumption is determined and managed by software, the software development process must have access to the sophisticated power management mechanisms provided by state-of-the-art hardware platforms to achieve the best tradeoff between system availability and reactivity. Furthermore, internode communications must be considered to properly assess the energy consumption. This article describes a design flow based on a SystemC virtual platform including both accurate power models of the hardware components and a fast abstract model of the wireless network. The platform allows both model-driven design of the application and the exploration of power and network management alternatives. These can be evaluated in different network scenarios, allowing one to exploit power optimization strategies without requiring expensive field trials. The effectiveness of the approach is demonstrated via experiments on a wireless body area network application

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    Application development process for GNAT, a SOC networked system

    Get PDF
    The market for smart devices was identified years ago, and yet commercial progress into this field has not made significant progress. The reason such devices are so painfully slow to market is that the gap between the technologically possible and the market capitalizable is too vast. In order for inventions to succeed commercially, they must bridge the gap to tomorrow\u27s technology with marketability today. This thesis demonstrates a design methodology that enables such commercial success for one variety of smart device, the Ambient Intelligence Node (AIN). Commercial Off-The Shelf (COTS) design tools allowing a Model-Driven Architecture (MDA) approach are combined via custom middleware to form an end-to-end design flow for rapid prototyping and commercialization. A walkthrough of this design methodology demonstrates its effectiveness in the creation of Global Network Academic Test (GNAT), a sample AIN. It is shown how designers are given the flexibility to incorporate IP Blocks available in the Global Economy to reduce Time-To-Market and cost. Finally, new kinds of products and solutions built on the higher levels of design abstraction permitted by MDA design methods are explored

    IP-XACT for Smart Systems Design: Extensions for the Integration of Functional and Extra-Functional Models

    Get PDF
    Smart systems are miniaturized devices integrating computation, communication, sensing and actuation. As such, their design can not focus solely on functional behavior, but it must rather take into account different extra-functional concerns, such as power consumption or reliability. Any smart system can thus be modeled through a number of views, each focusing on a specific concern. Such views may exchange information, and they must thus be simulated simultaneously to reproduce mutual influence of the corresponding concerns. This paper shows how the IP-XACT standard, with some necessary extensions, can effectively support this simultaneous simulation. The extended IP-XACT descriptions allow to model extra-functional properties with a homogeneous format, defined by analysing requirements and characteristic of three main concerns, i.e., power, temperature and reliability. The IP-XACT descriptions are then used to automatically generate a skeleton of the simulation infrastructure in SystemC. The skeleton can be easily populated with models available in the literature, thus reaching simultaneous simulation of multiple concerns

    Co-Simulation of Cyber-Physical System with Distributed Embedded Control

    Get PDF
    • …
    corecore