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ABSTRACT 

Application Development Process for GNAT, 
A SOC Networked System 

by 

Christopher L. Plumlee 

University of New Hampshire, September, 2008 

The market for smart devices was identified years ago, and yet commercial 

progress into this field has not made significant progress. The reason such devices are so 

painfully slow to market is that the gap between the technologically possible and the 

market capitalizable is too vast. In order for inventions to succeed commercially, they 

must bridge the gap to tomorrow's technology with marketability today. This thesis 

demonstrates a design methodology that enables such commercial success for one variety 

of smart device, the Ambient Intelligence Node (AIN). Commercial Off-The Shelf 

(COTS) design tools allowing a Model-Driven Architecture (MDA) approach are 

combined via custom middleware to form an end-to-end design flow for rapid 

prototyping and commercialization. A walkthrough of this design methodology 

demonstrates its effectiveness in the creation of Global Network Academic Test (GNAT), 

a sample AIN. It is shown how designers are given the flexibility to incorporate IP 

Blocks available in the Global Economy to reduce Time-To-Market and cost. Finally, 

new kinds of products and solutions built on the higher levels of design abstraction 

permitted by MDA design methods are explored. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The traditional embedded system design process has become cost-prohibitive. 

Accelerating marketing cycles do not always allow the teams to compare requirements 

against common-off-the-shelf (COTS) chipsets and carefully pick the cheapest solution. 

It is not that the selection is a long process, but that the months following selection must 

be spent combining systems coherently on a board and in a software interface to yield the 

desired product. Hardware changes then result in mandated certification steps followed 

by reliability studies. There are a variety of markets that open and close far faster than 

these standard design steps can be completed, and there now is a valid design process that 

allows one to take advantage of such opportunities. 

A design niche characterized by fast market-cycle opportunities was defined by 

Tomasz Jankowsi in his related thesis, titled "An Architecture and Technology for 

Ambient Intelligence Node"1. The economies of scale currently favor the higher levels of 

optimization that come along with the longer development cycles of traditional methods 

for both large products and small products. Traditional design methods are capable of 

churning out large-scale, high profit-margin products such as data-centers small scale, 

high quantity products such as optosensors. Complex medium-sized devices, such as the 
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Ambient Intelligence Node (AIN) defined by Tomas Jankowski, deliver very thin profit 

margins when designed using traditional methods. It is the AIN design niche that is focus 

of the design methodology described herein. 

The motivation of this thesis is to produce and demonstrate an end-to-end 

development process for reliably producing viable products on such an accelerated 

timetable. The example product, GNAT (Global Network Academic Test) is a generic 

solution incorporating many key functions necessary for modern products. It is built on a 

Model Driven Architecture (MDA) so that features can be added, removed, or 

reconfigured easily. While this architecture allows for efficient design reuse, this 

advantage is eclipsed by the ease with which 3rd party Intellectual Property (IP) modules 

from the Global marketplace can be integrated into the system. Furthermore, much of the 

design is at the FPGA and CPU "software" levels, allowing designers to shorten or 

eliminated hardware build and certification cycles prior to new product introduction. 

1.2 Design Requirements 

GNAT is a sample Ambient Intelligence Node (AIN), developed to allow testing 

of a universal design template for devices in the AIN genre. Such devices are defined in 

Tomasz's work as having the following requirements: 

• Information Processing Capacity (IPC) - The node does not merely collect and 

relay data. It must make intelligent decisions about all the data and noise 

presented to it, in order to avoid idle chatter within the overarching AIN system. 
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• Ranged Communication - in order to be an Ambient Node, each device must be 

capable of communications over at least one medium, preferably using Internet 

Protocol (TCP/IP). 

• Power requirements - Capabilities do not come free; power goes in, data comes 

out. Nodes on this scale should be relatively small and unobtrusive. The ability 

to run temporarily on batteries or permanently from solar panels would further 

expand this scale of node's marketability. 

• Adaptability - Needs change. In order for a Node to remain useful for its entire 

operating life, it will need to be re-purposed. If this can be done remotely, the 

node becomes exponentially more useful and linearly more profitable. 

• Autonomy - The basic node design must capture all this and yet be self-contained. 

Any node must be able to carry out some function on its own in case it is not 

deployed in, or becomes cut off from an overarching system. 

• Short Design Cycle - Devices in this scale are not deployed in great enough 

numbers nor high enough profit margin to justify a lot of engineering investment. 

Even devices that see great success are often replaced by follow-on devices with 

greater capabilities before their designed operational lifetimes have expired. 

1.3 Architecture 

A specialized set of tools can only be crafted if the nature of the job at hand is 

well-defined. This is why the AIN Architecture specified in Tomasz's work is an 

important part of this thesis. An Ethernet interface is specified for its adaptability; off-
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the-shelf products are available to transform Ethernet into just about any other interface 

desired. A CPU is specified to manage Ethernet communications, implement protocols, 

and provide the Intelligence (via software) demanded of AIN products. An FPGA is 

specified to provide DSP capabilities and interfaces to the ambient environment while 

meeting the low-power requirements imposed on such products. The Xilinx Virtex-II 

FPGA with integrated CPUs is the best market fit for these needs at the time of this 

document's publication . Again, traditional design methods already allow combination 

of all of these components. A well-implemented Model-Driven Architecture tools set 

will allow such combinations to be designed much faster and cheaper. 
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CHAPTER 2 

MODEL DRIVEN ARCHITECTURE 

Model Driven Architecture (MDA) is a design methodology that comes from the 

application of classic software design methods to the hardware realm. As Object 

Oriented software has allowed for reuse of modular software "objects", MDA design 

permits reuse of hardware "function blocks". Furthermore, such blocks can be bought 

and sold as Intellectual Property (IP) Blocks, a trading practice that permits designer to 

focus more on integrating existing technologies and less on reinventing them. In the 

GNAT example project, off-the-shelf MDA tools and existing practices are combined 

into a universal system for realizing Ambient Intelligent Network designs. 

2.1 Concepts and Challenges 

One viewpoint on system design is top-down modeling, with a focus shifting from 

software to FPGA. The FPGA industry has benefited from the same technological 

advances that advance the entire semiconductor industry at a breakneck pace. The 

resulting increase of design space in each FPGA allows (and from a marketing 

perspective requires) the creation of higher-level functions and greater quantities of 

features in each product. As a result, said designs become too complicated for a single 

person or even a small team to design in a reasonable time period. One solution is the 
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concept of reusable blocks reconnected and recycled through various projects. These 

modules with predefined functions and interfaces can be organized in a systematic way 

for quick and easy re-use. Theoretically. 

While there has been a lot of progress over the last ten years in the area of design 

reuse, it remains an elusive genie that no Computer Aided Design (CAD) tools company 

has yet managed to bottle and sell. Aiming to fix this technological gap, some of the 

most advanced design tools on the market were obtained. Xilinx and The MathWorks 

provided UNH with use of their Embedded Development Kit (EDK) and Simulink 

software. These companies also provided quite a bit of technical support in getting these 

tools to work together (See APPENDIX I: Installation Procedure for Commercial). In 

order to prove out the design environment, it was necessary to craft a sample AIN Node 

design using mainly off-the-shelf IP Cores. Any new tools or IP Cores necessary to 

complete the task were designed for flexibility and included with this thesis on the 

GNATDVD distribution as the missing links required for quick-and-easy AIN Node 

design. 

As an arch has its keystone, EDK is the central and most important tool in the 

AIN Node design process. The IP Cores used to build the AIN system have hardware 

and software components, and both are managed in the relatively orderly EDK graphical 

environment. It is good to remember that each of these modules was created by a design 

team with reusability in mind. In this chapter there will be a brief introduction to the 

design methodologies used to develop these component parts. 

The current state of FPGA design tools today is best understood from a historical 

perspective. The evolution of FPGA hardware has adhered to "Moore's Law", doubling 
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the gate-count of the new chips every two years. FPGA design tools, of course, started 

out simplifying hundreds of gates - then had to adapt to handle hundreds of thousands of 

gates and other structures. Linear thinking has yielded design tools that can be classified 

into two categories: 

• Low-Level tools for designing basic elements. 

• High-Level tools for combining lower-level elements into higher level IP Cores. 

While the low-level tools came first, they are still necessary (and in common use) for 

developing optimized or tweaking existing high-level IP Blocks. 

Some designers were frustrated with this "Bigger is Better" approach to design 

tools, and started fresh. SystemC was born a top-down design approach modeled after 

software programming. While this approach is similar to using Hardware Description 

Languages (HDL) already in general use, SystemC's roots in the C programming 

language give a much broader variety of structuring options. SystemC is a set of 

software libraries implemented in C++ that can be compiled to an arbitrary mix of 

software and hardware targets. This not only allows much simpler software design and 

simulation than is available in existing HDL simulators, but provides flexibility in 

regarding CPU vs. dedicated hardware design trade-offs. The picture below presents the 

shift in the standard of the design methodology for the hardware cores, and it would 

appear that SystemC can offer the best solution for AIN design needs. Unfortunately, 

this option had to be eliminated due to the lack of a cohesive, mature SystemC toolset at 

this time. 
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Figure 1: History of Design Tools 

2.2 IP Blocks 

There are two main options for creating a function block (IP Core) for an FPGA, 

and designers often chose to mix these methods. The low-level method, HDL coding 

offers the choice of two Hardware Description Languages: VHSIC HDL (VHDL) and 

Verilog. Since Verilog was originally designed as a Design Verification Test (DVT) 

programming language, VHDL is more focused on hardware design — and will be the 

language of choice in the examples presented here. The high-level method, schematic 

design, is supported by a variety of tools available from FPGA vendors such as Xilinx 

and Altera, as well as CAD companies such as Mentor Graphics and Synoptics. High-

level schematic design packages all produce low-level VHDL/Verilog code output, which 

can optionally be optimized by hand. Either way, the low-level code must be synthesized 

into a bitstream before it can be loaded onto an FPGA device. The advantages and 

disadvantages of HDL methods are detailed in the following table: 
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Advantages: 

Portability - the code can be adapted by 

almost all off-the-shelf implementation and 

integration tools 

Best design visibility and troubleshooting 

for small projects 

Complete control of the design 

Best optimization 

Disadvantages: 

Development time increases exponentially 

with the design complexity. 

Worst design visibility and troubleshooting 

for complex projects 

Steep learning curve. 

Table 2: Trade-offs of HDL Design methods 

Due to these tradeoffs, it is common practice to rough-out a new IP Block in the 

Schematic tools, then fine tune the resulting VHDL code by hand. With this approach in 

mind, Xilinx developed a tool called System Generator. It allows the designer to utilize 

the schematic block approach similar to the StateCAD tools, but said modules are written 

in HDL. The schematic block approach is a very easy way for designers to generate 

more complex hardware designs without controlling many lines of source code. The next 

evolution is this tool's inclusion into an even higher-level modeling environment such as 

The Math Works Simulink® software. This combination of tools gives the designer 

single-click access to very powerful DSP design, test, and tune-up blocks, system/design 

visibility, and open architecture. The design can be quickly verified and tweaked in the 

software simulation. The design tools flow easily to the hardware level through the 

System Generator "Hardware-in-the-Loop" design verification process, as shown in the 

following Simulink® design process example : 
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Table 3: Simulink Hardware-in-the-Loop Example 

When it comes to schematic design specialized for Digital Signal Processing (DSP), The 

Math Works Simulink® software appears to be the only well-developed tool on the market 

at this time. 

Let us take a moment to reflect on the significance of the DSP component in AIN 

design. The table below presents several common examples of the acceleration provided 

by a DSP over an equivalent General Purpose Processor (GPP) executing the same 

operation in software. 
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Application 

Image Filtering 

QAM Demodulator + Extension 

5x5 Image Filter 

Cor die Arc Tangent 

Software 
Simulation 

Time 
(seconds) 

676 

1203 

170 

187 

Additive White Gaussian Noise Char nel 600 

Hardware 
Simulation 

Time 
(seconds) 

6 

IS 

4 

27 

80 

Speed-up 

112X 

67X 

43X 

7X 

7.5X 

Table 4: Software and Hardware simulation time comparison 

With the limited resources available on AIN Nodes, hardware acceleration is a key 

component to producing useful designs. With this in mind, it was necessary to select a 

set of design tools that included tight integration with Simulink®. This choice came with 

several other trade-offs in our favor, most notably Simulation and Design Verification. 

The trade-offs of using the MathWorks Simulink® & Xilinx System Generator approach 

are detailed in the following table: 
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Advantages: 

High abstraction level modeling 

System level schematic design with 

resource estimation. 

Simulation is inherently rolled into each 

Simulink® Model design - Simulink® was 

originally built as a simulation tool. 

Verification is inherently rolled into each 

Simulink® Model design using the included 

"hardware-in-the-loop" process. 

Disadvantages: 

Cost: both Simulink® and System 

Generator applications must be purchased. 

Block level troubleshooting only. 

Designs must use Xilinx the blocks which 

are included in Simulink . 

No bidirectional bus is supported 

Table 5: Trade-offs of the Simulink and System Generator DSP Design Approach 

2.3 Implementation of IP Bocks 

The process of compiling an FPGA design from human-readable HDL or 

schematic form into a functioning FPGA is called, "Implementation." Many tools for 

FPGA Implementation are available at prices ranging from free to tens of thousands of 

dollars from a variety of vendors, but they all follow the same basic steps: 

1. Translate: Merge multiple design files into a single netlist 

2. Map: Group logical symbols from the netlist (gates) into physical components 

(slices and IOBs) 

12 



3. Place & Route: Place components onto the chip, connect the components, and 

extract timing data into reports 

The compilation process creates many output files, most notably including: 

1. Logs (for debug) 

2. Floor Plans for reference or manual optimization. 

3. Bitstream the file that can be directly loaded into the FPGA. 

Most FPGA vendors offer the hardware compiler layer of the design software 

tools for free, for example, Xilinx's Integrated Software Environment (ISE) synthesis 

program. Commercially available solutions such as Synplify and Precision promise 

faster compile times, highly optimized bitstreams, etc. Our example AIN Node design is 

compiled with Xilinx ISE because it is currently the only synthesis tool that is fully 

integrated with The Math Works Simulink® software. ISE is a superset of System 

Generator that manages all of these steps in one application using the single click 

approach. This tool provides fine-grain visibility into the implementation process in 

order to provide the option of hand-optimizing any single step in the process. The ISE 

implementation process is broken down as follows: 

1. Translate 

2. Floorplan 

3. Assign package pins 

4. Map 

5. Analyze timing 

6. Place & Route 

7. Analyze timing 

13 



8. Floorplan 

9. FPGA Editor 

10. Analyze power 

11. Create simulation model 

These steps are handled behind-the-scenes by Xilinx tools, which have been 

integrated with The Math Work tools to allow for a huge advancement in MDA design. 

Designers have an option to run Simulink® systems in software or FPGA hardware, with 

single-click ease of execution either way. This is because Simulink software automated 

the controls to the System Generator making hardware compilation, allowing for very 

rapid experimentation and verification cycles (or design and experimentation loops) 

during DSP design. This terrific automation only works under certain connections to, 

and under direct control of, Simulink®. There are many more steps required to take a 

finished DSP design to full deployment in a product. 

2.4 Hardware and Software Integration 

The combination of DSP, hardware, and software IP cores is very complex, 

requiring the use of tools designed for embedded systems design. These are not available 

for free from any vendor; Xilinx was kind enough to donate EDK and System Generator 

to UNH for the implementation of the node named Global Network Academic Test 

(GNAT). The EDK design environment presents the designer with a single interface for 

connecting and configuring all IP Blocks to be used in the embedded system ensuring a 

consistent implementation of busses interconnecting various IP Blocks. 
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Pertinent information about IP Blocks are shared as necessary among blocks to 

allow a smooth end-to-end system compilation process as shown in the following Xilinx 

figure: 

Standard Embedded SW 
Development Flow 

CCode 

Compiler/Linker 
i 

(Simulator) 

Object Code 

< ? 

CPU code in 
otT-chip 
memory 

Standard FPGA HW 
Development Flow 

*l"VrTDL/Ve7ilog I 

Synthesizer [ 

I Simulator 

CPU code in 
on-chip 
memory 

Download to Board & FPGA kU» 

Place & Route 
1 

Bitetr&am 
N - l 

Download to FPGA 

Debugger • iSt 

Figure 2: Xilinx EDK Flow Diagram 

EDK recognizes and maintains software dependencies of hardware components, 

organizing software components of mixed-software/hardware IP Cores. EDK allows the 

hardware designer to easily interface hardware components, and feeds information about 

the resulting interconnect into the software compilation process. EDK manages source 

code and even kicks off software compilation, but the overall software solution is left 

completely up to the system designer. 

2.5 Software 

Gone are the days when a user interface could be implemented as a hardware state 

machine. Network-connected hardware must be able to communicate using complex, 
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standards-based protocols, protocols that are occasionally updated, or patched. Some 

network appliances perform this function with a small dedicated application (App). Most, 

however, use an application that sits on a larger foundation of software called an 

Operating System (OS). While there are many choices in operating systems, and 

resulting tradeoffs such as architecture, cost, availability, and support, there is one 

universal advantage an OS has over an app. An Operating System includes software 

support for a very wide variety of common functions, such as networking, memory 

management, error handling, I/O, logging, encryption, and security. Since Software is a 

big part of the Node design, let us take a step back and look at the big picture for a 

moment before going into more detail about the software aspect of the GNAT design. 
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CHAPTER 3 

Node Design 

This chapter will present the steps to configure a simple node design using the 

methodology and tools previously described. The first step in the overview is a list of 

tools in the development environment. This list is not intended to scare potential 

designers away from this design methodology; the main thrust of this thesis is to provide 

a neatly packaged, well integrated environment. Like most embedded designs developed 

in industry, this project required expertise in too many specialties to be successfully 

completed by one person. The GNAT design environment, however, can be used by any 

systems engineer with elementary C programming experience to integrate sundry IP 

blocks into a complete system. Note that all shareware and GPL content (except for 1386 

RedHat 6.0) is packaged in the GNATDVD distribution. 

Components of the Ambient Intelligence Node Design Environment are: 

• MATLAB® 2006a R14.1, R14.2, or R14.3 with Signal Processing Blockset™ 

(Commercial Product) 

• Xilinx v8.1 EDK (Commercial Product) 

• Xilinx v8.1 ISE Foundation with latest service pack (Free download) 

• Xilinx v8.1 System Generator for DSP 

• sysgen2opb.m wrapper script from WARP/Rice University (Free download) 

• EDK OPB Export Tool (Free download) 

• MontaVista Linux 2.4 (Free download) 

• XUP Virtex-II Pro board with Power Supply (Commercial Product) 
17 



XUP Board Support Package from Digilent (Free download) 

Standard off-the-shelf USB cable (Commercial Product) 

512 MB PC2100 SDRAM (Commercial Product) 

PC (Windows XP) (Commercial Products) 

PC (Linux, i386 RedHat 6.0 distribution recommended) (Commercial Hardware, 

Free download OS) 

256MB Compact Flash (Commercial Product) 

Busy Box (Free download) 

Crosstool (Free download) 

MkRootFS (Free download) 

Tera Term Pro (Free download) 

Tel interpreter (Free download) 

This chapter will define the components of the GNAT, along with the design trade

offs involved in the chosen architecture. This will be followed by a brief overview of the 

steps involved in creating the Node. After that, the technical details and procedures for 

each step will be described. Many methods and tools were developed during the creation 

of the GNAT, and these will be detailed along the way in the order that they are needed 

in the process. Conforming to the global economy model in which AIN Nodes are 

expected to be designed, the GNAT was built using Common Off-The-Shelf (COTS) IP 

Blocks wherever possible. System designers who want to dive right in may want to skip 

ahead to APPENDIX VI: Ambient Intelligence Node Development Tools Set Quick Start 

Guide. 
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3.1 Node Architecture 

The GNAT design is submitted as a reusable IP building block. Before drilling 

down into the details and tradeoffs made to reach this goal, let us first take a top-level 

overview of the Node: 

Node Block Diagram 

Figure 3: Node Block Diagram 

The development process for this block was not focused on speed or power, but 

the design flexibility. The option to include one or more DSP cores synthesized as 

hardware in the FPGA gives this node design a much broader range of applications than a 

standard embedded computer. The inclusion of DSP IP cores brings with it the 

advantages of speed, power, and efficiency inherent to special purpose DSP. A modular 

means of interconnecting system components simplifies the design work and enables the 
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designer to meet time-to-market demands. While hardware connections among the DSP 

core(s) would be more efficient than software, this type of interconnect carries a heavy 

customization burden for each system change. Software interconnect among system 

components is thus an excellent choice in reusable node design. 

3.2 Node Software Overview 

When it comes to placing software on an embedded system, there are two levels 

of abstraction available. A special-purpose application can often be compiled small 

enough to fit in FPGA memory blocks (BRAM on Xilinx processors), but the ultimate in 

pre-canned flexibility is provided by an Operating System (OS). Rather than code in or 

rewrite functionality in application code, one can reconfigure an operating system with 

simple configuration tools. Several embeddable OS's are available for designers: 

MontaVist Linux 

(iClinux 

- VxWORKS 

- Xilinx OS 

- Windows CE 

MontaVista Linux 2.4 was selected for this design because it is available for free 

under General Public License (GPL). Linux comes with most of the networking support 

required for the GNAT node right out-of-the box: 

• Network Hardware Driver with optimized interrupt handling 

• TCP/IP stack 

• DHCP/Routing 
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• Basic Web Server 

While the embedded operating system provides much of the required functionality, 

there is still a role in the Node design best suited for an Application. Fundamental 

changes to the operating system must be compiled into the kernel, which involves a 

significant amount of risk and effort. The application space is better suited for transient 

or variable system components, as illustrated in the figure below; 

Node Software Block 
Diagram 

DSP 

DSP 

vl 

-Nl 

GNATserver application 

Linux Kernel 

Figure 4: Node Software Block Diagram 

Payload items, such as the DSP IP cores and the network connection, are 

represented in purple. The reconfigurable Server Application (blue) middleware 

manages communications among DSP cores and the network from a top its foundation, 

the static Linux Kernel (green). The relationship between the software and hardware 

components is depicted in the following block diagram: 
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Node Structural Block 
Diagram 

Figure 5: Node Structural Block Diagram 

The GNATserver application resides on top of the Linux Operating System, which in turn 

executes on the CPU. The CPU is one of many cores in the FPGA; external 

dependencies such as DRAM and Flash out on the PCB are managed via the PLB bus by 

the Linux OS, and are excluded from this diagram for simplicity. An internet packet 

enters the GNAT via the Ethernet PHY, which puts signals on the PCB into the FPGA. 

The Ethernet MAC translates these signals into data on the OPB bus ready for 

consumption by the CPU, where it is interpreted by the Linux OS. GNAT requests are 

routed to the GNATServer application, which communicates back to the internet with 

relevant information from the DSPs. In order to communicate with the DSPs, the 

GNATServer application passes data to an abstracted interface in the Linux OS. As with 

Ethernet communications, the OS handles hardware off the CPU over the OPB bus to the 

DSPs. 

The main concept of this architecture is it reusability. The design components 

that would normally be the most time labor intensive, DSP IP Blocks, can be done easily 

by any systems engineer via Xilinx's System Generator software in the Simulink 

environment. These blocks can be swapped in and out based on the specific application, 
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with little impact on the other system components. At this point it is worth repeating that 

the Simulink® — System Generator environment provides excellent software and 

hardware DSP simulation capability as well as synthesis. This AIN design environment 

allows compilation of Simulink® models directly into standardized DSP Peripherals, with 

hooks into the processor at the hardware level and into the middleware application at the 

software level. This Simulink® DSP Peripheral design flow is illustrated below. 
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Simulink DSP Peripheral Design Flow 

Simulink 
DSP 

System 
Design 
Process 

DSP 
Control 
Coding 

/ Simulink \ 
DSP f 

\ Peripheral / 

A , XUPBase 
V " System 

Compile 

Matlab_dsp_opb.h 
xparameters.h 

ACE file 
(installed on 

CompactFlash DOS 
partition) 

'XBNATserveK 
embedded \ 
application J 

code 

GNATserver application 
(installed on Linux root 

filesystem) 

Figure 6: Simulink DSP Peripheral Design Flow 

The design path begins with the DSP modeling in the Simulink® - System 

Generator environment. The model is first designed and simulated in native software 

within Simulink®. It can optionally be re-verified using the Simulink Hardware-in-fhe-

loop process before it is compiled for full deployment as an OPB Peripheral. From there, 
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insertion of the Simulink DSP Peripheral into the XUP Base System is a point-and-click 

process under EDK. Further automated processes produce updated hardware and 

middleware components. If the system designer wishes to make structural changes 

affecting the way that peripherals, in the system, communicate with each other, he does 

this by modifying the C source code for the GNATserver middleware. All of this 

compiled object code is installed on the flash drive, the installation of which into an XUP 

board makes a serviceable node. While remote updates to a networked Linux system are 

inherently simple, initial tests should always be performed on a local system before being 

deployed en masse via the network, to guard against unrecoverable failure 
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Chapter 4 

DSP Block Design 

DSP functionality is what makes the GNAT Node more than an ordinary 

embedded computer - more powerful, more efficient, and more flexible. As previously 

mentioned, our DSP IP Core design tool of choice is a combination of Xilinx System 

Generator and The MathWorks Simulink® software. A single click in this toolset 

translates a mathematical flow chart into VHDL code, which is piped into System 

Generator and then iMPACT tools to compile and upload a DSP core to the FPGA for 

iterative at-speed trials easily throughout the design process. Until recently, hand-crafted 

system interfaces were required to take Simulink® VHDL output to full deployment on an 

embedded system. Fortunately, new tools allow the finalized DSP design to be 

automatically wrapped into an OPB peripheral for integration of the DSP core into the 

microprocessor-based system solution. The finalized Simulink model is then 

transformed into a Simulink® DSP Peripheral by a simple compilation process for full 

deployment! 

4.1 DSP Connectivity Overview 

The DSP functions designed in high-level Simulink® diagrams are compiled into 

FPGA hardware that lies alongside the CPU core in the same die. An IP Block provided 

by the Rice University WARP Project3 presents the DSP hardware interface to the CPU 
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as a set of registers on the OPB bus with compile-time configurable options for hardware 

pipelining. This DSP Peripheral is addressed from software running on the CPU; either 

an OS driver or a userland app. Either way, the software routes signals as desired for the 

given system. In the GNAT, the userland server app that provides Web Services also 

handles routing of signals to and from (or among) DSP elements. 

4.1 DSP Block Design Detail 

The steps in the Simulink® DSP Peripheral design process include: 

• DSP schematics design with Simulation 

• Hardware model generation 

• Project verification (Hardware in the Loop testing ), resource estimation/tune-up 

• OPB-compliant peripheral generation 

• Integration of Simulink® DSP Peripheral into EDK project 

It is worth pointing out that the first step in this process is a universal design not 

dependent on the targeted board. Of course, the toolset provided here does add the 

requirements that the target hardware includes a Xilinx FPGA and embedded CPU. The 

first steps require knowledge of Digital Control Systems. For simplicity, the GNAT 

implements a 32-bit Multiplier DSP block. 

The most important parts in the Simulink® Xilinx block-set are the "Gateway In" 

and "Gateway Out" blocks. These specify the bounds of the design that fall within the 

realm of the Xilinx System Generator. An extensive set of blocks developed by Xilinx 

can be used inside these bounds and implemented into the FPGA; analog environmental 

design tools like spectrum scopes and signal sources are ordinary Simulink® blocks that 
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cannot be compiled into the FPGA. Once a model is designed, simulated, and operating 

satisfactorily in Simulink® software, the next step is to translate this model into a 

hardware implementation. This process requires several steps like synthesis, place & 

route, etc. These steps are managed and performed by Xilinx ISE, and triggered by the 

System Generator block. In order to optimize the output, it is important at this stage of 

implementation to define the hardware target. Simulink® ensures timely selection of a 

compile target by the structure of the System Generator block controls. Before System 

Generator will compile, all relevant fields of the following dialog must be filled in: 

System Geneiator: bandpass._filtei_liw_vi 

I—Xilinx System Generator 

< Compilation: 

I j @ HDL Netlist 

i part NGC Netlist 

i Bitstream 

EDK Export Tool 

; Tare 

! ./he-

Timing Analysis 

Settings... 

. . . • i ' 1 :• . . • , J ' I . • HL402 • 

MicroBlaze Multimedia Board 

XtremeDSP Development Kit • 

"** xup 

—' _VI" xup2pro 

FPGA clock period (ns): Clo *up2pro2 

Syrt. 

XST 

Figure 7: Xilinx System Generator Setup 

The next logical step after software simulation is Hardware Co-Simulation. If a 

Board Support Package (BSP) is not loaded, then a new board can be defined by selecting 

—> Co-Simulation —»• New Compilation Target. Several parameters need to be provided 

by the board designer: 

• Core clock frequency in MHz 

• Pin Allocation 

• The name of the board and type 
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• Boundary Scan Position 

The JTAG options are automatically detected from the board. Note that the board 

must be connected to and detected by the PC via "Xilinx JTAG Debug" USB cable 

before the Simulink software is opened. With all of these parameters defined, hardware 

compilation is triggered from this System Generator block menu with single click of the 

Generate button as shown below: 
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Figure 8: Xilinx System Generator Running Netlister 

The compilation steps include: 

• Synthesis Options Summary 

• HDL Compilation 

• Design Hierarchy Analysis 

• HDL Analysis 

• HDL Synthesis 

• HDL Synthesis Report 
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• Advanced HDL Synthesis 

• Advanced HDL Synthesis Report 

• Low Level Synthesis 

• Partition Report 

• Final Report 

• Device utilization summary 

• TIMING REPORT 

Design Verification Test (DVT) is very easy in this environment because the 

software and hardware implementations of the same model can be against the same 

Simulink® source, and the outputs can be compared on Simulink® scopes and spectrum 

analyzers. 
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Figure 9: Simulink® software - Hardware in the Loop testing 

Another very useful feature of the System Generator block is the Resource 

Estimator, which determines the physical FPGA resources required by the model. 
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Figure 10: Xilinx System Generator - Resource Estimator 

When the design is completed and verified, the next step is to wrap the model in 

an OPB peripheral structure. In order to connect the IP Block to the GNAT CPU, the 

block must be an OPB-bus compatible peripheral. While Xilinx's OPB Export Tool 

provides fine-grain control of the OPB Bus Interface from the Simulink® software, it 

requires the additional purchase of The Math Works Stateflow® tools. In order to 

overcome this limitation, a MATLAB® script provided by the Rice University WARP 

Project was used to meet this OPB structure needs; this script is "sysgen2opb.m"5. The 

exact steps required to use this tool are demonstrated in "WARP Lab2: Introduction to 

sysgen2opb"4. This script is used to further abstract the Simulink® DSP Block before it is 

processed by Xilinx's OPB Export tool, eliminating both fine-grain control of the OPB 

Bus Interface and the need for Stateflow® tools. When the new peripheral appears in the 

EDK project the last hardware steps are to attach the Simulink® DSP Peripheral to the 

OPB bus and generate addresses. 

4.2 DSP Connectivity Detail 

Several cores that come with an OPB interface were found freely available from 

The MathWorks, Xilinx, and other sources. The OPB interface in the Xilinx EDK toolset 
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is based on an IBM processor bus standard, and allows IP cores to present themselves as 

hardware peripherals to the processor (whether that be a hard-core PPC or a soft-core 

MicroBlaze). Each of these peripherals presents itself primarily as a range of addresses 

in memory, and includes sample application code. 

The key aspect of embedded system design that makes an AIN node most useful 

is network connectivity to the DSP core(s). In the GNAT Node the cores are managed by 

the very same application that handles network communications, the gnatserver - a 

SOAP server that handles data-structure transmission over the internet. This application-

level code does not quite match up with the sample code provided with each IP core, as 

the cores come with sample Real-Time Operating System (RTOS) Applications. These 

were ported into the gnatserver application using the methods described in an article 

titled, "Porting RTOS Device Drivers to Embedded Linux" 5 . Unlike RTOS 

environments, Linux has a memory manager, which abstracts physical memory into 

multiple virtual memory address ranges. The memory manager resides in the kernel, and 

maintains exclusive access to all physical addressing ranges. The Linux OS is 

architected this way for several reasons, including security and scalability. The physical 

addresses of the Simulink® DSP Peripheral in the system enumerated in "xparameters.h" 

are mapped into virtual addresses in the space of the calling application by the Linux 

"mmap" system call. Register read and write functions required to access OPB 

peripherals are provided in Xilinx's sample memory test program for the XUP board. 

The relevant source files have been copied from ppc405\libsrc\cpu_ppc405_vl_00_a\src 

andppc405\libsrc\common_vl_00_a\src without modification into the gnatserver source 

directory6. 
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As is true at every other level of this system's architecture, there are trade-offs 

involved in the selection of this peripheral management structure. The application-level 

support for the Simulink® DSP Peripheral provides the developer with the greatest 

possible flexibility. The kernel does not need to be recompiled nor packed into a new 

ACE file when a functional change in data routing is desired. Said changes can instead 

be made in one C file and compiled into the top-level application. The drawback to 

application-level hardware support is that it precludes the use of hardware interrupts. The 

Linux architecture does not provide interrupt access to the user application space; instead 

all interrupt drivers must be installed in the kernel. However, the selected Simulink 

OPB peripheral compiler currently does not support interrupts, so a kernel-level 

peripheral driver is not necessary at this time. 

The Simulink® DSP Peripheral continuously operates on the input registers, 

independent of the application software, operating system, or CPU. Input registers are 

processed into a result in a fixed amount of real time, regardless of the operands - this is 

a feature of hardware execution. In this example case, the DSP is faster than the software 

code, so no software delays are necessary. The software reads the output register 

immediately after writing the input registers, and the result is ready. 
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Chapter 5 

Node Software 

The details of the node design span numerous design disciplines. As previously 

mentioned, an operating system was selected to manage the network interface. The entire 

operating system must be cross-compiled targeting the Node CPU, with kernel 

components linked according to the system hardware. While Xilinx tools do produce the 

bulk of the configuration inputs necessary to generate said kernel, their investment into 

the Linux OS compilation process is evidently minimal. The baseline configuration of 

FPGA hardware, Linux Kernel, and OS file system needed for a node without a 

Simulink® DSP Peripheral are described in a recent publication titled, "Porting 

MontaVista Linux to the XUP Virtex-II Pro Development Board"7. It was very difficult 

to replicate this work due to the breadth and complexity of the tools, so a different 

approach was taken to packaging the IP in this thesis. The FPGA portion of the Sample 

Node IP core is submitted as a pre-packaged, already working EDK project. The 

software portion of this sample IP core is submitted as both source and object code 

packaged along with a complete, configured cross-compiler environment. A copy of this 

set of cores (1.1GB) is in UNH's IP core repository. 

5.1 Operating System 
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Several automation tools were developed to streamline the process of getting 

Linux onto an XUPV2P board. These are all run from a Linux PC that is set up with the 

cross-compiler environment included in the GNATDVD. The first of these tools is one 

which embeds a selected MAC addresses into the Linux Kernel. Unfortunately, the 

XUPV2P board does not come with a hardware MAC address; this must instead be 

compiled into the kernel in order for the XUP board to talk on a standard Ethernet 

network. The "setMAC.tcl" script in the Linux Compile Server's xupv2p directory 

updates the network driver to use a hard-coded value specified by the operator in the 

command-line parameter [MAC ADDRESS]. 

The kernel contains all of the hardware drivers for the board, but EDK was 

designed with this requirement in mind. Any time the hardware is reconfigured and 

compiled, EDK updates the contents of the Board Support Package (BSP) directory. The 

Linux Kernel compiler expects to find this directory under the main 

montaVista_2_4_devel directory, and uses the hardware configuration information and 

driver code contained therein. EDK can be instructed to place this directory on a network 

file share so that this occurs transparently. In practice it was simpler to do this step 

manually, in order to prevent unexpected changes to the kernel source code. In order to 

put these hardware changes into effect, the kernel must be recompiled. 

Another automation tool was written to expedite kernel compiles. 

"updatekernel.sk" can be run from the Linux Compile Server's xupv2p directory with no 

command-line arguments. This script combines the static parameters and steps of the 

compile command, preventing mistakes. The finished kernel file is found under a soft 

link at "xupv2p\zlmage.elf on the Linux machine. This kernel must be further compiled 
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along with the FPGA bitstream into an ACE file by EDK. Once again, contentious use of 

network file shares can make this step transparent to the user, but a manual process 

prevents unintentional changes. While "zlmage.elf is the actual binary executable, it 

cannot run on the FPGA in this form. A script called "genACE.sh " is run from the EDK 

command line to compile the kernel "xupv2p\montaVista_ELF\zImage.elf" and the latest 

EDK bitstream, uimplementation\system.bif into uxupv2p\montaVista_ACE\system.ACE". 

This file, once copied to the DOS partition on the CompactFlash drive, is used by the 

systemACE chip on the xupv2p board to load the Virtex FPGA bitstream and boot the 

embedded PowerPC Processor cores to the enclosed Linux kernel. 

5.2 Application Software 

The application layer of network communications in the GNAT Node is handled 

by custom middleware, an IP Block called GNATserver. This application formats and 

encapsulates data according to Service Oriented Architecture Protocol (SOAP) standards 

so that bidirectional communications across the internet can be conducted in a platform-

independent manner, with data values interpreted correctly on all sides. The gSOAP 

C/C++ Web Services and Clients Toolkit8 was selected as the development tool in which 

to write this network application. The GNATServer IP Block is a small C++ program 

that can be easily configured by anyone familiar with the C programming language. This 

program is compiled into a W3C compliant, multithreaded gSOAP server using the 

gSoap open-source toolkit. The gSOAP toolkit itself is easy to build and run from both 

Linux and Windows, and the source code generated cross-compiles easily. The version 
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of the GNATserver code discussed in this chapter can be found in APPENDIX III: 

GNAT Node (Server) Demo Code. 

The GNATserver application contains the software interconnect that binds the 

components of the GNAT Node together. This is achieved using automatically generated 

output of EDK, starting with a file called "xparameters.h", as previously mentioned. 

This file defines hardware-related values such as 

XPAR_MATLAB_OPB_OPBW_0_HIGHADDR and XPAR_MATLAB_OPB_OPBW_0_BASEADDR, 

the high and low addresses of the first DSP core. EDK generates this file into 

"XUPV2P\ppc405_0\include", and it is needed in "xupv2p/mkrootfs/gnar (the GNAT 

source directory) on the Linux compile server - in this case, manually copying the file is 

required. These addresses are virtualized by the Linux Kernel by the mmap system call 

on line 21 of gnatserver.c because Linux does not permit direct access to physical 

memory from userland programs. The mmap register access method is the simplest way 

to access register-driven peripherals. For high-speed data links such as streaming video, 

an interrupt service routine or direct memory access driver may be preferable. This 

would require a kernel-level Linux driver, and would be an excellent addition to the 

GNAT IP Library. 

The Simulink® OPB IP Blocks generated with the WARP MATLAB® OPB 

Peripheral generator include C header files defining data types and I/O routines for 

communicating with the hardware devices at the lowest levels. This is the reason for the 

inclusion of the header file on line 5 of gnatserver.c: "matlab_opb.h". 

"XUPV2P\drivers\matlab_opb_opbw\src\" is the location in the EDK project from which 

this file was drawn. Additional source code referenced in this header file, provided by 
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Xilinx, defines register access routines required to talk to these peripherals. As described 

in Section 4.3, DSP Connectivity Detail, these dependencies have already been placed in 

the Linux "xupv2p/mkrootfs/gnaf soap server compilation directory. The final 20 lines 

of the main() function in gnatserver.c start the SOAP web service, listening on the port 

specified at the command-line (port 8080 is used in the GNAT Demo configuration). 

The SOAP service within gnatserver manages bidirectional data flow between the 

network and the Simulink® DSP. Such data transactions could take many forms; the 

SOAP architecture allows the developer to specify an arbitrarily complex (or simple) data 

structure for a given transaction, as well as an arbitrary number of transaction types. 

These transactions and data structures are defined as SOAP services in gnat.h, shown 

here in APPENDIX III: GNAT Node (Server) Demo Code. In this example, four inputs 

and one output are defined. 

The gnatserver.c main code orchestrates this transaction in the ns_gnatevent 

function on line 52. The two datapoints, a and bn are fed into the input registers of the 

DSP, and the result is read out immediately. The program then compares the result to 

one of the control values, c, which represents a threshold of relevance. If the result is 

determined to be relevant (greater than the threshold value), it is reported to another 

computer on the network, according to the Universal Reference Locator (URL) supplied 

in the fourth parameter. The data is formatted in the same ns_gnatevent SOAP type so 

that it can be received by another node, which for the demonstration, was a PC that 

displayed incoming events to the crowd. 

The gnatclient program allows a user or another program to interact with any gnat 

node over a network from a PC command line. This short program may be found in 
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APPENDIX IV: GNAT Client Source Code. It takes 5 parameters: Node URL, operand 

A, operand B, threshold C, and forwarding URL. The reason the client and server 

programs are so short and simple is that all of the code dealing with network sockets, 

multithreaded servers, and SOAP protocol is automatically generated by the gSOAP 

precompiler. All of this is done based on the transaction structure described in gnat.h 

(one line of code), allowing the developer to focus on architecting his node's 

communication structure in the event function(s) of "gnatserver.c". 

The example gnatserver DSP core performs a simple multiplier function. While 

there are three DSP cores implemented in this sample, only the first is used, as this is not 

intended as a demonstration of distributed computing. While a node could be used as 

network-attached DSP Appliance such as a wire-speed MPEG CODEC or 

encryption/decryption engine, it is expected that the more common application will be for 

multiple sensors and/or signal outputs to be interconnected, with reporting to, or remote 

control and observation from the network. 

The gnatserver application is organized in the Node IP package such that it is 

recompiled and installed along with the BusyBox shell in to the Node's flash filesystem 

(a non-DOS partition) along with the non-kernel portion of the Linux OS by the 

"mkrootfs.sh " script. This script was originally provided by Jonathon Donaldson as part 

of the Linux Baseline Configuration toolset, but was expanded to compile and install the 

GNAT server. This script must run from "xwpv2p\" on the Linux Compile Server while 

the Node's CompactFlash card is connected. It is important to note that the gnatserver 

is run on the node at boot-time due to its configuration as a service as specified in 

"xupv2p\mkrootfs\etc\init.d\rcS'\ It is important to note that ALL FPGA, DSP, Software, 
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and Configuration components to the Node are stored on the CompactFlash card. 

Repurposing a Node is as easy as changing the flash card, either by physically swapping 

out the card, or by updating the files over the network. 

A demonstration of the GNAT Node was performed at UNH's December 2007 

ECE Final Design Review. In this demonstration, three Nodes were networked together 

- all three had identical Hardware and Software loads, but unique network addresses. A 

Linux GNAT client program called by a script streamed control and simulated sensor data 

to all three nodes for processing. The data structure for this demonstration is as described 

above: 

1. Operand A - a 32-bit integer 

2. Operand B - a 32-bit integer 

3. Threshold C - a 32-bit integer 

4. Report target Universal Reference Locator (URL) - a string indicating the internet 

address to which relevant results should be delivered by the processing Node. 

Each node multiplied operands A and B, then compared the product to C. Any time the 

product of A and B was greater than C, it was deemed "important" and forwarded to the 

URL in the first parameter. For the demonstration, a Monitoring Console consisting of a 

GNATServer running on a Windows PC was used to receive and view this data. 

Expansion of the node to this level from a simpler operand-operand-result data structure 

and construction of this multi-node demo was completed with only one man-day of work! 
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CHAPTER 6 

DEVELOPMENT ROADMAP 

Given a working collection of nodes, there are two axes along which the nodes 

may be combined. The first axis is networking, and the networking standard chosen for 

the GNAT Node is part of a higher level framework invented for organizing such devices. 

The significance of this framework will be described below. Completely orthogonal to 

the networking axis is the adaptability axis. Field-reconfigurable nodes come with great 

potential, but the means to fully exploit this potential lie in automated test methods. An 

overview of the automated test methods for expansion along this axis is also described 

below. 

6.1 Self-Organization of Node-Based Systems 

In order for a collection of nodes to form a useful system, there must be a purpose. 

Purposes are best distributed by hierarchical systems, so the problem of organization falls 

to how a hierarchy can be built autonomously from an ad-hoc collection of nodes. It 

would be desirable to have the node at the top of the hierarchy be one that is particularly 

well suited to management functions. Desirable features might be a large network 

bandwidth, a central point of communications, proximity to an operator who defines and 

changes purpose, or even a weighted combination of factors. None of these factors can 

be determined, however, until order is established. 
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The first order of business for a node is to establish communications with its 

neighbors. Whether this is a mesh network, LAN, etc. there are standard protocols such 

as Dynamic Host Configuration Protocol (DHCP) for requesting a position on the 

network. What if a given node is the first on the network? Nodes with the capacity to do 

so can be given a default behavior to set themselves up as DHCP servers on a default 

network. As communications are established, nodes register their addresses on the 

network as they are assigned. Following that step, the next order of business is for each 

node to forward a description of its capabilities and services via Web Service Description 

Language (WSDL) to a central point. So far, the only central point is the DHCP server, 

so it must have a Universal Description, Discovery and Integration (UDDI) service as 

well, to catalog each entry. All nodes advertising leadership capacity will be eligible for 

an election (randomized) to process the WSDL data collected by the UDDI in search of a 

purpose. Until a purpose is discovered, each node will assume its default behavior (if 

defined). 

Once a purpose has been determined, the management node can remain manager 

or elect another node better suited to managing the task at hand. Once proper 

management has been established, the management node can begin assigning tasks and 

configurations to each node on the network, instructing nodes as to their 

interrelationships to form an organized system. For example, if one of the purposes of 

the system is to detect the epicenter of an earthquake, all nodes with vibration sensors can 

be synchronized, and given appropriate frequency filters. Central nodes on the network 

with the proper processing or DSP capacity are then instructed to subscribe to earthquake 

notification services on the detection nodes using SOAP messages. Said central points 
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can change out a load of DSP firmware if necessary, or simply run a trig program on the 

CPU to perform echolocation on the data will be forwarded immediately to them on 

detection of earthquake events. These central points must, of course, also be instructed 

on what to do with their findings. 

This structure is by its self-forming nature, a self-healing (fault-tolerant) structure. 

If the management node fails, no one will notice (not even a human operator) until a new 

purpose is raised. Any time a purpose exists without a management node, it causes an 

election. The system reforms as necessary. If any peripheral nodes are taken out of 

service cleanly, they will communicate this up the chain to the management node, who 

will compensate. If any node should fail unexpectedly, it will be noticed next time 

another node tries to interact with it, and this will be communicated up the chain. The 

management node will again compensate as needed. In the case that a new node with 

superior management capabilities is introduced to the system, that too will trigger an 

election. 

In order to prevent all nodes from conglomerating into a single monster system, 

the notion of ownership must be instantiated. This can be done politely (naively) by 

assigning a system name to each node before it is deployed. Of course, a diabolical 

management program could easily spoof the advertised name to repurpose the node. For 

most applications, strong authentication will be required - likely in combination with 

data encryption over any channels not established as "trusted networks". A variety of 

software IP Blocks are freely available for the Linux OS to tackle these issues. How will 

the management node determine how to best carry out the assigned purpose using the 

available system of nodes? This matter is up to the designer who defines the purpose. 
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Using the design methodology contained demonstrated here, the designer gets to solve 

the same problems as before. The difference is that his toolbox now contains an army of 

nodes rather than an array of gates. 

6.2 Autonomous System Test Specification for Node-Based Design 

This is a test specification for AIN systems such as the GNAT node. Such a 

system is comprised of standardized nodes, each of which includes processing and 

communication. In addition, each node has attached zero or more other elements, such as 

sensors or storage. Nodes are expected to be interconnected directly with hardwired 

connections and/or indirectly via wireless networks. Wireless protocols such as the 

ZigBee Mesh network standard (extensions of IEEE 802.15.4) already handle seamless 

adding and removing of nodes. With the wireless aspect of the system continuity handled 

by software, that leaves quite a bit of hardware that must still be tested. 

One motto of the PCB test camp has long been, "If the components and all of the 

interconnects among them are good, then the board is good." This board-test principle of 

compositionality is applicable at the system-level as well, even when the system spans a 

continent. This means that in order to have confidence in a distributed system, one must 

be able to test all nodes and physical interconnects - including IP Blocks, node-to-node 

interconnects, and node-to-element interconnects. Such tests permit us to avoid reliance 

on malfunctioning circuits, as well as opportunities to redefine non-functioning parts of 

the system. It is important to bear in mind that it is not acceptable to simple deploy 

known-good (factory tested) components. Permanently deployed nodes must be able to 

periodically test their subsystems to determine when, not if, degradation has occurred. 
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6.2.1 Element Test: 

Let us first examine the area of element test. Elements are attached to nodes, 

which contain, among other functions, computing power. In order to operate the 

elements in a useful manner, the nodes must already have some knowledge of how to use 

them. For a hardware element example, a thermistor is connected to an A/D port on a 

node. Each hardware element must contain a software interface, such as a definition of 

valid sampling rates, and a method to convert the sampled signal into a temperature value 

for use elsewhere in the system. If still more knowledge is added about the thermistor to 

its IP core, it can run a Design Verification Test (DVT). This kind of test can be ran 

against any given element to produce a result that, when compared against a signature, 

provides a high probability that the element is working as intended in the system. The 

A/D block can be exercised using BOLBO to produce a signature used to verify that the 

required timing was instantiated correctly on the FPGA. Once confidence is established 

in the A/D, a simple thermistor read will yield a value, which should fall within a range 

known to be valid for said sensor. Calibration is the next step, and may be performed by 

applying a standard current to the thermistor and looking for an expected temperature 

increase. A variation from this test response in a new device may indicate that a 

correction factor must be applied to account for component or environmental variation. 

The specifications of the sensor can be coded into a test rule and response table that can 

be applied to the Node to maintain a known operating characteristic and a definitive end 

of the element's operating life. Ideally, each element should contain the circuits 

necessary to run such self-tests so as to present a standard interface to the node. This way, 
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the element is operated only during its useful life, and is discarded or flagged for repair 

when its lifetime is over. 

How can the node know so much about each element in a dynamically 

configurable environment? Any IP instantiated separately from its test patterns must 

carry a sufficient identifier so that the proper steps to establish trust can be pulled from a 

database. Make, model, and revision numbers are sufficient to match hardware IP with 

its software counterpart, but a unique Serial number is required to allow an element's 

calibration record follow it when it moves in a system. For elements with static 

connections to nodes, any required history can be stored on or related to the attached 

node. However, any elements that move among nodes must present identifiers in a 

standard fashion on whatever interface the element uses to connect to the node (SPI, USB, 

parallel). This is generally done by commercial PC components, in compliance to several 

Plug-and-Play (PnP) standards, and is already being standardized in the sensor industry 

under IEEE 1451. The required codes are presented to the interface as part of the 

element's power-up initialization sequence, causing the attached node to load the correct 

software IP (hardware drivers and applications). It is already common practice for nodes 

to forward any un-recognized codes to a storage or command node to retrieve the 

necessary IP to utilize each attached element, with the most prominent example of this 

being Microsoft Windows Update. At any level of the system that uses TCP/IP, the best 

practice is that such transactions take place in the XML self-documenting file format. 
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6.2.2 Node Test: 

The next area of focus is the node test. Because nodes can operate independently 

(without physical connection to anything else in the system), they should implement 

BIST (Built-in Self-Test). JTAG-based BIST techniques assume a test-master, which 

can drive vectors through a system (one or more chips) in test mode. Test masters, such 

as IEEE 1149.6 MTM controllers, can often run vectors and responses against a store in 

flash memory, or across a system-wide test bus. Since our nodes are pressing towards 

single-chip solutions, it may be necessary to invert this methodology in order to 

accomplish our task. Rather than running functional test vectors which must be manually 

created for each IP core, the FPGA can reboot into a second, test-only, IP core to run 

structural test vectors. This core would instantiate the IEEE 1149.1 TAP controller 

(generally available from the device's standard library) and an internal test master, with 

vectors loaded as data into FPGA memory areas. During SoC design, board netlist and 

BSDL(s) for the node PCB are compiled into a test vector file using standard JTAG test 

tools, with element ports masked off. This file is incorporated as data into the IP 

compilation using standard FPGA tools. The test master has a "hardware" component 

allowing the onboard processor (or processor soft-core) to take over the TAP controller 

(minor modifications to the off-the-shelf TAP controller IP may be required to allow 

these connections). The test master also includes a software component that runs on the 

embedded core, processing the test vectors and translating any errors into flags stored for 

later use by the FPGA's functional IP core. The software portion of the Test Master 

consists primarily of IP commercially available on the market today. 
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When the Node comes up in BIST mode, it may read flags from a non-volatile 

register to determine what level (or flavor) of tests to run. However, it is expected that it 

will run primarily JTAG vectors. What does this accomplish? In infrastructure test 

verifies correct operation of board's test bus, ensuring valid results from any tests 

performed using this bus. An interconnect test then verifies the connections on the board 

are present (and that no unwanted connections are present). Paths between physically 

interconnected nodes can be tested using the board-to-board interconnect standard. 

Failing vectors can be run against diagnostics software, commercially available from the 

same companies that make the embedded vector generators. These diagnostics may 

optionally be categorized as recoverable faults if there are alternative IP configurations 

that do not use the damaged portion of the Node. Non-recoverable failures indicate an 

end-of-life for the node. 

The easiest method for implementing a clean EOL process in a dispersed system 

is to provide a known timeout duration for the BIST for each variety of node. When a 

node indicates (or is told to) that it will go out of service for a BIST, its failure to recover 

from that BIST can be the indicator that it encountered a non-recoverable error. With this 

in mind, the BIST can be designed to simply store any failure data for use by a technician 

and power down. Recoverable errors can be assigned by the designer along with 

accompanying automated repair algorithms, described in another document. Any status 

flags generated during JTAG BIST should be stored in an area of the node that will not 

be erased during loading of the functional IP. This could be a write-protected sector of 

the FPGA or an off-chip memory. 
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The bootstrap code on the functional IP should read the test-flag memory on each 

boot up in order to determine appropriate action. In positive cases, a successful 

interconnect test may be followed by a memory test that is best executed from software 

on the functional IP core, for example. Alternatively, a failure in a node-to-node parallel 

cable connection may result in a flag indicating that a serial interface IP Block must be 

loaded instead of the preferred parallel-interface IP Block. For FPGAs that do not 

support partial reloads, this may result in a request for retrieval of alternate IP images 

from a storage node. Furthermore, certain error flags must be communicated upstream to 

the remainder of the system. The serial-fail-back from a parallel interface, for example, 

must be communicated to the neighboring node in order to restore connectivity - whether 

through a timeout or through an alternate interface. Also, any reduced functionality shall 

be communicated upstream (if any interfaces are available) so that the system can 

account for available resources and contact repair personnel as necessary. 

Once trust is established in the node hardware, the next step is to validate any new 

combinations of instantiated IP on said node. If the particular IP combination of 

hardware, software, and firmware have been previously verified, DVT is not required. 

When deploying a known good design on a known bad board, however, a bit of 

functional test remains prudent. In order for either DFT or Functional test to be possible, 

each IP Block must include self-test capabilities, such as a BOLBO signature and/or a 

smattering of sample inputs & outputs. On success, the Node can report its new 

functionality back to the system and receive a suitable assignment. At the discretion of 

the Management Node, the system may email a technician with a request for replacement 

parts, or a mobile component may even drive itself to the closest repair depot. 
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CHAPTER 7 

GNAT System Evaluation 

7.1 Results 

The achievement in the GNAT Node - an internet-enabled hardware multiplier -

took over a year to develop. In the commercial market, this would have been an utter 

failure. The goal of this design, however, was not to bring a product to market and yield 

a commercial success. The final product yielded by this academic research is not the 

GNAT Node, but the design methodology and development environment built along the 

way. The GNAT Node itself is simply a proof of concept. A hardware design 

(Simulink DSP) was integrated onto an existing hardware platform with accompanying 

interface software using a Model Driven Architecture. The IP Blocks used in this design 

were selected according to the design methodology and integrated into a product 

effectively with minimal design effort. 

This design methodology provides a simple software-based interconnect 

framework for IP Blocks. Not only may IP Blocks on the same Node intercommunicate, 

but IP Blocks on disparate nodes may also communicate with each other or end-user 

applications across the internet. The tools environment assembled allows arbitrary DSP 

functions to be implemented and interconnected with controlling logic and network 

connectivity with ease. This tools-set allows for the efficient use of design time 
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necessary to develop high-level AIN systems, and should be considered the absolute 

minimum design environment capable of producing AIN Node products. 

The following tools required to complete the set did not exist in the commercial 

marketplace, and were created for this effort: 

• Coherent FPGA and Software Development Environment for Linux on 

Virtex 

• GNAT Client/Server SOAP-Standard Web-to-DSP interface and 

management application 

This research effort was a tremendous success, yielding a commercially viable design 

environment and methodology that can be used to churn out new products at an 

astounding rate. 

7.2 Identified Gaps 

The GNAT Node demonstrated in this project lacked any physical-world interface. 

Most commercial applications for Ambient Node designs will require sensors such as 

thermistors and cameras or outputs such as motor controllers and displays. IP Cores for 

these interfaces are being developed in follow-on work by students enrolled in UNH's 

ECE993 course in Embedded Systems Engineering9, detailed in APPENDIX VIII: 

Ongoing Research. The 100MHz OPB bus can quite easily handle bidirectional streams 

of 44kHz stereo audio (0.09% bus utilization) and even VGA video 640x480 x8bpp 

x30fps (5% bus utilization). High-efficiency kernel drivers are even available for many 

such devices under the Linux OS. The operating system naturally buffers input coming 

from such streams, and the input status of these buffers can be used by the GNATServer 
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software to drive data through the DSP without data-loss. For longer-running or 

continuous I/O without kernel drivers, it will be necessary to implement timing controls 

in the DSP Peripheral, such as Pipelining with two-way depth pointer registers. In either 

case, the system will perform more efficiently at low power or high stress with the ability 

to suspend DSP operation on buffer over/underflow. 

The major downside of the userland app structure of the GNATServer software is 

a double-burden incurred on the system bus. The software reads data from one peripheral, 

then writes it to another. A bidirectional video stream consuming 7% of the bus only gets 

the video out of the camera and into the DSP. If processed video then needs to come out 

of the DSP and stream onto the network, another 7% bus bandwidth is consumed. In 

order to alleviate this doubling of the bus-burden using this same approach, it would be 

necessary to implement a bus-mastering version of the Simulink® DSP Peripheral and 

accompanying Linux kernel driver. An even more elegant approach would be to 

integrate I/O peripherals directly into associated Simulink® DSP Peripherals. This would 

allow pre- and post- processing to be done in the DSP core without any CPU penalties. 

7.3 Deficiencies 

The Node design methodology presented here should be used in conjunction with 

an IP Core library. A large number of IP cores were evaluated in the selection of the 

cores used in the GNAT Node. Most options were eliminated due compatibility 

limitations. In order to take full advantage of this methodology, each compatible IP 

block considered should be tracked in a repository. The GNAT Node is the first set of IP 
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blocks submitted to such a repository under development at UNH. Any library, of course, 

must be managed and maintained. Overhead is incurred validating IP blocks in the 

library for interoperability. 

The toolsets used in the development environment also present a tremendous IT 

challenge. Linux kernels and cross-compilers change regularly, requiring a modest effort 

to be undertaken whenever a new version of compiler or new kernel code base is to be 

used. The open-source nature of these tools and cores makes these problems relatively 

tractable and quick to solve. Xilinx and The MathWorks, on the other hand, are closed-

source commercial entities without a close-knit relationship. These companies have 

jointly ventured to make their products interoperably, and at the time of this writing, there 

are exactly two pair of Simulink® and EDK platforms that will intemperate. These 

versions cannot be mixed, nor are they forgiving. The departments responsible for the 

interoperation of these products are small and relatively un-influential parts of their 

respective companies. This makes version continuity across the entire tools-set as costly 

as it is imperative. Further cooperation among vendors would greatly improve 

accessibility to this design practice. 

This tools-flow works only on Xilinx FPGAs. While Simulink® software can 

produce generic VHDL code that can be used by any FPGA synthesis tool for any silicon, 

the integration hooks such as hardware-in-the-loop are only compatible with the Xilinx 

synthesis tools at this time. Furthermore, the highly optimized, bit-accurate, cycle-true 

Simulink® blocks provided by Xilinx produce Xilinx-Only obfuscated VHDL code. Use 

of this process on another brand of silicon would require use of generic Simulink blocks, 

which will produce less optimal hardware implementations. If use of this Node Design 
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Methodology becomes widespread, of course, all the major silicon vendors will be 

forthcoming with similar Simulink® compatibility. 
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APPENDIX I: Installation Procedure for Commercial 

MathWorks-Simulink 7Xilinx-EDK environment 

Total time ~ 3hrs 

1. The MathWorks Simulink® 
a. Insert MATLAB® 2006a Disk 1 
b. Select Custom Install 
c. Change installation directory to "C:\MATLAB" - nothing else will work with 

Xilinx! 
d. Insert MATLAB® 2006a Disk 3 
e. At conclusion of installation, MATLAB® software will recommend that you 

download several updates. DO NOT! These will break Xilinx compatability! 
f. Replace C:\MATLAB\bin\win32\comcli.dll with the comcli.dll from the Xilinx 

System Generator CD. 
2. Xilinx ISE 8.2i - if this was already installed on your system before you installed Matlab, 

too bad! Take it off, reboot, and reinstall it. ISE installs additional hooks if it sees 
Matlab in place during installation. 

a. Insert Xilinx ISE 8.2i Disk a 
b. Accept defaults. 
c. At conclusion of installation, reboot as instructed. 
d. Insert Xilinx ISE 8.2i Disk b - Yes, it appears to be identical. 
e. Accept defaults. 
f. At conclusion of installation, reboot as instructed. 
g. Insert Xilinx ISE 8.2i Update Disk. 
h. Run 8_2_02i_win.exe; accept defaults. 
i. Ignore the RocketIO wizard on that disk. 
j . Insert Xilinx Core Generator disk 
k. Run the "setup.exe" within ise_82i_ip_update.zip. 
1. Insert Xilinx System Generator disk 
m. Accept defaults. 
n. Insert Xilinx EDK disk. 
o. Accept defaults. 
a. Reboot. 
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APPENDIX II: gnat.h SOAP Service Definition 

gnat.h 

//gsoap ns service name; gnat 
//gsoap ns service style: rpc 
//gsoap ns service encoding; encoded 
//gsoap ns service name space; lit t p ; / / gnat 01 / gnat. ws d 1 
//gsoap ns service location: littp: //gnatOl/gnat server. cgi 

(//gsoap ns s c hernia names p ac e: urn:gnat 
lint ns gnatevent(int a, int Jo, int c, char *reportTo5erver, int ^result) 



APPENDIX III: GNAT Node (Server) Demo Code 

gnatserver.c 

#include <sys/mman.h> 
§ include "soapH.h" 
#include "gnat.nsrnap" 
^include "xparameters.h" 
#include "matlab_opb.h" 

void *pMatlabOpbOBaseADDR; 

111 

int main(int arg£, char **argy) 
{ int m, s; /'* master and slave sockets */ 

struct soap soap; 
soap_init(ssoap); 

int fd; 
int regSize; 

regSize = XPAR_HATLAB_OPB_OPBW_0_HIGHADDR - XPAR_HATLAB_OPB_OPBW_0_BASEADDR; 
fprintf(stderr, "regSize = %d\r\n", regSize); 
fd = open ("/dev/mem", 0_RDUR) ; 
fprintf[stderr, "Opened main memory device: %d \r\n", fd); 
pHatlabOpbOBaseADDR = mmap((void *)0X0, 

regSize, PROT_READ+PROT_WRITE, 
HAP_SHARED, fd, XPAR_MATLAB_OPB_0PBW_0_BASEADDR); 

fprintf(stderr, "Opened memory map: %d\r\n", pHatlabOpbOBaseADDR); 
close(f d); 
fprintf(stderr, "Closed main memory device: %d \r\n", fd); 

if (argc < 2) 
soap_serve(fisoap); /* serve as CGI application */ 

else 
{ in = soap_bind(isoap, NULL, atoi (argv[l] ) , 100); 
if (m < 0) 
{ soap_print_fault(fisoap, stderr); 

exit(-1); 
} 
fprintf(stderr, "GNAT Event Server Socket connection successful: master socket = %d\r\n", m) 
for ( ; ; ) 
{ s = soap_accept(ssoap) ; 
fprintf(stderr, "GNAT Event Server Socket connection successful: slave socket = %d\r\n", s 
if (s < 0) 
{ soap_print_fault(fisoap, stderr); 
exit (-1); 

} 
soap_serve(ssoap) ; 
soap_end(ssoap) ; 

> 
} 
munmap(pHatlabOpbOBaseADDR, regSize); 
return 0; 



int ns gnatevent(struct soap *soap, int a, int to, int. c, char *reportToServer, int *result) 
{ 

struct soap soapReporting; 
int confirmation; 

if [c == INT_MAX) { 
fprintf(stderr, "Event received: %d\r\n", a); 
*result=0; 
return SOAP_OK; 

} 

fprintf(stderr, "Event received; %d, %d, %d, %s\r\n", a, to, c, reportToServer); 
//Write Reg Hacro 

matlab_opb_WriteReg_inA(pHatlabOptoOBaseADDR, a) ; 
matlab_opb_WriteReg_inB(pMatlatoOptoOBaseADDR, to); 
*result = matlato_opto_ReadReg_outProduct(pMatlatoOptoOBaseADDR); 

fprintf(stderr, "Event solution: %d\r\n", *result); 
if (*result > c) { 

fprintf(stderr, "Forwarding event solution: %d\r\n", ^result); 
soap_init(fisoapReporting); 
•soap call ns gnatevent(ssoapReporting, reportToServer, "", *result, 1, INTJIAX, 

reportToServer, ficonfirmation); 
fprintf(stderr, "Forwarding confirmation: %d\r\n", confirmation); 

if (soap_errno == EDOH) /* soap_errno is like errno, tout compatible with Uin32 */ 
{ char *s = (char*)soap_malloc(soap, 1024); 
sprintf(s, "Can't understand event of %d %d", a, to); 
sprintf(s, "<error xmlns=\"http://tempuri.QrgA">Can't understand %d, %d</error>", a, to); 
return soap_sender_fault (soap, "Event, rejected", s) ; 

} 

return SOAP OK; 

http://tempuri.QrgA


APPENDIX IV: GNAT Client Source Code 

•:£ gnatclient.c 

t'Xz'i # i n c l u d e "3oapH. h" 
t••iE••• •'• # i - n c l u d e " g n a t . nsmap " 
; : % > • ' 

' & £ ' . - / / c o n s t c h a r s e r v e r [] = " h t t p : / / g n a t 0 1 : 8 Q 8 0 / g n a t s e r v e r . c g i " ; 
•W-K / / c o n s t c h a r s e r v e r [] = " h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 0 : 8 0 8 0 / c m a t s e r v e r . ccf i" ; 
•ss'ss." / / c o n s t c h a r s e r v e r [] = " h t t p : / / 65 .9 6.2 00 .203 :3 6 4 4 / c r n a t s e r v e r . ccri " ; 
S ^ f e ; / / c o n s t c h a r s e r v e r [ ] = " h t t p : / / g n a t 0 1 ; 8 0 8 0 / g n a t s e r v e r . c g i " ; 

.-.¥.,i 
••'i;-lw: ±nt, H i a in ( in t a r g c , c h a r **argv) 
$:-,;: { struct soap soap; 
•^•JJ1 i n t a , to, c , r e s u l t ; 
% > if (argc < S) 

*/••-•, { fprintf(stderr, "Usage: [serverURL] operand operand threshold\n") ; 
3'- exit(0); 
IS:-' > 
.>i..'r-

••.-•£?* s o a p _ i n i t (fisoapj ; 
i':?:^,; a = s t r t o d ( a r g v [ 2 ] , NULL J ; 
tff£' b = s t r t o d ( a r g v [ 3 ] , NULL); 
"£.''-'•: c = s t r t o d ( a r g v [ 4 ] , NULL); 

r •:*;• 

.•'«..:'. fprintf (stderr, "params: serverURL; %s, a: %d, b: %d, c: %d, reportToServer: %s\n", 
•••,.:•/,.* argv[l], a, b, c, argv[5] ) ; 

•:ivj~; soap_call_ns gnatevent(Ssoap, argv[l], "", a, to, c, argv[5] , Sresult) ; 

-..̂  if (soap, error) 
'/*"'•- { soap_print_fault (ssoap, stderr); 
3-;^ exlt(l); 
; ; * ; • " } 

'•;S^ else 
'"'V'- printf ("result = %d\n", result); 
i".;•;•. soap_destroy ( ssoap) ; 
.."...'' soap_end(ssoap) ; 
:;:.,;" soap_done ( Ssoap) ; 
'.,_:.." return 0; 
" " = } 

; ̂  * 

http://gnat01:8Q80/gnatserver
http://gnat01;8080/gnatserver.cgi


APPENDIX V: GNATDVD File Index 

Doc - documentation library 
A. Application Development Process for GNAT, A SOC Networked System (PDF of 

this thesis) 
B. Architecture GNAT, A SOC Networked System (PDF of accompanying thesis by 

Tomasz Jankowski) 
C. Porting MontaVista Linux to the XUP Virtex-II Pro Development Board (PDF of 

foundational OS work by Jonathan Donaldson) 
D. Porting RTOS Device Drivers to Embedded Linux (PDF of Article used in SW 

Development) 
E. WARP_WorkshopExercise_2_sysgen2opbIntro (PDF of a walk-through of the OPB 

Peripheral Wrapper for Matlab used) 
Linux - software for use on the Linux Compile Server 
A. Distribution - Finished Works for the Linux Compile Server 

1. optcrosstoolDistribution.tar.gz — powerpc405 library source code used 
by cross-compiler. 

2. xupv2pDistribution.tar.gz ~ This contains the whole xupv2p project 
directory. 

3. gnatDistributionl.l.tar.gz ~ enhanced gnatServer, capable of accpeting a 
"threshold" parameter and a URL of a gnatServer to which products exceeding 
said thresholds shall be reported. 

4. gnatLinuxPCl. 1 .tar.gz — the gnat client and server ported to PC running 
Linux, for demos. 

5. UpdatedScripts: ~ directory of revised versions of scripts found in the 
xupScriptsAndLinks.tar.gz archive 

6. readme.txt - a text file with detailed information about the files in this 
directory, including installation instructions. 

B. Source - this is a collection of files referenced by Jonathan Donaldson's work on 
Porting Monta Vista Linux to the XUP Virtex-II Pro Development Board 

Windows - Software for use on the Windows PC 
A. Distribution - Finished works for the Windows PC. 

1. gnatClientVCl .O.zip ~ MS Visual Studio 2005 project compiling gnat 
command-line client. 

2. gnatClient_VC_l .1 .zip — MS Visual Studio 2005 project compiling gnat 
command-line client. 

3. XUPV2P_without_MatlabMultipliers_EDK9.1 .zip - XUPV2P project 
built according to Jonathan Donaldson thesis under EDK 9.1. 

4. XUPV2P_without_MatlabMultipliers_EDK8.2.zip - XUPV2P project 
built without Matlab peripherals 

5. XUPV2P_with_MatlabMultipliers_EDK8.2.zip - XUPV2P project built 
with Matlab peripherals 



6. matlab_opb.zip — Matlab model of a multipler (included in above) 
7. readme.txt - a text file with detailed information about the files in this 

directory, including installation instructions. 
B. Source - Design Environment tools and IP Cores that had to be downloaded 

separately. 
1. Digilent_pack — This is the Board Support Package (BSP) for the 

XUPV2P board. 
2. xupGenACE scripts ~ the xupGenACE.tcl script that came with EDK9.1 

was broken, so included is the working one from EDK8.2. 
3. Matlab Add-Ons ~ these packages must be installed into Matlab in order 

to produce Xilinx OPB peripherals. Each zipfile contains its own installation 
instructions within. 

4. readme.txt - a text file with detailed information about the files in this 
directory, including installation instructions. 

C. Tools - Windows Shareware used in this project. 
1. Crimson Editor — an handy universal file editor 
2. TclTK Interpreter — tcl is installed with EDK, but this intperpreter will be 

necessary if using tcl scripts (such as the gnatClient wrapper) on a Windows PC 
without EDK. 

3. TeraTerm Terminal Emulator — a handy serial/telnet terminal emulator 
4. readme.txt - a text file with detailed information about the files in this 

directory, including installation instructions. 
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APPENDIX VI: Ambient Intelligence Node Development Tools 

Set Quick Start Guide 

The GNAT Ambient Intelligence Node Development Tools Set includes two design 

environments spread across two separate computers. One of these computers must be running 

Windows XP or higher, with at least 1GB of RAM and 3 GHz Pentium 4 CPU. The Simulink® 

and EDK tools must be installed precisely according to the procedure in APPENDIX I: 

Installation Procedure for Commercial. After the main commercial tools are installed, it is time 

to refer to the windows directory of the GNATDVD; further utilities required for this process are 

listed in APPENDIX VII: Notable Files and Scripts. 

The second computer should be a Pentium III or higher with at least 256MB of RAM 

running a recent distribution of Linux; Fedora 6 was used in development of the original GNAT 

demo. The Linux tools environment has been archived in a pre-installed form, and should re-

hydrate from the tarballs fully functional if done properly. The instructions and files for this 

process are in the Linux/Distribution directory of the GNATDVD. 

Various Project files will need to be looped through both the Windows and Linux 

development systems, so file sharing between the two is advised. The original GNATServers 

were set up to share (with read/write access) the ece992 user's account directory under which the 

XUPV2P project is found (/home/ece992/xupv2p). This structure is recommended. Intelligent 

use of soft links may optimize this structure for Linux servers shared by multiple users. 
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The Windows\Distribution\XUPV2P_x_Matlab_Multipliers_EDKx.zip archives are EDK 

sample projects, descriptively named. Designers should choose from these EDK projects for a 

starting point for any Node designs using the XUPV2P board. While GNATDVD includes all of 

the components used in creation of the GNAT Node EDK project, it takes several hours to build 

the GNAT EDK project from scratch. These project were generated using the process laid out in 

Doc\Porting MontaVista Linux.pdf, but archived for use as starting points because this 

procedure is very difficult. 

With all systems and projects set up, the Node development process is as follows: 

1. Create, download, or purchase Linux or OPB-compatible IP cores for Node or 
Node-attached Hardware. 

2. Create /update desired DSP block(s) in Simulink 
3. Export OPB peripherals as specified in 

WARP_WorkshopExercise_2_sysgen2opbIntro.pdf. 
4. Connect OPB peripherals in EDK, recompile bitstream. 
5. Copy xparameters.h, bsp directory, and any special C files to Linux server. 
6. Configure kernel-level support of Linux compatible peripherals (as necessary). 
7. Assign MAC address with setMAC.tcl 
8. Compile kernel with updateKernel. sh 
9. Copy kernel (zlmage.elf) from Linux to PC 
10. Generate system.ACE file (Xilinx genACE.sh script) 
11. Copy system. ACE file to CompactFlash DOS partition (directly from Windows or 

from Linux via usb mount point) 
12. Update SOAP data structure in gnat.h 
13. Update gnatserver.c to reflect desired Node behavior 
14. Compile and load GNATServer to CompactFlash Linux Partition (usb3) using 

mkrootfs script. 
15. Insert flash drive into XUPV2P board and turn on new Node. 
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APPENDIX VII: Notable Files and Scripts 

Linux Side Notable Files: 
mkrootfs - directory containing files to be copied into the root filesystem of the Node 
mkrootfs/gnat - directory containing GNATServer source and object code 
gnatserver.c - main GNATServer source code; this controls data flow in the Node 
gnat.h - SOAP service definition for GNATServer 
gnatclient.c - main source code for a command-line GNAT client program 
mkrootfs/etc/init.d/rcS - boot time services configuration. Calls GNATServer and specifies port 
usb - a mount point for the first (DOS) partition of the Node CompactFlash card 
usb3 - a mount point for the third (Linux) partition of the Node CompactFlash card 
montaVista_2_4_devel - root of embedded linux source code distribution 
zlmage.elf - kernel object code - this must be copied to Windows PC for inclusion into .ACE 

file through EDK. 

Linux Side Scripts: 
setMAC.tcl - hard-codes a specified MAC ADDRESS into kernel source 
updatekernel.sh - a script that recompiles the kernel, producing zlmage.elf 

Windows Side Notable Files: 
montaVista_ACE\system.ACE - this file, when copied to the DOS partition of the Node 

CompactFlash Drive, is used by the XUP board's ACE controller to load the FPGA and 
boot the CPU. 

ppc405_0\include\xparameters.h - C file enumerating hardware resources generated by EDK. 
This file is required in Linux mkrootfs/gnat to provide correct peripheral address 
mapping in the GNATServer application (dynamic on recompiled FPGA). 

drivers\matlab_opb_opbw\src\matlab_opb.h - C file describing Matlab OPB Peripheral interface, 
required in Linux mkrootfs/gnat to provide correct peripheral interface (static). 

ppc405\libsrc\cpu_ppc405_vl_00_a\src - contains xio.c and xio.h, C libraries required for 
connecting to Xilinx peripheral interfaces (static). 

ppc405\libsrc\common_vl_00_a\src - contains xstatus.h and xbasic_types.h, C libraries required 
for connecting to Xilinx peripheral interfaces (static). 
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Windows Side Scripts: 
genACE - a Xilinx-provided script that combines the ".bit" FPGA bitstream with the zlmage.elf 

kernel object code to produce an ".ace" Xilinx SystemACE FPGA boot file. This script 
expects the following file structure under the EDK project directory: 

montaVista_ELF\zImage.elf (input) 
montaVista_genACE\xupGenACE.tcl script location and xupGenACE.opt 

options file 
montaVista_ACE\system.ACE (output) 
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APPENDIX VIII: Ongoing Research 

GNAT: Global Network Academic Test Initiative 

Critical embedded system engineering computer architectures 

Highlights: GNAT is an (inter)-networked collection of 
next-generation cost-effective computer architectures for 
security systems. It is a prototype of an innovative 
computing environment that is compliant with Critical 
Embedded Systems engineering and Ambient Intelligence 
(Ami) principles. GNAT is also a low cost object in a 
class represented by: RAMP, BEE2, CRAY XDI, SRC-7, 
SGI Altix/RASC and enterprise / grid / cloud computing 
(see IEEE Computer Jan 2008). 

• The GNAT Initiative encompasses creating 
prototypes, tools and components to develop and 
implement: 

o a global-range, scalable, organic, 
multiprocessor, networked 
computational environment 

o that can be heterogeneous, and 
reconfigurable, at all scales from the 
node to the global 

o the physical scale can range from the nm 
of the chip to the Mm of the globe 

GNAT enables embedded computation that is 
optimized to applications in critical system security 
applications. GNAT's architecture supports 
Computation with reconfigurable and self-optimizing 
Morphing Hardware that encompasses: 

• Global Range 
• Scalability 
• Computing On Demand 

o Access to Embedded Distributed 
Processing and Storage 

• Ambient Intelligence — "self-awareness" 
o Anomaly Detection and "tracking" 

GNAT Technical Data 
• Sensor Layer 

o Cypress PSoC 
o Video Camera 

• Mobile Layer 
o iRobot Create (GNATbot) 

• Node Layer Hardware 
o Xilinx XUP Virtex-H Pro board with 

Power Supply, USB- JTAG 
programming cable (Digilent); XUP 
Board Support Package (Free download); 
512 MB PC2100 SDRAM (Commercial 
Product); 256MB Compact Flash 
(Commercial Product) 

o Xilinx Spartan3AN board with Power 
Supply, programming cable, (Nu 
Horizons) 
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o Xilinx Spartan3 Xtreme DSP board with 
Power Supply, programming cable, (Nu 
Horizons) 

Node Layer OS Software: 
o MontaVista Linux 2.4 (Free download); 
o PC (Windows XP) (Commercial 

Products); 
o PC (Linux, i386 RedHat 6.0 distribution 

recommended) (Commercial Hardware, 
Free download OS) 

Node layer Development Tools: 
o MATLAB®2006R14.1,R14.2,orR14.3 

with Signal Processing Blockset™ 
(Commercial Product); 

o Xilinx v8.1 EDK (Commercial Product); 
Xilinx v8.1 ISE Foundation with latest 
service pack (Free download); 

o Xilinx v8.1 System Generator for DSP 
o sysgen2opb.m wrapper script from 

WARP/Rice University (Free download); 
EDK OPB Export Tool (Free download); 
Busy Box (Free download); Crosstool 
(Free download); MkRootFS (Free 
download); Tera Term Pro (Free 
download); Tel interpreter (Free 
download) 

Server Layer: 
o Servers: Multi-Core Sun Blades Cluster 

in Rack 
o Hardware: IP 132.177.206.176, DELL 

laptop 
o Software: Linux, Windows 
o OS Development Tools 
o Operating Procedure - Quick Start Guide 

& User's Manual 
o Security 

Communication Layer: 
o Hardware: Wireless; Internet, e.g., 

protocols 
o Development tools: TechonLine 

Application Development Track 
Hardware Development Track using Model 
Based Design: VHDL, Simulink, Nu-Horizon, 
IPs for SoC 
Software Development Track. Windows, Linux, 
Xilinx® EDK VHDL, MathWorks Simulink® 
software 
Embedded Systems Development Track: Hybrid 
(mobile and stationary) GNAT nodes 
Networking/Wireless DelPsfor NoC; High 
speed; Wireless: ZigBee, MDVIO, Internet, e.g., 
TechonLine (IOL) 

On Going Research and Development 
Global Transportation System (commercial 
application) 
"Take me to the Ball Game" (educational 
application) 
Earth Magnetic Field Monitoring (scientific 
application) 
Experimental Mine Monitoring PLUTO (Ami 
application) 
"Plant a Flag" - auto-configurable wind-field and 
other environmental data-field measurement 
system (commercial application) 
CMP/IP Repository: ASIC; FPGA (research and 
educational application) 
Model Based Design (research application) 
DSP (research application) 

Contact: Dr. Andrzej Rucinski CIDLAB-US Director, 
University of New Hampshire, Kingsbury Hall, Durham, NH 03284 

Tel 603 862 1381 e-mail a.rucinski@unh.edu 
www.cidlab.unh.edu 

mailto:a.rucinski@unh.edu
http://www.cidlab.unh.edu
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