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Executable specifications and simulations are cornerstone to system design flows. Complex-mixed-signal embedded systems
can be specified with SystemC AMS which supports abstraction and extensible models of computation. The language contains
semantics for module connections and synchronization required in analog and digital interaction. Through the synchronization
layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving
low-level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to
the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS.
The methodology uses C-based interaction between simulators. An RTL model of data encryption standard is demonstrated as
an example. The methodology is flexible and can be applied in early design decision tradeoff, architecture experimentation, and
particularly for model refinement and critical behavior analysis.

1. Introduction

The exploration of design space with model refinement by
reusing legacy models requires developing an executable
specification before a frozen product shall specification.
Analyzing alternate system configuration and rearranging of
model blocks depend on putting together quick virtual pro-
totypes of the system. Immediate try out of various models in
the executable specification is possible with high simulation
speed and relative ease of model plug-in. Decomposing
models into detail implementation options exposes problem
areas, helps resolve conflicting requirements, and causes
greater visibility in design by weighing design feasibility
with goals such as critical analysis (corner case coverage,
worst case analysis, failure analysis, and fault tolerance),
optimization (physical area, power consumption, or speed)
and performance evaluation (speed, latency, throughput,
bandwidth, response time, link utilization, BER, and QoS).

Our work presents an approach to replace abstract model
blocks described in SystemC AMS with fine grain models
written in a hardware description languages. We cosimulate
the two domains of Models of Computation (MoC). The
methodology is pure simulation based and does not rely

on controlled stepwise refinement or formalism. The goal
is to directly and effortlessly insert specific models in the
system and quickly generate architectures that can be traded
off on merits of specification, correctness, performance, and
accuracy to yield an implementable platform. This type of
refinement needs a model rich library of possible implemen-
tation choices. SystemC AMS is an executable specification-
based analog mixed signal simulator that supports varying
abstraction levels. We present, using scalable cosimulation,
a test case of abstract SystemC AMS description, in which
a parity check block is refined as a synthesizable VHDL
model of Data Encryption Standard (DES). The description
is Amplitude Shift Keying (ASK) transceiver which originates
from the ANDRES project [1] whose goal is to reduce the
design time and cost of highly integrated embedded systems.

This work covers certain novel aspects. Until now
previous works have targeted refinement in pure digital
environment; however we do direct digital refinement
in heterogeneous/mixed signal systems. In the simulation
domain, the older works use VPI C interface [2, 3] but
to our knowledge we do not know of any published work
based on the VHPI interface. SystemC AMS does not
require commercial licensing of the costly system design
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tools (Section 3) to the technical community. SystemC AMS
is much faster than the conventional system design tools.
Further more the cosimulation interfaces in commercial
tools are proprietary and inadequate in most academic tools;
whereas SystemC AMS tackles these issues by being open
source, C/C++ based, and through its synchronization layer.

2. RelatedWork andMethodologies

Methodologies for refinement as it relates to design space
and architecture exploration use several methods which can
be categorized as formal and informal. For example for
more controlled and formalized refinement, graph-based
formalism (graphs of problem, specification, architecture,
and network) is at the corner stone of SysteMoC [4].
These graphs are used for binding and mapping in feasible
implementation, optimization, and resource allocation dur-
ing refinement. A similar symbolic representation is in [5]
which reduces the exploration issue to a linear program-
ming optimization problem using pseudoboolean solver.
Orthogonality [6] driven refinement (behavior, timing, and
interface) has also been proposed. In an earlier technique
[7] the refinement task is split into types: control, data, and
architecture. Dataflow graphs and trace transformation of
events were utilized in [8]. Among the less formal methods,
a holistic way of interconnecting modules [9] uses UML
SysML. Interface-based [10] partitioning of networked archi-
tecture is suited for NoC applications. Automatic IP selection
was proposed by [11]. A stepwise exploration flow (steps of
analysis, building, exploration, composition, estimation) is
discussed in [12]. A framework using hardware emulation
[13] has also been suggested. Simulation-based methods
are widely spread [6, 14, 15]. Many works take MPEG [4,
13, 16] and JPEG [8, 17, 18] as test cases. In compliance
to the SystemC AMS philosophy of abstraction our work
uses simple cosimulation-based refinement embedded in
Timed Data Flow (TDF) graph while not requiring complex
mechanics of interfacing and therefore the technique is
informal.

3. Related Tools

Architecture development, design space exploration, and
model refinement all are generally tool driven processes.
These concepts are closely related and thus there is significant
thrust from the technical community to research them.
The effort can be broadly categorized in industrial and
academic realms each pushing with their own tools and
neither providing a complete solution because of the shear
size of the problem.

In the industry architecture design, refinement and
partitioning is supported using automation by Electronic
System-level (ESL) tools which predominately target digital
domain of the heterogeneity because it makes the largest con-
tribution in design space. The ESL tools are: CoWare Plat-
form Architecture, ARM RealView, Bluespec Development
Workstation from Bluespec, Arteris NoCExplorer, Mirabilis
VisualSim, Tensilica XPRES Compiler, AutoESL AutoPilot,

Binachip-FPGA tool, Mitrion Platform, and Synfora PICO
Express FPGA among others. Most of these tools support
hardware software codesign using either virtual platforms
or FPGA prototypes. The problem of refinement is usually
labeled as high level synthesis which basically means to
generate a synthesizable circuit description from algorithmic
or behavioral description, that is, a translation process
for converting untimed SystemC-based description into
equivalent HDL description. The translation also converts
cycle accurate models of datapaths, control units, memory
banks, busses, and interfaces to bit accurate models. The
HDL description can then be input to other refinement
engines and applied with architectural design constraints
to produce even lower levels of abstraction for example
RTL, or gate level netlist mapped to a target technology.
High level synthesis is supported by Cadence C-to-Silicon
Compiler, Mentor Graphics CatapultC and Seamless, Syn-
opsys CoCentric, SystemCrafter SC from SystemCrafter, and
Cynthesizer from Forte Design System. These tools are a big
jump forward to bridge the gap between macroarchitecture
and underlying mapped microarchitecture since SystemC is
suited for design exploration. The only drawback is that the
HDL description is not generic or clean enough to readily
target any vendor’s FPGA fabric or ASIC standard cells. High
level synthesis tools and ESL tools are coupled by custom
signal processing tools, for example, MATLAB/Simulink,
Cadence Signal Processing Worksystem, or Virtuoso. The
motivation has been prevailing wireless-based products.
Instruction Set Simulators are used for running virtual
firmware on processor core. The industrial based designs
are centered around IP cores of Multiprocessor System on
Chip (MPSoC) and on-chip bus communication. The bus
connects processors, power management unit, timing units,
memory blocks, microcontrollers, DSPs, external busses,
for example, USB, Ethernet, and supporting peripherals.
The processors’ architectures are generally RISC based, for
example, ARM, PowerPC and bus architectures are AMBA
or NoC. SystemC interface classes and Transaction Level
Modeling (TLM) are a major modeling paradigm for bus
topologies.

The academic research also employs SystemC-based
tools. Academic circles use established tools such as
Metropolis, Ptolemy and its variants, for example, Kepler
for signal processing applications, mathematical intensive
models and MoC calculations. LESTER-UBS aims at recon-
figurable architectures while MILAN framework is integrated
with MATLAB, HiPerE and DESERT (formal methods).
SESAME simulator uses Kahn Process Networks (KPNs) for
concurrency and Y-Chart for abstraction level and domain
recognition. High level systems can be described by LISA
language which is an architectural description language.
SystemCoDesigner takes specification graphs as inputs and
generates platform-based virtual prototypes covering spec-
ification, automatic exploration; and implementation. The
academic groups try to advance research while commercial
tools manufacturers try to earn revenues on their R&D
work, however the marriage of academic and commercial
tools is a rarity and the gulf is large. Some exceptions are
that UC Berkeley Ptolemy dataflow modeling paradigm was
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incorporated in Agilent ADS simulator, Ptolemy from Agile
Design has found wide acceptance in many large companies,
Bluespec tools are written in Haskell, and SystemC was
influenced by SpecC.

A major drawback in the tools is the lack of analog
modeling support below system-level.

4. Modeling with SystemC AMS

4.1. The Right Level of Abstraction. The motivation behind
analog and mixed signal extension to SystemC has been the
modeling of applications that are dominated by signal pro-
cessing models [20], better understanding hw/sw interaction
and developing concepts of AMS systems at architectural
level [21]. With this in mind SystemC and SystemC AMS
opted for C/C++ based classes and methods for their kernels
only augmented with hardware data types and concurrency.
SystemC is now well settled in the EDA community because
of the immense advantage it brings over the conventional
HDL simulators inadequacy as hardware faithfully follows
Moore’s law and is more and more interlocked with software.

SystemC AMS-based modeling too has been on rise.
Design techniques with SystemC AMS have been presented
by [22]. Modeling of wired communication system [23] and
wireless nodes [24] have been reported. I2C bus communica-
tion [25], electromechanical [26], acceleration sensor [27],
inertial navigational [28], and nonlinear dynamic systems
[29] have been simulated with SystemC AMS.

The current SystemC AMS prototype offers three MoCs
as shown in Figure 1: Electrical linear networks and linear
signal flow (transfer function, pole-zero or state space
representation of input/output behavior). Both modeling
paradigms embed in SystemC sc method() class. The
third is synchronous Timed Data Flow (TDF) MoC with
indigenous processing() method which is a solver for
computing the continuous time behavior of the model as
defined by the user. Both linear MoCs solve linear implicit
differential equations at appropriate time. Simple nonlinear
static behavior can be approximated with TDF by selecting a
rational sampling rate. External solvers [30] can be interfaced
with SystemC AMS as well as user defined MoCs [31] can
be formally binded. Analog TDF models can interact with
TLM-based DE models [32]. These capabilities are due to the
open architecture of SystemC AMS. Figure 2 shows a typical
SystemC AMS cluster which is a set of binded modules/nodes
solved by same MoC such as TDF.

4.2. Timed Data Flow in SystemC AMS. SystemC AMS is a
class library and analog mixed-signal extension built as an
add-on to SystemC digital simulator. SystemC AMS supports
high level model abstraction with Time Data Flow (TDF)
MoC which perfectly suits for loose simulator coupling.
TDF is an analog solver that abstracts away cycle accurate
timing information from parent SystemC, a Discrete Event
(DE) simulator. TDF tokens are equally time spaced whose
sampling rates are determined by the system clock [33], that
is, constant analog stepping width (number of clock cycles)
is mapped to SystemC sc time() class. This solver does

not support adaptive or variable stepping yet in the current
prototype as in commercial analog simulators that trade
accuracy with speed. At system-level an analog simulator
is too slow because of the integration time problem. These
solvers would compute nonlinear system of equations for the
model or netlist at each integration point. The simulation
would be even slower for large circuits. Therefore for system-
level AMS designs it is best to use a DE driven simula-
tor (SystemC) with integration-based simulator (SystemC
AMS). This combination enables software codesign as well
which is not possible with SystemVerilog. The constant
size stepping gives further simulation efficiency because
the computational overhead of determining new step size
is absent. TDF scheduling is static (ABCCCCCCCCC in
Figure 2) for determining execution order of MoCs in the
data flow network. This order is set at cluster (connected
modules with common MoC) elaboration phase before
simulation beginning. A static schedule or firing vector is
calculated once and is applied repeatedly in every firing.

4.3. Synchronization Layer. The synchronization of analog
TDF models to DE models as well of any user written
special solvers or externally hooked foreign simulators is
AMS synchronization layer [34] duty which registers all
DE and TDF MoCs and their data (signals, variables).
The synchronization layer shown in Figure 1 determines
execution order of the solvers and simulators in fixed time
steps and synchronizes DE and TDF blocks in these steps.
The analog and digital models are individually solved and
synchronization of analog and digital domains is resolved by
relaxation method [35] with little overhead since interactions
are discrete events.

5. Refinement Using Cosimulation

5.1. ASK Transceiver—ACase Study. The ASK-based systems
use On Off Keying (OOK) modulation for conserving power
during off cycles. This scheme is simple and inexpensive.
These systems are implemented in remote keyless entry,
tire pressure monitor, and antilock brake systems of the
automobiles.

The ASK transceiver shown in Figure 3 is a nonconserva-
tive high-level analog mixed signal model. Its subsystems are
modeled in TDF and DE domains. The analog TDF blocks
are shown with the shadows. The waveform envelopes and
silences are detected as bits. The task is to replace abstract
cryptographic unit with a legitimate and realizable model.
The selected models are VHDL RTL descriptions of DES and
Triple DES (3DES) algorithm. The DES algorithm, released
by the National Institute of Standards and Technology
(NIST), encrypts message space M into the code space C
using a unique key K , where the message, code, and key
words are all 64 bits. Let e and d be the encoding and
decoding functions, then the permutation cipher is one of
the 264! permutations on M. The encoding and decoding
functions are

e ∈ K −→M −→ C,

d ∈ K −→ C −→M,
(1)
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where K = 264. K is selected as one out of 256 permutations
that are most random among 264 total available. The
remaining 8 bits may be used as parity bits for error
detection.

The key is changed frequently to reduce the risk [36].
In theory the key can be determined by 256 or more than
70 quadrillion (70 × 1015) operations. The process can be
made more robust with 3DES which requires 2112 operations
to crack the key although noncomputational schemes of
hacking, for example, power analysis [37] have been known.
Encryption and decryption processes use the same key and
algorithm; however the subkeys are generated differently.

Any legacy or refined model must be golden. The
DES/3DES RTL model is first verified stand-alone in loop-
back mode with several NIST test vectors. The model
is further verified with a logic equivalence checker that
compares RTL synthesis and physical synthesis netlists. The
mode of DES operation is Electronic Codebook (ECB).

5.2. Simulation Interfaces. In the crypto unit module, we
replace model description below ports and attribute defini-
tion with a cosimulation interface. The interface transforms
the tokens and attributes associated with the TDF input
ports into strings. The formatted data is then sent to an
open socket at a remote computer that houses VHDL tools.
The external simulator applies the received inputs to the
refined VHDL model (DES) of the crypto unit. When

VHDL simulation is finished the outputs are received in the
crypto unit block which drives it to its output ports. The
cosimulation interface is a blackbox in the module which
only provides an interface to the remote simulator, where the
refined model will be evaluated. SystemC AMS and VHDL
simulators are configured in client-server topology on two
computers. Distributed cosimulations are often a necessity
because tools consisting of dedicated solvers have best
performances on specific operating systems and different
machine architectures. Various layers of applications that
play role in cosimulation are depicted in Figure 4 which
shows interface boundaries in the distributed cosimulation
topology. SystemC AMS acts as a master simulator running at
the client computer which connects to the VHDL simulator
at the server computer. The executable specification, that
is, a SystemC AMS model, may contain analog, digital, and
software models. On the server side, a daemon runs which
makes use of UNIX processes (parent-child) and system
calls (fork-exec()) to invoke Cadence tools. Each child
process, after calling its particular Cadence tool, does a
control transfer to another process to call the next tool in
the suite. The last child process calls the simulator and after
completing the simulation returns the control to the parent
process. A shared C library accesses VHDL objects.

The distributed simulation runs in full automation
requiring no user intervention. Two binaries are obtained.
The main SystemC AMS description is compiled with the
client cosimulating wrapper discussed in subsection V.D.
Another wrapper runs at the server as a simple program.
Both wrappers communicate via TCP/IP sockets. To com-
pute the MoC, the client wrapper passes data tokens and
necessary information to the server wrapper which then sets
up the simulator after scrutinizing the received information.
Setting up the simulator suite is a major task since a series
of tools has to be called in the right order and with a
list of command options and arguments. This job can be
done in two way: wrapper invoking a setup script written in
simulator’s native scripting language; embedding the setup
calls in the wrapper as if they would be made from the
simulator command line interface. Besides the data token,
the information related to MoC evaluation such as any other
signals required in computation that do not originate from
the SystemC AMS description, for example, clock, reset is
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Figure 3: ASK transceiver model and simulation.

generated in the local testbench at the server. The testbench
is an important element in cosimulation; it must drive the
model with properly timed and locally generated signals.
This is because the model to be evaluated on a mature
and commercial simulator is finer than the system-level
model and thus needs more input signals than simply the
input data. Furthermore, the refined models should never be
modified for the sake of cosimulation.

A description of the crypto model with cosimulation C
wrapper is shown in Algorithm 1.

5.3. Synchronization. The TDF formalism in SystemC AMS
is realized using blocking read and write of sc fifo()
primitive channel of SystemC in which reading from an
empty FIFO or writing to a full FIFO suspends the calling
process until data are available to read or FIFO has space
for new data. In multirate TDF the FIFO depth is related to
the rate attribute of the TDF. The rate value therefore must
be realistic and restricted by both solution of homogeneous
equations of the TDF cluster for determining a valid firing
schedule and machine resources. Thus no tokens are lost in
cosimulation.

The clocks of the two kernels run completely indepen-
dent of each other. Their timing states are not passed to

each other. In fact the timing at SystemC AMS is coarse
since the tokens however large are sample accurate or cycle
approximate (the values are guaranteed at the end of the
cycle ignoring timing information during the cycle) sampled
at the system clock whereas on the VHDL side every bit is
clocked (cycle precise) making the sample bit-accurate in
addition to cycle-accurate. Such timing contrast is ideal for
system-level simulation where speed is necessary and for
refinement where problem boundaries can be pin pointed.
Once the inputs have been available the cosimulation
interface executes. However, the computation of outputs
takes some time at the cosimulator and new tokens remain
pending for next simulation iteration. This latency by virtue
of the nature of TDF dataflow takes care of time warp
problems in simulations: rolling back [38], lazy re-evaluation
[39], cancellation [40], runahead (e.g., Calaveras algorithm
by Synopsys); and slower lock-step algorithm in selecting
smallest step for forced synchronization. The execution order
of each TDF block is preset and the graph is cyclically
directed; the cosimulator follows the order determined by
SystemC AMS static scheduler at elaboration [33]. The
reaction time creates a temporary deadlock in the TDF
cluster because the consuming actor must wait for the
producing actor to fire. The deadlock state is cleared as
soon as the tokens arrive from the refined model. The
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/∗ SystemC AMS (client) ∗/

SC MODULE(crypto unit) { // crypto unit module

sc in<sc bv<64> > Rx; // dig. encoded I/O

sc out<sc bv<64> > Tx;

sc in<sc bv<8> > in; // dig. unencoded I/O

sc out<sc bv<8>> out;

sc in<Mode> cmode in; // control I

Mode cm; // current power mode

SC CTOR(crypto unit) {
cm = des; // default is DES

SC METHOD(decode); // method for decoding

sensitive << Rx; // decode when Rx updates

SC METHOD(encode); // method for encoding

sensitive << in; // encode when in updates

SC METHOD(cryptoControl); // sets the mode

sensitive << cmode in; }
void encode() {

/∗ convert bit vector to integer values ∗/
token = in.read().to uint();

..

/∗ initiate comm link and cosimulation at server ∗/
rtoken tx = wrapper CadenceIUS TX(&to str64(token));

{..
status code = write(sock, msg token, Len);

..

to SystemCAMS type(rtoken tx);

..

Tx.write(encrypted val);}
..

void decode()

..}

Algorithm 1
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deadlock is different than the deadlock caused by cyclic
dependency of the balance equations in the TDF cluster
system which is precluded by slipping in a finite delay in
the cycle [41]. The process is completely asynchronous for
the VHDL cosimulator while only locking is at the master
SystemC AMS simulator which momentarily suspends itself
for the cosimulated actor node while the simulator may be
busy solving for nodes that have data. The static scheduling
vector is applied for every simulation iteration.

5.4. MoC Computation. The external simulator is handled by
a daemon program which communicates with the SystemC
AMS master. The daemon validates all incoming tokens and
data (length and bit integrity of C-strings) required for
refined MoC computation. This information is transformed
in semantics for the VHDL language. For example, the port
rate in the multirate TDF would be mapped to the number
of clock cycles needed to write the output tokens for the
corresponding input tokens to maintain the balance in the
dataflow graph.

Using OS utilities the daemon runs several child pro-
cesses each executing a specific tool of the simulator tool
flow as shown in Figure 5. Since the model is computed in
a static fashion, that is, the input token values do not change
throughout the simulation, these values can be passed to the
VHDL elaborator as C-strings which will apply them to the
model before simulation. If there are more than one input
tokens that need to be fed periodically to the model, then
they need to be input using the C interface by updating the
input ports as discussed in Section 6.

At higher level of abstraction such as the one used
for ANDRES usually a clock signal is not needed for
modeling since much of the behavior can be modeled
reasonably without clock as clock makes simulation slow.
However, since abstraction granularity is introduced in
cosimulation using HDL, indeed clock becomes inevitable
to drive HDL part of simulation. A testbench clocks the
VHDL model and converts the values of SystemC AMS
semantics of port rate, delay, and so forth, to meaning-
ful VHDL objects if required by the VHDL model, for
example, the rate attribute can be used for a counter to
pulse an enable signal. Additionally the testbench times
and drives essential ports in the refined model because
they are local to the VHDL design and orthogonal to
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the abstract AMS description. The testbench converts C-
strings of inputs into equivalent VHDL standard logic
types. The testbench is an interface to bridge the abstrac-
tion in semantics of SystemC AMS and VHDL mod-
els.

Next 3DES model is simulated. The model requires no
change to the interface between the two simulators. However,
the VHDL testbench is modified to provide two additional
encryption keys so that all three cypher operations in the
cascaded stages have their unique keys. An Initialization
Vector (IV) is also required in the testbench to start the
process because 3DES computation depends on the previous

computation. The IV is symmetric for encryption and
decryption.

6. C Level Access

Upon receiving messages the daemon reacts and executes
simulator at server as follows. The execv() calls successively
invoke VHDL compiler, elaborator, and simulator. The
simulator loads the C library for VHDL module access with
+loadvhpi argument (see Algorithm 2).

The data tokens are exchanged between the daemon
and the VHDL simulator by sharing the simulator’s C
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Figure 9: Phase difference at the output of LPF for 3DES case (LO
frequency = fc).

interface IEEE Std 1076c-2007 (VHPI). This task is handled
by creating an application for access of VHDL objects
(instance, hierarchal components, ports, signals, data). The
application is a shared library dynamically linked to the
simulator executable and loaded by the particular child
process of the daemon. The library contains callback func-
tions for initialization, navigating VHDL design hierarchy,
assigning ASCII IDs to the ports, registering simulation
time, adding/removing value change callbacks, and storing
output data and their time stamps. The library also tracks
the simulation time and makes access to the VHDL outputs
as they change values (VCD dump). Although recording
values on transitions are an efficient way, our methodology
is flexible to read off values at any specified times or stops in
addition to value changes. The library sends the read data
to the SystemC AMS simulator connected through socket.
All ports are monitored but only the ports of interests are
accessed and their outputs saved. The simulation start and
stop times needed for the computation are preprogrammed
and passed to the simulator by the child process. The designer
should know approximately when the outputs are stable,
valid, or meaningful to control the simulation.

All data needed for MoC computation in AMS descrip-
tion at client is converted C-strings to be accepted by
the socket. Therefore the input data and signals (SystemC
or SystemC AMS hardware types) are formatted using
overloading, static type casting, and other built-in C/C++
constructs. At the server the C interface reads VHDL ports
as C-strings which are converted to SystemC/SystemC AMS
types back in the main AMS simulation. Thus native C-based
translation between SystemC/SystemC AMS and VHDL
rules out special signals [1] and converter channels [19].
The C based VHPI and Verilog VPI interfaces might find
greater acceptability in mixed language cosimulations with
the advent of SystemC/SystemC AMS (see Algorithm 3).

7. Simulation and Experimental Results

As soon as a token arrives in the crypto unit of SystemC
AMS description, the cosimulation interface is invoked to
simulate the DES model. The cosimulation interface on
SystemC AMS side handles necessary communication and
formatting, for example, zero padding for forming a 64-bit
word for encryption, stripping off leading zeros of 64-bit
decrypted word, making sure all incoming strings characters
are 1s or 0s and the size of the received and transmitted data
conform to the expected buffer lengths. Both DES and 3DES
RTL descriptions are cosimulated. The simulations runs
in complete automation. The methodology is implemented
using Cadence Incisive Unified Simulator mixed language
simulator.

The combined simulation entirety is checked for long
runs and compared to the SystemC AMS stand alone sim-
ulation. The XOR parity-based cryptounit is benchmarked
against the refined DES/3DES models for channel effect
by plotting BER versus SNR (Figure 6). The errors usually
occur in burst due to intersymbol interference, that is,
several adjacent bits are corrupted in 64-bit words. Figure 7
illustrates scatter plots of the recovered signal with crypto
unit as a simple 9-bit XOR (no cosimulation). Figure 8
compares constellation diagrams of the filtered output for
both DES and 3DES cases. Nonlinearity effect is visible in
both amplitude variation and phase jitter. The radial constel-
lations in Figures 7 and 8 indicate noncoherent frequency
interference since the transceiver model transmitted data
asynchronously. Figure 9 illustrates phase imbalance in the
recovered symbols.

The nonlinear response of the channel causes distortion
which shows several improvement options. For example,
modeling the channel more realistically, using appropriate
encoding scheme in addition to the cryptography or intro-
ducing multiple levels of amplitudes, for example, M-ASK
modulation. On the demodulator side, the important task
is to detect the bit by sampling the wave at the end of
symbol interval and compare with the threshold under noise.
Here the designer can experiment with the suitable value
of amplitude threshold for correctly detecting all 64 bits
of DES words. Similarly for improved detection coherent
ASK demodulation can be employed taking into account
carrier phase information. The user would introduce a
PLL in the demodulator based on the constant sampling
rate to detect a signal synchronized to the transmitter
carrier frequency. SystemC AMS provides the essential high
modeling capabilities for such tasks.

In summary, the system performance under secure DES
keys can be tuned in envelope detection, receiver amplitude,
selecting the carrier frequency and automatic gain control
for a given data rate or SNR. Further more, intrusion
attack or false authentication behavior can be modeled in
the transceiver example for validating DES cryptography.
The simulations enable studying ASK/OOD modulation
which is susceptible to threat monitoring and radio fre-
quency interference. Merits of other encryption methods,
for example, AES, Blowfish, or Rijndael can similarly be
evaluated.
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/∗ daemon (server) ∗/

daemon parent pid();

nbr of bytes = read(new sock, buf, sizeof buf-1);

validate messages();

(token, crypt cmd, rate, fd) = extract data(buf);

fork calls();

execv(NCVHDL, opts, args, testbench.vhd, des3.vhd);

execv(NCELAB, opts, args, generic (init vector,

key1, key2, key3, token), worklib.des3:arch);

execv(NCSIM, opts, args, -input @tcl script,

+loadvhpi VHDL2C DLL, inst=:des3, +start=0, +stop=62,

worklib.des3:arch);

Algorithm 2

/∗ VHDL2C dynamic linked library (server) ∗/

/∗ register call backs: simulation time, add, remove,

value change, etc. ∗/
EXPIT void VHDL2C DLL() {...}

/∗ traverse VHDL design to get ports ∗/
EXPIT int extract ports(vhpiHandleT scopeH,

int level)

{...}
/∗ assign ASCII IDs to ports ∗/

EXPIT int set id (sigListP ptr) {...}
/∗ add callback ∗/

EXPIT int addValueChangeCallback(p cb data cbPtr)

{...}
/∗ print and save q event whenever it occurs ∗/

EXPIT void access vhdl(const vhpiCbDataT ∗cbPtr) {
sigListP array = (sigListP) cbPtr->user data;

/∗ check whether the port that changed is

the required one ∗/
if (strcmp(array->id, "+") == 0)

strcpy(enc val, cbPtr->value->value.str);}
/∗ save port value and the event time ∗/
fprintf(vcd, "# \%llu\n", time2int64(cbPtr->time));
fprintf(vcd,"b \%s \%s \n", strtok(cbPtr->
value->value.str,"+"), array->id);
...}
/∗ delete callback ∗/

EXPIT int deleteValueChangeCallback(p cb data cbPtr)

{...}
/∗ write to SystemC AMS client using the set socket ∗/

status code = write (fd, enc value, sizeof enc val);

Algorithm 3

8. Discussion on Cosimulation Interface

8.1. Scalability. Multiple instances of the cosimulation inter-
face can be used in the AMS description and each instance
can be mapped to a daemon program. For each SystemC
AMS simulation iteration, two VHDL simulations are trig-
gered, one for TX path (encryption) and the other for RX
path (decryption) in Figure 3. Correspondingly there are

encryption and decryption daemons for each TX, RX path
of the transceiver that generate their own child processes
and have specific C access shared library. Although there is
a single VHDL DES or 3DES model for both encryption
and decryption, however parting the TX and RX functions
with separate C interfaces and daemons serves two important
purposes: it proves that the simulation framework is robust
enough to handle multiple cosimulations, secondly isolating
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Table 1: Degree of user modification in the framework.

Usability evaluation

Interface
element

Modification Level Recompilation

Strings args always simplest server program

Analog control
file

as needed simpler none

TCL and
command
scripts

some simple none

VPI/VHPI once difficult only DLL

the TX and RX modularity averts contention issues of a
single model being accessed concurrently by two processes
and also the corruption of simulator database and simulation
environment due to ambiguous dates, file modification
and library loading/unloading. Using a 56-bit key and 8
bits for error detection in key generation the TX path
enciphers while the RX path deciphers using the symmetric
(identical) key. For faster simulation, different static shared
libraries can be compiled into the simulator executable.
This method generates custom simulator executables that
have been augmented with user defined functions and tasks
defined through the C interface. The shared libraries are
produced using Cadence PLI Wizard.

8.2. Interface Computation Lag. The speed of server interface
computation is related to complexity of model cosimulated
(languages, tools called DLLs loaded, speed of testbench,
etc.), CPU load, and network speed among others. We
illustrate execution times for various models in Figure 10
(client at AMD Athlon 2.10 GHz running Ubuntu, server at
Intel Xeon 3.39 GHz running Debian GNU/Linux). These
nonabsolute times reflect full-scale automation including
compilation, elaboration, and simulation.

8.3. Usability. Table 1 describes ease in using the cosimula-
tion framework. The C access library ought to be generic
to imported to a variety of designs, for example, by passing
model instance and simulation times.

8.4. Outlook. The framework can be extended for models
with analog boundaries, for example, AD converters. There
are three simulation options for mixed models: (1) real-
valued discrete simulations that can adequately mimic
analog model behavior digitally with proper timing (top-
down), (2) pure mixed-signal simulation (meet in the
middle), for example, with HDL-AMS depicting accurate
electrical behavior, and (3) SPICE level circuits (bottom-
up). The first level is appropriate to understand the impact
of implementation method on ADC resolution, dynamic
range, throughput, CMRR, and quantization accuracy. For
example, pipelining, SAR, Sigma-Delta, or direct conversion.
Levels 2 and 3 offer further refinement into model by char-
acterizing physical properties, for example, nonlinearities,
timing (acquisition, conversion, response, settling, aperture
delay), and numerical errors (gain, SNR, dither, aperture,
temperature offset drift). Understanding these behaviors is
vital for hw/sw codesigners who need accommodation for
tolerances in their designs. The problem however with all
these modeling levels is the huge amount data produced
in sampling a continuous time wave which must be accu-
mulated and segmented to be applied to the cosimulation
interface for reasonable simulation speed and efficiency.
These analog models will be simulated next in the framework
and the methodology will be modified accordingly to handle
data (setting thresholds or writing to files). The presence of
floating pointing data types further exacerbates the problem
of embedding a refined analog model into high level system
description. Pure mixed-signal models would also demand a
different solver, that is, a tool change, for example, Cadence
AMS Designer, Synopsys Saber and therefore modification
to simulation interface and data access mechanism as well.
The SPICE netlists would have to be wrapped in HDL/HDL-
AMS descriptions for enabling C level access with VHPI/VPI.
The analog refinement process would require careful and
qualitative evaluation because refined analog models are
conservative they change the overall dynamics defined by
ordinary differential or differential algebraic equations of
the system in which they embed. These simulations will be
inherently slow and would deal with typical convergence
problem. SystemC AMS to Cadence analog cosimulation
issues have been highlighted in [30].

9. Conclusion

Complex SoC designs now are being specified by executable
specification in addition to conventional written require-
ments. SystemC AMS is a suitable simulator for this task.
However SystemC AMS abstraction level is inadequate for
subsystem-level, fro example, refined models. This limitation
in SystemC AMS kernel can be overcome by cosimulating
refined models in specialty simulators which are invoked and
controlled at the module entry point of the SystemC AMS
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model. A mixed analog and discrete simulation framework
has been presented that capitalizes on simplicity and open
architecture of SystemC AMS as master simulator and
its synchronization layer which eliminates the overhead
of common backbone and custom synchronizing schemes
typical in simulator coupling.

The framework has been demonstrated by replacing
simple parity-based cryptographic unit with a refined
(RTL) model of DES encryption standard, cosimulated with
Cadence Incisive Unified Simulator. To evaluate robustness
the framework is applied for two instances of refinement
in a single system-level model. The simulation results
confirm that the framework can handle complex HDL
models because in absence of noise the cosimulated HDL
models of encryption and decryption match pure SystemC
AMS simulation which was of abstract parity checker. The
framework uses C-based interfaces and can be used for any
EDA vendor’s tool compliant of standard C interface, for
example, Synopsys and Mentor Graphics. There is capacity
in the framework to simulate analog models of HDL-AMS
and SPICE wrapped around C interface. The simulation
interfaces are abstract written by designers who are not
application programmers. The refined models are inserted
directly in the executable specification and then analyzed.
For SoC designers this is an enormous advantage because
implementation specific details and performance can be
viewed at the system definition. The methodology aims
for meriting system concepts, exploring architectures, and
bridging the implementation gap.
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