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Abstract—Model-based development of CPSs is based on the
capability of early verification of system properties on a model
of the controls and the controlled physical system. In the
development of multicore systems, the scheduling and contention
delays may significantly affect the behavior of the controls, and
therefore need to be suitably represented and analyzed. We
present a framework for adding the model of schedulers, tasks
and multicore memory accesses to Simulink models and to verify
by simulation the impact of scheduling and execution times delays
on the performance of the controls. In our experiments, different
memory access policies, including the use of the Logical Execution
Time paradigm are tried and compared. Our framework is based
on the commercial SimEvents package, which allows for a much
faster simulation compared to other existing approaches; it is
highly modular and extensible and can be applied to existing
Simulink models with limited changes.

I. INTRODUCTION

Simulink is a graphical modeling environment implement-
ing a Synchronous-Reactive (SR) Model of Computation
(MoC) for multidomain Model-Based Design (MBD) and
simulation. Continuous-time, discrete-time and discrete-events
systems can be defined in the model, making Simulink suitable
for the design of Cyber-Physical Systems (CPSs), where the
controller (discrete-time) and the plant (continuous-time) must
be modeled and simulated together.

Simulink models of controls are purely functional and allow
the modeling and simulation in logical time, with the assump-
tion that all reactions complete within the next event. However,
in a real system implementation, the code implementing the
functionality executes in finite time, and under the control of
a scheduler, giving rise to latencies and jitter that may change
the performance of the controls. In addition, in multicore
CPSs, the memory hierarchy, the arbitration fabric and the
memory access policies further affect time predictability and
the time behavior.

A model of the task deployment, the scheduler and the
resource management policies is not only useful to analyze
the impact of the execution time delays on the controls
performance but also to support the architecture exploration
and optimization stage, when the control functionality needs
to be matched to a suitable design for the platform, including
the multicore hardware fabric, the operating system with its
scheduling and resource management policies, with a task
implementation and placement option.

To represent computation, communication and resource
contention delays in Simulink, a possible solution is to use
custom blocks (defined by the user) that interface with a
scheduling simulation engine in a co-simulation pattern. The
TrueTime framework [9] integrates a real-time scheduling and
a network simulator in a Simulink custom block, enabling the
co-simulation of the control functions considering the software
(task) and message implementation, and the scheduler and
resource management policies. Presently, multi-core architec-
tures are not supported and the memory contention delays or
the memory access costs are not analyzable.

T-Res [12] is a modular framework for the co-simulation
of control functionality and controlled system dynamics with
real-time scheduling policies and communication mechanisms
and networks. Similar to TrueTime, it is based on Simulink,
and provides custom blocks for the representation of the task
implementation model and the selection of the scheduler.
These blocks can be applied to an existing Simulink model
with limited and localized changes.

An implementation of the scheduler and resource manage-
ment logic using SimEvents allows for a better simulation
performance compared to the use of custom blocks, since
the latter (TrueTime or TRes) use zero-crossing verification.
This means that the solver needs to simulate the entire model
around the point of zero crossing, and all blocks in the model
will be recomputed at these steps, even if most of them may
have nothing to do [17].

Compared with the model presented in [17] we provide a
suitable selection of scheduling policies, we support a model
of tasks and runnables (according to the AUTOSAR standard),
and we allow for a more detailed representation of the memory
hierarchy and possible memory arbitration mechanisms, and
also of the memory access pattern by the application tasks.
Several application-level mechanisms to control the access to
shared memory resources have been proposed recently [5]
to cope with the problem of the possible nondeterminism
caused by memory arbitration (and waiting) in multicores.
The Logical Execution Time (LET) paradigm [16] is being
considered in the automotive domain as a possible way to
restore predictability.

The model proposed in this paper allows to analyze not
only the impact of scheduling delays on the performance of
control applications, but also the impact of latencies in the
access to memory resources and to analyze the selection of
memory access policies, including LET. Further, four different978-1-5386-4155-2/18/$31.00 c©2018 IEEE



execution patterns have been implemented to study the effect
of the timing of performing memory accesses.

Finally, we support an execution model that is compliant
with the commercial AUTOSAR standard, including the model
of runnables and tasks and the access to communication
labels. To show the applicability to large models of control
applications defined according to this standard, we analyzed
the automotive benchmark provided by Bosch for the Waters
challenge [15] that contains task, runnables and labels defined
at the timing precision of a clock cycle.

The paper is organized as follows. In section II, we intro-
duce the model assumptions and provide a short summary
of the SimEvents semantics, its execution model and the
interactions between the simulation engine and our framework.
In section III, we describe the structure of the framework, with
the representation of the scheduler and platform. In section IV
we provide an example that shows a use case in which different
task models and scheduling policies impact the performance
of the controls, as shown by the simulation results. Finally,
in section V, we provide our conclusions and a discussion of
future work.

A. Related Work

Model-Based Design is widely used in several application
domains. Simulink allows to create synchronous reactive mod-
els, that can be validated and verified based on a Zero Exe-
cution time (ZET) semantics, abstracting from hardware and
software latencies [25]. However, execution, communication,
and scheduling delays play a role in the definition of the
controls performance. Several research works investigate the
consequences of computation (scheduling) and communication
delays on controls. An overview on the subject can be found
in [3] and [10]. Also, an analysis of control activation models
based on events rather than periodic triggers (and the possible
improvements with respect to the CPU resource utilization)
are discussed in [2] and [18].

To study the effects of the model implementation on a
given software (task) architecture and execution platform,
previous researchers have provided frameworks for modeling
the task structure (including CPU placement), the execution
under the control of a scheduler, and the communication
times in Simulink models. TrueTime [9] [8] is a freeware1

Simulink-based simulation tool developed at Lund University
since 1999. It provides models of multi-tasking real-time
kernels and networks that can be used for networked embedded
systems. TrueTime provides a collection of C++ and MATLAB
files to represent networks and schedulers by means of a
library with two main simulink blocks: TrueTime Kernel and
TrueTime Network. A task is defined within the context of a
Kernel block, with its functionality and execution time defined
by MATLAB scripts. The modular framework T-Res [12]
provides explicit blocks for tasks, schedulers, messages and
networks. T-Res can invoke functionality defined by Simulink

1http://www3.control.lth.se/truetime/LICENSE.txt

subsystems (not only scripts) that are transformed into trig-
gered blocks. Tasks are modeled as sequences of subsystems,
executed according to their specified execution times. Inspired
by TRES and TrueTime, Naderlinger [21] propose to introduce
software execution times by replacing Simulink subsystems
by customized xTask blocks, where timing is incorporated
by means of a dedicated delay function. Other approaches
have been proposed to combine Simulink with schedulability
analysis tools. In [lampke2015resource], runtime profiles are
extracted from SymTA/S and introduced into the functional
Simulink model using blocks derived from triggered Simulink
subystems: TriggeredSignal, TriggeredRead and Triggered-
Write. These blocks control the availability of data between
communicating subsystems based on the estimated execution
and communication times.

Wei Li et al. used SimEvents [17] to model the effect of
execution times and scheduling in multicores. SimEvents [19]
is a commercial toolbox providing a discrete-event simulation
engine and component library for Simulink. SimEvents models
allow a clear separation between the pure functional model
and the architectural components and allow significant perfor-
mance improvements with respect to the previous approaches
(not quantified in [17], but found to be at least 40% in our
comparative experiments with TRes on simple models).

When the integration with the model of the controls be-
havior is not required, a very large number of projects target
the evaluation of scheduling policies and the analysis of task
implementations. A necessarily incomplete list includes Yartiss
[11], Storm [24], ARTISST [13], Cheddar [23], Schesim
[20], and Stress [4]. Most of these projects do not allow
the representation of the details related to the access to the
memory resources in multicores and perform the simulation
at the level of the tasks.

The Bosch automotive benchmark provided as a challenge
for the WATERS workshop highlights the need to evaluate
the impact of resource contention at the level of the memory
hierarchy in multicores and presents a model that is charac-
teristic of the AUTOSAR automotive standard [1], in which
the behavioral elements are runnables (executable function),
rather than tasks [15]. The AUTOSAR standard provides two
communication (and the related memory access) mechanisms:
explicit and implicit communication.

To ensure deterministic output values and timing, the con-
cept of the Logical Execution Time (LET) was introduced
with the programming language Giotto [16]. A LET program
consists of multiple periodic tasks. Each task performs all
its read operations at the time it is activated and performs
all writes at the end of its cycle. In the case of multicore
architectures, the exact placement in time of all the memory
reads and writes can be leveraged to improve the predictability
of the application [5].

Finally, for the modeling and simulation of the time
performance of hardware architectures and features, several
modeling languages and approaches exist. They are simply
too many to be cited here in a comprehensive way. For
architecture-level hardware modeling, MARTE by the OMG



provides an extension to the UML and SysML languages
that covers all the typical software concepts (such as threads,
resources, schedulers) and hardware elements down to the
pin level [14]. However, there seems to be no tool at this
time that can fully exploit MARTE models for the purpose
of simulation of timing behavior at the level of the memory
accesses. MathWorks provides its own XML-based solution
for the high-level description of a target platform, with the
purpose of customizing code generation. The XML is not fully
documented but made available through a GUI, which allows
the user to specify additional resources, such as the number
of cores available but also the partitioning of tasks to cores.

There exist several other simulation possibilities for archi-
tectural exploration, and SystemC is among the most popular
languages for architecture description (going practically to the
level of a Register Transfer Language). SystemC provides
a C++ class library for modeling hardware implementing
sequential and parallel functionality, with the purpose of
verification by simulation. The language allows the modeling
of a virtual platform, possibly consisting of several cores,
executing cooperating applications [22]. SystemC is also used
in conjunction with MATLAB/Simulink in a co-simulation
framework, to enable the co-simulation of the execution of
complex (control) functions represented in Simulink on hard-
ware models defined in SystemC [6], [7].

II. SYSTEM MODEL AND TOOLS

A. Abstract model

This paper considers platforms consisting of a set of sym-
metric cores C1...Cn, each provided with a local memory
M1...Mn and an additional shared global memory Mn+1

connected over a crossbar with FIFO arbitration. Each core
is statically assigned a set of tasks scheduled according to a
fixed priority policy.

A task set Γ(τp, τs) is composed by periodic (τp) and
sporadic (τs) tasks. A task τi is associated with a period
Ti if periodic, whereas a sporadic task is activated with a
minimum Timin

and maximum Timax
inter-arrival time. Each

task may be assigned a deadline Di, with Di ≤ Ti for periodic
tasks and D ≤ Timin for sporadic tasks. A task can either
be preemptive or cooperative, where a preemptive task can
be interrupted by another task when executing and between
memory accesses, while a cooperative tasks can be interrupted
at runnable boundaries.

Task executes a set of functions in a sequential order
ρ = {ρ1, ρ2, ...ρm}, referred to as runnables according to the
AUTOSAR standard. Runnables communicate by means of
labels: variables that can be read from and written to in an
atomic manner, denoted `r and `w respectively. The processing
of the data is expressed in terms of instruction, with each
instruction taking a fixed number of clock cycles.

Labels are statically assigned a memory placement. The
number of cycles required for a runnable to access a label
depends on its memory placement and the core on which the
task executing the runnable is allocated.

The access to memory by the runnables with the execution
of the associated instructions can be performed in different
modes. The AUTOSAR standard supports two patterns. In the
explicit communication model, AUTOSAR runnables read and
write data throughout their execution, using spin locks and
resource protection mechanisms when required. The implicit
data access ensures data consistency throughout the execution
of the runnable by having all reads performed before the
execution of the runnable (with the result stored in local copies
of the variables) and all writes performed on local copies and
actually moved to the communication variables only after the
end of the runnable execution [1].

A natural extension of the previous policy consists in having
all the variable reads into local copies performed at the
beginning of the task for all the runnables executed by the task,
and all the writes at the end of the task execution. Throughout
the execution of the task, the code will only operate on local
copies, referred to as the task consistency pattern throughout
the paper. To ensure deterministic output values and timing,
the Logical Execution Time (LET) paradigm read the input
at task activation and delay the results until the deadline. The
four different patterns are illustrated in Figure 1.

Fig. 1. The memory access patterns with the corresponding accesses in read
and write mode by runnables and tasks.

B. SimEvents

SimEvents is a discrete-event modeler and simulation en-
gine with a library of components by the MathWorks. A
SimEvent model consists of a set of connected blocks ex-
changing Entities. An entity can be associated with attributes
that can change during its lifetime. The lifetime of an entity
starts when generated from a SimEvent source block called
Entity Generator. Throughout its lifetime, the entity traverses
a network of Queues and Servers.

An Entity Server will serve entities for a specified amount
of service time. Several entities can be served simultaneously
where the capacity is indicated in the graphical block. A
server is typically preceded by an Entity Queue which stores
entities as an advancement is blocked. Along the network,
Entity Input- and Output Switches can be used to affect the



path of an entity. An Entity Input Switch allows entities to
arrive at all input ports, whereas an Entity Output Switch will
advance an entity based on a criterion to one of its output
ports. Additionally, Entity Gates can be used to control the
advancement of an entity.

Upon completion of its traversal, the entity ends in an Entity
Terminator. Entities are not shown in the model, but the Entity
generators and terminators, along with the network of connec-
tions and processing servers are represented graphically, see
Figure 4.

There are two types of Entity Generators: Time-based and
Event-Based. A Time-based Generator is associated with a
time source defining when a new entity shall be created.
The generation can be defined by a constant period or by
a MATLAB script that encodes a stochastic generation. In
addition, Event-Based Entity Generators create new entities
upon the detection of an event.

An event represents a point in time associated with the
detection of an incident. An event can be associated with an
action resulting (among others) in the generation of one or
more new events, a change in the state of an item, and/or a
computation of an output. Events are typically used to mark
the occurrence of the following:

1. Generation of an Entity
2. Exit of an Entity from a Generator block
3. Entry or Exit of an Entity to a Server block
4. Service completed on an Entity by a Server block
5. Entry of an Entity to a Terminator block

The actions for an event are defined by the user using
Simulink functions or a restricted set of the MATLAB lan-
guage supporting code generation. An action can be everything
from invoking MATLAB functions and/or scripts to affect the
next destination of the entity to the generation of debug infor-
mation, defined in the associated SimEvent building block.

As for Entities, Events do not have a graphical represen-
tation. Nevertheless, an interaction with the events is allowed
by Observer classes. By observing certain events, a trace of
the timeline of events in the model can be created.

As in Simulink, functionalities are wrapped inside subsys-
tems, providing a hierarchy to the model, where input- and
output ports are used to allow for connection to the outside.

C. Implementing LET on a multicore platform

The main principles in realizing LET communication for a
multicore platform are:
R1 For each task, all read operations must be scheduled at its

activation.
R2 For each task, all write operations must be executed at the

end of its period.
R3 For each pair of communicating tasks, all write operations

must be completed before the read operations.
Figure 2 illustrates the realization of a schedule compliant

with the previous rules and deployed in a multicore, with
the help of inter-core synchronization. The implementation
is based on the work described in [5] and assumes that all

Fig. 2. Illustration of the memory access synchronization realizing the LET
pattern.

global memory accesses are performed by two LET tasks for
each core, τLET

R and τLET
W that are activated at the greatest

common divisor of the periods of the tasks on their core,
and execute with highest priority (preempting if necessary,
other tasks). In this implementation, writes and not performed
at the end of the period, but right at the beginning of
the following cycle, with a minimum time difference. This
scheduling example assumes an execution on two cores, each
assigned two tasks in addition to the LET tasks performing
the communication as accesses to global memory.

At initialization of the application, the writer LET tasks
on each core are executed according to a round robin pattern
(orange/light color in the figure). Upon completion of each
writer task, a signal is sent to the following core to activate
its LET writer task. Next, the reader LET tasks are executed
in order, one for each core. Upon completion or the reader
LET task, each core is ready to process its application tasks.

III. SIMEVENTS MODEL OF THE MULTICORE PLATFORM,
SCHEDULERS AND TASKS

The automotive benchmark model of the WATERS chal-
lenge consist of 21 tasks statically assigned to four symmetric
cores connected to local and global memories. These elements
are presented at the top level of the Simulink model shown in
Figure 3.

The leftmost area in the model represents the task set com-
posed by sporadic and periodic tasks. The application consist
of 1250 runnables and 10000 labels, defined in a table by a
MATLAB script. A core is modeled as a subsystem with three
inports and two outports. When a task performs a memory
access, it leaves the core subsystem through its output port and
enters back through the first input port upon the completion
of the memory operation. The second outport is used to signal



Fig. 3. Bosch automotive benchmark modeled using SimEvent. The model consist of 21 tasks, 1250 runnables and 10000 labels processed by four symmetric
cores. Each core is provided with a local memory and an additional memory is shared amongst the cores.

the termination of the currently executing task; and the second
inport is dedicated to inter-core synchronization. Finally, the
third inport is an entry point for the tasks assigned to the core.

The five memories defined in the model are located in the
Simulink model to the right of the cores. All memories can
be accessed from all cores, as in the Infineon Aurix Tricore
TC27x controllers for automotive systems.

a) Task: A task is modeled with a time-based SimEvent
Entity. Entities representing periodic tasks are generated pe-
riodically. Entities representing sporadic tasks are generated
by Matlab code that activates them with an inter-arrival time
selected from a uniformly distributed random set between a
lower and an upper bound. Figure 4 shows the user interface
for the definition of all the customizable characteristics of a
task. A task is associated with a set of runnables executed in
a sequential order (defined using a table), and represented in
the model by a Matlab data structure, as in
struct(’name’, ’T1’, ’core’, 1,
’runnables’, [1], ’period’, 4)

b) Runnable: A runnable is modeled as a data structure
with an associated name, a set of labels to read from, a set of
labels to write to and a number of cycles to execute, such as
for example:
struct(’name’, ’R1’, ’readLabels’, [1],
’writeLabels’, [2], ’instructions’, 23,
’function’, 1)

where the ’function’, 1 section defines the mapping
between the runnable (in the functional model) and the exe-
cution platform.

c) Label: A label is modeled as a data structure with an
associated name and a memory placement. The structure is
also specified in a table.
struct(’name’, ’L1’, ’placement’, ’LRAM0’)

d) Tasks, runnables and lables relationship: The rela-
tionship between tasks, runnables and labels are defined by
connections among the corresponding tables. An example of
the relationship is shown in Figure 5. Task T1 executes the
runnables with index 1 and 3. In the runnable table, index
1 corresponds to runnable R1 and index 3 to runnable R3.
Runnable R1 reads from a label placed at index 4 and writes
to a label at index 2. The third runnable, R3, reads from labels
at index 5, 6 and writes to a label defined at index 3.

Fig. 5. Relationship between tasks, runnables and labels defined using tables
in MATLAB scripts. The index in the table maps to a corresponding row for
the related component.

e) Global scheduler: Tasks are assigned by a global
dispatcher to the core to which they are statically assigned
(as specified by their attribute core), and then scheduled on
the core according to a local scheduling policy. Upon the



Fig. 4. Internal model of the core as relates to Task execution and a task configuration window.

activation of a task, the entity will enter a server which
forwards the entity to the core the task is assigned to.

f) Core and local scheduler: Each core (the high-level
model is shown in the left side of Figure 4) includes a
scheduler and an execution simulator, realized by processing
one task entity at the time, under the control of an Entity Gate.
The gate is initially open and then advances to the following
task only as a consequence of a task termination. The gate is
preceded by a queue ordered according to the local scheduling
policy. The scheduling policies that are supported are: fixed
priority policy (priority), FIFO or LIFO where each policy can
be preemptive or non-preemptive.

Upon the activation of a task with higher priority, the sched-
uler preempts the current task (if preemptive) while executing
and between memory accesses, while cooperative tasks run
until completion. A non-preemptive scheduler executes all
tasks until completion without interruption.

The core is programmed to process the tasks in four
different execution modes: memory access, execute, terminate
and preempted. The sequence of runnables to execute, the
labels that are accessed by runnables, and the current mode
of the task are controlled by a MATLAB script, where four
different memory access patterns have been provided: explicit,
implicit, task consistency and LET. A core can be released
either when a task is preempted or upon completion.

In SimEvents, entities can be assigned priorities but events
can not (formally, SimEvents does not support super-dense
time). Therefore, it is not possible to enforce a precedence
order between a task termination event and a task preemption
event and an additional check needs to be performed for an
entity entering the preemption path, to ensure it has residual
service time.

Debug information can be retrieved from a core in form
of text and/or a graphical representation. The debug text
provides a time-stamped log of the system and the graphical

representation presents the load of the core as well as an
illustration of when a task is running, where an example of the
graphical representation can be found in Figure 6. The example
consist of three preemptive tasks, τ1, τ2 and τ3 with periods
T1 = 0.004, T1 = 0.005, T1 = 0.006 with the execution
time of 0.002 scheduled according to a fixed priority policy
supporting preemption by a single core. τ1 is provided with
the highest priority followed by τ2 and last τ3.

Fig. 6. Graphical debug information presenting current task acquired by the
core.

The architectural model can be configured to invoke a
functional Simulink model by enabling the ”Invoke functional
model” option. This option requires a mapping between the
architectural and functional models.

g) Logical Execution Time: The support for the LET ex-
ecution policy requires additional developments, as described
in section II-C. The τLET

R and τLET
W tasks are activated and

executed for each core. The LET tasks performing read and
write operations are provided with a higher priority than the
ordinary tasks of the model. The writing task has a higher
priority than the reading task and the reading tasks shall be
generated at simulation start, while the writing task shall not.
This will initially result in only performing read operations
followed by write and read operations performed at a given
rate periodically. The mode of the task shall also initially be
assigned according to the operation of the task, i.e., read or



write. The SimEvents subsystem shown in Figure 7 realizes
the sequential activation of the LET tasks (in a round-robin
fashion) at the beginning of their cycles.

Fig. 7. Internal structure for the block of LET execution.

h) Memory: The access to the local and global memories
(the memory subsystem) is modeled with an Entity Queue
where entities are ordered according to a FIFO policy followed
by an Entity Server. The model contains both local and global
memories. The time to access a memory is constant for the
global memory; one cycle for the local memory of the core on
which the task is executing and 9 cycles for the local memories
of the other cores.

When a task is about to perform a memory access, the entity
exits from the core subsystem and enters the top level of the
model, see Figure 3. The index of the memory label to access
is defined by one of the tasks attributes and is used to retrieve
its memory placement. The placement will then be used to
forward the task entity to the memory subsystem it needs
to access. Upon completion of the memory access, the task
returns to its core subsystem using one of the cores input
ports.

The entire model developed for this architecture and the
execution of the WATERS challenge task set is available freely
on the Matlab Central website 2.

IV. EXPERIMENTAL RESULTS

To assess the applicability of our proposed SimEvents
framework, we measured the compilation time for models
with increasing complexity, as defined by the number of labels
accessed in memory. In this case, the quantity under analysis
is the pre-compilation time that is required to build the queue
of events that need to be evaluated during the simulated
time. Figure 8 shows the results. For models with a level
of complexity that is typical of industrial systems (around
10000 labels), the compilation times remain at levels that are
manageable at design time (approx 40 minutes for the most
complex setting) and grows with the complexity of the system.
The increase in the compilation time is hard to quantify. In
Figure 8 we show a linear, quadratic (apparently the best fit)
and exponential fit. Of course the model only needs to be
compiled once.

2https://it.mathworks.com/matlabcentral/fileexchange/
66173-analysis-of-scheduling-and-memory-access-delays-
in-multicores?s_tid=prof_contriblnk
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Fig. 8. Time required to compile the automotive benchmark model for models
of different complexity

An event based simulator allows an improvement over
competing approaches on the simulation time. Figure 9 shows
the real execution time that is required to simulate a given
number of clock cycles with respect to the complexity of the
model. As for the previous set of experiments, the complexity
of the model was configured by modifying the number of
accessed labels. The simulation time depends on the number of
events occurring during the simulated time. The simulation is
done with the automotive benchmark model with full debug
information, including a text output as well as a graphical
representation of the load of the processors and an illustration
of when a task is running.
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Fig. 9. Time required to simulate a given amount of clock cycles with respect
to the complexity of the model

To evaluate the impact of the different memory access
patterns, we compared the average and worst-case response
times of the tasks in the set. Since the original task set is
composed by both periodic and sporadic tasks, the application



of the LET pattern requires to define a periodic server task for
each sporadic, with a period lower than the task inter-arrival
time and the same worst-case execution time. The response
time was measured for all the task instances in the system
cycle or hyper-period (the least common multiple of the period
of all the tasks).

In the first set of experiments, the average and worst-case
response time of the tasks have been compared for the explicit,
implicit, and Task-level consistency with local copies patterns.
As shown by the Figures 10, and 11, there is a very limited
difference in the worst-case response times for the given
application. The implicit and task-level consistency patterns
can lead to a higher probability of contention given that the
accesses are concentrated in a relatively small set of time
windows (smaller for task-level copies giving rise to higher
response times for some tasks).
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Fig. 10. Average response time for the tasks in the set when using different
memory access patterns
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Fig. 11. Worst-case response time for the task set at initialization using
different memory access patterns

When using the LET pattern, however, there are significant
changes. The task set requires the addition of the LET copy
tasks (for writes and reads). Further, these tasks can change the
order of scheduling of the other tasks, resulting in significant
difference when non-preemptive or cooperative tasks are in the
set. In addition, the LET implementation proposed in [5], and
implemented in this paper, requires a specific label placement,
in which all the labels for inter-core communication are in
global memory and label duplicates are provided in the local
memory for intra-core communication.

To provide for a relatively fair comparison with other
methods, we changed all tasks to be preemptive, and we
compared the executions for the label placement as required
by our LET implementation. Labels shared within the core
are ”represented” as one additional instruction to execute, i.e.,
the task set never waits in the access to the memory. The
two models share the same label placement (all shared labels
between cores are in global memory, otherwise they are in
the local memory of the core with the tasks accessing them.
Table I shows the task configuration. The challenge periods
and inter-arrival times are in the column denoted with Ti. The
set of the LET periods with the server periods handling the
sporadic tasks are labeled as T ∗

i .

Core Id Task Ti T ∗
i prio

Core 0 3 ISR 10 700us 500 us 40
Core 0 8 ISR 5 900us 500 us 39
Core 0 9 ISR 6 1100us 1000us 38
Core 0 7 ISR 4 1500us 1500us 37
Core 0 11 ISR 8 1700us 1500us 36
Core 0 10 ISR 7 4900us 4500us 35
Core 0 4 ISR 11 5000us 5000 us 34
Core 0 12 ISR 9 6000us 5000us 33
Core 1 2 ISR 1 9500us 5000 us 32
Core 1 5 ISR 2 9500us 5000 us 31
Core 1 6 ISR 3 9500us 5000 us 30
Core 1 15 Task 10ms 10ms 10ms 11
Core 2 16 Task 1ms 1ms 1ms 15
Core 2 1 Angle sync 6660us 6500us 14
Core 3 19 Task 2ms 2ms 2ms 13
Core 3 21 Task 5ms 5ms 5ms 12
Core 3 18 Task 20ms 20ms 20ms 9
Core 3 20 Task 50ms 50ms 50ms 8
Core 3 14 Task 100ms 100ms 100ms 7
Core 3 17 Task 200ms 200ms 200ms 6
Core 3 13 Task 1000ms 1000ms 1000ms 5

TABLE I
TASK SET FOR THE EVALUATION OF THE LET ACCESS PATTERN

Figures 12 and 13 show the results for the average and
worst-case response times when comparing the explicit mem-
ory access pattern with our LET implementation. In all the
plots, the Y-axis represents the response time normalized with
respect to the task period. The worst-case response times
show a significant increase for the tasks with smaller period,
because these tasks need to wait for all the LET tasks in the
system at the beginning of the cycle. Furthermore, given that
the LET tasks execute the copies of all the communication
labels on behalf of all the application tasks, they execute
according to a multi-frame pattern. Depending on the task



periods, there are instances of the LET tasks that will access
many labels (in our case, there is one instance that access
labels for all tasks except one), and other instances that access
only a limited number. This is why, in the worst case, the
LET implementation requires copy times in the order of 100
µs, which can be a significant additional delay for the tasks
with the smallest execution times (up to 4 times for one of
the tasks). In the average case the situation is better, and the
overheads are typically much smaller, less than 5% for all
tasks except the six with the smallest execution times.
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Fig. 12. Average response time for the task set using different memory access
patterns

2 4 6 8 10 12 14 16 18 20

Task id

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
liz

e
d
 r

e
s
p
o
n
s
e
 t
im

e

Explicit communication

LET

Fig. 13. Worst-case response time for the task set at initialization using
different memory access patterns

As discussed in [5], the LET overhead is a price that
may be worth paying in exchange for predictability. The
LET tasks interference is known and deterministic, while
the memory contention for the other access patterns is quite
hard to upper bound; and any formula for estimating it may
be quite pessimistic. LET also requires additional memory,

an increase off 7.5 % compared to the AUTOSAR explicit
communication was found in [5]. It is also worth to highlight
that further optimizations can be done for the realization of
the copies from and to global memory, including the use of
DMA and a possible partitioning of the LET tasks to reduce
the blocking time for the application tasks (as discussed in
[5]). This analysis is left as future work. Nevertheless, the
results obtained highlight the opportunity to study the complex
relationship between the task set, the memory access pattern,
the impact of the label placement and the platform resources.

V. CONCLUSIONS

In this paper, we present how to integrate models of
scheduling and platform resources using SimEvents to analyze
scheduling and memory contention delays in a Simulink
model. The model consists of periodic and sporadic tasks ex-
ecuted on an architectural platform of symmetric cores, local-
and global memories. The model is AUTOSAR compatible,
where the task execute a set of runnables communicating
by means of labels. We also provide the implementation
for four memory access patterns: AUTOSAR implicit and
explicit communication, task level data consistency, and the
LET execution model.
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