8 research outputs found

    Local Rule-Based Explanations of Black Box Decision Systems

    Get PDF
    The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box

    Instance Selection using Genetic Algorithms for an Intelligent Ensemble Trading System

    Get PDF
    Instance selection is a way to remove unnecessary data that can adversely affect the prediction model, thereby selecting representative and relevant data from the original data set that is expected to improve predictive performance. Instance selection plays an important role in improving the scalability of data mining algorithms and has also proven to be successful over a wide range of classification problems. However, instance selection using an evolutionary approach, as proposed in this study, is different from previous methods that have focused on improving accuracy performance in the stock market (i.e., Up or Down forecast). In fact, we propose a new approach to instance selection that uses genetic algorithms (GAs) to define a set of target labels that can identify the buying and selling signals and then select instances according to three performance measures of the trading system (i.e., the winning ratio, the payoff ratio, and the profit factor). An intelligent ensemble trading system with instance selection using GAs is then developed for investors in the stock market. An empirical study of the proposed model is conducted using 35 companies from the Dow Jones Industrial Average, the New York Stock Exchange, and the Nasdaq Stock Market from January, 2006 to December, 2016

    Instance selection of linear complexity for big data

    Get PDF
    Over recent decades, database sizes have grown considerably. Larger sizes present new challenges, because machine learning algorithms are not prepared to process such large volumes of information. Instance selection methods can alleviate this problem when the size of the data set is medium to large. However, even these methods face similar problems with very large-to-massive data sets. In this paper, two new algorithms with linear complexity for instance selection purposes are presented. Both algorithms use locality-sensitive hashing to find similarities between instances. While the complexity of conventional methods (usually quadratic, O(n2), or log-linear, O(nlogn)) means that they are unable to process large-sized data sets, the new proposal shows competitive results in terms of accuracy. Even more remarkably, it shortens execution time, as the proposal manages to reduce complexity and make it linear with respect to the data set size. The new proposal has been compared with some of the best known instance selection methods for testing and has also been evaluated on large data sets (up to a million instances).Supported by the Research Projects TIN 2011-24046 and TIN 2015-67534-P from the Spanish Ministry of Economy and Competitiveness

    Stable and actionable explanations of black-box models through factual and counterfactual rules

    Get PDF
    Recent years have witnessed the rise of accurate but obscure classification models that hide the logic of their internal decision processes. Explaining the decision taken by a black-box classifier on a specific input instance is therefore of striking interest. We propose a local rule-based model-agnostic explanation method providing stable and actionable explanations. An explanation consists of a factual logic rule, stating the reasons for the black-box decision, and a set of actionable counterfactual logic rules, proactively suggesting the changes in the instance that lead to a different outcome. Explanations are computed from a decision tree that mimics the behavior of the black-box locally to the instance to explain. The decision tree is obtained through a bagging-like approach that favors stability and fidelity: first, an ensemble of decision trees is learned from neighborhoods of the instance under investigation; then, the ensemble is merged into a single decision tree. Neighbor instances are synthetically generated through a genetic algorithm whose fitness function is driven by the black-box behavior. Experiments show that the proposed method advances the state-of-the-art towards a comprehensive approach that successfully covers stability and actionability of factual and counterfactual explanations

    Novel Strategies to Accelerate Search Algorithms in Data Reduction

    Get PDF
    In our current hyper-connected digital world where data is growing enormously, instance reduction is an essential pre-processing phase to obtain cleaner and smaller datasets that are free from noise, redundant or irrelevant samples (the so-called, Smart Data). The data after pre-processing may become more reliable, accurate and useful for subsequent data mining tasks. Instance reduction consists of two types: instance selection and instance generation; each can be formulated as a combinatorial/continuous optimisation problem depending on whether its decision variable is discrete or continuous, respectively. It is an emerging challenge characterised by multimodality and a large number of decision variables. Given such difficulties, derivative-free methods are likely promising approaches to address the problem. They are powerful search algorithms that seek the nearest local optimum and do not necessarily take into account the gradient computation of the objective function like derivative methods. Solutions for instance reduction fall into the intersection of machine learning, data mining and optimisation at which the process of a domain can take part in the execution of another. Thus, the synergy between domains is important to solve the problem more effectively, and this has attracted a significant interest from researchers. Among many different derivative-free search approaches, the family of direct search methods has introduced various strategies to tackle numerous modern numerical optimisation problems, where population-based meta-heuristics and pattern search can be considered two of the most prevalent in the literature. Population-based meta-heuristics are an iterative search framework composing several subordinate low-level heuristics to control exploration and exploitation for a pool of solution candidates. This set of methods searches for high-quality solutions from multi-points, and thus is usually associated with high computational expense. Pattern search methods seek an improved solution from candidates that are generated from different directions. They examine trial solutions sequentially by comparing each trial solution with the `best' solution found up to the present time. In this dissertation, we will investigate these derivative-free search strategies to address instance reduction, a critical optimisation problem in the field of data science. Although many derivative-free methods have been proved effective in addressing instance reduction, they are usually time-consuming, especially when handling relatively large datasets. This impediment limits their practicality in many data mining systems and thus necessitates a solution to accelerate the search process. The need for a fast and effective search framework for instance reduction has motivated us to develop novel search strategies in the family of direct search approaches, aiming to still obtain high quality solutions achieved by state-of-the-art techniques in the domain, but significantly reduce the runtime of the search process. Three major work packages presented in this thesis will cover two direct search approaches for two types of instance reduction, arranged in a progressive order at which findings at an earlier stage will contribute to the understanding of the later outcomes. Firstly, a novel evolutionary search framework for instance selection is proposed to balance the number of samples between classes to address a case study of imbalanced classification. Secondly, we develop another search framework for instance generation based on single-point search and memetic computing, namely Single-Point Memetic Structure. An accelerated mechanism for computing the objective function is embedded into the proposed search design, thus reducing significantly the runtime. Finally, a novel search framework for simultaneous instance selection and generation is designed to handle the instance reduction problem in both combinatorial and continuous search spaces. In summary, the research conducted here introduces a set of novel search strategies towards derivative-free methods to tackle instance reduction problems. They are different search frameworks which aim to produce a high quality reduced set from a relatively large original source within a reasonable amount of time. This is accomplished by either taking advantage of machine learning integration or the Single-Point Memetic Structure with an accelerated mechanism. The use of machine learning in a meta-heuristic search framework greatly speeds up the computation of the objective function while the Single-Point Memetic Search allows us to reuse virtually all prior calculations for computing the fitness value of newly evolved individuals. Hence, these novel search strategies can save vast computational cost. Finally, we leverage the insights previously found to propose another novel search framework that handles both instance selection and instance generation simultaneously, and operates in both combinatorial and continuous search spaces. These novel search strategies are examined with a large number of datasets in different hyper-parameter settings. The obtained numerical results are comprehensively analysed and verified by different statistical tests to prove the robustness of the proposed search strategies with respect to other state-of-the-art techniques in the domain

    Novel Strategies to Accelerate Search Algorithms in Data Reduction

    Get PDF
    In our current hyper-connected digital world where data is growing enormously, instance reduction is an essential pre-processing phase to obtain cleaner and smaller datasets that are free from noise, redundant or irrelevant samples (the so-called, Smart Data). The data after pre-processing may become more reliable, accurate and useful for subsequent data mining tasks. Instance reduction consists of two types: instance selection and instance generation; each can be formulated as a combinatorial/continuous optimisation problem depending on whether its decision variable is discrete or continuous, respectively. It is an emerging challenge characterised by multimodality and a large number of decision variables. Given such difficulties, derivative-free methods are likely promising approaches to address the problem. They are powerful search algorithms that seek the nearest local optimum and do not necessarily take into account the gradient computation of the objective function like derivative methods. Solutions for instance reduction fall into the intersection of machine learning, data mining and optimisation at which the process of a domain can take part in the execution of another. Thus, the synergy between domains is important to solve the problem more effectively, and this has attracted a significant interest from researchers. Among many different derivative-free search approaches, the family of direct search methods has introduced various strategies to tackle numerous modern numerical optimisation problems, where population-based meta-heuristics and pattern search can be considered two of the most prevalent in the literature. Population-based meta-heuristics are an iterative search framework composing several subordinate low-level heuristics to control exploration and exploitation for a pool of solution candidates. This set of methods searches for high-quality solutions from multi-points, and thus is usually associated with high computational expense. Pattern search methods seek an improved solution from candidates that are generated from different directions. They examine trial solutions sequentially by comparing each trial solution with the `best' solution found up to the present time. In this dissertation, we will investigate these derivative-free search strategies to address instance reduction, a critical optimisation problem in the field of data science. Although many derivative-free methods have been proved effective in addressing instance reduction, they are usually time-consuming, especially when handling relatively large datasets. This impediment limits their practicality in many data mining systems and thus necessitates a solution to accelerate the search process. The need for a fast and effective search framework for instance reduction has motivated us to develop novel search strategies in the family of direct search approaches, aiming to still obtain high quality solutions achieved by state-of-the-art techniques in the domain, but significantly reduce the runtime of the search process. Three major work packages presented in this thesis will cover two direct search approaches for two types of instance reduction, arranged in a progressive order at which findings at an earlier stage will contribute to the understanding of the later outcomes. Firstly, a novel evolutionary search framework for instance selection is proposed to balance the number of samples between classes to address a case study of imbalanced classification. Secondly, we develop another search framework for instance generation based on single-point search and memetic computing, namely Single-Point Memetic Structure. An accelerated mechanism for computing the objective function is embedded into the proposed search design, thus reducing significantly the runtime. Finally, a novel search framework for simultaneous instance selection and generation is designed to handle the instance reduction problem in both combinatorial and continuous search spaces. In summary, the research conducted here introduces a set of novel search strategies towards derivative-free methods to tackle instance reduction problems. They are different search frameworks which aim to produce a high quality reduced set from a relatively large original source within a reasonable amount of time. This is accomplished by either taking advantage of machine learning integration or the Single-Point Memetic Structure with an accelerated mechanism. The use of machine learning in a meta-heuristic search framework greatly speeds up the computation of the objective function while the Single-Point Memetic Search allows us to reuse virtually all prior calculations for computing the fitness value of newly evolved individuals. Hence, these novel search strategies can save vast computational cost. Finally, we leverage the insights previously found to propose another novel search framework that handles both instance selection and instance generation simultaneously, and operates in both combinatorial and continuous search spaces. These novel search strategies are examined with a large number of datasets in different hyper-parameter settings. The obtained numerical results are comprehensively analysed and verified by different statistical tests to prove the robustness of the proposed search strategies with respect to other state-of-the-art techniques in the domain
    corecore