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Abstract
Recent years have witnessed the rise of accurate but obscure classification models that
hide the logic of their internal decision processes. Explaining the decision taken by
a black-box classifier on a specific input instance is therefore of striking interest. We
propose a local rule-based model-agnostic explanation method providing stable and
actionable explanations. An explanation consists of a factual logic rule, stating the
reasons for the black-box decision, and a set of actionable counterfactual logic rules,
proactively suggesting the changes in the instance that lead to a different outcome.
Explanations are computed from a decision tree that mimics the behavior of the black-
box locally to the instance to explain. The decision tree is obtained through a bagging-
like approach that favors stability and fidelity: first, an ensemble of decision trees is
learned from neighborhoods of the instance under investigation; then, the ensemble
is merged into a single decision tree. Neighbor instances are synthetically generated
through a genetic algorithmwhose fitness function is driven by the black-box behavior.
Experiments show that the proposed method advances the state-of-the-art towards a
comprehensive approach that successfully covers stability and actionability of factual
and counterfactual explanations.
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1 Introduction

Explaining the decisions of black-box classifiers is one of the the principal obstacles to
the acceptance and trust of applications based on Artificial Intelligence (AI) (Li et al.
2022; Miller 2019). Magazines and newspapers are full of commentaries about AI
systems taking critical decisions that heavily impact on our life and society, from loan
concession in bank systems to pedestrian detection in self-driving cars. The worry is
not only due to the increasing automation of AI decision making, but mostly to the
fact that the underlying algorithms are opaque and their logic unexplained (Pasquale
2015). The leading cause for this lack of transparency is that the process of inferring
a classification model from examples cannot be fully controlled because the size of
the training data and the complexity of such a process are too big for humans (Fre-
itas 2013). It is a paradoxical situation in which, on one side, the legislator defines
new regulations requiring that automated decisions should be explained1 while, on
the other side, more and more sophisticated and obscure algorithms for decision mak-
ing are designed (Malgieri and Comandé 2017; Pedreschi et al. 2019). The lack of
transparency in machine learning models grants to them the power to perpetuate or
reinforce forms of injustice by learning bad habits from the data. In fact, if the train-
ing data contains biased decision records, it is likely that the resulting model inherits
the biases and recommends discriminatory or simply wrong decisions (Ntoutsi et al.
2020; Berk et al. 2018). For these reasons, there has recently been a flourishing of
proposals for explaining classification models (Li et al. 2022; Guidotti et al. 2019d).
The spectrum of approaches ranges from explaining the whole decision logic of a
model (global approaches), to explaining its decision on a specific input instance
(local approaches), and from assuming no information on the model (model-agnostic
approaches) to assuming the model is of a specific type (model-specific approaches).
A radically different direction aims at developing newmodels and new inference algo-
rithms that are interpretable by-design (Rudin 2019). This last line of research is very
promising and aims at redefining the entire panorama of machine learning methods
making them natively transparent; however, it is still in its infancy, while opaque AI
systems are already in usage. For this reason, we firmly believe that it is urgent to have
stable post-hoc “explanators” covering current machine learning technology.

The objective of this paper is to explain the decisions taken by an obscure black-box
classifier on specific input instances by providing meaningful and stable explanations
of the logic involved. We aim at amodel-agnosticmethod, disregarding the black-box
internals and learning process, that works analyzing the input-output behavior of the
black-box locally, i.e., in the neighborhood of the instance to explain. We perform
our research under some specific assumptions. First, we assume that the vehicle for
offering explanations should be as close as possible to a language of formal reasoning,
such as propositional logic. Thus, we are also assuming that the user can understand the
semantics of elementary logic rules, as taught in secondary schools or undergraduate
courses. Second, we assume that an explanation is interesting if it answers: (i) the
factual question of why a specific decision concerning to a user has been made; (ii)

1 We refer to the “right to explanation" established in the European General Data Protection Regulation
(GDPR), entered into force in 2018.
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as well as the counterfactual question of what conditions would change the black-box
decision. Third, we assume that the black-box system can be queried as many times
as necessary, to probe its decision behavior to the scope of reconstructing its logic.2

Resorting to logic rules is a step towards comprehensibility of the explanations,
but it is not enough for achieving meaningful explanations. First, the reconstruction
logic of the black-box in the neighborhood of the instance to explain should be con-
sistent with the black-box decisions, a property known as fidelity (Freitas 2013). In
particular, the factual rules should have high precision in characterizing conditions
for a specific black-box decision. Second, the counterfactual answer should consists
of a minimal number of changes to the feature values of the instance to explain (min-
imality), and such changes should allow for actionable recourse, a property known
as actionability (Venkatasubramanian and Alfano 2020; Karimi et al. 2020). Third,
the generation of explanations should guarantee stability of its output against possible
local perturbations of the input (Alvarez-Melis and Jaakkola 2018). This is crucial
for local approaches, which rely on some randomness in neighborhood generation.
Fourth, the approach should be general enough to encompass not only tabular data but
also images, texts and multi-label data (generality).

We aim at advancing state-of-the-art approaches, including our previous work
lore (Guidotti et al. 2019b), to a comprehensive proposal that is able to extend the
coverage of comprehensibility, fidelity, minimality and generality, by also dealing
with stability and actionability. We propose loresa , a stable and actionable local
rule-based explanation method extending lore. Given a black-box predictor b and
a specific instance x labeled with outcome y by b, loresa builds a simple, inter-
pretable local decision tree predictor by first generating an ensemble of balanced
sets of neighbor instances of x through an ad-hoc genetic algorithm, then extracting
from each set a decision tree classifier, and finally merging the ensemble of deci-
sion trees in a single decision tree classifier. A (counter)factual explanation is then
extracted from the obtained decision tree which locally approximates the behavior
of the black-box around x . The (counter)factual explanation is a pair composed by
(i) a—factual—logic rule, corresponding to the path in the tree that explains why x
has been labelled as y by b, and (ii) a set of counterfactual rules, explaining which
changes in x would invert the class y assigned by b. For example, for an instance
from the compas dataset (Berk et al. 2018) we may have as explanation the rule
{age≤39, race = African-American, is_recid}→High-Risk, and the counterfactual
rules {age > 40}→Low-Risk and {race = Caucasian}→Low-Risk. The factual expla-
nation is that the high risk of recidivism is predicted for a black younger than 40 with
prior recidivism; the counterfactuals explain that a lower risk would be predicted if
the person were older than 40 or white.

loresa largely improves on stability compared to lore by adopting a bagging-like
approach. Guided by the statistical principle that “averages vary less", we first build
an ensemble of decision trees from several local neighborhoods. Differently from
pure bagging methods, where aggregation of the ensemble is obtained at prediction

2 This is the case in a legal argumentation in court, or in an industrial setting where a company wants to
stress-test a machine learning component of a manufactured product, to minimize the risk of failures and
consequent industrial liability (Bhatt et al. 2020).
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time, we (have to) aggregate the decision trees by merging them into a single decision
tree (Strecht et al. 2014), from which explanations are then extracted.

loresa dealswith actionability of counterfactuals by assuming a setU of constraints
on features that the rule must satisfy. A constraint is an equality or an inequality
over features involving the values of the instance under analysis. For example, race
= African-American constraints the value of the feature race. Thanks to the choice
of formal logic as the language of the explanations, checking for actionability boils
down to test for constraint satisfaction, namely that the premise of a counterfactual
rule implies the constraints in U . Indeed, the meaningfulness and usefulness of the
explanation depends on the stakeholder (Bhatt et al. 2020), for which we assume the
set of constraintsU to be given. For instance, the counterfactual {race =Caucasian}→
Low-Risk may make sense to a judge that wants to double-check the suggestion of
the decision support system. However, the same counterfactual is not useful to the
prisoner that cannot change the reality of being black.

We present an extensive experimentation comparing loresa with state-of-the-art
explanation methods. The experimental setting covers datasets of different type (tabu-
lar data, images, texts, and multi-labelled data) and four black-box models. Evaluation
methods include a qualitative analysis, a ground-truth validation, and quantitativemet-
rics of the expected properties of the compared methods (fidelity, comprehensibility,
stability, minimality).

The rest of the paper is organized as follows. Related work is reviewed in Sect. 2.
(Counter)factual explanations as logic rules are introduced in Sect. 3. loresa is
presented in Sect. 4 and experimented with in Sect. 5. Conclusions summarize con-
tributions and open directions. Appendices report further experiments supporting the
design choices of loresa .

2 Related work

The research ofmethods for explaining black-box decision systems has recently caught
much attention (Li et al. 2022; Miller 2019; Minh et al. 2020; Adadi and Berrada
2018; Molnar 2019). The aim is to couple effective machine learning classifiers with
explainers of their logic. Explanation methods can be categorized with respect to
two aspects (Guidotti et al. 2019d). One contrasts model-specific vs model-agnostic
approaches, depending on whether the explanation method exploits knowledge about
the internals of the black-box or not. The other contrasts local vs global approaches,
depending on whether the explanation is provided for any specific instance or for the
logic of the black-box as a whole. The proposed explanation method loresa fits the
line of research of local,model-agnosticmethods originated with (Ribeiro et al. 2016)
and extended in several directions in the last few years.

InRibeiro et al. (2016) the authors introduce lime, a localmodel-agnostic explainer.
lime randomly generates instances “around” the instance to explain creating a local
neighborhood. Then, it learns a linear model on the neighborhood instances labeled
with the black-box decision, and it returns as explanation the feature importance of
the most relevant features in the linear model. The number of such features has to
be specified by the user. This can be a limitation since users may have no clue about
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the correct number of features. Besides being model-agnostic, lime is also not tied
to a specific type of data. However, it employs conceptually different neighborhood
generation strategies (Guidotti et al. 2019a) for tabular data, images, and texts.3 A
further limitation of lime is that the randomneighborhoodgeneration does not take into
account the density of black-box outcomes. These drawbacks of lime are addressed
in the literature (Guidotti et al. 2019a; Jia et al. 2019; Zhang et al. 2019; Laugel et al.
2018). A stream of research is based on evolutionary approaches (Sharma et al. 2019;
Virgolin et al. 2020; Evans et al. 2019). Our proposal fits that line by adopting a genetic
algorithm for the generation of the neighborhood to overcome the deficiencies above.

Explanations in forms of feature importance are also produced by shap andmaple.
shap (Lundberg and Lee 2017) connects game theory with local explanations and
overcomes the lime limitation related to the user-provided number of features. shap
exploits the Shapely values of a conditional expectation function of the black-box by
providing the unique additive feature importance.maple (Plumb et al. 2018) provides
explanations as features importance of a linear model by exploiting random forests
for the supervised selection of the features.

The aforementioned approaches base their explanation on features importance. We
advocate instead for the use of formal logic languages, and in particular for expla-
nations as logic rules4 (Yang et al. 2017; Lakkaraju et al. 2016; Angelino et al.
2017). anchor (Ribeiro et al. 2018) adopts decision rules (called anchors) as explana-
tions. anchor needs to discretize continuous features, while loresa does not require
this preprocessing step that can affect the quality of explanations. The brl approach
inMing et al. (2019) provides a rule-based representation describing the local behavior
of the black-box though a Bayesian rule list (Yang et al. 2017).

A further expected property of explanation methods regards their stability. For
local approaches, the generation of the neighborhood introduces randomness in the
process, leading to different explanations for a same instance in different runs of the
method (Zafar and Khan 2019), or disproportionately different explanations for two
close instances (Alvarez-Melis and Jaakkola 2018). Instability of interpretable shadow
models in global approaches has been also pointed out (Guidotti and Ruggieri 2019),
and some model-specific approaches have been proposed (Bénard et al. 2019).

The concept of counterfactuals, i.e., instances similar to those to explain but with
different labels assigned by the black-box, is a key element in causal approaches to
interpretability (Chou et al. 2022; Moraffah et al. 2020; Verma et al. 2020), and it
is supported by human thinking (Byrne 2016). In Wachter (2017) a counterfactual is
computed by solving an optimization problem. Other notions of counterfactuals can
be also obtained with different objective functions (Lucic et al. 2020; Sharma et al.
2019; Mothilal et al. 2020). loresa provides a more abstract notion of counterfactual,

3 For images, lime randomly replaces real super-pixels with super-pixels containing a fixed color. For texts,
it randomly removes words. For tabular data, it assumes uniform distributions for categorical attributes and
normal distributions for the continuous ones.
4 Formal logic as a theory of human reasoning is questioned in the psychology literature, even in the
simple case of if-then rules (Byrne and Johnson-Laird 2009). On the other side, formal logic is extensively
adopted inmathematics, computer science, linguistics, etc., to unambiguously state arguments (e.g., theories,
specifications) and to reason over them. See e.g., Calegari et al. (2020) for a survey on types and applications
of logics in AI.
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consisting of logic rules rather than flips of feature values. Thus, the user is given not
only a specific example of how to obtain actionable recourse (Venkatasubramanian
and Alfano 2020; Karimi et al. 2020), but also an abstract characterization of its
neighborhood instances with reversed black-box outcome.

Finally, loresa largely improves over our previous work lore (Guidotti et al.
2019b) with regard to the following aspects: (i) loresa accounts for counterfactual
explanations that are actionable by satisfying user-provided constraints on unmodifi-
able attributes; (ii) loresa accounts for stability by generating multiple local decision
trees and merging them to average their instabilities; (iii) loresa is able to explain
multi-class and multi-label black-boxes, while lore works only with binary black-
boxes; (iv) loresa can be applied also to images and texts, while lore works only
with tabular data.

3 Problem formulation and explanation definition

We first set the basic notation for classification models. Afterwards, we define the
black-box outcome explanation problem, and the notion of explanation that ourmethod
will be able to provide.

A predictor or classifier, is a function b : X (m) → Y which maps data instances
(tuples) x from a feature space X (m) with m input features to a decision y in a target
space Y of size L = |Y|, i.e., y can assume one of the L different labels (L = 2 is
binary classification, L > 2 is multi-class classification). We write b(x) = y to denote
the decision y taken by b, and b(X) = Y as a shorthand for {b(x) | x ∈ X} = Y . If
b is a probabilistic classifier, we denote with bp(x) the vector of probabilities for the
different labels. Hence, we have that b(x) = y is the label with the largest probability
among the L values in bp(x). An instance x consists of a set of m attribute-value
pairs (ai , vi ), where ai is a feature (or attribute) and vi is a value from the domain
of ai . The domain of a feature can be continuous or categorical. We assume that a
predictor is available as a function that can be queried at will. In the following, b will
be a black-box predictor, whose internals are either unknown to the observer or they
are known but uninterpretable by humans. Examples include neural networks, SVMs,
ensemble classifiers (Freitas 2013; Guidotti et al. 2019d). Instead, we denote with c
an interpretable (comprehensible) predictor, whose internal processing leading to a
decision c(x) = y can be given a symbolic interpretation which is understandable by
a human. Examples of such predictors include rule-based classifiers, decision trees,
decision sets, and rational functions (Freitas 2013; Guidotti et al. 2019d).

Given a black-box b and an instance x , the black-box outcome explanation problem
consists of providing an explanation e for the decision b(x) = y. We approach the
problem by learning an interpretable predictor c that reproduces and accurately mimes
the local behavior of the black-box.An explanation of the decision is then derived from
c. By local, we mean focusing on the behavior of the black-box in the neighborhood
of the specific instance x , without aiming at providing a description of the logic of the
black-box for all possible instances. The neighborhood of x is not given, but rather
it has to be generated as part of the explanation process. However, we assume that
some knowledge is available about the characteristics of the feature space X (m), in
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particular the ranges of admissible values for the domains of features and, possibly,
the (empirical) distribution of features. Nothing is instead assumed about the training
data/process of the black-box.

Definition 1 (Black-BoxOutcomeExplanation) Letb be a black-box, and x an instance
whose decision y = b(x) has to be explained. The black-box outcome explanation
problem consists of finding an explanation e ∈ E belonging to a human-interpretable
domain E .

Interpretable predictors are specific of the black-box and of the instance to explain
and they must agree with the black-box decision.

Definition 2 (Explanation through Interpretable Model) Let c = ζ(b, x) be an inter-
pretable predictor derived from the black-box b and the instance x using some
procedure ζ , and s.t. c(x) = b(x). An explanation e ∈ E is obtained through c,
if e = ε(c, x) for some explanation logic ε over c and x .

These definitions are parametric in the domain E of explanations, which has to
be instantiated. We define it by adopting a combination of factual and counterfactual
rules. Formally, we define an explanation e as:

e = 〈r = p → y, Φ〉

The first component r = p → y is a factual decision rule describing the reason for the
decision value y = b(x) = c(x). The second component Φ is a set of counterfactual
rules, namely rules describing a (minimal) number of changes in the feature values
of x that would change the decision of the predictor to y′ �= y. As an example, the
following is an explanation for the decision to reject the loan application of instance
x0 = {age = 22, sex = male, income = 800, car = no}:

e=〈r={age≤25, sex=male, income≤900}→deny,

Φ={{income>900}→grant, {sex= f emale}→grant}〉

In this example, the decision deny is due to the age lower or equal than 25, the sex
that is male, and an income lower or equal than 900 (see component r ). In order to
obtain a different decision, the applicant should have a greater income, or be a female
(see component Φ).

In a factual rule r of the form p → y, the decision y is the consequence of the rule,
while the premise p is a boolean condition on feature values. We assume that p is a
conjunction of split conditions of the form ai∈[v(l)

i , v
(u)
i ], where ai is a feature and

v
(l)
i , v

(u)
i are lower and upper bound values in the domain of ai extended with5 ±∞.

An instance x satisfies r , or r covers x , if the boolean condition p evaluates to true for

5 Using ±∞ we can model with a single notation typical univariate split conditions, i.e., equality (a = v

as a ∈ [v, v]), upper bounds (a ≤ v as a ∈ [−∞, v]), strict lower bounds (a > v as a ∈ [v + ε,∞] for a
sufficiently small ε). However, since our method is parametric to a decision tree induction algorithm, split
conditions can also be multivariate, e.g, a ≤ b + v for a, b features (as in oblique decision trees (Murthy
et al. 1994)).
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x , i.e., if sc(x) is true for every sc ∈ p. The rule r in the example above is satisfied by
x0, and not satisfied by x1 = {age = 22, sex = male, income = 1000, car = no}. We
say that r is consistent with the interpretable predictor c, if c(x) = y for every instance
x that satisfies r . Consistency means that the rule provides a sufficient condition for
which the predictor outputs y. If the instance x to explain satisfies p, the rule p → y
represents then a candidate explanation of the decision c(x) = y. Moreover, if the
interpretable predictor mimics the behavior of the black-box in the neighborhood of x ,
we further conclude that the rule is a candidate local explanation of b(x) = c(x) = y.

Consider now a set δ of split conditions. We denote the update of p by δ as
p[δ] = δ ∪ {(a ∈ [v(l)

i , v
(u)
i ]) ∈ p | �w

(l)
i , w

(u)
i .(a ∈ [w(l)

i , w
(u)
i ]) ∈ δ}. Intuitively,

p[δ] is the logical condition p with ranges for attributes overwritten as stated in δ,
e.g., {age≤25, sex = male}[age>25] is {age>25, sex = male}. A counterfactual rule
for p is a rule of the form p[δ] → y′, for y′ �= y. We call δ a counterfactual. Con-
sistency w.r.t. c is meaningful also for counterfactual rules, denoting now a sufficient
condition for a reverse decision y′ of the predictor c. A counterfactual δ describes
which features to change and how to change them to get an outcome different from y.
Continuing the loan example, changing the income to any value > 900 will change
the predicted outcome of b from deny to grant. A desirable property of a consistent
counterfactual rule p[δ] → y′ is that it should be minimal (Lucic et al. 2019; Wachter
2017) with respect to x . Minimality can be measured (see Guidotti et al. (2019b))
with respect to the number of split conditions in p[δ] not satisfied by x . Formally, we
define nf (p[δ], x) = |{sc ∈ p[δ] | ¬sc(x)}| (where nf (·, ·) stands for the number of
falsified split conditions6). In the loan example, {age>25, income>1500} → grant is
a counterfactual with two conditions falsified. It is not minimal as the counterfactual
r = {age≤25, sex=male, income>900} → grant has only one falsified condition. In
summary, a counterfactual rule p[δ] → y′ is a (minimal) motivation for reversing the
decision outcome of the predictor b.

In this work, we add to the properties of consistency and minimality of counterfac-
tual rules, the one of actionability (also called feasibility), which is intended to prevent
generating invalid or unrealistic rules. E.g., a counterfactual split condition age ≤ 25
is not actionable for a loan applicant of age 30 because she cannot change her age.
Formally, we assume a setU of constraints on features of the form: a = x[a], meaning
that the attribute a cannot be changed (e.g., age = 30 or sex = male); or, a ≤ x[a]
(resp., a ≥ x[a]), meaning that the attribute a cannot be increased (resp., decreased).
Actionability requires that the premise p[δ] of a counterfactual rule must satisfy the
conditions specified in U , i.e., p[δ] → U |p[δ] is a true formula, where U |p[δ] are the
constraints in U involving attributes occurring in p[δ]. Going back to our example if
U = {age = 22}, then the counterfactual {age>25, income>1500} → grant is not
actionable.

We can now formally introduce our notion of explanation.

Definition 3 (Explanation) Let c = ζ(b, x) be an interpretable predictor such that
c(x) = b(x), and U a set of constraints. A local (counter)factual explanation e =
〈r , Φ〉 is a pair of: a rule r = (p → y) consistent with c and satisfied by x ; and, a set

6 When clear we write nf as shorthand of nf (p[δ], x).
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Algorithm 1: loresa(x, b, K ,U )

Input : x - instance to explain, b - black-box, K knowledge, U constr.
Output: e - (counter)factual explanation of x

1 D ← ∅; // init. empty set of decision trees

2 for i ∈ {1, . . . , N } do
3 Z (i)= ← genetic(x, fitnessx=, b, K ); // neighborhood generation

4 Z (i)
�= ← genetic(x, fitnessx�=, b, K ); // neighborhood generation

5 Z (i) ← Z= ∪ Z �=; // merge neighborhoods

6 Y (i) ← b(Z (i)); // apply black-box

7 d(i) ← buildDecisionTree(Z (i), Y (i)); //build decision tree

8 D ← D ∪ {d(i)}; // add decision tree to list

9 c ← mergeDecisionTrees(D); // merge decision trees

10 r = (p→y) ← extractDecisionRule(c, x); // factual rule

11 Φ ← extractCounterfactuals(c, r , x,U ); // extract counterfactual

12 return e ← 〈r , Φ〉;

Φ = {p[δ1] → y′, . . . , p[δv] → y′} of counterfactual rules for p consistent with c
such that p[δi ] satisfies U , for i = 1, . . . , v.

Unless otherwise stated, in the rest of the paper we will simply write “an explana-
tion" instead of “a local (counter)factual explanation". According to Definition 2, we
will design a solution to the outcome explanation problem by defining: (i) the function
ζ that computes an interpretable predictor c for a given black-box b and an instance
x , and (ii) the explanation logic ε that derives a (counter)factual explanation e from c
and x as in Definition 3.

4 Local rule-based explanation

We propose loresa , a stable and actionable local rule-based explanation method,
described in Algorithm 1 as extension of lore (Guidotti et al. 2019b). loresa takes in
input a black-box b, an instance x to explain, a set of constraints U , and a knowledge
base K which contains information about feature distributions (domain of admissible
values, mean, variance, probability distribution, etc.). loresa first generates N sets
of neighbor instances Z = {Z (1), . . . , Z (N )} of x through a genetic algorithm. The
knowledge base K is exploited in genetic mutation to be consistent with the distribu-
tions of the features. Next, loresa labels the generated instances with the black-box
decision. For each labelled neighborhood Z (i) a decision tree d(i) is built, and all such
trees are merged into a single interpretable predictor c still in the form of a decision
tree. Rules and counterfactual rules are extracted from c, satisfying the constraints in
U .

loresa fits the definitions of the previous section as follows: lines 1–9 in Algo-
rithm 1 implement the ζ function for extracting the interpretable decision tree c, which
approximates locally the behavior of the black-box b; and lines 10–11 implement the
function ε to extract the (counter)factual explanation e from the logic of the decision
tree.
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Stability of the explanation process follows from the “bagging-like" approach of
building and aggregating several decision trees. In fact, it is well-known that decision
trees are unstable to small data perturbations (Breiman 2001). Bagging is a widespread
method to stabilize decision trees (Breiman 1996). Experiments will confirm this by
contrasting stability metrics of loresa with its “single-tree" version lore. Resorting
to bagging, however, produces a collection of interpretable explainers. We need then
to aggregate them at symbolic level—which is different from standard bagging, where
aggregation is at prediction time. For this, we have a merging procedure in line 9 of
Algorithm 1.

The actionability of the counterfactuals follows from taking into account the con-
straint set U on admissible feature changes (Algorithm 1, line 11). The search for
counterfactuals will also consider the minimality requirement.

In the following, we discuss the details of loresa by motivating the design choices
by the expected properties of the explanation process: locality, fidelity and stability,
comprehensibility, actionability, and generality.

4.1 Locality: neighborhood generation

The goal of this phase is to identify sets of instances Z (i), whose feature are close to
the ones of x , in order to be able to reproduce the behavior of the black-box b locally
to x . Since the aim is to learn a predictor from Z (i), such a neighborhood should be
flexible enough to include instances with decision values equal and different from
b(x). In Algorithm 1, first we extract balanced subsets Z (i)= and Z (i)

�= (lines 2–3),

where instances z ∈ Z (i)= are such that b(z) = b(x), and instances z ∈ Z (i)
�= are such

that b(z) �= b(x), and then we define Z (i) = Z (i)= ∪ Z (i)
�= (line 4). We depart from

instance selection approaches (Olvera-López et al. 2010), and in particular the ones
based on genetic algorithms (Tsai et al. 2013), in that their objective is to select a
subset of instances from an given training set. In our case, instead we cannot assume
that the training set used to learn b is available, or not even that b is a supervised
machine learning predictor for which a training set exists. Instead, our task is similar to
instancegeneration in active learning (Fu et al. 2013),which also includes evolutionary
approaches (Derrac et al. 2010).

We adopt an approach based on a genetic algorithm which generates Z (i)= and Z (i)
�=

by minimizing the following fitness functions:

fitnessx=(z) = Ix �=z + d(x, z) + l(bp(x), bp(z))

fitnessx�=(z) = Ix �=z + d(x, z) + (1 − l(bp(x), bp(z)))

where d : X (m) → [0, 1] is a distance function in the feature space (hence d(x, z) is
close to zero when two instances are similar with respect to their features), l : R →
[0, 1] is a distance function in the label space with respect to the prediction probability
bp (hence l(bp(x), bp(z)) is close to zero when two instances are similar with respect
to their label probabilities), and the function Ix �=z returns zero if z is not equal to x ,
and ∞ otherwise. The genetic neighborhood process tries to minimize these fitness
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Algorithm 2: genetic(x, fitness, b, K )

Input : x - instance to explain, fitness - fitness function,
b - black-box, K knowledge base

Params: n - population size, g - nbr of generations,
pc - prob crossover, pm - prob mutation

Output : Z - neighbors of x

1 P0 ← (x | ∀1, . . . , n); i ← 0; // population init.

2 while i < g do
3 P ′ ← crossover(Pi , pc); // mix records

4 P ′′ ← mutate(P ′, pm , K ); // perform mutations

5 S ← evaluate(P ′′, fitness, b); // evaluate population

6 Pi+1 ← select(P ′′, S); // select sub-population

7 i ← i + 1 // update population

8 Z ← Pi
9 return Z ;

functions. Therefore, fitnessx=(z) looks for instances z similar to x (term d(x, z)), but
not equal to x (term Ix �=z), for which the black-box b has a similar behavior (term
l(bp(x), bp(z))). On the other hand, fitnessx�=(z) leads to the generation of instances z
similar to x , but not equal to it, for which b returns a different decision. We underline
that fitnessx=(x)=fitnessx�=(x)=∞. Hence, the minimization occurs for z �= x .

A key element for the fitness functions are the distances d(x, z) and l(bp(x), bp(z)).
Concerning d(x, z), we account for mixed types of features by a weighted sum of Sim-
ple Matching distance (SM) for categorical features, and of the normalized Euclidean
distance (NE)7 for continuous features. Assuming h categorical features and m − h
continuous ones, we use:

d(x, z) = h

m
· SM(x, z) + m − h

m
· NE(x, z).

Our approach is parametric8 to d, and it can readily be applied to improved heteroge-
neous distance functions (McCane and Albert 2008). With regard to l(bp(x), bp(z)),
we account for sparse numeric vectors by adopting the cosine distance. If b is not a
probabilistic classifier, then l(bp(x), bp(z)) is replaced by identity checking, namely
l(b(x), b(z)) = 0 if b(x) = b(z), and 1 otherwise.

Genetic algorithms (Holland 1992) are inspired by the biological metaphor of evo-
lution and are based on three distinct aspects. (i) The potential solutions of the problem
are encoded into representations that support the variation and selection operations. In
our case, these representations, generally called chromosomes, correspond to instances
in the feature space Xm . (ii) A fitness function evaluates which chromosomes are the
“best life forms”, that is, most appropriate for the result. These are then favored in
survival and reproduction, thus shaping the next generation according to the fitness
function. In our case, these instances correspond to those similar to x , according to
d(·, ·), and those similar/different to the outcome returned by the black-box bp(x),

7 See NormalizedSquaredEuclideanDistance at Wolfram.
8 See “Appendix B” for a comparison of a few distance functions.

123

http://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html


R. Guidotti et al.

Fig. 1 Crossover

Fig. 2 Mutation

according to l(·, ·), for the fitness function fitnessx= and fitnessx�= respectively. (iii)
Mating (called crossover) and mutation produce a new generation of chromosomes by
recombining features of their parents. The final generation of chromosomes, according
to a stopping criterion, is the one that best fits the solution.

Algorithm 2 generates the neighborhoods Z (i)= and Z (i)
�= of x by instantiating the

evolutionary approach described in Bäck et al. (2000). Using the terminology of the
survey (Derrac et al. 2010), it is an instance of generational genetic algorithms for
evolutionary prototype generation. However, prototypes are a condensed subset of a
training set that enable some optimization in training predictors. We aim instead at
generating new instances that separate well the decision boundary of the black-box b.
The usage of classifiers within fitness functions of genetic algorithms can be found
in Wu and Olafsson (2006). However, the classifier they use is always the one for
which the population must be selected or generated from and not another one (the
black-box) like in our case. Algorithm 2 first initializes the population P0 with n
copies of the instance x to explain. Then it enters the evolution loop that begins with
the crossover operator applied to a proportion pc of Pi : the resulting and the untouched
instances are inserted in P ′. We use a two-point crossover which selects two parents
and two crossover features and swap the crossover feature values of the parents (see
Fig. 1). Next, a proportion of P ′, determined by the pm probability, is mutated (see
Fig. 2) by exploiting the feature distributions given by the knowledge9 base K .Mutated
and unmutated instances are added in P ′′. Instances in P ′′ are evaluated according
to the fitness function, and the top n of them w.r.t. the fitness score are selected to
become Pi+1—the next generation. The evolution loop continues until g generations
are completed.10 The best individuals are returned. loresa runs Algorithm. 2 twice,
once using the fitness function fitnessx= to derive neighbor instances Z (i)= , and once

9 K is assumed to include the probability mass functions of discrete features and the density function of
continuous features. In experiments, K is empirically estimated from the set of instances to explain (not
used for training the black-box) by taking the frequencies of values for discrete features, and by selecting
the best fit of the empirical density of continuous features with one of the following families of distributions:
uniform, normal, exponential, gamma, beta, alpha, chi-square, Laplace, log-normal, power law. We also
assume that features are independent, hence, we do not infer the joint distribution.
10 In the implementation of loresa , we set the number of instances n = 500, the number of generations
g = 20, the probabilities of crossover pc = 0.7 and of mutation pm = 0.5. Experiments showing the effect
of varying these parameters are reported in C.
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Fig. 3 Black-box boundary: purple versus green. Starred instance x . Uniformly random (1st) and genetic
(2nd) neighborhoods. In the (3rd) and (4th) plot is reported the density with levels in the bar (best view in
color)

using the function fitnessx�= to derive Z (i)
�= . Finally, setting Z (i)=Z (i)= ∪Z (i)

�= guarantees

that Z (i) is balanced.
Figure 3 shows an example of neighborhood generation for a black-box consisting

of a random forest model on a bi-dimensional feature space. The figure contrasts uni-
form random generation (1st, 3rd plots) around a specific instance x (starred) to our
genetic approach (2nd, 4th plots). The latter yields a neighborhood that is denser in
the boundary region of the predictor. The density of the generated instances is a key
factor in extracting correct and faithful local interpretable predictors and explanations.
For instance, a purely random procedure like the one adopted in lime (Ribeiro et al.
2016) does not account for sources of variability, like the randomness of the sam-
pling procedure in the neighborhood of the instance to explain (Zhang et al. 2019).
On the contrary, the genetic approach of loresa is driven by minimization of the fit-
ness functions, hence less variable neighborhoods are generated. As a further issue,
simply centering the neighborhood generation on the instance to explain may not be
the best strategy to approximate the black-box decision boundary. Jia et al. (2019)
and Laugel et al. (2018) propose neighborhood generation approaches that enhance
locally important features with respect to globally important ones by moving the
center of the generation towards the decision boundary. The two fitness functions in
the genetic generation procedure of loresa enforce the same effect. An experimental
comparison of various neighborhood generation techniques is reported in AppendixA.

4.2 Fidelity and stability: bagging of interpretable predictors

We tackle the issue of instability of the local predictor trained on a random neigh-
borhood of x by adopting an approach which exploits the multiple generation of
random neighborhoods Z = {Z (1), Z (2), . . . , Z (N )} that then, can be used for learn-
ing a single decision tree c, i.e., the local interpretable predictor, by following a
bagging-like approach. Bagging, boosting, and random forests achieve high predic-
tive performances, which, in our context means high fidelity (accuracy w.r.t. black-box
decisions). Moreover, they achieve stability of predictions by averaging the decisions
of several trees (Sagi and Rokach 2018). For each neighborhood Z (i) of x , loresa
builds a decision tree classifier d(i) trained on the instances in Z (i) labeled with the
black-box decisions Y (i) = b(Z (i)). We adopt CART (Breiman et al. 1984) for the tree
building function buildDecisionTree of Algorithm 1. The N decision trees11 are then

11 In the experiments, we set N = 5. Details in Sect. 5.
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merged into a single decision tree c, the local interpretable predictor. Such a classifier
is intended to mimic the behavior of b in the neighborhoods of x . The requirement
that c(x) = b(x) from Definition 3, is tested on the merged decision tree, and, if it is
not met, the algorithm is restarted.12 The choice of decision trees as interpretable pre-
dictors allows for symbolic reasoning: (i) factual decision rules can readily be derived
from the root-to-leaf path in a tree; and, (ii) counterfactual rules can be extracted by
symbolic reasoning over a decision tree (Breiman et al. 1984; Sokol and Flach 2019).
However, the decision logic of ensembles cannot be directly turned into rules.

For this, we first merge the N decision trees into a single decision tree c. A stream
of research focuses on this problem (Assche and Blockeel 2007; Vidal and Schif-
fer 2020; Sagi and Rokach 2020). In this paper we propose to adopt the method
introduced by Fan et al. (2020) which implements the schema of merging multiple
decision trees described in Strecht et al. (2014). The procedure for merging a set of
trees d(1), d(2), . . . , d(N ), trained on various subsets of a given dataset, into a unique
decision tree c is composed of two main phases. In the first phase, the decision regions
of the different tree models are merged using a recursive approach which allows for
their simultaneously. It uses the notion of condition tree. Given a decision tree d and
a condition Cd, let S j denote the condition set of node j in d, which is composed of
conditions from root to node j , then a condition tree d(Cd) is composed of those nodes
in d such that all the conditions in S j satisfies Cd. Hence, if an inner node in d is not
included in d(Cd), then all its branches are not included in d(Cd). Once computing the
condition tree for each decision tree d(i) to be merged, they are recursively merged
to obtain one branch of the root with condition Cd. After merging all the models,
the second phase, called “pruning”, tries to reduce the number of decision regions
involved. In particular, the merged decision tree c is pruned by removing inner nodes
having as leaves the same class. This procedure returns a final decision tree with multi-
way splits even though the input decision trees are trees with binary splits. One of the
most important advantages of this approach is that the merging method is lossless as
it maintains for every instance the class label assigned by the tree ensembles. Also,
Fan et al. (2020) show that their approach is more efficient with respect to the state of
art approaches because requires less memory than others.

The idea behind this procedure is that we want to exploit: (i) the multiple neigh-
borhood generation for increasing the probability of covering the whole local domain
around the instance to be explained, and (ii) the ability of learning from the decisions
made by different decision trees tailored on their training data; and (iii) the ability of
the merging procedure to derive a single model that generalizes the knowledge con-
tained in the multiple original decision trees. These three characteristics help the local
interpretable predictor to be more stable because they mitigate the possible effect of
the randomness introduced in the neighborhood generation, which could lead to have
for the same instance a slightly different explanation. Moreover, the generalized rep-
resentation of the knowledge contained in the multiple decision trees helps in reducing
the probability that small changes in the data may result in very different explanations.

12 Notice that, since the genetic generation starts from a dataset with all instances equal to x (P0 in
Algorithm 2), the case c(x) �= b(x) is rather infrequent. In our experiments (not reported here), this
occurred only in 0.4% of cases.
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Algorithm 3: extractCounterfactuals(c, r , x,U )

Input : c - decision tree, r - rule, x - instance to explain, U - constraints
Output: Φ - set of counterfactual rules for p

1 Q ← getPathsWithDifferentLabel(c, y); // get paths with y′ �= y

2 Φ ← ∅; min ← +∞; // initialize counterfactual set

3 for q ∈ Q do
4 if not q → U |q then
5 continue; // skip rule if constraints not satisfied

6 qlen ← nf (q, x) = |{sc ∈ q | ¬sc(x)}|
7 if qlen < min then
8 Φ ← {q → y′}; min ← qlen
9 else if qlen = min then

10 Φ ← Φ ∪ {q → y′}
11 return Φ;

4.3 Comprehensibility: extracting (counter-)factual rules

We achieve high-level comprehensibility of explanations by extracting them in the
form of factual rules and sets of counterfactual rules. Given the decision tree c, we
derive an explanation e = 〈r , Φ〉 as follows. The factual rule r = p → y is formed by
including in p the split conditions on the path13 from the root to the leaf satisfied by x ,
and setting y = c(x) = b(x). By construction, r is consistent with c and satisfied by
x . Consider now the counterfactual rules in Φ. Algorithm 3 looks for all paths in the
decision tree c leading to a decision y′ �= y (line 1). For one of such paths, let q be the
conjunction of split conditions in it. By construction, q → y′ is a counterfactual rule
consistent with c. Notice that the counterfactual δ for which q = p[δ] has not to be
explicitly computed.14 All such q’s can be ranked by the number of split conditions
not satisfied by x , a.k.a. the number of features to be changed in x . The q → y′’s with
minimal number of changes are returned as counterfactuals (lines 6-8).

4.4 Actionability: constraint satisfaction testing

The counterfactuals provided by loresa support actionable recourse. This is imple-
mented in Algorithm 3 by filtering from the candidate counterfactuals q → y′ those
not satisfying the constraintsU on features (lines 4-5). Since both the premise q and the
constraintsU are logic formulae, the test amounts at checking validity of the implica-
tion q → U |q . For the basic form of constraints that we have considered (conjunction
of equality/comparison conditions) the test is straightforward. In principle, however,

13 The set of split conditions in the path is also called a direct reason, and it is not necessarily minimal.
Minimal sets (called sufficient conditions, or prime implicant explanations) are considered in Shih et al.
(2018) and Darwiche and Hirth (2020). We do not further purse minimizing the factual explanation as
experiments shows loresa returns very small rules.
14 However, it can be done as follows. Consider the path from the leaf of p to the leaf of q. When

moving from a child to a father node, we retract the split condition. E.g., ai ≤ v
(u)
i is retracted from

{a j ∈ [v(l)
j , v

(u)
j ]} by adding ai ∈ [v(l)

i , +∞] to δ. When moving from a father node to a child, we add the
split condition to δ.
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Fig. 4 Example of decision tree locally mimicking the black-box behavior

more complex premises (e.g., multivariate) can be dealt with by resorting to automatic
theorem proving.

Let assume that the decision tree in Fig. 4 is the merged decision tree c.
Let x={age=22, sex=male, income=800, car=no} be the instance for which the
decision deny (e.g., of a loan) has to be explained. The path followed by
x is the leftmost in the tree. The decision rule extracted from the path is
{age≤25, sex=male, income≤900}→deny. There are four paths leading to grant:
q1={age≤25, sex=male, income>900}, q2={17<age≤25, sex=female}, q3={age>25,
income≤1500, car=yes}, and q4 ={age>25, income>1500}. The number of changes
for the qi ’s are as follow: nf (q1, x)=1, nf (q2, x)=1, nf (q3, x) =2, nf (q4, x)=2. There-
fore, the set of minimal counterfactuals isΦ={q1→grant, q2→grant}. Assuming that
U={sex=male}, then q2→grant is not actionable, hence the set of actionable counter-
factuals is Φ={q1→grant}.

Finally, we point out that an actionable counterfactual rule q → y′ can be used to
generate an actionable counterfactual instance. Among all possible instances that
satisfy q → y′, we choose the one that differ minimally from x . This is done
by looking at the split conditions falsified by x : {sc ∈ q | ¬sc(x)}, and selecting
for features appearing in an sc the lower/upper bound that is closer to the value
of the feature in x . For instance, the q1→grant counterfactual instance of x is
x ′ = {age=22, sex=male, income=900+ε)}. We also check that x ′ constructed in
this way is a valid counterfactual, i.e., b(x ′)=grant. If this does not occur, x ′ is not
returned as a counterfactual instance.

4.5 Generality: explanations for images, texts andmulti-label data

Following the approach of lime (Ribeiro et al. 2016), loresa can be adapted to work
on images and texts. Moreover, inspired by Panigutti et al. (2020), we show how it
deals with multi-label data.

Image and Text Data In the pre-processing strategy of lime, an instance in the form
of an image or a text is mapped to a vector of binary values. For images, each element
in the vector indicates the presence/absence of a contiguous patch of similar pixels
(called super-pixels). For words, it indicates the presence/absence of a specific word
in the text. This reduces the problem to the analysis of tabular data, and we can reuse
loresa as introduced so far. Due to the binary nature of data involved, the genetic
neighborhood approach boils down to generate instances by suppressing super-pixels
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or words from the instance to explain. This is close to the way that lime works, but
with a fitness optimizing approach instead of a purely random suppression. As for
lime, the generated instances may not be realistic images or texts.

Multi-labelled Data The formulation of loresa admits so far binary andmulti-class
black-boxes.Multi-labelled classifiers return, for an input instance x , one ormore class
labels. This case is common, for instance, in health data, where more than one disease
may be associated with a same list of symptoms. In particular, probabilistic multi-
labelled classifiers return a vector of probabilities bp(x) whose sum is not necessarily
1, as in the multi-class case. Rather, the i th element in bp(x) is the probability that
the i th label is included in the output (with a typical cut-off at 0.5). loresa can be
extended to (probabilistic)multi-labelled black-boxes by adoptingmulti-class decision
trees in the function buildDecisionTree() of Algorithm 1. Factual rules will be of
the form p → y1, . . . , yk , with k ≥ 1. Counterfactual rules will be of the form
p[δ] → y′

1, . . . , y
′
k′ , with k ≥ 1 and such that {y1, . . . , yk} �= {y′

1, . . . , y
′
k′ } (but

possibly with proper inclusion).

5 Experiments

After presenting the experimental setting and the evaluation metrics, we compare
loresa against the competitors through: (i) a qualitative comparison of explanations
provided, (ii) a quantitative validation of the explanations based on synthetically gen-
erated ground truth, and (iii) a quantitative assessment of the proposed method and
comparison with state-of-the-art approaches in terms of several metrics.15 Moreover,
the Appendices report further experiments: (iv) comparing different neighborhood
generation methods, (v) showing the impact of different distance functions in genetic
neighbor generation, (vii) illustrating the effect of the parameters on the genetic neigh-
bor generation, (vii) providing statistical evidence of the differences among loresa
and its competitors, and (viii) reporting on running times.

5.1 Experimental setup

Weexperimentedwith ten tabular datasets, one image dataset, one text dataset, and one
multi-labelled dataset. Table 1 reports the dataset details. Almost all tabular datasets
have both categorical16 and continuous features. For most of the datasets, instances
regard attributes of an individual person, and the decisions taken by a black-box target
socially sensitive tasks.

A random subset of each dataset, denoted by Xbb, was used to train the black-box
classifiers while the remaining part, denoted by X , was used as instances to explain—

15 loresa has been developed in Python, using deap (Fortin et al. 2012, https://github.com/DEAP/deap)
for genetic neighborhood generation, and the optimized version of CART (Tan et al. 2005) offered by
scikit-learn (http://scikit-learn.org/stable/modules/tree.html) for decision tree induction. The source code
of loresa , the datasets, and the scripts for reproducing the experiments are publicly available at https://
github.com/francescanaretto/LORE_sa. Experiments were performed onUbuntu 20.04 LTS, 252GBRAM,
3.30 GHz × 36 Intel Core i9.
16 The number of features is calculated prior to one hot encoding.
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Table 2 Average accuracy and stddev of the black-box classifiers

DNN NN RF SVM

X .69 ± .24 .75 ± .17 .78 ± .12 .68 ± .16

Xbb .72 ± .26 .76 ± .17 .88 ± .11 .77 ± .13

in brief, the explanation set. For tabular data, the split was 70%-30% and stratified
w.r.t. the class attribute. For mnist, 20news, and medical we followed the split
custom in the relevant literature.17 We denote with Ŷ = b(X) the decisions of b on
X , and with Y = c(X) the decisions of c on X . We assume that the dataset used to
train the black-box is unknown at the time of explanation. Hence, we can only rely on
the set X of instances to explain. Indeed, the knowledge base K is derived from the
explanation set as stated in Footnote 9. Similarly, information about features’ domains
required by the competitor methods is computed from X .

We trained and explained the following black-box models: Random Forest (RF),
Support Vector Machine (SVM) and Neural Network (NN) as implemented by scikit-
learn, andDeepNeuralNetworks (DNN) implemented by keras.18 For each black-box,
for each dataset, we performed a random search for the best parameter setting.19 Aver-
age classification accuracies are shown in Table 1 (bottom) and in Table 2.We compare
loresa against lime (Ribeiro et al. 2016), maple (Plumb et al. 2018), shap (Lund-
berg and Lee 2017), anchor (Ribeiro et al. 2018) and brl (Ming et al. 2019). We
also compare the counterfactuals of loresa with the stochastic optimized counter-
factuals soc (Russell 2019) as implemented by the alibi library,20 and against the
brute force coutnerfactual explainer (bf) as implemented by the fat-forensics
library.21 Unless stated otherwise, default parameters are used for loresa and all the
other methods.22

5.2 Evaluationmetrics

We evaluate the performances of explanation methods under various perspectives. The
measures reported in the following are stated for a single instance to be explained.
The metrics obtained as the mean value of the measures over all the instances in the
explanation set X , can then be used to evaluate the performances of the explanation
methods. Let x ∈ X be an instance to explain.

17 http://qwone.com/~jason/20Newsgroups/, http://yann.lecun.com/exdb/mnist/.
18 Black-boxes: https://scikit-learn.org/, https://keras.io/.
19 Details of the parameters can be found in loresa repository.
20 https://github.com/SeldonIO/alibi.
21 https://fat-forensics.org/.
22 We highlight that for SHAP we used the KernelSHAP explainer that can be adopted for any black-box
model. Also, as background knowledge for SHAP we used the medoid of the training set. We highlight
that, different choices of the background knowledge can significantly impact on the outcome as illustrated
in Gosiewska and Biecek (2020) and Sundararajan and Najmi (2020). However, we relied on the medoid
because as illustrated in the tutorial for KernelSHAP on tabular data provides the best trade-off between
reliability and efficiency. We did not compare against other counterfactual explainers as this is out from the
purpose of the paper. We refer to Guidotti (2022) for a comprehensive survey and benchmarking.
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Correctness We will evaluate the correctness of explanations under controlled sit-
uations where ground truth is available. Let e and ẽ be the binary vectors indicating
the presence/absence (1/0) of a feature in the explanation for x of a given method, and
in the ground truth respectively. For rule-based explanations, presence means that the
feature appears in the premise of the rule. For feature importance vectors, presence
means that the feature has non-zero magnitude. We measure the correctness of an
explanation w.r.t. the ground-truth using the f1-score:

f1-score(e, ẽ) = 2 · recall(e, ẽ) · precision(e, ẽ)
recall(e, ẽ) + precision(e, ẽ)

where the precision is the percentage of features present in e that are also in ẽ, and the
recall is the percentage of features in ẽ that are also in e.

When ground truth is not available, we will consider the following measures to
evaluate specific properties of an explanation process.

SilhouetteWe measure the quality the neighborhood23 in a local approach by mea-
suring how similar is x to instances in Z= compared to instances in Z �=. Let d(x, S)

denote the mean Euclidean distance between x and instances in S. Inspired by clus-
tering validation (Tan et al. 2005), we define:

silhouette(x) = d(x, Z �=) − d(x, Z=)

max{d(x, Z �=), d(x, Z=)}
High silhouette results from accurate neighborhood generation (Sect. 4.1).

Fidelity It answers the question: how good is the interpretable predictor c at mim-
icking the black-box b? Fidelity can be measured in terms of accuracy (Doshi-Velez
and Kim 2017) of the predictions Y = c(Z) of the interpretable predictor c w.r.t. the
predictions Ŷ = b(Z) of the black-box b, where Z is the neighborhood of x gener-
ated by the local method. High fidelity of c results from both accurate neighborhood
generation (Sect. 4.1) and predictive performance of the learning algorithm (Sect. 4.2).

Complexity It is a proxy of the comprehensibility of an explanation, with larger
values of complexity denoting harder to understand explanations (Freitas 2013). For
rule-based explanations, as complexity we adopt the size of the rule premise (for
loresa we consider only the factual rule). Low complexity results from general (non-
overfitting, stable) local interpretable surrogate predictors (Sect. 4.2) and a direct
method to extract the rule (Sect. 4.3). For feature importance vectors, as complexity
we adopt the number of non-zero features. For instance in lime are those of the local
surrogate linear regressor.

Stability It measures the ability to provide similar explanations to similar instances.
Also named robustness or coherence, it is a crucial requirement for gaining trust by
the users (Guidotti and Ruggieri 2019). We measure it through the local Lipschitz
condition (Alvarez-Melis and Jaakkola 2018):

23 In order to evaluate the neighborhood generated by an explainer, it must be available. brl, maple and
shap do not use a notion of neighborhood to return the explanation. However, the shap library allows access
to the permutation of x tested to determine the Shapely value approximations. We used this set of instances
as the neighborhood for shap.
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instability(x) = maxxi∈Nk (x)
‖ei − e‖2
‖xi − x‖2 (1)

where Nk(x) is the set of the k = 5 instances in X \ {x} closest to x w.r.t. Euclidean
distance, e is the binary vector of the explanation of x , and ei is the binary vector of the
explanation of xi ∈ Nk(x). Intuitively, the larger is the ratio the more different are the
explanations for instances close to x . Low instability (or, high stability) results from
general (non-overfitting, stable) local interpretable surrogate predictors (Sect. 4.2).
While low instability could be the result of under-fitting, this is not the case of local
explanation methods which, being local and being based on random components,
are not prone to exhibit the same explanation for different instances. In addition, we
consider also sensitivity of a local explanationmethod to randomness introduced in the
neighborhood generation. This is measured by the distance of explanations generated
for a same instance over multiple calls to the explanation method:

instabilitysi (x) = maxei ,e j∈Ek (x)‖ei − e j‖2 (2)

where Ek(x) is the set of the explanations obtained by calling the method k = 5
times on the same input instance x . A low same-instance instability is obtained when
similar explanations are returned over multiple runs. Instances and explanations are
normalized before calculating the instability measure.

Coverage and Precision These measures apply to rule-based explanations p → y
only (for loresa we consider only the factual rule). Let Z be the neighborhood of
x generated by the local method. The coverage of the explanation is the proportion
of instances in Z that satisfy p. The precision is the proportion of instances z ∈
Z satisfying p such that b(z) = y. Coverage and precision are competing metrics
which respectively estimate the generality of the rule and the probability it correctly
models the black-box behavior locally to the instance to explain. They depend both
on the characteristics of the neighborhood generation (Sect. 4.1) and on the predictive
performance of the learning algorithm (Sect. 4.2).

Changes An indicator of the quality of a counterfactual is the number of changes
w.r.t. the instance x . For a set of counterfactual instances, such as those provided by
soc, we count the mean number of features whose value is different from x . For a set
of counterfactual rules p[δ] → y, provided by loresa , we count the mean number
of falsified split conditions nf (p[δ], x). For loresa , we expect a small number of
changes thanks to the selection of counterfactual paths in the surrogate predictor with
minimum number of changes (Sect. 4.3). However, actionability of counterfactuals
maybe achieved at the cost of a larger number of changes (Sect. 4.4).

DissimilarityWe measures the proximity between x and the counterfactual x ′ gen-
erated as the distance between x and the counterfactual instance x ′ that we obtain by
applying to x the changes described by p[δ]. We calculate the distance using the same
function described in Sect. 4.1. The lower the better.

PlausibilityWeevaluate the plausibility of the explanations in terms of the goodness
of the counterfactuals returned by using the following metrics based on distance and
outlierness Guidotti and Monreale (2020).
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Fig. 5 Explanations for an instance x of the compas-m dataset classified as High risk of recidivism by a
NN black-box

Minimum Distance Metric As a straightforward but effective evaluation measure,
we adopt proximity. Given the counterfactual x ′ returned for instance x , x ′ is plausible
if it is not toomuch different from themost similar instance in a given reference dataset
X . Hence, for a given explained instance x , we calculate the plausibility in terms of
Minimum Distance MDM = minx̄∈X/{x} d(x ′, x̄) where the lower the MDM , the
more plausible is x ′ the more reliable is the explanation, because x ′ resembles a real
instance in X .

OutlierDetectionMetricsWealso evaluate the plausibility of the counterfactuals by
judging how much they appears as outliers. The lower the scores the more plausible
they are. In particular, we estimate the degree of outlierness of a counterfactual x ′
returned for an instance x by employing the outlier detection technique Isolation
Forest (IsoFor) Liu et al. (2008).

5.3 Qualitative evaluation

We qualitatively compare loresa explanations with those returned by competitors on
an instance x of the compas-m dataset, assuming aNN as the black-box. The instance
and the explanations are shown in Fig. 5.

The factual rule r of loresa clarifies that x is considered at high risk of recidivism
because of his young age and of the number of previous detections. The counterfactuals
Φ show that the risk would have been lowered to Low for an older individual, or
Medium for various reasons some of which are not actionable, e.g., different age, sex
or race. The counterfactualsΦ∗ are obtained by considering the set of constraintsU={
age=20, age_cat=Less than 25, race=Afr.-Am., sex=Male}. In this case, the decision
b(x) would have been different only with a lower number of prior arrests or with a
larger number of days between the screening and the arrest.

The competitor rule-based explainers suffer from a few weaknesses. anchor
returns various conditions, involving many features, in order to guarantee high preci-
sion. Thus, its explanation result hard to read and unnecessarily complex. brl bases
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Fig. 6 Explanations of loresa and lime for two instances x (one per row) of the mnist dataset classified
as 9 and 4 by a RF black-box. Meaning of columns is 1st: instance x , 2nd: superpixel segmentation,
3rd: loresa factual rule, 4–5th: loresa counterfactuals, 6th : lime explanation, 7th: lime counterfactuals
(towars unspecified class)

its explanation on a rule with a single feature, which on the example instance is age.
Even though it is (partly) correct, the user can hardly trust such a simple and minimal
justification. We will show next that brl is indeed not particularly good in mimick-
ing black-boxes’ behaviors. The feature importance-based explainers lime, shap and
maple provide a list of features with a score of their relevance in the decision. The
most important features for lime, i.e., age and priors_cnt, are in line with the factual
rule of loresa . shap attributes the decision of the black-box only to age. maple pro-
vides a (unnecessarily long) list of features (shortened for space reasons) with scores
in agreement with the other explainers. Regarding counterfactuals, soc suggests a set
of changes to x’s feature values turning the risk prediction to Medium. Compared to
Φ∗, the changes are either non-actionable (e.g., age=17.31) or less informative or
impossible (e.g., priors_cnt=4.34).

Explanations on Images, Texts & Multi-label Data We compare loresa explana-
tions for images and texts with lime explanations.

Figure 6 shows such comparison on two images of Fig.mnist. Both methods
adopt the same segmentation shown in the second column of the figure. The factual
explanations of loresa , shown visually in the 3rd column of Fig. 6, clearly attribute
the classifications for 9 and 4 to the presence of super-pixels s8, s6, s4 and s7, s0,
s4, respectively. The absence of some of such super-pixels (4th column), would have
changed the black-box decision as shown in Φ1 and Φ2. For instance, the image of
9 would have been classified as 4 if the area of the super-pixel s6 would have been
white. The explanation returned by lime are less intuitive both when considering only
the super-pixels pushing the classification towards a class (5th column), or pushing
the classification towards another (unspecified) class (6th column).

Figure 7 reports the explanations of loresa , lime and anchor for a text from the
20news dataset. All methods adopt the same document vectorization. loresa shows
that the text is classified as atheism because of the simultaneous presence of some
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Fig. 7 Explanations of loresa and lime for an instance x of the 20news dataset classified as atheism by
a NN black-box

words in the factual rule. The absence of specific words in the counterfactual rules
would change the classification to christian. lime explanation is in agreement with
the one of loresa as the words edu, com and religion have negative weight on the
classification towards atheism. The explanation of anchor highlights the presence of
religion and religious, but it also includes less meaningful words.

Figure 8 reports an example of explanation derived for multi-labelled classification
using themedical dataset. The instance x is labelledwith the diseases corresponding
toClass 12 andClass 38. The explanation is the conjunction of symptoms in the factual
rule r . A single label would have been returned by the black-box if cough were absent
and, either pneumonia were absent or hypertrophy were present. We cannot compare
with soc, because it is not able to deal with multi-labelled classification.

In conclusion, we believe that the reported examples of factual, counterfactual,
and actionable explanations of loresa offer to the user a clearer and more trustable
understanding than what is offered by the other explainers.

Fig. 8 loresa explanations for an instance x of the medical dataset classified as Class 12 and Class 38
by a RF black-box
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Fig. 9 Correctnessmetric by varying the total number of featuresm+u.Left: synthetic rule-based classifiers.
Right: synthetic linear regressors

5.4 Ground truth validation

By synthetically generating transparent classifiers and using them as black-boxes, we
can compare the explanations provided by an explainer with the ground-truth decision
logic of the black-box (Guidotti 2021). In particular, the f1-score() metric accounts
for the correctness of the explanations.

In order to have a comparison as fair as possible among methods returning different
types of explanations, we build two types of black-boxes: rule-based classifiers and lin-
ear regressor-based. The former are closer to rule-based explainers, the latter to feature
importance explainers. In both cases, we start from datasets of m binary informative
features and u Gaussian-noise uninformative features. The total number of features
m+u varies over {2, 4, 8, 16, 32, 64, 128} and, for a fixedm+u, we generate 100+100
such datasets where m < min{32,m + u}.24 The informative features are generated
following the approach of Guyon (2003) implemented in scikit-learn.25 Thus,
we have 700 synthetic datasets for training rule-based classifiers and 700 for training
linear regressors. Each dataset contains 10,000 instances, 1000 of which are used as
explanation set.

Rule-based black-boxes are obtained by training a decision tree from a synthetic
dataset, and then extracting rules from such a decision tree. The ground-truth explana-
tion for an instance x is the rule satisfied by x in the black-box. Linear regressors
black-boxes are obtained by an adaption of the approach of Klimke (2003). The
ground-truth explanation for an instance x is the gradient of the instance in the decision
boundary closest to x . Additional details26 can be found in Guidotti (2021).

Figure 9 reports the f1-score metric at the variation of the total number of features
m + u in synthetic datasets. Each point shows the mean f1-score over the explanation
sets of such datasets. loresa outperforms the other explainers when m + u ≤ 16.
For larger values of m + u, loresa performance is comparable to those of lime and

24 We specified 32 as maximum number of features m because typically tabular datasets with columns
having clear and interpretable semantics have less than 30 features (like those used in the experiments).
Thus, since our purpose is not to perform a scalability test but a correctness test, we selected this upper
limits.
25 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.
26 We highlight that the transformation of features importance and of rules into binary vectors indicating
the presence of a feature is a simplification adopted to make possible the comparison of explainers returning
different types of explanations using the same metric.
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Table 3 Aggregated evaluation metrics over experimental datasets and black-boxes

silhouette fidelity complexity instability instabilitysi

anchor .116 ± .51 .912 ± .21 4.950 ± 8.20 .174 ± 0.29 .651 ± .949

brl .019 ± .30 .869 ± .09 1.998 ± 1.23 .889 ± 0.45 n.a.

lime .444 ± .49 .904 ± .23 9.733 ± 1.47 .787 ± 1.58 .159 ± .142

lore .408 ± .49 .996 ± .01 4.917 ± 3.69 .123 ± 0.22 .259 ± .847

maple .127 ± .56 .949 ± .09 29.014 ± 3.25 .651 ± 1.66 n.a.

shap .463 ± .56 n.a. 6.070 ± 3.84 .608 ± 0.58 .017 ± .052

loresa .569 ± .46 .992 ± .20 3.986 ± 3.93 .073 ± 0.07 .107 ± .081

loredsa .569 ± .46 .999 ± .01 5.105 ± 4.29 .083 ± 0.08 .107 ± .066

anchor lore brl loresa loredsa

coverage .284 ± .32 .492 ± .27 .344 ± .30 .742 ± .27 .485 ± .26

precision .912 ± .21 .993 ± .07 .732 ± .22 .772 ± .26 .998 ± .02

h-mean .433 ± .25 .657 ± .11 .468 ± .25 .694 ± .25 .615 ± .22

Bold value indicates the best perfomance

shap for rule-based classifiers, and slightly lower than their performance for linear
regressors.

5.5 Quantitative evaluation

Wequantitatively assess the quality of loresa and of the competitor explainers through
the other evaluation metrics of Sect. 5.2.

In order to evaluate the importance of the trees merging strategy employed by
loresa for deriving the single local decision tree, we implemented a variant that
avoids the merging operation. We call it loredsa and works as follows. After learn-
ing the decision trees d(1), d(2), . . . , d(N ) on their corresponding local neighborhood
Z (1), Z (2), . . . , Z (N ) labeled by the back-box b, we use each tree d(i) for labeling its
training neighborhoods, Z (i), i.e., Y (i)

d = d(i)(Z (i)). Then, we compute the union of

the new labeled neighbors, i.e., DZ = ⋃

∀i∈[1,N ] (Z (i),Y (i)
d ) and we use DZ to learn

the final decision tree c.
For sake of compactness, to quantitatively compare all the explanation methods we

report only aggregate results, i.e., mean and standard deviation of the metrics over
all datasets and black-boxes. Table 3 (top) reports the silhouette, fidelity, complexity,
instability, and instabilitysi metrics. loresa overcomes all the other explainers on 3
metrics, and it is runner-up on the other 2 metrics. As expected, loresa considerably
improves the complexity and the two instabilitymetrics with respect to its predecessor
lore while maintaining the same level of fidelity. In terms of complexity, loresa is
the second best performer after the brl approach which, on the other hand, has lower
performance on the other metrics and is one of the most stable. The only competitors
with lower instability are shap andmaplewhich provide more complex explanations.
Moreover, our experimental results show that loresa has also lower complexity and
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Fig. 10 Instability metric by varying the number N of decision trees in loresa

instability with respect to loredsa highlighting the importance of the merging proce-
dure for the stability. The better performance of loresa is paid with a slightly higher
runtime required to get an explanation due to the merging procedure that is on average
315.59 ± 185.74 seconds among all datasets and black-box models 315.59, while
it is on average 285.23 ± 179.83 seconds for loredsa . We underline that having an
efficient implementation is out form the purpose of this paper and that, how specified
in the “Appendix”, several possibilities are available to speed up the calculus through
parallelization of the explanation process. Figure 10 shows how instability behaves
varying the number N of local neighborhoods/decision trees generated by loresa .
Similar results are obtained for loredsa . There is a (local) minimum at N = 5, which
is the value set by default in loresa . Finally, with respect to the instabilitysi met-
ric,27 we point out that brl and maple are deterministic methods, hence the metric
does not apply to them. shap, which has the best performances, bases its explanation
process on permutations of x with respect to a set of base values. Using a single back-
ground value as the medoid of the training set, as suggested in SHAP tutorials’ can
markedly limit the variability of the permutations of x . This explains the low insta-
bilitysi value. On the other hand, different background values could lead to different
explanations (Gosiewska and Biecek 2020; Sundararajan and Najmi 2020).

In Table 3 (bottom) we report the coverage and precisionmetrics for the rule-based
explainers under analysis. Furthermore, to capture both measures with a single value,
we also report the harmonic mean (h-mean) of coverage and precision. We notice that,
loresa , loredsa and lore overcome anchor and brl for both indicators. loresa
considerably improves the rule coverage paying something in precision; however,
looking at the h-mean loresa is the best performer. This is another beneficial effect
of the bagging-like approach, which improves on generality (less overfitting) of the
interpretable predictor. A Friedman test (Demsar 2006) on each of the metrics rejects
the null hypothesis of zero difference among the methods (p value < 10−5). Further
evidence is reported in “Appendix D”.

Table 4 compares loresa with the merging variant and with two competitors with
respect to the counterfactual part of the explanation.We highlight that loresa is not an
explainer directly returning counterfactual instances on its own. However, counterfac-
tual instances can be created by modifying the instance under analysis x according to
the counterfactual rules inΦ. We notice that the brute force approach bf has the lowest

27 Differently from instability, the instabilitysi metric is not normalized—see (1), (2). Hence, the columns
for the two metrics in Table 3 (top) cannot be compared to each other.
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Table 4 Aggregated evaluationmetrics estimating the proximity of the counterfactual explanations in terms
of dissimilarity and the plausibility as MDM and IF scores

soc bf loresa loredsa

dissimilarity 0.170 ± 0.27 0.056 ± 0.07 0.093 ± 0.03 0.111 ± 0.00

MDM 0.166 ± 0.28 0.067 ± 0.08 0.026 ± 0.00 0.019 ± 0.01

IsoFor 1.074 ± 0.09 1.221 ± 0.36 1.007 ± 0.00 1.060 ± 0.07

The lower the better for all the measures: in bold the best performer, in italic the runner up

Table 5 Aggregated evaluation metrics for counterfactuals over experimental datasets and black-boxes

X Explainer no. cf. changes b Explainer no. cf. changes

adult soc 9.6 ± 1.0 3.8 ± 2.7 DNN soc 9.9 ± 0.7 2.6 ± 1.7

loresa 2.9 ± 2.7 1.3 ± 0.5 loresa 2.4 ± 1.6 1.2 ± 0.5

loresa 1.8 ± 1.7 2.2 ± 0.4 loresa 1.2 ± 0.4 2.5 ± 0.5

bank soc 3.5 ± 2.4 1.6 ± 0.6 NN soc 7.2 ± 2.4 5.0 ± 3.3

loresa 1.4 ± 0.9 1.3 ± 0.5 loresa 2.5 ± 2.4 1.3 ± 0.5

loresa 1.6 ± 0.8 1.5 ± 0.2 loresa 1.4 ± 0.9 2.2 ± 0.4

churn soc 8.4 ± 1.8 5.8 ± 3.7 RF soc 7.5 ± 2.3 3.6 ± 2.7

loresa 2.0 ± 1.9 1.5 ± 0.7 loresa 2.4 ± 2.1 1.3 ± 0.6

loresa 1.5 ± 0.9 2.3 ± 0.5 loresa 1.9 ± 1.2 2.2 ± 0.5

cps-m soc 5.2 ± 1.8 2.9 ± 1.4 SVM soc 6.9 ± 3.5 3.2 ± 2.7

loresa 3.5 ± 2.2 1.1 ± 0.3 loresa 3.0 ± 2.3 1.2 ± 0.5

loresa 1.8 ± 1.1 1.3 ± 0.2 loresa 1.6 ± 1.1 2.2 ± 0.4

loresa is loresa with constraints U in input

dissimilarity but loresa and loredsa achieve closer results. soc is the worst performer
with respect to this metric, meaning that the counterfactual instances returned by soc
are not highlighting minimal changes with respect to x to change decision. Further-
more, loresa alternatives return the most plausible counterfactuals with respect to the
the MDM and IsoFor metrics. There is not a clear winner but overall the plausibil-
ity scores of loresa are better being always the best performer or the runner up, i.e.,
lower, than those of bf and soc, enabling it to be used also as a possible counterfactual
explainer.

In Table 5, we compare loresa with the counterfactual explainer soc that is typ-
ically used as a baseline (Guidotti 2022). Mean and standard deviations are reported
for the number of counterfactual instances (soc) or counterfactual rules (loresa) pro-
duced, and the changesmetrics (number of changes to instance x to revert the black-box
outcome). For all the reported datasets and black-boxes, loresa produce less changes
than soc. On the other hand, soc returns more counterfactuals. The number of coun-
terfactuals returned by loresa could be increased trading off with changes, simply by
relaxing the requirement of minimality in Algorithm 3. Let us now denote with loresa
with underlined a the execution of loresa with in input dataset-specific constraintsU
stating features that cannot be changed: age, race, sex, native-country, marital-status
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for adult; age for bank; state, state-area, state for churn; age, age-cat, race, sex
for compas-m (shown as cps-m in the table). As expected, it turns out that loresa
produces less counterfactuals its counterpart ignoring the actionability. This is due to
the filtering of the counterfactual rules that do not satisfy the feature constraints. On
average, such counterfactual require more changes to the instance x to explain, but
still less than soc.

6 Conclusion

We have proposed loresa , a black-box agnostic method for local explanations provid-
ing informative factual decision rules and actionable counterfactual rules. An ample
experimental evaluation with state-of-the-art methods has shown that loresa largely
improves as per stability of explanations, while ranking top or runner-up in several
other quantitative metrics. Stability of the provided explanations is achieved by adopt-
ing a novel bagging-like approach in generating and aggregating several local decision
trees.

A few directions can be mentioned as future work to expand the applicability of
loresa . First, synthetically generated instances may not respect correlations among
attributes (e.g., age and education level). Hence, it is worth extending the approach by
integrating domain knowledge (dependencies or causal relationships) among attributes
in the neighborhood generation and/or in the inference of the interpretable predictor.
Second, in multi-class problems, alternative definitions of fitness �= could be imple-
mented to drive the selection of counterfactual rules towards some specific class value.
E.g., in a credit risk rating context, to provide counterfactuals toward a lower risk label.
Third, the adaptation of loresa to images and texts with a simple binary encoding,
modeling presence/absence of a super-pixel/word, suffers from the same problems as
lime, namely the generation of unrealistic synthetic instances. More complex encod-
ing using autoencoders can be used to overcome these limitations and to produce
neighborhoods of realistic images and texts (Guidotti et al. 2019c). Finally, loresa
assumes that the black-box can be queried as many times as necessary. When this is
not the case, the neighborhood generation phase must take into account constraints on
the number of admissible queries, e.g., by adopting an active learning variant of the
genetic approach.
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A Neighborhood generation

In Sect. 5, we contrasted loresa with lore, which adopts a simplified fitness func-
tion where the distance between class probability vectors (namely, l(bp(x), bp(z)) in
fitnessx=(z)) is replaced by identity of the predictions (namely, Ib(x)=b(z)), and which
consider a single neighborhood/decision tree. Here, we conduct an ablation study by
contrasting loresa with a version of it including a purely random neighborhood gen-
eration, called rndsa . Table 6 reports the evaluation metrics described in Sect. 5.2 for
the experimental datasets and black-box classifiers. The best results are highlighted in
bold. loresa has nearly always the best silhouette, fidelity, precision, and instability.
The best performing silhouette of loresa confirms that the genetic neighborhood gen-
eration strategy leads to dense neighborhoods with instances that separate the local
decision boundary and they are still similar to the one to explain. Hence, it is not just
a marginal improvement over random generation but a key feature to achieve com-
pactness and separation of the neighborhoods Z= and Z �=. Other basic techniques
of neighborhood generation, such as oversampling and instance selection, are also
overcome by the genetic approach, as shown in Guidotti et al. (2019b). For black-box
aggregations, rndsa shows the best coverage and complexity. This can be attributed
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Table 6 Aggregated evaluation metrics over datasets (top) and black-boxes (bottom)

Method silhouette fidelity coverage precision complexity instability

X

adu. loresa .16 ± .91 .99 ± .02 .57 ± .28 .96 ± .16 3.74 ± 3.17 .35 ± 1.03

rndsa .12 ± .90 .87 ± .04 .56 ± .11 .87 ± .04 4.67 ± .59 .40 ± .42

comp. loresa .54 ± .22 .99 ± .00 .44 ± .16 1.00 ± .03 4.97 ± 2.15 .19 ± .27

rndsa .14 ± .22 .93 ± .09 .39 ± .22 .85 ± .16 3.84 ± 1.25 .19 ± .22

ger. loresa .70 ± .57 1.00 ± .00 .87 ± .11 1.00 ± .00 .98 ± .84 .80 ± 1.97

rndsa .56 ± .71 .89 ± .17 .88 ± .24 .89 ± .17 1.29 ± .57 1.26 ± .54

b

DNN loresa .61 ± .17 .99 ± .01 .55 ± .20 1.00 ± .02 6.96 ± 3.97 .12 ± .38

rndsa .25 ± .78 .85 ± .13 .83 ± .26 .85 ± .14 3.46 ± .80 .12 ± .24

NN loresa .50 ± .27 .99 ± .01 .32 ± .18 .99 ± .10 6.93 ± 3.79 .84 ± .99

rndsa .40 ± .70 .88 ± .11 .83 ± .27 .87 ± .15 3.09 ± 1.24 .85 ± 1.41

RF loresa .69 ± .13 .97 ± .02 .36 ± .12 .98 ± .06 3.36 ± 1.86 .76 ± .13

rndsa .57 ± .51 .76 ± .13 .67 ± .29 .78 ± .15 3.26 ± 1.00 .79 ± .31

Bold value indicates the best perfomance

to a weaker, hence simpler, decision boundary characterization of the purely random
strategy.

B Impact of distance functions

A key element of the neighborhood generation is the distance function used by the
genetic algorithm. In this section we show how the explanations of loresa are affected
by different distance functions. For example, Wachter (2017) shows that considerable
differences of the counterfactual instances occur at the variation of the distance func-
tion adopted by their stochastic optimization approach. As alternative distances to the
normalized euclidean distance (neucliden) adopted by loresa , we report results using
the cosine distance and the normalized mean deviation (nmeandev) distance. Experi-
ments over the compas, fico and german datasets, and over DNN, NN, and SVM
black-boxes are reported in Table 7. There is no major difference in terms of fidelity
and precision, whilst neucliden has the best performance or is a close runner up for
all other metrics.

C Genetic algorithm parameters

We investigate on the impact of the parameters of the genetic Algorithm 2: (i) the
neighborhood size n, (ii) the crossover probability pc, (iii) the mutation probability
pm , and (iv) the number of generations g. We vary one parameter at a time while
keeping the others fixed at their default value, i.e., n = 500, pc = 0.7, pm = 0.5,
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Table 7 Aggregated evaluationmetrics over datasets (top) andblack-boxes (bottom)w.r.t. distance functions
in the neighborhood generation of loresa

Distance silhouette fidelity coverage precision complexity instability

X

compas neuclidean .54 ± .22 .99 ± .00 .44 ± .16 1.00 ± .03 4.97 ± 2.15 .21 ± .32

cosine .50 ± .24 .99 ± .00 .43 ± .16 1.00 ± .02 5.00 ± 2.11 .24 ± .39

nmeandev .27 ± .26 .99 ± .00 .29 ± .18 .99 ± .11 5.10 ± 1.86 .24 ± .44

fico neuclidean .52 ± .17 .98 ± .01 .40 ± .21 .98 ± .10 9.49 ± 3.77 .07 ± .04

cosine .54 ± .12 .98 ± .01 .39 ± .19 .99 ± .07 9.88 ± 3.66 .27 ± .31

nmeandev .14 ± .17 .98 ± .01 .19 ± .19 .94 ± .21 9.78 ± 3.52 .18 ± .16

german neuclidean .70 ± .57 1.00 ± .00 .87 ± .11 1.00 ± .00 .98 ± .84 .80 ± 1.97

cosine .66 ± .57 1.00 ± .00 .78 ± .18 1.00 ± .00 1.09 ± .90 .97 ± 1.33

nmeandev .61 ± .60 1.00 ± .00 .85 ± .15 1.00 ± .00 .73 ± .66 .90 ± 1.27

b

DNN neuclidean .61 ± .17 .99 ± .01 .55 ± .20 1.00 ± .02 6.96 ± 3.97 .12 ± .38

cosine .62 ± .14 .99 ± .01 .56 ± .19 1.00 ± .01 6.54 ± 3.82 .13 ± .38

nmeandev .12 ± .23 .99 ± .01 .21 ± .24 .96 ± .19 6.22 ± 3.04 .13 ± .45

NN neuclidean .50 ± .27 .99 ± .01 .32 ± .18 .99 ± .10 6.93 ± 3.79 .84 ± .99

cosine .50 ± .24 .99 ± .00 .32 ± .15 .99 ± .07 6.88 ± 3.76 1.08 ± 1.26

nmeandev .31 ± .31 .99 ± .01 .37 ± .23 .99 ± .09 6.93 ± 3.76 1.00 ± 1.17

SVM neuclidean .48 ± .25 .99 ± .01 .39 ± .17 .99 ± .10 7.28 ± 4.18 .18 ± .09

cosine .46 ± .27 .99 ± .01 .39 ± .15 .99 ± .06 7.32 ± 4.22 .56 ± .15

nmeandev .28 ± .27 .99 ± .01 .28 ± .21 .96 ± .18 7.56 ± 4.40 .22 ± .32

Bold value indicates the best perfomance

Fig. 11 Mean values of fitness functions at the last generation of Algorithm 2 on the compas dataset and
DNN black-box by varying parameters
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Fig. 12 Aggregated evaluation metrics on the compas dataset and DNN black-box by varying the param-
eters of Algorithm 2. Scale on the right y axis is for complexity

g = 20, N = 5 (recall that n = 500 implies that the neighborhood Z (i) = Z (i)= ∪ Z (i)
�=

consists of 2n = 1000 instances). Experiments are performed on the compas dataset
and using the RF as black-box. Figure 11 shows the average values of the two fitness
functions at the last generation for the two components of the neighborhood: Z= and
Z �=. Regarding n, values greater than 1000 do not lead to a net increase of the fitness
functions. A similar behavior is observed for g ≈ 20–50. On the other hand, varying
crossover and mutation probabilities does not make appreciable impact on the fitness
functions. To better understand their impact, we analyze in Fig. 12 some evaluation
metricswhile varying the parameters as before28.With respect to the neighborhood size
n, for n > 1000, complexity grows remarkably, whist all other metrics become stable.
Similarly,the crossover probability pc does not affect any metric but the complexity.
The mutation probability pm appears negatively correlated to coverage, silhouette,
and complexity. Finally, a very low number of generations g lead to bad results, while
for g > 10, all the metrics become stable. In summary, the default values for the
parameters n = 1000, g = 20, and pm = 0.5 were chosen experimentally based on
the previous discussion. Regarding the cross-over parameter pc = 0.7, we departed
from a 50–50 choice in favor of the diversity of generated instances.

D Statistical tests

Tables 8 and 9 report the mean rank values (ranging from 1 to 6) among the different
explainers for a given dataset (resp., black-box) over all combinations of black-boxes
(resp., datasets), and of the evaluation metrics of silhouette, fidelity, complexity, and
instability. The first column of Table 8 reports the overall mean rank. It is readily
checked that loresa ranks the best in general (p value < 0.001 using a Wilcoxon

28 The plots show fidelity, precision, coverage, complexity, and silhouette labeled as fshil in the legend.
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Table 8 Mean rank of explainers by dataset over all combinations of black-boxes and metrics (silhouette,
fidelity, complexity, instability)

Method ovr adult bank churn compas compas-m fico german iris wine-r wine-w

anchor 3.12 3.08 3.24 3.24 3.05 3.11 3.11 3.80 4.14 3.02 2.82

brl 3.72 3.65 3.87 3.53 4.36 3.79 3.38 3.56 4.01 3.91 3.50

lime 3.74 3.10 4.08 3.88 4.53 4.15 3.54 2.81 4.15 3.62 3.90

maple 3.46 3.54 3.21 2.70 3.36 4.26 3.85 2.11 3.48 4.41 3.92

shap 3.49 3.27 2.85 3.57 3.45 3.89 4.62 3.31 3.52 3.67 3.51

loresa 2.19 2.12 2.27 2.32 2.12 2.02 2.21 2.22 2.82 2.35 2.17

Bold value indicates the best perfomance

Table 9 Mean rank over all combinations of datasets and evaluation metrics

Method RF SVM NN DNN

anchor 3.02 3.04 3.33 3.41

brl 3.72 3.77 3.96 1.72

lime 3.93 3.03 4.25 3.33

maple 3.67 4.00 3.61 1.41

shap 3.15 3.45 3.71 3.19

loresa 2.09 2.36 2.61 1.41

Bold value indicates the best perfomance

ytilibatsniytixelpmoc

Fig. 13 Critical difference diagrams using the Nemenyi test at α = 0.05. The name lore in the plots
indicate the loresa method

signed rank test), for each dataset, and for each black-box. For the compas-m, bank
and fico datasets and for the RF and SVM black-boxes, loresa ranks markedly
higher than the competitors. Figure 13 shows four Critical Difference (CD) dia-
grams (Demsar 2006). They display the statistical significance of the observed paired
differences in performances between pairs of the explanation methods. Two methods
are tied if the null hypothesis that their performances are the same cannot be rejected
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Table 10 Running time (mean ± stdev) in secs for SVM

Method compas adult german

anchor 4.48 ± 6.43 101.60 ± 203.72 2.81 ± 0.84

lime 1.49 ± 0.24 3.10 ± 0.83 0.20 ± .03

maple 743.62 ± 0.02 34643.04 ± 0.01 273.08 ± 0.02

brl 53.20 ± 0.01 621.20 ± 0.68 33.10 ± 0.02

shap 0.29 ± 0.31 0.46 ± 0.60 0.86 ± 0.15

soc 3.52 ± 0.02 39.18 ± 2.80 4.72 ± 0.07

loresa 8.02 ± 0.36 62.48 ± 4.55 7.76 ± 0.19

Bold value indicates the best perfomance

using the Nemenyi test at α=0.05. loresa performs better than the compared methods
with regards to fidelity, and the differences are statistically significant. For each of the
other metrics, the method tied to loresa is always a different one. Hence, loresa wins
over any other method in at least 3 out of the 4 metrics.

E Running time

Table 10 reports the running time (in secs) of producing an explanation for three
experimental datasets and for the SVM black-box. loresa performances are in line
with anchor and soc, and better than maple and brl. They are instead worse than
lime and shap. The vast majority of running time (> 90%) of loresa is used by the
genetic neighborhood generation. The implementation, however, can be readily sped
up by parallelising the generation of Z (1)= , Z (1)

�= , . . . , Z (N )= , Z (N )
�= (2 · N independent

calls to Algorithm 2).
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