28,686 research outputs found

    A survey of clones on infinite sets

    Full text link
    A clone on a set X is a set of finitary operations on X which contains all projections and which is moreover closed under functional composition. Ordering all clones on X by inclusion, one obtains a complete algebraic lattice, called the clone lattice. We summarize what we know about the clone lattice on an infinite base set X and formulate what we consider the most important open problems.Comment: 37 page

    Generalizations of Swierczkowski's lemma and the arity gap of finite functions

    Get PDF
    Swierczkowski's Lemma - as it is usually formulated - asserts that if f is an at least quaternary operation on a finite set A and every operation obtained from f by identifying a pair of variables is a projection, then f is a semiprojection. We generalize this lemma in various ways. First, it is extended to B-valued functions on A instead of operations on A and to essentially at most unary functions instead of projections. Then we characterize the arity gap of functions of small arities in terms of quasi-arity, which in turn provides a further generalization of Swierczkowski's Lemma. Moreover, we explicitly classify all pseudo-Boolean functions according to their arity gap. Finally, we present a general characterization of the arity gaps of B-valued functions on arbitrary finite sets A.Comment: 11 pages, proofs simplified, contents reorganize

    Clones with finitely many relative R-classes

    Get PDF
    For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A iff each one is a substitution instance of the other using operations from C. We study the clones for which there are only finitely many relative R-classes.Comment: 41 pages; proofs improved, examples adde

    Equivalence of operations with respect to discriminator clones

    Get PDF
    For each clone C on a set A there is an associated equivalence relation, called C-equivalence, on the set of all operations on A, which relates two operations iff each one is a substitution instance of the other using operations from C. In this paper we prove that if C is a discriminator clone on a finite set, then there are only finitely many C-equivalence classes. Moreover, we show that the smallest discriminator clone is minimal with respect to this finiteness property. For discriminator clones of Boolean functions we explicitly describe the associated equivalence relations.Comment: 17 page

    A note on minors determined by clones of semilattices

    Get PDF
    The C-minor partial orders determined by the clones generated by a semilattice operation (and possibly the constant operations corresponding to its identity or zero elements) are shown to satisfy the descending chain condition.Comment: 6 pages, proofs improved, introduction and references adde

    Weak Bases of Boolean Co-Clones

    Full text link
    Universal algebra and clone theory have proven to be a useful tool in the study of constraint satisfaction problems since the complexity, up to logspace reductions, is determined by the set of polymorphisms of the constraint language. For classifications where primitive positive definitions are unsuitable, such as size-preserving reductions, weaker closure operations may be necessary. In this article we consider strong partial clones which can be seen as a more fine-grained framework than Post's lattice where each clone splits into an interval of strong partial clones. We investigate these intervals and give simple relational descriptions, weak bases, of the largest elements. The weak bases have a highly regular form and are in many cases easily relatable to the smallest members in the intervals, which suggests that the lattice of strong partial clones is considerably simpler than the full lattice of partial clones

    Parallel processing in immune networks

    Full text link
    In this work we adopt a statistical mechanics approach to investigate basic, systemic features exhibited by adaptive immune systems. The lymphocyte network made by B-cells and T-cells is modeled by a bipartite spin-glass, where, following biological prescriptions, links connecting B-cells and T-cells are sparse. Interestingly, the dilution performed on links is shown to make the system able to orchestrate parallel strategies to fight several pathogens at the same time; this multitasking capability constitutes a remarkable, key property of immune systems as multiple antigens are always present within the host. We also define the stochastic process ruling the temporal evolution of lymphocyte activity, and show its relaxation toward an equilibrium measure allowing statistical mechanics investigations. Analytical results are compared with Monte Carlo simulations and signal-to-noise outcomes showing overall excellent agreement. Finally, within our model, a rationale for the experimentally well-evidenced correlation between lymphocytosis and autoimmunity is achieved; this sheds further light on the systemic features exhibited by immune networks.Comment: 21 pages, 9 figures; to appear in Phys. Rev.

    Rumor Spreading on Random Regular Graphs and Expanders

    Full text link
    Broadcasting algorithms are important building blocks of distributed systems. In this work we investigate the typical performance of the classical and well-studied push model. Assume that initially one node in a given network holds some piece of information. In each round, every one of the informed nodes chooses independently a neighbor uniformly at random and transmits the message to it. In this paper we consider random networks where each vertex has degree d, which is at least 3, i.e., the underlying graph is drawn uniformly at random from the set of all d-regular graphs with n vertices. We show that with probability 1 - o(1) the push model broadcasts the message to all nodes within (1 + o(1))C_d ln n rounds, where C_d = 1/ ln(2(1-1/d)) - 1/(d ln(1 - 1/d)). In particular, we can characterize precisely the effect of the node degree to the typical broadcast time of the push model. Moreover, we consider pseudo-random regular networks, where we assume that the degree of each node is very large. There we show that the broadcast time is (1+o(1))C ln n with probability 1 - o(1), where C= 1/ ln 2 + 1, is the limit of C_d as d grows.Comment: 18 page
    corecore