This is a postprint version of an article published as Novi Sad Journal of Mathematics 40(3) (2010) 75-81.

A NOTE ON MINORS DETERMINED BY CLONES OF SEMILATTICES

ERKKO LEHTONEN

Abstract

The \mathcal{C}-minor partial orders determined by the clones generated by a semilattice operation (and possibly the constant operations corresponding to its identity or zero elements) are shown to satisfy the descending chain condition.

1. Introduction

This paper is a study of substitution instances of functions of several arguments when the inner functions are taken from a prescribed set of functions. Such an idea has been studied by several authors. Henno [6] generalized Green's relations to Menger algebras (essentially, abstract clones) and described Green's relations on the set of all operations on A for each set A. Harrison [5] considered two Boolean functions to be equivalent if they are substitution instances of each other with respect to the general linear group $\operatorname{GL}\left(n, \mathbb{F}_{2}\right)$ or the affine linear group $\operatorname{AGL}\left(n, \mathbb{F}_{2}\right)$, where \mathbb{F}_{2} denotes the two-element field. In $[15,16]$, a Boolean function f is defined to be a minor of another Boolean function g, if and only if f can be obtained from g by substituting for each variable of g a variable, a negated variable, or one of the constants 0 or 1 . Further variants of the notion of minor can be found in $[1,3,4,13,17]$.

These ideas are unified and generalized by the notions of \mathcal{C}-minor and \mathcal{C}-equivalence, which first appeared in print in [8]. More precisely, let A be a nonempty set, and let $f: A^{n} \rightarrow A$ and $g: A^{m} \rightarrow A$ be operations on A. Let \mathcal{C} be a set of operations on A. We say that f is a \mathcal{C}-minor of g, if $f=g\left(h_{1}, \ldots, h_{m}\right)$ for some $h_{1}, \ldots, h_{m} \in \mathcal{C}$, and we say that f and g are \mathcal{C}-equivalent if f and g are \mathcal{C}-minors of each other. If \mathcal{C} is a clone, then the \mathcal{C}-minor relation is a preorder and it induces a partial order on the \mathcal{C}-equivalence classes. For background and basic results on \mathcal{C}-minors and \mathcal{C}-equivalences, see $[8,10,11,12]$.

In this paper, we study the \mathcal{C}-minors and \mathcal{C}-equivalences induced by the clones generated by semilattice opeations (and possibly some constants). Our main result (Theorem 3.1) asserts that if $(A ; \wedge)$ is a semilattice, then for the clone $\mathcal{C}:=\langle\wedge\rangle$ generated by \wedge, the induced \mathcal{C}-minor partial order satisfies the descending chain condition. Furthermore, if $(A ; \wedge)$ has an identity element 1 and a zero element 0 , then this property is enjoyed by all clones \mathcal{C} such that $\langle\wedge\rangle \subseteq \mathcal{C} \subseteq\langle\wedge, 0,1\rangle$. These results find an application in [9], in which the clones of Boolean functions are classified according to certain order-theoretical properties of their induced \mathcal{C}-minor partial orders.

2. Clones, \mathcal{C}-minors and \mathcal{C}-decompositions

2.1. Operations and clones. Throughout this paper, for an integer $n \geq 1$, we denote $[n]:=\{1, \ldots, n\}$. Let A be a fixed nonempty base set. An operation on A is a map $f: A^{n} \rightarrow A$ for some integer $n \geq 1$, called the arity of f. We denote the set of all n-ary operations on A by $\mathcal{O}_{A}^{(n)}$, and we denote by $\mathcal{O}_{A}:=\bigcup_{n \geq 1} \mathcal{O}_{A}^{(n)}$ the set of all operations on A. The i-th n-ary projection $(1 \leq i \leq n)$ is the operation $\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{i}$, and it is denoted by $x_{i}^{(n)}$, or simply by x_{i} when the arity is clear from the context.

If $f \in \mathcal{O}_{A}^{(n)}$ and $g_{1}, \ldots, g_{n} \in \mathcal{O}_{A}^{(m)}$, then the composition of f with g_{1}, \ldots, g_{n}, denoted $f\left(g_{1}, \ldots, g_{n}\right)$ is the m-ary operation defined by

$$
f\left(g_{1}, \ldots, g_{n}\right)(\mathbf{a})=f\left(g_{1}(\mathbf{a}), \ldots, g_{n}(\mathbf{a})\right)
$$

for all $\mathbf{a} \in A^{m}$.
Let $\mathcal{C} \subseteq \mathcal{O}_{A}$. The n-ary part of \mathcal{C} is the set $\mathcal{C}^{(n)}:=\mathcal{C} \cap \mathcal{O}_{A}^{(n)}$ of n-ary members of \mathcal{C}. A clone on A is a subset $\mathcal{C} \subseteq \mathcal{O}_{A}$ that contains all projections and is closed under composition, i.e., $f\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{C}$ whenever $f, g_{1}, \ldots, g_{n} \in \mathcal{C}$ and the composition is defined.

The clones on A constitute a complete lattice under inclusion. Therefore, for each set $F \subseteq \mathcal{O}_{A}$ of operations there exists a smallest clone that contains F, which will be denoted by $\langle F\rangle$ and called the clone generated by F. See $[2,7,14]$ for general background on clones.
2.2. \mathcal{C}-minors. Let $\mathcal{C} \subseteq \mathcal{O}_{A}$, and let $f, g \in \mathcal{O}_{A}$. We say that f is a \mathcal{C}-minor of g, if $f=g\left(h_{1}, \ldots, h_{m}\right)$ for some $h_{1}, \ldots, h_{m} \in \mathcal{C}$, and we denote this fact by $f \leq_{\mathcal{C}} g$. We say that f and g are \mathcal{C}-equivalent, denoted $f \equiv_{\mathcal{C}} g$, if f and g are \mathcal{C}-minors of each other.

The \mathcal{C}-minor relation $\leq_{\mathcal{C}}$ is a preorder (i.e., a reflexive and transitive relation) on \mathcal{O}_{A} if and only if \mathcal{C} is a clone. If \mathcal{C} is a clone, then the \mathcal{C}-equivalence relation $\equiv_{\mathcal{C}}$ is an equivalence relation on \mathcal{O}_{A}, and, as for preorders, $\leq_{\mathcal{C}}$ induces a partial order $\preccurlyeq_{\mathcal{C}}$ on the quotient $\mathcal{O}_{A} / \equiv_{\mathcal{C}}$. It follows from the definition of \mathcal{C}-minor, that if \mathcal{C} and \mathcal{K} are clones such that $\mathcal{C} \subseteq \mathcal{K}$, then $\leq_{\mathcal{C}} \subseteq \leq_{\mathcal{K}}$ and $\equiv_{\mathcal{C}} \subseteq \equiv_{\mathcal{K}}$. For further background and properties of \mathcal{C}-minor relations, see $[8,10,11,12]$.
2.3. C-decompositions. Let \mathcal{C} be a clone on A, and let $f \in \mathcal{O}_{A}^{(n)}$. If $f=$ $g\left(\phi_{1}, \ldots, \phi_{m}\right)$ for some $g \in \mathcal{O}_{A}^{(m)}$ and $\phi_{1}, \ldots, \phi_{m} \in \mathcal{C}$, then we say that the $(m+1)$ tuple $\left(g, \phi_{1}, \ldots, \phi_{m}\right)$ is a \mathcal{C}-decomposition of f. We often avoid referring explicitly to the tuple and we simply say that $f=g\left(\phi_{1}, \ldots, \phi_{m}\right)$ is a \mathcal{C}-decomposition. Clearly, there always exists a \mathcal{C}-decomposition of every operation f for every clone \mathcal{C}, because $f=f\left(x_{1}^{(n)}, \ldots, x_{n}^{(n)}\right)$ and projections are members of every clone. A \mathcal{C}-decomposition of a nonconstant function f is minimal if the arity m of g is the smallest possible among all \mathcal{C}-decompositions of f. This smallest possible m is called the \mathcal{C} degree of f, denoted $\operatorname{deg}_{\mathcal{C}} f$. We agree that the \mathcal{C}-degree of every constant function is 0 .
Lemma 2.1. If $f \leq_{\mathcal{C}} g$, then $\operatorname{deg}_{\mathcal{C}} f \leq \operatorname{deg}_{\mathcal{C}} g$.
Proof. Let $\operatorname{deg}_{\mathcal{C}} g=m$, and let $g=h\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ be a minimal \mathcal{C}-decomposition of g. Since $f \leq_{\mathcal{C}} g$, there exist $\phi_{1}, \ldots, \phi_{n} \in \mathcal{C}$ such that $f=g\left(\phi_{1}, \ldots, \phi_{n}\right)$. Then

$$
f=h\left(\gamma_{1}, \ldots, \gamma_{m}\right)\left(\phi_{1}, \ldots, \phi_{n}\right)=h\left(\gamma_{1}\left(\phi_{1}, \ldots, \phi_{n}\right), \ldots, \gamma_{m}\left(\phi_{1}, \ldots, \phi_{n}\right)\right),
$$

and since $\gamma_{i}\left(\phi_{1}, \ldots, \phi_{n}\right) \in \mathcal{C}$ for $1 \leq i \leq m$, we have that $\left(h, \gamma_{1}\left(\phi_{1}, \ldots, \phi_{n}\right), \ldots\right.$, $\left.\gamma_{m}\left(\phi_{1}, \ldots, \phi_{n}\right)\right)$ is a \mathcal{C}-decomposition of f, not necessarily minimal, so $\operatorname{deg}_{\mathcal{C}} f \leq$ m.

An immediate consequence of Lemma 2.1 is that \mathcal{C}-equivalent functions have the same \mathcal{C}-degree.

Let $\left(\phi_{1}, \ldots, \phi_{m}\right)$ be an m-tuple ($m \geq 2$) of n-ary operations on A. If there is an $i \in\{1,2, \ldots, m\}$ and $g: A^{m-1} \rightarrow A$ such that

$$
\phi_{i}=g\left(\phi_{1}, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_{m}\right),
$$

then we say that the m-tuple $\left(\phi_{1}, \ldots, \phi_{m}\right)$ is functionally dependent. Otherwise we say that $\left(\phi_{1}, \ldots, \phi_{m}\right)$ is functionally independent. We often omit the m-tuple notation and simply say that $\phi_{1}, \ldots, \phi_{m}$ are functionally dependent or independent.

Remark 2.2. Every m-tuple containing a constant function is functionally dependent. Also if $f_{i}=f_{j}$ for some $i \neq j$, then f_{1}, \ldots, f_{n} are functionally dependent.

Lemma 2.3. If $\left(g, \phi_{1}, \ldots, \phi_{m}\right)$ is a minimal \mathcal{C}-decomposition of f, then $\phi_{1}, \ldots, \phi_{m}$ are functionally independent.

Proof. Suppose, on the contrary, that $\phi_{1}, \ldots, \phi_{m}$ are functionally dependent. Then there is an i and an $h: A^{m-1} \rightarrow A$ such that $\phi_{i}=h\left(\phi_{1}, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_{m}\right)$. Then

$$
\begin{aligned}
f= & g\left(\phi_{1}, \ldots, \phi_{i-1}, h\left(\phi_{1}, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_{m}\right), \phi_{i+1}, \ldots, \phi_{m}\right) \\
& =g\left(x_{1}^{(m-1)}, \ldots, x_{i-1}^{(m-1)}, h, x_{i}^{(m-1)}, \ldots, x_{m-1}^{(m-1)}\right)\left(\phi_{1}, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_{m}\right)
\end{aligned}
$$

which shows that $\left(g\left(x_{1}, \ldots, x_{i-1}, h, x_{i}, \ldots, x_{m-1}\right), \phi_{1}, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_{m}\right)$ is a \mathcal{C}-decomposition of f, contradicting the minimality of $\left(g, \phi_{1}, \ldots, \phi_{m}\right)$.

3. \mathcal{C}-minors determined by clones of semilattices

In this section we will prove our main result, namely Theorem 3.1. It will find an application in [9] where the clones of Boolean functions are classified according to certain order-theoretical properties that their induced \mathcal{C}-minor partial orders enjoy.

A binary operation \wedge on A is called a semilattice operation, if for all $x, y, z \in A$, the following identities hold:

$$
x \wedge(y \wedge z)=(x \wedge y) \wedge z, \quad x \wedge y=y \wedge x, \quad x \wedge x=x
$$

i.e., \wedge is associative, commutative and idempotent.

A partial order $(P ; \leq)$ is said to satisfy the descending chain condition, or it is called well-founded, if it contains no infinite descending chains, i.e., given any sequence of elements of P

$$
\cdots \leq a_{3} \leq a_{2} \leq a_{1}
$$

there exists a positive integer n such that

$$
a_{n}=a_{n+1}=a_{n+2}=\cdots
$$

Theorem 3.1. Let \mathcal{S} be the clone generated by a semilattice operation \wedge on A. Then the \mathcal{S}-minor partial order $\preccurlyeq \mathcal{S}$ satisfies the descending chain condition.

Proof. Let $\left(\phi_{1}, \ldots, \phi_{m}\right) \in\left(\mathcal{S}^{(n)}\right)^{m}$. Then, for $1 \leq j \leq m, \phi_{j}$ is of the form

$$
\begin{equation*}
\phi_{j}=\bigwedge_{i \in \Phi_{j}} x_{i}^{(n)} \tag{1}
\end{equation*}
$$

for some $\emptyset \neq \Phi_{j} \subseteq[n]$. For $1 \leq i \leq n$, denote

$$
\begin{equation*}
X_{i}:=\left\{j \in[m]: i \in \Phi_{j}\right\} \tag{2}
\end{equation*}
$$

and let $X\left(\phi_{1}, \ldots, \phi_{m}\right):=\left\{X_{1}, \ldots, X_{n}\right\} \subseteq \mathcal{P}([m])$. It follows from the definitions of Φ_{j} and X_{i} that

$$
\begin{equation*}
j \in X_{i} \quad \Longleftrightarrow \quad i \in \Phi_{j} . \tag{3}
\end{equation*}
$$

Correspondingly, for any $\emptyset \neq E \subseteq \mathcal{P}([m])$, denote $\Psi_{E}:=\left(\psi_{1}, \ldots, \psi_{m}\right)$, where $\psi_{j} \in \mathcal{S}^{(|E|)}$ is given by

$$
\psi_{j}=\bigwedge_{j \in S \in E} x_{\sigma_{E}(S)}
$$

where $\sigma_{E}: E \rightarrow[|E|]$ is any fixed bijection.
Let $\left(g, \phi_{1}, \ldots, \phi_{m}\right)$ be an \mathcal{S}-decomposition of $f: A^{n} \rightarrow A$. Then each ϕ_{j} is of the form (1) for some $\emptyset \neq \Phi_{j} \subseteq[n]$. Let $E:=X\left(\phi_{1}, \ldots, \phi_{m}\right),\left(\psi_{1}, \ldots, \psi_{m}\right):=\Psi_{E}$, and let $f^{\prime}=g\left(\psi_{1}, \ldots, \psi_{m}\right)$. We will show that $f \equiv \mathcal{S} f^{\prime}$.

As in (2), for $1 \leq i \leq n$, let $X_{i}=\left\{j \in[m]: i \in \Phi_{j}\right\}$. Let $\pi:[n] \rightarrow[|E|]$ be defined as $\pi(i):=\sigma_{E}\left(X_{i}\right)$. Then

$$
\begin{aligned}
& f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=g\left(\phi_{1}, \ldots, \phi_{m}\right)\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \\
& \quad=g\left(\phi_{1}\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), \ldots, \phi_{m}\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right)=g\left(\psi_{1}, \ldots, \psi_{m}\right)=f^{\prime}
\end{aligned}
$$

where the second last equality holds because for $1 \leq j \leq m$,

$$
\phi_{j}\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=\bigwedge_{i \in \Phi_{j}} x_{\pi(i)}=\bigwedge_{i \in \Phi_{j}} x_{\sigma\left(X_{i}\right)}=\bigwedge_{j \in S \in E} x_{\sigma(S)}=\psi_{j}
$$

Since all projections are members of \mathcal{S}, we have that $f^{\prime} \leq_{\mathcal{C}} f$. On the other hand, for $1 \leq j \leq|E|$, let $\Xi_{j}:=\left\{i \in[n]: X_{i}=\sigma_{E}^{-1}(j)\right\}$, and let

$$
\xi_{j}:=\bigwedge_{i \in \Xi_{j}} x_{i} .
$$

It is easy to see that $\Xi_{j} \neq \emptyset$; hence $\xi_{j} \in \mathcal{S}$. Then

$$
\begin{aligned}
f^{\prime}\left(\xi_{1}, \ldots, \xi_{|E|}\right) & =g\left(\psi_{1}, \ldots, \psi_{m}\right)\left(\xi_{1}, \ldots, \xi_{|E|}\right) \\
& =g\left(\psi_{1}\left(\xi_{1}, \ldots, \xi_{|E|}\right), \ldots, \psi_{m}\left(\xi_{1}, \ldots, \xi_{|E|}\right)\right)=g\left(\phi_{1}, \ldots, \phi_{m}\right)=f
\end{aligned}
$$

where the second last equality holds because for $j=1, \ldots, m$,

$$
\begin{aligned}
& \psi_{j}\left(\xi_{1}, \ldots, \xi_{|E|}\right)=\left(\bigwedge_{j \in S \in E} x_{\sigma_{E}(S)}\right)\left(\xi_{1}, \ldots, \xi_{|E|}\right)=\bigwedge_{j \in S \in E} \xi_{\sigma_{E}(S)} \\
&=\bigwedge_{j \in S \in E}\left(\bigwedge_{i \in \Xi_{\sigma_{E}(S)}} x_{i}\right)=\bigwedge_{j \in S \in E}\left(\bigwedge_{\substack{i \in[n] \\
X_{i}=S}} x_{i}\right)=\bigwedge_{i \in \Phi_{j}} x_{i}=\phi_{j}
\end{aligned}
$$

Here, the third last equality holds, because $\Xi_{\sigma_{E}(S)}=\left\{i \in[n]: X_{i}=S\right\}$, and the second last equality holds by (3) and the associativity, commutativity and idempotency of \wedge. Since $\xi_{j} \in \mathcal{S}$, we have that $f \leq_{\mathcal{C}} f^{\prime}$. We conclude that $f \equiv_{\mathcal{C}} f^{\prime}$, as desired.

Claim. If $f_{1}=g\left(\phi_{1}, \ldots, \phi_{m}\right)$ and $f_{2}=g\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ are \mathcal{S}-decompositions and $X\left(\phi_{1}, \ldots, \phi_{m}\right)=X\left(\varphi_{1}, \ldots, \varphi_{m}\right)$, then $f_{1} \equiv \mathcal{S} f_{2}$.

Proof of the claim. Let $\left(\psi_{1}, \ldots, \psi_{m}\right):=\Psi_{X\left(\phi_{1}, \ldots, \phi_{m}\right)}\left(=\Psi_{X\left(\varphi_{1}, \ldots, \varphi_{m}\right)}\right)$, and let $f^{\prime}=g\left(\psi_{1}, \ldots, \psi_{m}\right)$. It follows from what was shown above that $f_{1} \equiv \mathcal{S} f^{\prime} \equiv \mathcal{S} f_{2}$. The claim follows by the transitivity of $\equiv_{\mathcal{S}}$.

To finish the proof that $\preccurlyeq \mathcal{S}$ satisfies the descending chain condition, assume that $f_{1}<\mathcal{S} f_{2}, f_{2}=g\left(\phi_{1}, \ldots, \phi_{m}\right)$ is a minimal \mathcal{S}-decomposition, and $f_{1}=f_{2}\left(h_{1}, \ldots, h_{n}\right)$ for some $h_{1}, \ldots, h_{n} \in \mathcal{S}$. For $i=1, \ldots, m$, denote $\phi_{i}^{\prime}=\phi_{i}\left(h_{1}, \ldots, h_{n}\right)$, so that $f_{1}=g\left(\phi_{1}^{\prime}, \ldots, \phi_{m}^{\prime}\right)$. By Lemma 2.1, either $\operatorname{deg}_{\mathcal{S}} f_{1}<\operatorname{deg}_{\mathcal{S}} f_{2}$, or $\operatorname{deg}_{\mathcal{S}} f_{1}=\operatorname{deg}_{\mathcal{S}} f_{2}$ and $X\left(\phi_{1}, \ldots, \phi_{m}\right) \neq X\left(\phi_{1}^{\prime}, \ldots, \phi_{m}^{\prime}\right)$. Since \mathcal{S}-degrees are nonnegative integers and $\mathcal{P}([m])$ is a finite set, there are only a finite number of $\equiv_{\mathcal{S}}$-classes preceding the $\equiv \mathcal{S}$-class of f_{2} in the \mathcal{S}-minor partial order $\preccurlyeq \mathcal{S}$. This completes the proof of the theorem.

Corollary 3.2. Assume that a semilattice $(A ; \wedge)$ has identity and zero elements 1 and 0 , respectively. Let \mathcal{C} be a clone on A such that $\langle\wedge\rangle \subseteq \mathcal{C} \subseteq\langle\wedge, 0,1\rangle$. Then the \mathcal{C}-minor partial order $\preccurlyeq \mathcal{C}$ satisfies the descending chain condition.

Proof. The proof of Theorem 3.1 in fact shows that $\preccurlyeq \mathcal{C}$ satisfies the descending chain condition. For, in this case $\mathcal{C} \backslash \mathcal{S}$ contains only constant operations. Remark 2.2 and Lemma 2.3 guarantee that $f=g\left(h_{1}, \ldots, h_{m}\right)$ is a minimal \mathcal{S}-decomposition if and only if it is a minimal \mathcal{C}-decomposition, and since $\mathcal{S} \subseteq \mathcal{C}, \mathcal{S}$-equivalence implies \mathcal{C}-equivalence.

References

[1] Couceiro, M., Pouzet, M., On a quasi-ordering on Boolean functions. Theoret. Comput. Sci. 396 (2008), 71-87.
[2] Denecke, K. Wismath, S.L., Universal Algebra and Applications in Theoretical Computer Science. Chapman \& Hall/CRC, Boca Raton, 2002.
[3] Ekin, O., Foldes, S., Hammer, P.L., Hellerstein, L., Equational characterizations of Boolean function classes. Discrete Math. 211 (2000), 27-51.
[4] Feigelson, A., Hellerstein, L., The forbidden projections of unate functions. Discrete Appl. Math. 77 (1997), 221-236.
[5] Harrison, M.A., On the classification of Boolean functions by the general linear and affine groups. J. Soc. Indust. Appl. Math. 12(2) (1964), 285-299.
[6] Henno, J., Green's equivalences in Menger systems. Tartu Riikl. Ül. Toimetised 277 (1971), 37-46 (Russian).
[7] Lau, D., Function Algebras on Finite Sets - A Basic Course on Many-Valued Logic and Clone Theory. Springer-Verlag, Berlin, Heidelberg, 2006.
[8] Lehtonen, E., Descending chains and antichains of the unary, linear, and monotone subfunction relations. Order 23 (2006), 129-142.
[9] Lehtonen, E., Nešetřil, J., Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms. European J. Combin. 31 (2010), 1981-1995.
[10] Lehtonen, E., Szendrei, Á., Equivalence of operations with respect to discriminator clones. Discrete Math. 309 (2009), 673-685.
[11] Lehtonen, E., Szendrei, Á., Clones with finitely many relative \mathcal{R}-classes. Algebra Universalis 65 (2011), 109-159.
[12] Lehtonen, E., Szendrei, Á., The submaximal clones on the three-element set with finitely many relative \mathcal{R}-classes. Discuss. Math. Gen. Algebra Appl. 30 (2010), 7-33.
[13] Pippenger, N., Galois theory for minors of finite functions. Discrete Math. 254 (2002), 405419.
[14] Szendrei, Á., Clones in Universal Algebra. Séminaire de mathématiques supérieures, vol. 99. Les Presses de l'Université de Montréal, Montréal, 1986.
[15] Wang, C., Boolean minors. Discrete Math. 141 (1995), 237-258.
[16] Wang, C., Williams, A.C., The threshold order of a Boolean function. Discrete Appl. Math. 31 (1991), 51-69.
[17] Zverovich, I.E., Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes. Discrete Appl. Math. 149 (2005), 200-218.

Computer Science and Communications Research Unit, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

E-mail address: erkko.lehtonen@uni.lu

