28 research outputs found

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users

    Attention-controlled assistive wrist rehabilitation using a low-cost EEG sensor

    Get PDF
    It is essential to make sure patients be actively involved in motor training using robot-assisted rehabilitation to achieve better rehabilitation outcomes. This paper introduces an attention-controlled wrist rehabilitation method using a low-cost EEG sensor. Active rehabilitation training is realized using a threshold of the attention level measured by the low-cost EEG sensor as a switch for a flexible wrist exoskeleton assisting wrist flexion/extension and radial/ulnar deviation. We present a prototype implementation of this active training method and provide a preliminary evaluation. The feasibility of the attention-based control was proven with the overall actuation success rate of 95%. The experimental results also proved that the visual guidance was helpful for the users to concentrate on the wrist rehabilitation training: two types of visual guidance, namely, looking at the hand motion shown on a video and looking at the user's own hand had no significant performance difference. A general threshold of a certain group of users can be utilized in the wrist robot control rather than a customized threshold to simplify the procedure

    Corseto: A Kinesthetic Garment for Designing, Composing for, and Experiencing an Intersubjective Haptic Voice

    Get PDF
    We present a novel intercorporeal experience - an intersubjective haptic voice. Through an autobiographical design inquiry, based on singing techniques from the classical opera tradition, we created Corsetto, a kinesthetic garment for transferring somatic reminiscents of vocal experience from an expert singer to a listener. We then composed haptic gestures enacted in the Corsetto, emulating upper-body movements of the live singer performing a piece by Morton Feldman named Three Voices. The gestures in the Corsetto added a haptics-based \u27fourth voice\u27 to the immersive opera performance. Finally, we invited audiences who were asked to wear Corsetto during live performances. Afterwards they engaged in micro-phenomenological interviews. The analysis revealed how the Corsetto managed to bridge inner and outer bodily sensations, creating a feeling of a shared intercorporeal experience, dissolving boundaries between listener, singer and performance. We propose that \u27intersubjective haptics\u27 can be a generative medium not only for singing performances, but other possible intersubjective experiences

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Enhancing brain/neural-machine interfaces for upper limb motor restoration in chronic stroke and cervical spinal cord injury

    Get PDF
    Operation of assistive exoskeletons based on voluntary control of sensorimotor rhythms (SMR, 8-12 Hz) enables intuitive control of finger or arm movements in severe paralysis after chronic stroke or cervical spinal cord injury (SCI). To improve reliability of such systems outside the laboratory, in particular when brain activity is recorded non-invasively with scalp electroencephalography (EEG), a hybrid EEG/electrooculography (EOG) brain/neural-machine interface (B/NMI) was recently introduced. Besides providing assistance, recent studies indicate that repeated use of such systems can trigger neural recovery. However, important prerequisites have to achieved before broader use in clinical settings or everyday life environments is feasible. Current B/NMI systems predominantly restore hand function, but do not allow simultaneous control of more proximal joints for whole-arm motor coordination as required for most stroke survivors suffering from paralysis in the entire upper limb. Besides paralysis, cognitive impairments including post-stroke fatigue due to the brain lesion reduce the capacity to maintain effortful B/NMI control over a longer period of time. This impedes the applicability in daily life assistance and might even limits the efficacy of neurorehabilitation training. In contrast to stroke survivors, tetraplegics due to cervical SCI lack motor function in both hands. Given that most activities of daily living (ADL) involve bimanual manipulation, e.g., to open the lid of a bottle, bilateral exoskeleton control is required but was not shown yet in tetraplegics. To further enhance B/NMI systems, we first investigated whether B/NMI whole-arm exoskeleton control in hemiplegia after chronic stroke is feasible and safe. In contrast to simple grasping, control of more complex tasks involving the entire upper limb was not feasible with established B/NMIs because high- dimensionality of such multiple joint systems exceeds the bandwidth of these interfaces. Thus, we blended B/NMI control with vision-guidance to receive a semiautonomous whole-arm exoskeleton control. Such setup allowed to divide ADL tasks into a sequence of EEG/EOG-triggered sub-tasks reducing complexity for the user. While, for instance, a drinking task was resolved into EOG-induced reaching, lifting and placing back the cup, grasping and releasing movements were based on intuitive SMR control. Feasibility of such shared vision-guided B/NMI control was assumed when executions were initialized within 3 s (fluent control) and a minimum of 75 % of subtasks were executed within that time (reliable control). We showed feasibility in healthy subjects as well as stroke survivors without report of any side effects documenting safe use. Similarly, feasibility and safety of bilateral B/NMI control after cervical SCI was evaluated. To enable bilateral B/NMI control, established EEG-based grasping and EOG-based releasing or stop commands were complemented with a novel EOG command allowing to switch laterality by performing prolonged horizontal eye movements (>1 s) to the left or to the right. Study results with healthy subjects and tetraplegics document fluent initialization of grasping motions below 3 s as well as safe use as unintended grasping could be stopped before a full motion was conducted. Superiority of novel bilateral control was documented by a higher accuracy of up to 22 % in tetraplegics compared to a bilateral control without prolonged EOG command. Lastly, as reliable B/NMI control is cognitively demanding, e.g., by imagining or attempting the desired movements, we investigated whether heart rate variability (HRV) can be used as biomarker to predict declining control performance, which is often reported in stroke survivors due to their cognitive impairments. Referring to the close brain-heart connection, we showed in healthy subjects that a decline in HRV is specific as well as predictive to a decline in B/NMI control performance within a single training session. The predictive link was revealed by a Granger-causality analysis. In conclusion, we could demonstrate important enhancements in B/NMI control paradigms including complex whole-arm exoskeleton control as well as individual performance monitoring within a training session based on HRV. Both achievements contribute to broaden the use as a standard therapy in stroke neurorehabilitation. Especially the predictive characteristic of HRV paves the way for adaptive B/NMI control paradigms to account for individual differences among impaired stroke survivors. Moreover, we also showed feasibility and safety of a novel implementation for bilateral B/NMI control, which is necessary for reliable operation of two hand-exoskeletons for bimanual ADLs after SCI

    Upper-limb Kinematic Analysis and Artificial Intelligent Techniques for Neurorehabilitation and Assistive Environments

    Get PDF
    Stroke, one of the leading causes of death and disability around the world, usually affects the motor cortex causing weakness or paralysis in the limbs of one side of the body. Research efforts in neurorehabilitation technology have focused on the development of robotic devices to restore motor and cognitive function in impaired individuals, having the potential to deliver high-intensity and motivating therapy. End-effector-based devices have become an usual tool in the upper- limb neurorehabilitation due to the ease of adapting to patients. However, they are unable to measure the joint movements during the exercise. Thus, the first part of this thesis is focused on the development of a kinematic reconstruction algorithm that can be used in a real rehabilitation environment, without disturbing the normal patient-clinician interaction. On the basis of the algorithm found in the literature that presents some instabilities, a new algorithm is developed. The proposed algorithm is the first one able to online estimate not only the upper-limb joints, but also the trunk compensation using only two non-invasive wearable devices, placed onto the shoulder and upper arm of the patient. This new tool will allow the therapist to perform a comprehensive assessment combining the range of movement with clinical assessment scales. Knowing that the intensity of the therapy improves the outcomes of neurorehabilitation, a ‘self-managed’ rehabilitation system can allow the patients to continue the rehabilitation at home. This thesis proposes a system to online measure a set of upper-limb rehabilitation gestures, and intelligently evaluates the quality of the exercise performed by the patients. The assessment is performed through the study of the performed movement as a whole as well as evaluating each joint independently. The first results are promising and suggest that this system can became a a new tool to complement the clinical therapy at home and improve the rehabilitation outcomes. Finally, severe motor condition can remain after rehabilitation process. Thus, a technology solution for these patients and people with severe motor disabilities is proposed. An intelligent environmental control interface is developed with the ability to adapt its scan control to the residual capabilities of the user. Furthermore, the system estimates the intention of the user from the environmental information and the behavior of the user, helping in the navigation through the interface, improving its independence at home.El accidente cerebrovascular o ictus es una de las causas principales de muerte y discapacidad a nivel mundial. Normalmente afecta a la corteza motora causando debilidad o parálisis en las articulaciones del mismo lado del cuerpo. Los esfuerzos de investigación dentro de la tecnología de neurorehabilitación se han centrado en el desarrollo de dispositivos robóticos para restaurar las funciones motoras y cognitivas en las personas con esta discapacidad, teniendo un gran potencial para ofrecer una terapia de alta intensidad y motivadora. Los dispositivos basados en efector final se han convertido en una herramienta habitual en la neurorehabilitación de miembro superior ya que es muy sencillo adaptarlo a los pacientes. Sin embargo, éstos no son capaces de medir los movimientos articulares durante la realización del ejercicio. Por tanto, la primera parte de esta tesis se centra en el desarrollo de un algoritmo de reconstrucción cinemática que pueda ser usado en un entorno de rehabilitación real, sin perjudicar a la interacción normal entre el paciente y el clínico. Partiendo de la base que propone el algoritmo encontrado en la literatura, el cual presenta algunas inestabilidades, se ha desarrollado un nuevo algoritmo. El algoritmo propuesto es el primero capaz de estimar en tiempo real no sólo las articulaciones del miembro superior, sino también la compensación del tronco usando solamente dos dispositivos no invasivos y portátiles, colocados sobre el hombro y el brazo del paciente. Esta nueva herramienta permite al terapeuta realizar una valoración más exhaustiva combinando el rango de movimiento con las escalas de valoración clínicas. Sabiendo que la intensidad de la terapia mejora los resultados de la recuperación del ictus, un sistema de rehabilitación ‘auto-gestionado’ permite a los pacientes continuar con la rehabilitación en casa. Esta tesis propone un sistema para medir en tiempo real un conjunto de gestos de miembro superior y evaluar de manera inteligente la calidad del ejercicio realizado por el paciente. La valoración se hace a través del estudio del movimiento ejecutado en su conjunto, así como evaluando cada articulación independientemente. Los primeros resultados son prometedores y apuntan a que este sistema puede convertirse en una nueva herramienta para complementar la terapia clínica en casa y mejorar los resultados de la rehabilitación. Finalmente, después del proceso de rehabilitación pueden quedar secuelas motoras graves. Por este motivo, se propone una solución tecnológica para estas personas y para personas con discapacidades motoras severas. Así, se ha desarrollado una interfaz de control de entorno inteligente capaz de adaptar su control a las capacidades residuales del usuario. Además, el sistema estima la intención del usuario a partir de la información del entorno y el comportamiento del usuario, ayudando en la navegación a través de la interfaz, mejorando su independencia en el hogar

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Vibration

    Get PDF
    Studies on hand-transmitted vibration exposure, biodynamic responses, and biological effects were conducted by researchers at the Health Effects Laboratory Division (HELD) of the National Institute for Occupational Safety and Health (NIOSH) during the last 20 years. These studies are systematically reviewed in this report, along with the identification of areas where additional research is needed. The majority of the studies cover the following aspects: (i) the methods and techniques for measuring hand-transmitted vibration exposure; (ii) vibration biodynamics of the hand-arm system and the quantification of vibration exposure; (iii) biological effects of hand-transmitted vibration exposure; (iv) measurements of vibration-induced health effects; (iv) quantification of influencing biomechanical effects; and (v) intervention methods and technologies for controlling hand-transmitted vibration exposure. The major findings of the studies are summarized and discussed.CC999999/ImCDC/Intramural CDC HHSUnited States/2021-01-18T00:00:00Z34414357PMC83715621023
    corecore