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Abstract

Exoskeletons are wearable devices designed to assist humans according to
their needs. Their applications can be found in rehabilitation, assistance and
power augmentation. For assistive powered exoskeletons human motion in-
tention detection is an important element for implementing assistive control
strategies. While many methods of motion detection have been developed,
however, there still exists many challenges i.e. high robustness, convenience,
data repeatability and applicability for implementation on assistive powered
exoskeletons. Therefore, new methods that can fulfill these requirements are
needed.

The aim of this thesis is to develop novel methods of motion intention
detection for control of exoskeletons. The focus of this thesis is to analyze the
performance of force myography (FMG) to detect upper limb movements and
based on it develop control methods for upper limb assistive exoskeletons.

In this thesis performance of FMG is analyzed by comparing it with
sEMG. Motion detection accuracy and data repeatability were compared for
detecting forearm motions i.e. forearm flexion, extension, pronation, supina-
tion and rest. The study showed the feasibility of FMG when implemented
for assistive powered exoskeleton control.

Exoskeleton control with FMG is another focus of this thesis. FMG is
first used to control a soft exoskeleton by detecting dynamic hand gestures
i.e. rest, opening, closing and grasping. This study addressed the challenges
associated with object grasping task i.e. amount of training data, robust de-
tection and assistance level determination. The influence of sensor placement
on detection performance was also experimentally analyzed.

Finally, FMG based control method for upper limb exoskeleton, i.e. elbow
and shoulder joint, is presented in this thesis. A machine learning based al-
gorithm is developed for determining assistance level during object carrying
tasks by estimating the carried payload. The performance of the method is
analyzed by testing on healthy subjects. Whereas, the results of physical as-
sistance are verified by comparing the results of load carrying tasks with and
without exoskeleton.

This thesis contributes to the state-of-the-art of upper limb motion in-
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tention detection using FMG. Studies verify that FMG, being accurate and
a convenient method to interpret motion intention, has great potential for
application of assistive exoskeletons. A contribution of this thesis is perfor-
mance analysis of muscle activity detection methods that compares FMG and
sEMG in terms of accuracy/repeatability. Another contribution is the novel
methods for grasping and load carrying. The proposed techniques are able
to reduce system complexity for convenient and robust use in actual environ-
ment.



Resumé

Exoskeletter er bærebare enheder, som er designet til at assistere menneskers
fysiske behov. Deres anvendelse findes i områder som rehabilitering, assis-
tance og styrkeforøgelse. Identifikation af menneskets ønsker i forbindelse
med bevægelser er et vigtig element i implementeringen af styringsstrate-
gier til assistance. Selvom mange metoder til at detektere bevægelser er ud-
viklet, så er der stadig mange udfordringer fx robusthed, brugbarhed, data
reproducerbarhed, anvendelse og implementering af assisterende og styrke-
forøgende exoskeletter. Grundet disse udfordringer er der stadig behov for
udvikling af nye metoder, der kan løse disse problemer.

Formålet med denne afhandling er at udvikle nye metyder til at detektere
og registrere bevægelser til styring af exoskeletter. Især vil der være fokus på
at analysere ydeevnen af force myography (FMG) til at registrere bevægelser
af overkroppen og ud fra dette udvikle metoder til at styre exoskeletter til
overkoppen.

I denne afhandling vil ydeevnen af FMG blive analyseret ved at sammen-
ligne den med sEMG. Nøjagtigheden af bevægelsesdetektering og data repro-
ducerbarhed blev sammenlignet ved at sammenligne bevægelser af underar-
men, herunder bøjning, forlængelse, pronation, supination og hvile. Studiet
viste brugbarheden af FMG til styring af kraftforøgende og assisterende ex-
oskeletter.

Styring af exoskeletter med FMG er også et andet fokus i denne afhan-
dling. FMG er her brugt til at styre et exoskelet ved at genkende dynamiske
håndbevægelser, herunder hvile, åbning af hånden, lukning af hånden og
gribe bevægelser. Studiet adresserede udfordringer associeret ved opgaver
hvori greb af objekter er involveret, herunder mængden af træningsdata, ro-
busthed og estimering er den påkrævede styrkeforøgelse. Vigtigheden af
placering af FMG sensorer og dets indflydelse på ydeevnen blev også analy-
seret.

Til slut blev FMG baseret styringer til exoskeletter til albue- og skulderled
præsenteret i denne afhandling. En machine learning baseret algoritme er
udviklet til estimering af assistance niveau ved at estimere nyttelasten under
opgaver hvori objekter skal bæres. Ydeevnen af denne metode er analyseret
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ved eksperimentel test af raske personer. Resultaterne af den fysiske assis-
tance er fundet ved at sammenligne resultaterne fra opgaver hvor objekter er
båret med og uden exoskelet.

Denne afhandling bidrager til state of the art idenfor bevægelses detekter-
ing og bevægelses registrering af overkroppen ved brug af FMG. Studierne
bekræfter at FMG er en nøjagtig og let anvendelig metode til at analysere
bevægeles registrering og har et stort potentiale for anvendelse til styring af
exoskeletter. Et bidrag af afhandlingen er analyse af ydeevnen til registrering
af muskelaktivitet, som sammenligner FMG og sEMG og deres nøjagtighed.
Et yderligere bidrag er de nye metoder udviklet til at gribe og bære objekter.
Den foreslåede teknik er i stand til at reducere kompleksiteten af systemet og
gøre det mere brugbart og robust.
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Chapter 1

Introduction

This research is aimed at developing robust and accurate human motion in-
tention detection methods, which are used to design assistive control strate-
gies for powered exoskeletons. In this work human motion intention is in-
terpreted in terms of motion type and required assistance level. In order to
detect motion intention muscle activity reading techniques will be first ana-
lyzed for their performances. Afterwards, methods to detect motion intention
will be developed. Lastly, based on the developed methods control of upper
limb exoskeleton that includes active hand, elbow and shoulder joints, will
be implemented and tested.

Furthermore, this PhD is a part of Ambient Assisted Living (AAL), Joint
Programme Call 6, funded EU project AXO-SUIT [1]. The goal of this project
was to develop a portable full body (upper and lower limb) exoskeleton,
Figure 1.1, which is able to assist elderly in their daily activities. In this
project 3 universities and 5 companies were collaboratively involved from
concept design to the development of final prototype. Aalborg University
was the project coordinator, leading the design and development of the upper
limb exoskeleton.

1.1 Background

Exoskeleton is an external structural mechanism with joints and links corre-
sponding to those of the human body [2]. It’s applications can be found in
medical for rehabilitation [3, 4], in manufacturing industry for power aug-
mentation [5] and for people with reduced muscle strength for assistance in
daily activities [6].

These devices on basis of actuation can be divided into two types i.e.
passive or active exoskeletons. Passive exoskeleton is constructed using me-
chanical spring and dampers [7]. These exoskeletons are designed to assist in
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Chapter 1. Introduction

Figure. 1.1. Full body exoskeleton AXO-SUIT [1]

very specific tasks and can provide a limited amount of assistance. However,
active exoskeletons, also called powered exoskeleton comprises of mechani-
cal structure, sensors, actuators and human robot interaction (HRI) systems.
In comparison to passive systems these can adapt to various applications and
assistive profiles can be modeled according to target applications. However,
the proper functioning of these devices needs efficient and effective modeling
and control techniques.

For proper functioning HRI is one of the key elements. In exoskeleton sys-
tems their control is implemented either by decoding the cognitive processes
or by measuring the physical interaction forces that are caused by the motions
in result of cognitive processes [8]. Using active exoskeletons for physical as-
sistance of elderly or industrial workers, interpretation of cognitive process is
important in order to determine motion intention and to provide assistance
as needed.

With the given requirements, methods to interpret motions that are ro-
bust and accurate are required. To achieve this goal, human motion intention
detection methods to decode cognitive process are studied in this thesis. Sev-
eral aspects, including detection performance, long term repeatability and
assistance level determination, are investigated for using motion detection
methods in order to control upper limb exoskeletons.

2



1.2. Literature Review

1.2 Literature Review

1.2.1 Upper limb exoskeletons

In the past couple of decades many exoskeletons have been developed for
assistive and rehabilitation applications, which are either passive, active or
hybrid, having both active and passive joints [9]. Some examples of such
exoskeletons are shown in Figs. 1.2 and 1.3. In this section a brief overview
of upper limb exoskeletons and their applications are presented.

EksoVest [10] is a passive exoskeleton designed to assist shoulder move-
ments. Main application of this exoskeleton is to assist overhead tasks e.g.
overhead drilling or tooling in automotive industry. Proto-MATE [11] and
SkelEx [12] are also passive shoulder exoskeletons that are designed to pro-
vide support in overhead tasks. T. Rahman et al. [13] developed a passive
elbow exoskeleton called WREX. The exoskeleton uses a linear elastic ele-
ment to balance gravity in three dimensions.

eWrist [14] is a one DOF powered rehabilitation exoskeleton. It is de-
signed to assist in wrist extension training. SEMGlove [15] is a soft powered
hand exoskeleton developed by BioServo technologies. It is designed to as-
sist in grasping task by measuring the contact forces at finger tips. Stuttgart
Exo-Jacket [16] is a powered exoskeleton designed to provide assistance in
industrial tasks. The exoskeleton has an active elbow and shoulder flex-
ion/extension joints. The exoskeleton also has passive lower-body exoskele-
ton to ground the forces applied on the upper limb exoskeleton. CADEN-
7 [17] is a 7-DOF cable-driven powered upper limb exoskeleton. The ex-
oskeleton allows 3-DOF actuation at shoulder, 1-DOF actuation at elbow and
3-DOF actuation at wrist joint. The exoskeleton can provide the support is
both rehabilitation and power amplification applications.

SUEFUL-7 [18] is a wheel chair mounted cable driven 7-DOF exoskele-
ton. The exoskeleton was aimed for the assistance of weak persons. Another
wheel chair mounted 4-DOF upper limb exoskeleton for physical assistance
of disabled persons is developed by Gull et al. [19]. CABexo [20] is a ca-
ble driven 6-DOF exoskeleton designed by Xiao et al. The exoskeleton was
developed for elderly people to provide support in daily living activities.
6-REXOS [21] is a 6-DOF exoskeleton designed for assistance of physically
weak people. It is equipped with physical HRI system in order to provide
assistance in daily living tasks. MAHI Exo-II [22], developed by French et
al., has 4 active DOF and one passive DOF. The exoskeleton was aimed for
rehabilitation of stroke and spinal cord injury patients. REHAROB [23] is
another rehabilitation exoskeleton with 7 DOF that was designed by Toth et
al.

Several other exoskeletons have been developed for rehabilitation purpose
i.e. ARAMIS (6-DOF, post stroke rehabilitation) [24], LIMPACT (20-DOF,

3



Chapter 1. Introduction

(a) (b)

Figure. 1.2. Passive exoskeletons, (a) Proto-MATE [11] and (b) WREX [13].

(a) (b)

Figure. 1.3. Active exoskeletons, (a) Stuttgart Exo-Jacket [16] and (b) CADEN-7 [17] .

neurorehabilitation) [25], IntelliArm (9-DOF, neurological impairments) [26],
WOTAS (3-DOF, tremor assessment and suppression) [27], NTUH-ARM (7-
DOF, post stroke rehabilitation) [28], T-WREX (rehabilitation after chronic
stoke) [29], ARMin III (6-DOF, post stroke rehabilitation) [30] and RUPERT
IV [31].

1.2.2 Intention detection

Control of exoskeletons for physical assistance depends on accurate detection
of motion intention, which is obtained either through physical interaction or
cognitive interaction. This section will introduced state of the art techniques
that are used to detect motion intention.

4



1.2. Literature Review

Physical Interaction

In physical interaction, desired motion intention is detected by placing force
or contact sensors on the exoskeleton. In [32] Huang et al. developed a
3-DOF upper limb power-assist exoskeleton and placed two sensor rings to
interpret the intended motion direction. Each sensor ring was embedded
with four force sensing resistors (FSR). The FSRs were placed to measure
the interaction forces between human, and exoskeleton and interpret the in-
tended motion direction. M. Baklouti et al. [33] proposed a 4-DOF orthosis
for rehabilitation purpose. The orthosis also used FSR sensors to measure
the interaction forces between human and exoskeleton. Two bracelets were
placed on the exoskeleton, one on forearm and one on upper arm, where
each bracelet was composed of four FSR sensors.

Nilsson et al. [15] developed a soft hand exoskeleton to assist in grasping
tasks. The exoskeleton was also equipped with FSR sensors, placed at the
finger tips to identify the physical interaction between finger tip and the
object. Depending upon the magnitude of the interaction force, assistive
torque was provided by the exoskeleton to grasp the object. FSR sensors
for measuring physical interaction forces between human and exoskeleton
have also been reported in [34, 35].

Lee et al. [36] used 3-axis load cells to measure physical interaction forces
in order to control a upper limb exoskeleton HEXAR. CAREX-7 [37], SUEFUL-
7 [18], IntelliArm [26] and EXO-UL7 [38] also used load cells installed at mul-
tiple contact points to measure physical interaction forces in order to control
exoskeleton motion. Li et al. [39, 40] developed a novel variable stiffness ac-
tuator to introduce compliance in exoskeleton movement. Furthermore, by
measuring the deflection of input and output link, the joint is also used to
measure the interaction forces between human and exoskeleton.

Cognitive Interaction

In cognitive interaction human cognitive processes are measured. There ex-
ists several techniques to interpret these process i.e. electroencephalography,
electromyography and force myography. Developments using each technique
are presented in the forthcoming sections.

• Electroencephalography Electroencephalography (EEG) is the method
of acquiring brain activity, in form of electrical signals, by placing the
electrodes on the skull. The methods has been investigated to de-
tect upper and lower limb movement intentions [41–43]. Wang and
Makeig [44] conducted a study on binary single-trial EEG classification
i.e. left and right. They placed the electrodes on the complete head and
implemented independent component analysis to perform the classifi-
cation. Bandara et al. [45] used EEG to detect task based motion in-
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Chapter 1. Introduction

tention. They implemented neural network (NN) to classify between
resting, moving and drinking. Hayashi and Kiguchi [46] proposed EEG
based estimation of elbow and shoulder flexion/extension movement.
They used 256 EEG channels to gather the brain activity. Afterwards,
principle component analysis was implemented to sort out the chan-
nels that provide distinguishable results. EEG method has also been
proposed in [47] to detect walking direction. The estimation model in-
terpreting human intention uses independent component analysis and
multi-class support vector machine (SVM) algorithms to classify the
motion type. D. Planelles et al. [48] proposed an SVM classifier to de-
tect gait intention using EEG.

• Electromyography Electromyography (EMG) is the method of inter-
preting the brain activity in form of electrical signals by placing the
electrodes on muscle belly. EMG has been widely used to detect arm
movements [49–68].

In [69] Arenas et al. used EMG to detect six hand gestures i.e. finger
pointing up, down, left and right, close hand and rest state. Commer-
cially available MYO armband [70] was used to collect EMG data and
convolution NN was implemented to classify the gestures. In [71] Abu
et al. used EMG to detect hand gestures i.e. open, pronation, supina-
tion, cylindrical grasp and rest. MyoWare™ Muscle Sensor (AT-04-001)
was used to collect EMG data of brachioradialis and flexor carpi mus-
cles and NN was used to classify the gestures. EMG has also been used
to detect reach to grasp and grasping task [72] by placing sixteen EMG
channels on upper arm and forearm muscles. Leonardis et al. [73] used
EMG to estimate the grasping torque. EMG electrodes were placed at
three forearm muscles i.e. extensor digitorum longus, flexor digitorum
longus and abductor pollicis brevis and multi-layer NN technique was
implemented to estimate the grasping torque.

Artemiadis and Kyriakopoulos [74] proposed EMG based arm motion,
i.e. shoulder adduction/abduction and elbow flexion/extension, detec-
tion method in order to control a robotic arm. Ullari et al. [75] proposed
EMG based elbow joint torque estimation method. In their method
EMG electrodes were placed on the biceps and triceps. They imple-
mented a pneumatic artificial muscles (PAM) based model that used
the EMG measurements and elbow joint angle to output the applied
joint torque. In [76] Rahman et al. presented an EMG based control of
an upper limb exoskeleton to assist elbow and shoulder movement. In
their approach, EMG signals were processed to estimate the joint angle,
which was further used as reference input to control the exoskeleton
movement. In [77] Li et al. proposed an EMG based two stage machine
learning network to estimate the corresponding joint torque. In the first
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1.2. Literature Review

stage linear discriminant analysis (LDA) classifier was implemented to
classify the motions type and in the second stage corresponding joint
torque was estimated. The joint torque was later used to control the
upper limb power assist exoskeleton.

In [78–80] the performance of EMG was investigated by implementing
different classification techniques in order to obtain better accuracy and
In [81–83] sensor fusion techniques were proposed, by combining IMU
and EMG, to improve the gesture detection accuracy.

• Force myography In force myography (FMG) muscle activity is de-
tected by measuring muscle contraction intensity. In the last decade
this method has been extensively studied for the detection of upper
and lower limb movements [84–87, 89–93, 108], in terms of gestures
and applied forces.

Wininger et al. [94] used FMG to predict the grasping force. The goal
was achieved by developing a cuff with 14 FSR sensors to be worn
at forearm muscles covering mid-to-proximal surface of the forearm.
In [95] Sakr et al. used FMG for estimating hand/wrist torque by plac-
ing the senor strap, containing 16 FSR sensors, on forearm near elbow
joint. In another study [96] the performance of same task was analyzed
by comparing SVM and NN techniques. Sakr et al. [97] also investi-
gated the effect of sensor placement and numbers on hand force esti-
mation. Four sensor bands were used, three placed on forearm and one
on upper arm. Fifteen combination of sensor bands were analyzed by
implementing general regression NN. The sensor placement was also
investigated in [98] for gesture classification. In this study eight hand
gestures were classified by using three sensor bands placed only on
forearm. In [99] performance of FMG was investigated for prosthe-
sis control. In this work 11 grasp types were classified using LDA.
Xiao et al. [100] proposed FMG for detection and counting of grasping
tasks. Two sensor bands were used, one placed near elbow joint and
one placed near wrist. Furthermore, three classification techniques i.e.
LDA, SVM and artificial NN, were tested and compared.

FMG for classification of dynamic gestures, i.e. opening, closing, shak-
ing, rotating, pushing and pulling, was reported in [101]. The study
was focused on optimization features extraction in order to improve
the classification performance and results showed that optimization do
help in improving the classification accuracy. Instead of optimizing
the extracted features, Sadrangani et al. [102] tested and analyzed dif-
ferent features, i.e. mean absolute value, root mean square, linear fit,
parabolic fit and autoregressive model for improving the accuracy of
detecting grasping task. Jiang et al. [103] proposed FMG and leap mo-
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tion system for classifying six grasp types. Both systems were tested
individually and combined and results showed that the fusion of both
systems yield best performance.

Radmand et al. [104] proposed a FMG based high density force sen-
sor grid to measure the muscle activity of forearm muscles. With the
developed method they were able to distinguish between eight wrist
and hand motions. Ferigo et al. [105] also used high density FMG of
forearm muscles for detection of open, rest and 9 grip types.

1.3 Research challenges

In the last section comprehensive state of the art literature survey, related
to exoskeleton development and motion intention detection methods, was
presented. It is noticed that many developments have been made in the past
couple of eras in these areas. The motion intention detection methods have
been applied for various applications and their performances are analyzed
in terms of muscle activity detection methods, machine learning techniques,
sensor fusion, exoskeleton control and many more.

This section will summarize these challenges and will also highlight a few
research gaps that will be addressed in this thesis.

1.3.1 Muscle activity detection method

For detecting desired motion intention, reading muscle activity is the pri-
mary task. The most commonly used methods for reading muscle activity
are EMG [107] and FMG [106] that have shown promising results for the as-
sistive exoskeletons control. Many studies have been performed to compare
the performance of these methods. Xiao et al. [108] compared the perfor-
mance of FMG and sEMG for detecting elbow, forearm and wrist positions
using SVM and LDA. Jiang et al. [109] compared FMG and sEMG for de-
tecting 48 hand gestures. Classification was performed using LDA, where
in FMG raw FSR data was used as features and in sEMG 13 features were
extracted. Ravindra and Castellini [110] compared both techniques for esti-
mating finger forces. The performance was evaluated in terms of estimation
accuracy, signal stability, wearability and cost. In [111] FMG and sEMG meth-
ods were compared for detecting wrist and hand motions. Signal stability,
cluster separability and gesture prediction accuracy were analyzed. Results
showed that FMG has better performance, however, fusion of both methods
can yield best results. Fusion of multiple modalities is also been investigated
in other studies [112, 113], addressing the performances during prosthetic
socket shift, user fatigue and muscle activation levels.
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1.3.2 Robust motion detection

In the last section literature comparing the performance of FMG and EMG
is presented. Each method has been individually investigated for perfor-
mance improvement from many other aspects. Features selection and opti-
mization [50, 101, 102, 114] were studied to improve the classification perfor-
mance. Different AI and machine learning algorithms have also been tested
for improving the classification accuracy [78–80, 90, 115]. However, the re-
sults of features optimization and classifier type have shown dependence on
targeted motion and testing conditions.

Many of the experiments reported in literature are performed in con-
trolled environment, which doesn’t prove the feasibility of the method ap-
plicable in routine life tasks. Hand/wrist motion detection in presence of
upper limb movement is one of factors that can affects the pattern recog-
nition performance [116]. However, increasing training dataset and sensor
fusion techniques have shown promising results in improving the classifica-
tion accuracy [105, 117–119].

1.3.3 Long term data repeatability

The purpose of using assistive exoskeletons in industries or at personal space
is to provide assistance on daily basis. Motion detection methods governing
the control of these exoskeletons require a training phase in which a set of
motions are performed for multiple times. Following such routine on daily
basis is not feasible and inconvenient. Therefore, besides on day detection
accuracy, investigation on robustness of motion detection methods between
days is required. Kaufmann et al. [120] analyzed EMG data of hand gestures
recorded for 21 days. Five classification techniques i.e. k-nearest- neighbor,
LDA, decision trees, artificial NN and SVM, were compared for detecting the
gestures and to analyze change in accuracy between days. J. He et al. [121]
used 12 days of EMG data for detecting 13 forearm and hand gestures. They
analyzed the performance of six time and frequency domain features using
LDA. Performance of EMG for long-term pattern recognition is also been
investigated in [122, 123]. S. Amsuss et al. [124] proposed a self-correcting
pattern method to improve the between day detection performance by im-
plementing two layer detection method. In first layer LDA is implemented to
classify a gesture, whereas, artificial NN is implemented in second layer to
decide on the correctness of the decision made in first layer. Phinyomark et
al. [125] investigated EMG features to improve usability of practical applica-
tions of myoelectric control.
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1.3.4 cHRI based exoskeleton control for physical assistance

There has been many solutions proposed for the control of assistive exoskele-
tons that are based on cognitive HRI (cHRI) method. In these methods
EMG has been the main source of interpreting the desired motion inten-
tion [126–128]. In [129] Luka et al. used muscle activity recorded through
EMG as feedback. The information was used in an adaptive feed-forward
torque control strategy for elbow exoskeleton in order to minimize human
effort in handling unknown load. Luh et al. [130] used EMG to estimate
the elbow joint angle by implementing NN technique in order to control a
2-DOF elbow exoskeleton. The method was developed and tested to estimate
the joint angle in varying load lifting tasks. Li et al. [131] used EMG to control
upper limb exoskeleton for assisting elbow and shoulder flexion/extension
movement. In their setup EMG was used to estimate the joint stiffness and
adaptive impedance control strategy was implemented to mirror it. Mghames
et al. [132] used muscle modeling approach to map EMG readings to muscle
force level of biceps and triceps. Afterwards, using muscle forces joint an-
gles were predicted to control a variable stiffness exoskeleton FLExo. Lu et
al. [133] used myowear muscle sensor to collect EMG of biceps in order to
estimate the elbow joint torque. The estimated joint torque is further used
to determine the increment in elbow joint angle and to actuate the elbow ex-
oskeleton motion using PID controller. Khan et al. [134] used muscle circum-
ference sensor, placed on the upper arm and hill muscle model to determine
the elbow joint torque. The information was used to implement adaptive
impedance control to assist elbow movement through upper limb exoskele-
ton.

The aforementioned SOA and research challenges shows that human inten-
tion detection methods have been analyzed from various perspectives of
performances and exoskeleton control. However, there are many research
gaps, in terms of daily use performance analysis and usability/convenience
in work environment, yet to be investigated. Brief details of the identified
gaps and research tasks to address them are as follows:

• Long term performance comparison: FMG and sEMG have been the
key methods to detect muscle activities. In the reported literature [108–
111] performance comparison experiments are conducted for one day
only. Day to day performance comparison study has not been reported
yet, which is essential for the applications of daily use.

• FMG based motion detection and assistive exoskeleton control: The
comparison studies [108–111] between FMG and sEMG shows that FMG
has better performance than sEMG. However, FMG literature is mainly
focused on hand motion detection methods. Furthermore, the methods
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developed using FMG are applied for the control of hand prosthesis.
FMG has not been explored for the control of upper limb, including
hand, elbow and shoulder, assistive exoskeletons.

• Sensor usability in real work environment: Usability [135] refers to
the ease of using the technology. A couple of challenges of the existing
sensing methods w.r.t this aspect are addressed below.

– The methods of cHRI based upper limb assistive exoskeleton con-
trol are mainly based on EMG. In the applied methods [126, 131],
assistive torque profile for each joint is determined by placing the
sensors at its driving muscles. Thus, In multi DOF exoskeleton,
system complexity will increase and also inconvenience in work-
ing environment. Therefore, new methods that can reduce sen-
sor requirement are needed in order to improve the usability of
motion detection methods and its implementation in the working
environment.

– In machine learning based motion detection methods another chal-
lenge in term of sensor usability is the collection of correct and big
training datasets. Even after collecting them, performance of de-
tection models can still be affected because of sensor placement
after don/doff and change in effort level [120, 122, 123]. Solutions
to solve these issues have been reported [121, 124] but they come
with expense of extensive user training and classifiers retraining.
Therefore, methods that can minimize the training effort without
compromising the performance are needed in order to bring mo-
tion detection methods more close to work place applications.

1.4 Research questions

In order to address the identified research gaps and to propose solutions to
fill those gaps the following research questions are formulated.

• Rq1: What muscle activity detection method is suitable for the applica-
tions of daily use?

• Rq2: How can the usability of FMG based classification/regression
methods be improved for detecting upper arm movement intent?

• Rq3: How can FMG based motion detection methods be integrated into
exoskeletons for intelligent physical assistance in load carrying tasks?

11



Chapter 1. Introduction

1.5 Objectives and scope of the work

The objective of this PhD is to investigate control methods for upper limb
powered exoskeleton in order to provide physical assistance reliably and
conveniently on daily basis. Human motion intention is one of the key el-
ement to achieve this goal. A proper physical assistance can be provided by
knowing the human motion intention. Therefore, in this thesis cHRI method
will be studied to determine the desired motion type and required assistance
level. The hypothesis is that “FMG can effectively and efficiently detect upper
limb motion intention in order to control upper limb exoskeleton for provid-
ing physical assistance in load carrying tasks”. To this end and in order to
address the research questions identified in the previous section, following
research activities will be conducted:

• Investigate the performance of different muscle activity sensing meth-
ods (Rq1).

• Investigate sensor placement and fusion techniques to aid AI methods
in motion detection (Rq2).

• Develop AI techniques to predict/estimate desired motion intention
(Rq2).

• Evaluate the performance of motion intention detection techniques by
testing it with healthy subjects (Rq2).

• Investigate control methods applicable for the assistive exoskeleton robots
(Rq3).

• Integrate motion intention detection techniques and exoskeleton control
strategies (Rq3).

• Testing of integrated methods with healthy subjects and analyzing their
performances for reducing human effort (Rq3).

The overall work scope of this thesis is shown in Fig. 1.4. From Fig. 1.4
it can be seen that "motion intention detection" being the main focus of this
thesis is addressed by reporting three papers I, II and III, in chapters 3, 4 and
5, respectively. The figure also encompasses the main tasks, challenges and
research questions linked to each study.

1.6 Research Methodology

Research methodology is the necessary process to address the research ques-
tions systematically. In this work the research approach is adopted from
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Figure. 1.4. Work scope of the thesis.

Design science research methodology (DSRM) [136]. The methodology offers
four entry points to start a research project. One of them is problem-centered
initiation that is relevant to this thesis project i.e. the need of assistive ex-
oskeleton for industry and daily use. With the research entry point defined,
the research methodology has following steps i.e. identification of problem
and motivation followed by an iterative process of defining objectives, de-
signing, experimenting, and evaluating the proposed method/solution. Brief
details of how research questions are connected to the aforementioned DSRM
steps, applied to this thesis, are given below.

One of the key element for proper working of assistive exoskeleton is
human movement intention, detected through muscle activity. In literature
review existing strategies were reviewed for measuring muscle activity. Rq1
focused on problem identification, i.e. daily use, and motivation for the se-
lection of a strategy. With the selected strategy and research gaps identified
in state of the art, Rq2 focused on defining objectives, and designing, ex-
perimenting and evaluating the methods to address those research gaps. In
Rq3, the developed methods were integrated with upper limb exoskeleton
control strategies, which were further experimented, evaluated and analyzed
for future research directions.

1.7 Outline of thesis

The thesis consists of five chapters, which are as follows
Chapter 1 explains the background and state of the art exoskeleton sys-

tems and human motion detection methods. Research challenges of existing
human motion detection methods in context of assistive exoskeleton control
are also analyzed. Based on the analysis, research questions and objectives of
this thesis are also presented.

Chapter 2 introduces FMG method for motion detection. In this chapter,
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FMG principle, sensors for performing FMG, signal amplification and design
of physical construction of sensor band are explained.

Chapter 3 addresses the performance of muscle activity detection tech-
niques that are sEMG and FMG. The analysis were performed to select a
method that is used for the development of assistive control strategies for
upper limb exoskeletons.

Chapter 4 describes the application of FMG on hand exoskeleton control.
In this chapter an AI technique is developed to detect dynamic hand motions.
An assistance level determination method for grasping task is also presented
and tested with soft hand exoskeleton.

Chapter 5 describes FMG based payload estimation method and its ap-
plication on upper limb exoskeleton control. The method is developed to
determine the assistive torques to be provided at elbow and shoulder joints.
The method is experimentally validated for load carrying tasks.

Chapter 6 concludes this thesis, with a summary and contributions made.
Future work is also suggested.
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Chapter 2

Motion detection using force
myography

This chapter introduces theoretical basis of FMG and its applications. De-
sign principles for constructing a sensor band, amplifier characteristics, data
processing methods to determine limb movements are also presented.

2.1 Principle

Limb movements are resulted by the contraction and relaxation of certain
muscle groups. As the muscles are contracted or relaxed the tension along
the muscle length is increased or decreased, respectively. This change in
muscle tension creates a normal force, as illustrated in Fig. 2.1, that is pro-
portional to the muscle contraction intensity. Fig. 2.1 is an example showing
the contraction of bicep muscle before and during payload lifting task. In-
crease in muscle contraction can be observed visually as the payload is lifted
and by wrapping a sensor band around upper arm outward normal force f,
caused by muscle contraction, can be measured. The process of reading this
normal force is referred as FMG [137]. Hereafter, the normal force f will be
referred as muscle contraction-induced (MCI) force.

2.2 Sensing methods

Several sensors have been being proposed to detect MCI forces, which in-
clude:

• Force sensing resistor: FSR sensor acts as a variable resistor and has
an inverse relationship to applied force i.e. higher the applied force
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(a) (b)

Figure. 2.1. Muscle contraction, (a) without and (b) with payload.

lower is the resistance. Fig. 2.2(a) shows the placement of FSR sensors
to read muscle activity. In this configuration FSR sensors can measure
MCI forces directly [84, 85].

• Strain gauge: Strain gauge sensor [138], Fig. 2.2(b), also measures
forces by varying its resistance. However, instead of MCI force, radial
forces are measured to read muscle activity.

• Optical fiber: Construction of sensor band using optical fibers is shown
in Fig. 2.2(c). In this method pressure applied by MCI forces induce
attenuation and variations in light intensity being trasmitted through
the fiber, which is then mapped back to the applied MCI force [139].

2.3 FSR sensor for FMG

Among all the above mentioned sensors FSR are most commonly used sen-
sors to perform FMG. These sensors have the advantage of simple filtering
and amplification interface, moreover, construction of sensor bands is also
easy. Comparing to other sensors, like for strain gauge sensors operating
temperature has significant effect in its measurements. In case of optical fiber
sensors CCD cameras [139] have been commonly used to read light intensity,
which is hindrances for real time implementation for exoskeleton control.
Recently an embedded amplifier [140] has been reported that brings it close
to practical implementation of assistive exoskeleton, but still requires valida-
tion. On the other hand FSR are interfaced to basic operational amplifiers,
which are readily available, compact and more suitable for real time applica-
tions. Moreover, FSR sensors are also not affected by temperature changes.
Furthermore, FMG data obtained through FSR is also been validated with
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(a)

(b)

(c)

Figure. 2.2. Sensor band designs using (a) FSR, (b) Strain gauge [138] and (c) Optical fiber [139].
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(a) (b)

Figure. 2.3. (a) FSR-402 used for sensor band construction (b) side view of FSR placed inside
sensor band.

standard EMG method [141]. Therefore in this thesis FSR sensors are used to
detect upper limb activities.

2.3.1 Sensor band construction

FSR is the sensor that can read the forces applied normal to its surface. An
array of these sensors are used to construct the sensor band in this thesis. The
employed sensors are FSR-402, shown in Fig. 2.3(a), developed by Interlink.
FSR-402 can read the forces in the range of 0.1-10N.

The developed sensor band has three layers as shown in Fig. 2.3(b). (1)
The inner most layer is the FSR-402 that measures the MCI force, (2) the
middle layer is the "FSR base" that is made of soft fabric and is of the same
size as of FSR. This layer ensures the proper contact of FSR with the skin
of the user. (3) The outermost layer called "Band", which is the strap to be
wrapped around the limb of the user.

2.3.2 Signal amplification

FSR sensors works as a variable resistor and it’s output is inversely pro-
portional to the applied force. Figure 2.4 show an amplification circuit to
interface FSR. Output voltage in this configuration is given by,

Vout =
Rre f

Rre f + R f sr
Vin (2.1)

here Vout is the output voltage, Vin is the fixed supply voltage, Rre f is the
reference resistance and R f sr is the FSR resistance.

In this configuration desired force range of the amplifier can be adjusted
by changing reference resistance. In another configuration, shown in Fig.
2.5, a non-inverting amplifier is implemented. In this design, output of the
amplifier is given by,
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Figure. 2.4. Voltage divider followed by buffer amplifier to process FSR data.

Figure. 2.5. non-inverting amplifier to process FSR data.

Vout = (1 +
Rre f

R f sr
)Vin (2.2)

here the output of the amplifier can be varied by changing both Rre f and Vin.
The later configuration, shown in Fig. 2.5, is comparatively more conve-

nient in adjusting the FSR force sensing range during real-time testing. On
daily basis it is very challenging to achieve same tightness of the sensor band.
In such scenario it is possible that maximum resolution of the amplifier is not
achieved for a given set of movements. Using the amplifier shown in Fig. 2.5,
Vin can be controlled through a DAC channel and by using an API it can be
tuned conveniently. In this work the later version of the amplifier was used
to obtain FSR data.
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2.3.3 Motion detection

Data obtained through FMG has been used to detect limb movements either
in form of discrete states using classification approach or in form of continu-
ous trajectory by implementing a regression algorithm.

Regression

In regression the data obtained from FMG is used to generate a continuous
output signal. This method has been reported to track finger movements,
hand/wrist force/torque, forearm stiffness, grasp intensity and knee joint
angle [86, 94, 97, 142, 143]. In these methods data from each FSR was treated
as a separate input feature and to predict desired task support vector ma-
chine, kernel ridge regression, random forest and NN techniques have been
implemented.

Classification

In classification discrete output states are predicted. In FMG, this method
has been implemented to classify forearm, wrist and hand gestures [87, 100,
101, 103] and also been used to identify locomotion modes and ankle po-
sitions [144–146]. The implementation of classification techniques involves
three main steps i.e. windowing, features extraction and classifier training.
Windowing in the process of segmenting raw data, either at discrete time
stamp or a running window of fixed time interval. It is an important step
as the detection accuracy and latency in controlling a machine depends on
it. Followed by windowing is features extraction process, in which time and
frequency domain information is extracted from the segmented raw data. In
FMG, mainly time domain features i.e. mean, root mean square, variance,
waveform length, window symmetry and many more, have been reported.
With the extracted features, the last step is to train a classifier. Many ma-
chine learning techniques have been reported to train a classifier i.e. SVM,
LDA, random forests, NN and deep learning. In real-time testing the trained
classifier are then used to predict different movements.

2.3.4 Methods used in this thesis

In this thesis work, both regression and classification techniques were used.
In Chapter 3 and 4, classification approach is implemented to detect forearm
and hand motions. Whereas, in Chapter 5 regression is used to detect the
carried payload.

An example of using FMG data in regression and classification is given in
forthcoming section.
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(a) (b)

Figure. 2.6. Dataset of elbow flexion/extension, (a) MCI forces obtained in terms of FSR amplifier
output voltage. (b) elbow joint angle.

Dataset

The collected dataset, shown in Fig. 2.6, is for elbow flexion/extension. Two
sensors, i.e. FSR array and IMU, are used to collect this dataset. FSR array
embedded inside a flexible sensor band is placed in the middle of the upper
arm to measure the MCI forces. Whereas, elbow joint angle is measured by
placing two IMU sensors, one on upper arm and one on forearm.

The dataset shown in Fig. 2.6 is split into two sets i.e. a) Data-Samples-A
samples 0-1000 and b) Data-Samples-B samples 1300-2000, which are used
as training and testing datasets, respectively, for regression and classification.

Regression

In regression MCI data, shown in Fig. 2.6(a), is used to estimate the elbow
joint angle, shown in Fig. 2.6(b). To implement this technique each FSR
output is treated as input feature and SVM is used as an estimator.

In this implementation Data-Samples-A is used as training dataset and
Data-Samples-B is used as testing dataset. The results of the joint angle
estimation using the testing data are shown in Fig. 2.7. It can be seen that
the trained model is able to track the actual value quite accurately. An RMSE
of 2.53◦ and standard deviation of 2.33◦ is obtained.

Classification

In classification same training and testing datasets are used, as for regression.
In this implementation the elbow joint angle below 44◦ is treated as class 1,
between 44◦ and 66◦ is treated as class 2 and finally above 66◦ is labeled as
class 3. Hence, as shown in Fig. 2.8, the samples between 0-280, 281-620 and
621-1000 are labeled as 1, 2 and 3 respectively.

In this implementation raw FSR data is used as input feature and decision
is made on each sample. Furthermore, the classification between different
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(a) (b)

Figure. 2.7. Results of joint angle estimation, (a) FSR sensors reading, (b) actual and estimated
elbow joint angles.

(a) (b)

Figure. 2.8. Training dataset of joint position prediction, (a) FSR sensors reading, (b) elbow joint
angle. Samples 0-280, 281-620 and 621-1000 are labeled as class 1, 2 and 3 respectively.
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(a) (b)

(c)

Figure. 2.9. Results of joint position prediction, (a) FSR sensors reading, (b) elbow joint angle
and (c) actual and predicted classes.

classes is done using SVM classifier.
Using the testing dataset, shown in Figs. 2.9(a) and 2.9(b), the results

obtained are shown in Fig. 2.9(c). It can be seen that during steady state
there is no miss classification, each class is predicted accurately. Whereas,
during transition there are some miss classifications. Overall an average of
97.15% accuracy is achieved for all classes.
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Original Article

A comparative study of motion detection
with FMG and sEMG methods for
assistive applications

Muhammad Raza Ul Islam1 , Asim Waris2,
Ernest Nlandu Kamavuako3 and Shaoping Bai1

Abstract

Introduction: While surface-electromyography (sEMG) has been widely used in limb motion detection for the control

of exoskeleton, there is an increasing interest to use forcemyography (FMG) method to detect motion. In this paper, we

review the applications of two types of motion detection methods. Their performances were experimentally compared

in day-to-day classification of forearm motions. The objective is to select a detection method suitable for motion

assistance on a daily basis.

Methods: Comparisons of motion detection with FMG and sEMG were carried out considering classification accuracy

(CA), repeatability and training scheme. For both methods, classification of motions was achieved through feed-forward

neural network. Repeatability was evaluated on the basis of change in CA between days and also training schemes.

Results: The experiments shows that day-to-day CA with FMG can reach 84.9%, compared with a CA of 77.8% with

sEMG, when the classifiers were trained only on the first day. Moreover, the CA with FMG can reach to 86.5%,

comparable to CA of 84.1% with sEMG, if classifiers were trained daily.

Conclusions: Results suggest that data recorded from FMG is more repeatable in day-to-day testing and therefore

FMG-based methods can be more useful than sEMG-based methods for motion detection in applications where

exoskeletons are used as needed on a daily basis.

Keywords

Day-to-day performance comparison, forcemyography, human-machine interfaces, neural network, surface-electromy-

ography, assistive exoskeletons
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Introduction

Many human activities, either occupational or in daily

life, require our muscles having a certain level of

strength.1 Exoskeletons2 have the capability to over-

come the muscle strength limitation by providing

power augmentation.3–6 This can contribute to enhance

endurance for workers and to improve motion capabil-

ity for the elderly and people with motion limitations.
In the control of exoskeletons, human motion detec-

tion is critical7 for appropriate assistance control and

human-robot interaction. Many methods have been

developed, which are based on either physical or cog-

nitive interfaces. Of them, sEMG is one of the conven-

tional methods to determine upper limb movement

activities8–16 in terms of elbow/shoulder joint angles,

hand gestures and task identification. EMG based exo-
skeleton controls have been reported in literature.17–22

The effect of training time on sEMG based classifica-
tion has also been studied earlier.23–26 The results indi-
cate that performance continuously downgrades as the
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time difference between training and testing day
increases. On the other hand, FMG as an alternative
to detect upper and lower limb muscle activities has
been used in different applications with healthy
subject27–37 and with stroke/amputated subjects.38,39

Given different applications of these methods, com-
parisons of their performance are necessary for their
proper use in applications. Some comparison works
have been reported in the literature. In Ravindra and
Castellini40 the performances of using pressure sensing
(FMG), sEMG and ultrasound methods for estimating
finger force were reported in terms of overall estimation
accuracy, change in estimation accuracy with repetition
of each task (stability), wearability and cost. It was
reported that pressure sensing performed well in term
of accuracy and stability. In Jiang et al.,41 the perform-
ances of FMG and sEMG for recognizing hand ges-
tures were compared. Average accuracy was reported
as 87.35% for FMG and 81.85% for sEMG.
Moreover, FMG performance was also evaluated by
increasing the number of force sensing resistor (FSR)
sensors and an increase of 5.7% in accuracy was
obtained. The performances in elbow, forearm and
wrist position classification were reported in Xiao and
Menon.42 The results showed that overall performan-
ces with FMG and sEMG were consistent. Study on
combining both sEMG and FMG was also reported to
achieve better performance.43

It is noted that in the aforementioned studies, the
performance of FMG and sEMG was compared for

classifying static postures and finger force estimation.

Moreover, the experiments with FMG were conducted

for one-time data testing. Comparisons of day-to-day

performances with the two methods are not

reported yet.
In this work, we compare day-to-day performances

of FMG and sEMG methods for classifying motions,

including both static pose and dynamic arm movement.

Our interest in this work is to understand the advan-

tages and limitations of the two methods, in order to

apply a proper method for motion assistance through

exoskeletons that are used on a daily basis.
This paper is organized as follows: Materials and

methods for performance testing are explained in the

upcoming section. A further section presents the testing

results, which is followed by the discussion in next sec-

tion. The work is concluded in the final section.

Methods

Motion types

The motions studied in this work include forearm flex-

ion, extension, pronation, supination and rest. Except

rest state, the other four motion types were classified

during the dynamic state. The starting and ending

states of each motion are shown in Figure 1. Flexion

was performed by moving the forearm from neutral to

fully flexed forearm position (Figure 1(a)). Extension

was performed by moving the forearm from fully flexed

Figure 1. Starting and ending states of (a) flexion, (b) extension, (c) pronation and (d) supination.
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to fully extended position (Figure 1(b)). Pronation was

performed by rotating the forearm from fully supinated

to fully pronated position (Figure 1(c)) and supination

was performed by rotating the forearm from fully pro-

nated to fully supinated position (Figure 1(d)).

Sensors and placement

The forearm motions are classified separately using

FMG and sEMG based classifiers. With FMG,

muscle activity is recorded in terms of lateral force

caused during muscle deformation, whereas with

sEMG the activity is recorded in terms of electrical

signals.
For FMG testing, two sensor bands with embedded

FSR, namely, FSR-402 developed by Interlink, were

used. One sensor band comprised of six FSR sensors

was placed at the middle of the upper arm. The other

sensor band also comprised of six FSR sensors was

placed at the forearm near the elbow joint. Figure 2

(a) shows the placement of sensor bands.
For sEMG testing, four pairs of EMG electrodes,

Neuroline 720 from Ambu, were used. Their place-

ments are shown in Figure 2(b), for detecting muscle

activities of biceps brachi, triceps, pronator teres, and

supinator, whereas, the reference electrode was placed

at the wrist. Before the placement of the electrodes, the

skin was shaved and cleaned with alcohol wipes.

Conductive gel was also applied to acquire good qual-

ity of signals.

Data collection

Figure 3 shows the hardware setup to collect FMG and

sEMG data. The FMG was recorded through custom

developed non-inverting operational amplifier and
sEMG was recorded through commercially available

AnEMG12 amplifier from OT Bioelettronica. Both sys-
tems were interfaced to Arduino Due. The data from

Arduino was further transmitted to a laptop through
serial communication, where MATLAB based GUI

was designed to record the data at the frequency of

700Hz. The GUI was designed to display each motion
type to be performed in a randomized order during

training and testing sessions. Moreover, all subjects
were instructed to complete each given motion in four

seconds. It was understood that it is less probable that

the subjects will exactly start and finish the motion in the
given time. Therefore, the initial and last quarter second

of the data were not included, only the middle three and
a half seconds of data was used for training and testing.

Data was recorded for three consecutive days for

each subject, the details are as follow

• Day 1: Training dataset, Tr1, 10 repetitions of each
motion type. Testing dataset, Ts1, 5 repetitions of

each motion type.

Figure 2. Sensor placements on human arm, (a) FMG and (b) sEMG.
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• Day 2: Training dataset, Tr2, 2 repetitions of each
motion type. Testing dataset, Ts2, 5 repetitions of
each motion type.

• Day 3: Training dataset, Tr3, 2 repetitions of each
motion type. Testing dataset, Ts3, 5 repetitions of
each motion type.

On each day a new set of electrodes were used and to
maintain the consistent places, electrodes placement was
marked each day. In the case of FMG, the FSR sensors
were not replaced, however, the placement of the sensor
bands were marked every day so that they could be
placed at the same spot. Markers were also placed on
the sensor band in order to achieve similar tightness.

Furthermore, for sEMG signals, a digital high pass
filter of 30Hz was applied to remove the DC offset.
Whereas, FMG was passed through a low pass filter
of 100Hz to remove high-frequency noise. FMG data
was also calibrated to zero for rest condition each day.
The raw data collected for both methods, i.e. FMG and
sEMG, is shown in Figure 4.

Signal processing and feature extraction

In further post-processing, five time-domain features
were extracted from sEMG i.e. mean absolute value,
waveform length, zero crossing, slope sign changes and
wilson amplitude. Time domain features have been
widely used for their classification performance and
low computational complexity.44 Moreover, these
features have been reported in other classification stud-
ies41–43 as well.

In the case of FMG, four time-domain features were
extracted i.e. root mean square, slope, mean-mode dif-
ference and slope sign count, presented in Table 1.

Within these features RMS is a generally used33,42 fea-

ture to obtain the average signal amplitude. Whereas,

slope, mean-mode difference and slope sign count are

used to compute the direction and change in signal

amplitude w.r.t time.
Prior to feature extraction, FSR sensors data from

upper arm sensor band was summed together and used

as a single input. Similarly, FSRs data from forearm

sensor band was also summed together. Furthermore, a

window size of 150ms with an overlapping window of

50ms was used for feature extraction and Neural

Network (NN) was implemented to perform the classi-

fication. In the NN setup number of hidden layers and

neurons were selected according to the rules defined in

Heaton.45 Single hidden layer with 7 neurons and 10

neurons were used for training FMG and sEMG based

classifiers, respectively. Maximum iteration limit in

both cases was set to 10000.

Experiments

Five able-bodied male subjects took part in the experi-

ments. All of them were healthy, right-handed and

their ages were in the range of 27-35 years. Moreover,

all of them were provided written informed consent

prior to participation. Ethical approval to conduct

these experiments was obtained from ethical commit-

tee, Region Nordjylland, Denmark.

Testing scenarios

The primary focus of this study was to investigate

FMG and sEMG based NN classifiers for classifying

forearm motions. The classifiers were tested on all three

testing datasets (Ts1, Ts2 and Ts3) after being trained

Figure 3. Hardware setup to collect data with (a) FMG, and (b) sEMG.
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with different combinations of training datasets, which

leads to two tests. The details on classifier training for

each test is described as following,

• Test A: In this test, the classifiers were tested after

being trained only with Day 1 training dataset Tr1.

CA was separately computed for each testing dataset

Ts1, Ts2 and Ts3 referring to Day 1, 2 and 3 testing

data, respectively. Afterward, statistical analysis

were performed to investigate the consistency and

repeatability of the classification methods.
• Test B: In this test, the classifiers were further eval-

uated by training them with multiple training data-

sets. The classifiers were first trained on training

datasets Tr1 and Tr2 and then on training datasets

Tr1, Tr2 and Tr3. In both sessions, the classifiers were

tested on testing datasets in the same way as in Test

A. The purpose of this study was to investigate the

Figure 4. Raw data obtained with (a) FMG and (b) sEMG.

Table 1. Features extracted from FMG raw data. x represents
the vector containing raw data, twin is the window time for fea-
tures extraction, N is the number of samples collected in 150ms
window and � is the threshold limit determined by rest state
data.

Feature Expression

Root mean square

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

x2i

vuut

Slope
RMSj�RMSj�1

twin
mean-mode

difference 1
N

XN
i¼1

xi � modeðxÞ

Slope sign count
XN
i¼2

f ðxi � xi�1Þ

f ðxÞ ¼
0 jf ðxÞj � �
1 f ðxÞ > �
�1 f ðxÞ < ��

8<
:
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effect of including training data from additional

days on CA.

Furthermore, tests were also performed to compare

the CA with different techniques, i.e. support vector

machine35 (SVM), linear discriminant analysis46

(LDA), k-nearnest neighbor46 (KNN) and random

forest47 (RF), using training datasets Tr1, Tr2 and Tr3.

Results

The results are displayed according to the tasks defined

in the previous section.

Test A

For both FMG and sEMG motion detection methods,
CA was calculated over three days of testing data with
the classifier trained on Day 1. The results of CA w.r.t
each day are displayed graphically in Figure 5. An
average CA of 85.9� 8.64% was obtained for FMG
with the testing dataset Ts1, whereas, for sEMG, aver-
age CA was 88.2� 8.91%. With Day 2 testing dataset,
Ts2, an average CA of 89.4� 6.87% was obtained for
FMG and 79.8� 9.05% for sEMG. With Day 3 testing
dataset, Ts3, FMG has an average CA of 81.2� 9.07%,
while sEMG has an CA of 65.6� 15.84%. The average
CA for each individual subject is shown in Figure 6.

The average CA over all three days was 84.9�
3.36% for FMG and 77.9� 11.06% for sEMG. If we
look only at Day 1 performance, sEMG showed better
results than FMG. However, it has to be noted that for
the next two days the CA with sEMG is reduced by
25,6%. Kruskal-Wallis test also showed that the CA
between days was significantly reduced (p¼ 0.046),
which indicates that the data acquired was not repeat-
able. On the contrary, FMG accuracy of Day 1 testing
was lower than sEMG, however, the average accuracyFigure 5. Average CA for training the classifier with Tr1.

Figure 6. Average CA obtained for individual subjects, (a) with FMG and (b) with sEMG.
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is only reduced by 5.5% in the next two days. There

was also no significant difference observed between

each day average accuracy (p¼ 0.403), which indicates

that data acquired through FMG is comparatively

more repeatable than sEMG.

Test B

The long-term performances of both FMG and sEMG

were further analyzed by testing the datasets Ts1, Ts2

and Ts3 using the classifiers trained with different train-

ing schemes. As the tests lasted for three days, we

define three training schemes (TS):

1. TS1: Training the classifiers using dataset Tr1, same

as Test A.
2. TS2: Training the classifiers using datasets Tr1

and Tr2.
3. TS3: Training the classifiers using datasets Tr1, Tr2

and Tr3.

The results of CA with training scheme TS2 are

shown in Figure 7(b). When comparing the results

with TS1, it can be seen that the CA in the case of

FMG was improved for Day 2 by 3.1% and Day 3

by 2.6%. In the case of sEMG, CA only improved

for Day 2 by 2.2%. However, the change in CA for

both methods, FMG (p-value¼ 0.917) and sEMG (p-

value¼ 0.917), was not significant.
The results of CA with training scheme TS3 are

shown in Figure 7(c). The results show that the CA

obtained through FMG only improved for Day 3 by

1.4% when compared with the results obtained
through TS2. In comparison to TS1, the CA was
increased for Day 2 by 2.2% and Day 3 by 4%.
However, the Kruskal-Wallis test indicated that the
change in CA occurred between all three training sce-
narios was not significant (p-value¼ 0.97). Whereas, in
the case of sEMG, the CA was significantly improved.
When compared with TS2 the CA was increased for all
three days, Day 1, 2 and 3, by 2.2%, 3.1%, and 17.8%,
respectively. Moreover, in comparison to TS1 the CA
for Day 2 and Day 3 were increased by 5.3% and 16%,
respectively. The increase in CA was also observed
from the Kruskal-Wallis test. The p-value of 0.049
was obtained, which indicates the increase in CA was
significant.

The average CA obtained for each training scheme
is shown in Figure 8 and summarized in Table 2. It is
noted that the repeatability in Table 2 represents the
percentage of CA decrease from Day 1 to Day 3 w.r.t
Day 1. In the case of FMG, the average CA slightly

Figure 7. Day-to-Day CA with training schemes (a) TS1, (b) TS2, and (c) TS3.

Figure 8. Average CA for three training schemes.
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increases from TS1 to TS2 but decrease from TS2 to
TS3. Whereas, in the case of sEMG, the CA slightly
decreases from TS1 to TS2, but increased significantly
from TS2 to TS3 by 7.7%. However, repeatability
results showed a similar pattern for both methods.
The difference in CA between Day 1 and Day 3
decreased from TS1 to TS3. Although both methods
showed a similar pattern in repeatability, FMG has a
better performance than sEMG in both aspects i.e. CA
and repeatability.

Figure 9 shows the results for each individual sub-
ject. The CA results obtained with FMG are shown in
Figure 9(a). It can be seen that a significant increase in
CA was only observed for subject 4, which was 5.07%.
However, in the case of sEMG (Figure 9(b)), CA was

improved by 3.9%, 10.18%, 5.78% and 11.69% for

subjects 1, 2, 3 and 5, respectively.

Classification techniques comparison

In this experiment performances of five different clas-

sification techniques were compared i.e. SVM, LDA,

KNN, RF and NN. Results of this experiment are

shown in Figure 10.
It can be seen that LDA has the lowest performance

for both FMG and sEMG. Whereas, highest CA is

achieved using NN approach. However, In case of

FMG, Figure 10(a), the performances of NN and RF

are comparable, accuracy obtained through RF being

only 0.3% less than NN.

Discussion

This study was aimed to investigate the accuracy of

classifying forearm motions using FMG and sEMG

based classifiers. The study addresses the day-to-day

performance of both methods. Results have shown

that FMG (84.9� 3.38%) performed better than

sEMG (77.9� 11.43%). Another noticeable result is

that the FMG method is more stable than sEMG.

Our results show that the CA with FMG method was

nearly the same for all three days for the classifier

Table 2. CA and repeatability achieved through FMG and
sEMG.

Training

scheme

FMG sEMG

% CA Repeatability % CA Repeatability

TS1 84.9 5.5 77.9 25.6

TS2 86.8 2.2 76.4 23.5

TS3 86.5 0.1 84.1 4.7

Figure 9. Within days average CA for each training scenario and each individual subject for, (a) FMG, (b) sEMG.

Figure 10. Results of different classification techniques, (a) FMG, (b) sEMG.
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trained on the first day. On the other hand, the
CA obtained through sEMG was better on the first
day, but significantly decreased for the rest of the
two days, when the classifier was only trained on the
first day.

Our study also showed that retraining the classifier
each day didn’t cause significant improvement in CA
for FMG. On the other hand, a significant increase in
CA was observed for sEMG. The performances for
both methods (FMG and sEMG) were comparable.
FMG yielded the average CA of 86.5� 2.11% and
sEMG yielded the CA of 84.1� 2.18%. It can be
noticed that only 1.6% increase in CA is found
for FMG, which again implies that the data
recorded through FMG was consistent. Therefore,
the inclusion of additional training dataset in retraining
the classifier didn’t improve the average accuracy for
FMG as much as it improved in case of sEMG, which
is 7.63%.

The results obtained in this study comply with the
studies reported in literature,40,41 where it was reported
that FMG performed better then sEMG for classifying
hand gestures and estimating fingers force. It is noted
that those studies were carried out for one day only,
while day-to-day performances were not considered.

In this study, four FMG features were used to pre-
dict the movements. Through experiments it was
observed that slope had the highest contribution in
the CA, whereas mean-mode difference had the
lowest contribution. With the results obtained, CA
can be further increased by applying weight to the
existing features or introducing more features in the
classifier. In future studies, each sensor output will be
considered separately. On the other hand, only two
repetitions were used to retrain the classifiers. More
repetitions can also affect the CA of both methods.
Moreover, the performance comparison in this work
was conducted on healthy young subjects, so the results
are not generally applicable to motion detection of
humans of all ages and physical conditions.

Conclusions

In this study, the performances of FMG and sEMG
were investigated for classifying forearm flexion, exten-
sion, pronation, supination and rest state. CA and
repeatability of these methods were analyzed for
motion identification testing over a period of three
days under different training schemes.

The results show that the accuracy obtained through
FMG was less affected by the time difference between
training and testing day. The results indicate that the
performance was consistent and repeatable. However,
CA obtained through sEMG was significantly affected
by the time difference. The decrease in CA was gradual

and significant. The improvement in CA and repeat-

ability was observed when the classifiers were retrained

each day. Whereas, CA with FMG didn’t show signif-

icant improvement using retraining approach, which

indicates that the data obtained through FMG is com-

paratively more repeatable.
Our testing results on CA and repeatability indicate

that FMG is more suited than sEMG for assistive exo-

skeleton applications, which are designed for ADL

activities. As using exoskeletons on a daily basis user

might take the exoskeleton on and off several times,

a requirement of retraining makes it less acceptable

to end-user. Whereas, sEMG requires retraining to

achieve repeatable performance and therefore it is

more suited for rehabilitation applications, where the

primary focus is on acquiring muscle activity for mon-

itoring and analysis purpose.
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Effective Multi-Mode Grasping
Assistance Control of a Soft Hand
Exoskeleton Using Force Myography
Muhammad Raza Ul Islam and Shaoping Bai*

Department of Materials and Production, Aalborg University, Aalborg, Denmark

Human intention detection is fundamental to the control of robotic devices in order

to assist humans according to their needs. This paper presents a novel approach for

detecting hand motion intention, i.e., rest, open, close, and grasp, and grasping force

estimation using force myography (FMG). The output is further used to control a soft hand

exoskeleton called an SEM Glove. In this method, two sensor bands constructed using

force sensing resistor (FSR) sensors are utilized to detect hand motion states and muscle

activities. Upon placing both bands on an arm, the sensors can measure normal forces

caused by muscle contraction/relaxation. Afterwards, the sensor data is processed,

and hand motions are identified through a threshold-based classification method. The

developed method has been tested on human subjects for object-grasping tasks. The

results show that the developed method can detect hand motions accurately and to

provide assistance w.r.t to the task requirement.

Keywords: human intention detection, FSR sensor band, exoskeleton control, grasping assistance, soft hand

exoskeletons

1. INTRODUCTION

Grasping tasks are performed repeatedly in both the home and in workplaces. Studies have shown
that a human in a work/home environment performs grasp and transition between different grasps
approximately 4,700 times within a 7.45 h window (Zheng et al., 2011; Bullock et al., 2013).
Performing these tasks repeatedly over a longer period of time can cause fatigue and injuries. Hand
exoskeletons (Gull et al., 2020) have the capability to assist in these tasks, which can reduce human
effort and the risk of getting injured/fatigued.

Proper control of the exoskeleton depends mainly on accurate human intention detection.
Several methods to determine human intention that are based on electromyography (EMG) (Anam
et al., 2017; Meng et al., 2017; Pinzón-Arenas et al., 2019; Qi et al., 2019; Zhang et al., 2019;
Asif et al., 2020) and force myography (FMG) (Islam and Bai, 2019; Xiao and Menon, 2019,
2020) have been proposed. Leonardis et al. (2015) used EMG to control a hand exoskeleton for
bilateral rehabilitation. Here, a paretic hand was provided with grasping assistance by estimating
the grasping force of the non-paretic hand. In another work (Lu et al., 2019), pattern-recognition-
based hand exoskeleton control was proposed for spinal cord injury patients. An FMG-based hand
gesture classification method was proposed to control a hand prosthetic device in Cho et al. (2016).
In total, 10 hand grips were classified using a linear discriminant analysis technique. A high-density
force myography-based hand and wrist gesture classification approach was proposed by Radmand
et al. (2016). It was shown that for static hand postures 0.33% RMSE is achieved. While variation
in upper limb position reduces the accuracy, better performance can be achieved by introducing
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limb position variation in training protocol. Several other
works on force estimation and pattern-recognition-based hand
exoskeleton control have also been reported (Wege and
Zimmermann, 2007; Rasouli et al., 2016; Ferigo et al., 2017;
Secciani et al., 2019; Arteaga et al., 2020).

In all of the reported works, methods to control a hand
exoskeleton are limited to either pattern recognition or force
estimation. Furthermore, in these methods machine learning and
deep leaning techniques are used that requires large training
datasets to achieve good classification/estimation accuracy.

In this work we develop a new sensing method for both
pattern recognition and force estimation using FMG. A multi-
mode task detection approach, i.e., motion classification and
grasp force estimation, is proposed for controlling a hand
exoskeleton. In this method, four hand motion states are
classified i.e., rest, open, close, and grasp. The classification
algorithm is based on threshold approach and requires a small
training dataset. Once the grasp is detected, the control mode
is switched to grasp assistance. This is achieved by virtue of two
sensor bands built with FSRs, which can detect muscle activities
conveniently and effectively. In terms of its sensingmethod, FMG
has exhibited a better performance than EMG in classification
and estimation tasks considering accuracy, repeatability, and cost
(Ravindra and Castellini, 2014; Jiang et al., 2017). Moreover,
unlike EMG, FMG is not affected by skin conditions and has a
simple electronics interface.

This paper is organized as follows. The design and
implementation of the sensor band and exoskeleton control
strategy are described in section 2. Section 3 presents the
data processing and algorithm design for grasp detection and
assistance. Experimental setup and testing results are described
in section 4. Discussion on the developed method is presented in
section 5. The work is concluded in section 6.

2. MATERIALS AND METHODS

In this section, a methodology to detect hand motions i.e.,
rest, open, close, and grasp is described. Sensor bands, a hand
exoskeleton, and control methods are also presented.

2.1. Methodology
In this work, four handmotion states are classified, i.e., rest, open,
close, and grasp. The last three motion states are classified as
dynamic states, whereas rest is identified as a static hand state in
any posture, e.g., keeping the hand fully opened/closed or holding
an object in a fixed posture.

In object grasping, fingers have to be flexed. During flexion,
the muscle belly shortens in length and contracts toward the
side of the elbow joint, which is referred as isotonic muscle
contraction. As the object comes into contact with the hand,
muscle shortening stops, and an isometric contraction state
is initiated. In this state the muscle belly along the forearm
contracts as long as the force applied to hold an object reaches
the steady state.

In this work contraction states and the transition between
them, i.e., isotonic and isometric, are measured through FMG,
using sensor bands built with FSR sensors. In this method,

normal forces caused by muscle contraction and applied to the
sensor band, hereafter called muscle contraction-induced (MCI)
force, are measured. Flexor digitorum profundus and flexor
digitorum superficialis are the prime muscles that govern fingers
flexion to close the hand. During hand closing movement, the
length of these muscle shortens and they contract toward elbow
joint. MCI force near the elbow will therefore increase, while it
will decrease near the wrist joint. As soon as the object is grasped,
muscles stop shortening and isometric contraction takes over. In
this case, MCI forces over the muscle belly will increase. This
principle can be expanded further to explain hand opening task.
In hand opening the object is ungrasped, MCI force on both
ends of the forearm will decrease. On the other hand, as the
object is released and the fingers are further extended, MCI force
measured near the elbow will decrease, while the force measured
near wrist will increase. From these changes of MCI force, hand
motion states can be determined with certain algorithms.

2.2. Sensor Band
The aforementioned hand motion detection relies on an effective
and convenient method to detect MCI forces. To this end, two
sensor bands are constructed at Aalborg University exoskeleton
lab, as shown in Figure 1A.

The sensor bands are designed to be placed on the forearm,
as shown in Figure 1B. One is placed near the elbow joint. This
band, referred to as SBe, is comprised of eight FSR sensors. The
other band is placed near wrist joint, referred to as SBw, which
has an array of four FSR sensors embedded. The placements of
FSR sensors inside the sensor bands are shown in Figure 1A. All
FSR sensors are FSR-402, developed by Interlink electronics, and
have the capability of measuring 0.1–10 N. More information on
the construction of sensor bands can be found in Islam and Bai
(2019).

2.3. SEM Glove
In this work a soft hand exoskeleton SEM Glove (Nilsson et al.,
2012; Hashida et al., 2019) is used to provide physical grasping
assistance, as shown in Figure 1B. The SEM Glove is equipped
with FSR sensors placed at the middle and index fingertips and
at the thumb. The assistance provided by the exoskeleton can
be measured by these sensors. Moreover, in the SEM Glove’s
own control unit, the assistance level is also controlled using the
same sensor data. The tighter the object is grasped the higher the
assistance level will be. In this work, the assistance level provided
by SEM Glove is controlled through MCI force measured by the
sensor band placed near elbow joint instead of using the SEM
Glove’s own sensors.

2.4. Sensing Data
The sensor bands allow us to collect handmotion data effectively.
An example of a dataset of rest, open, close, and grasp, labeled as
“R,” “O,” “C,” and “G,” respectively, is shown in Figure 2. Isotonic
contraction during opening and closing of hand can be seen in
Figure 2A. Figure 2B shows the data of an object being grasped

Frontiers in Robotics and AI | www.frontiersin.org 2 November 2020 | Volume 7 | Article 567491
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FIGURE 1 | (A) FSR sensors placement inside sensor bands SBw and SBe and (B) SEM Glove and sensor bands placement on forearm.

FIGURE 2 | Net output voltage measured from sensor bands for opening and closing of hand (A) without grasping and (B) grasping an object.

when isometric contraction occurs. The state when the object is
grasped is labeled as “G.”

In the hand opening task, shown in Figure 2B, it can be
seen the sensor amplitude first goes down. This muscle activity
represents loosening of grip on the object. Afterwards, increase in
muscle activity at SBw and decrease in muscle activity at SBe are
observed, which represents fingers extension to open the hand.
In the implementation phase, loosening of grip is treated as a
steady state.

2.5. Multi-Mode Control
In this work, a multi-mode control approach is used to assist in
grasping, which is shown in Figure 3.

The control strategy is divided into two stages i.e., motion
classification and grasp force assistance. Motion classification is
based on a threshold approach. Out of four actions, i.e., rest,
open, close, and grasp, once the algorithm identifies grasp action,
the control mode is shifted to grasp force assistance. In this mode
a proportional control is implemented, where the assistance force
is determined using MCI force measured through SBe.

3. DATA PROCESSING

3.1. Sensor Calibration
The FSR sensors in the two sensor bands are interfaced with a
non-inverting amplifier. The output voltage of the amplifier is
thus given by the following equation:

Vout = (1+
Rref

Rfsr
)Vin (1)

FIGURE 3 | Flow chart of multi-mode control method.

Here, Vout is the output voltage of the amplifier, Vin is the input
voltage applied to positive terminal of the amplifier, Rref is the
reference resistance, and Rfsr represents the FSR resistance, which
varies with force applied on it.

With the amplifier designed, it is possible to change the range
of force measured by FSR. This is done either by changing the
reference resistance Rref or input voltage Vin. In our design, the
reference resistance is fixed to 100 kohm. We therefore adjust the
input voltage Vin through a DAC port from micro-controller for
this purpose, which is a task of sensor calibration.

Frontiers in Robotics and AI | www.frontiersin.org 3 November 2020 | Volume 7 | Article 567491
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FIGURE 4 | Gestures used in calibration and training stage. (A) open hand gesture to calibrate SBw, (B) close hand gesture to calibrate SBe, and (C) rest state

gesture to collect data for threshold determination.

FIGURE 5 | FSR data for hand closing gesture (A) before and (B) after calibration.

In the calibration stage, input voltage Vin is adjusted so that
at least three of the FSR sensors from both SBe and SBw have
reached the maximum voltage limit. In this way, the sensor bands
can have high resolution in all detections.

During calibration of SBw, the subject is asked to keep the
hand open, as shown in Figure 4A. This posture initiates the
calibration procedure. An automated program checks the sensors
outputs above threshold level. If the number is less than three,
input voltage Vin is increased gradually until the condition is
fulfilled, i.e., at least three sensors are above threshold limit.
Similar procedure is followed for the calibration of SBe but for
the close hand gesture, as shown in Figure 4B, to complete the
calibration. In the current setup it is set to 1.5 V.

An example dataset of the calibration stage is shown in
Figure 5. This dataset represents the task of hand closing
from fully opened state. Figure 5A is the dataset collected
before calibration and Figure 5B is the dataset collected
after calibration.

The improvement in signal resolution, ν, is computed by
taking the ratio of change in signal amplitude, from open to close
hand gesture, to the standard deviation of signal value during the
steady state condition. Mathematically it is given as,

ν =
|µ(VO)− µ(VC)|

max(σ (VO), σ (VC))
(2)

Here, VO and VC represent the net voltage measured from the
sensor bands for open hand and close hand gestures respectively,

TABLE 1 | Resolution measured before and after calibration.

Sensor band
Resolution ν

% increase

Without calibration With calibration

SBw 27.88 60.13 221

SBe 27.94 61.74 222

and µ and σ are the mean and standard deviation respectively.
The results obtained through aforementioned equation are
provided in Table 1. The results clearly show that the resolution
of both sensor bands is increased significantly, more than two
times, after calibration.

3.2. Features Selection
While grasping an object, sensor readings highly depend on the
shape and weight of the object. Moreover, donning and doffing
of the sensor band also affects the sensor response. Developing a
threshold- or machine-learning-based task-detection algorithm
will require a large amount of data if the signal amplitude or it’s
RMS value is used as the input feature. It is noted that when a
user takes off the sensor band and puts it back on, it is desirable
that the sensor band has to be placed exactly at the same place
and with the same tightness, but this is very challenging. All these
factors will affect the classification performance.

With experiments, it is observed that the feature that gives
consistent results with less deviation is slope. This feature

Frontiers in Robotics and AI | www.frontiersin.org 4 November 2020 | Volume 7 | Article 567491
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represents the change in signal amplitude w.r.t time. An example
dataset of grasping different shape and weight objects is shown
in Figure 6. A grasping dataset for each object is represented in
3s windows. From time 0 to 3, 3 to 6, and 6 to 9 s objects A, B,
and C are grasped sequentially, as shown in Figure 8. From 9 to
18 s a dumbbell bar is grasped three times with different weight
hanged on the sides of it. The weights of the dumbbells, applied
from t = 9 to 12, 12 to 15, and 15 to 18 s were 1.2, 2.3, and
3.4 kg, respectively. Data sessions from 0 to 9 and from 9 to 18
s were recorded separately. It can be seen from Figure 6A that
there is big variation in FSR reading, as it depends on the shape
and weight of the object. However, if we look at the slope feature
in Figure 6B, a similar pattern but with different peaks can be
observed. Initially, fingers are flexed therefore we see opposite
slopes for the FSR sensors placed near elbow and wrist joint. As
soon as an object is grasped, positive slopes for both sensor bands
are observed. By carefully selecting the threshold value, grasp
action can be detected very effectively. In this work we therefore
selected slope feature for detection of hand motion.

3.3. Features Extraction
Two features are extracted from raw sensor data, i.e., root mean
square (RMS) and slopes. RMS from raw sensor data is obtained
using a 150 ms window in which 100 ms is non-overlapping and
50 ms is overlapping from previous window. After calculating
RMS values for each FSR sensor, slopes are obtained using the
following equation:

κ =
Ri − Ri−1

tws
(3)

Here, κ represents the slope feature, Ri represents the newest
sample of RMS data, and tws is the window time to
extract features.

3.4. Threshold Determination
In this method each state, i.e., rest, open, close, and grasp, is
identified using a threshold-based classification approach. To
determine the threshold limits, subject is asked to hold rest state,
as shown in Figure 4C, for 5 s. Raw data obtained in this task
is post processed to obtain slopes, which are further used to
determine threshold limits.

After the computation of slope feature, the minimum and
maximum slope value for each FSR was computed:

ξmax
w = max(1w), ξmin

w = min(1w) (4)

ξmax
e = max(1e), ξmin

e = min(1e) (5)

with

1w = [κ1
w ... κN

w ], 1e = [κ1
e ... κM

e ] (6)

Here, N andM are the numbers of FSR sensors embedded inside
the sensor bands SBw and SBe, respectively. ξ

min
w and ξmax

w are row
matrices of order 1 × N and contain minimum and maximum
slope values of SBw sensor band data computed for rest state.
ξmin
e and ξmax

e are also row matrices of order 1 ×M and contain

minimum and maximum slope values of SBe sensor band data.
1w is a I × N matrix, where I is the number of slope feature
samples computed from rest gesture data, and 1e is also a matrix
but of I ×M dimension.

Using (4) and (5), threshold conditions to detect each task are
given as

HR = 1r
w <= kξmax

w & 1r
e <= kξmax

e (7)

HO = 1r
w > kξmax

w & 1r
e < kξmin

e (8)

HC = 1r
w < kξmin

w & 1r
e > kξmax

e (9)

HG = 1r
w > kξmax

w & 1r
e > kξmax

e (10)

Here, HR, HO, HC, and HG are the thresholds for rest, open,
close, and grasp task detection. 1r

w and 1r
e are row matrices that

are computed during real-time testing. The information in these
matrices is in same order as in 1w and 1e.

3.5. Grasp Force Estimation
During the motion classification stage, if grasp action is detected,
the control method is switched to grasp assistance. In this mode,
we need to determine and control the grasp assistance provided
by the SEM Glove. In this work, it is determined using the
following equation:

u = (SBrms
e − LBe)K (11)

Here, u is the control input relayed to the SEM Glove, K is the
proportional gain and SBrms

e is the net FSR output measured from
the sensor band SBe. LBe is the net FSR output measured at the
time of grasp detection and is given by following equation:

LBe = mean(Rie,R
i−1
e ) (12)

Here, i is the sample when grasp action was detected, and i − 1
represents the sample before.

3.6. Performance Analysis
The performance of the task detection technique is analyzed with
a group of four parameters, namely, precision, recall, F1-score,
and accuracy (Powers, 2011). Mathematically, these parameters
are calculated by

Ppre =
NTP

NTP + NFP
(13)

Prec =
NTP

NTP + NFN
(14)

PF1 = 2 ·
Ppre · Prec

Ppre + Prec
(15)

Pacc =
NTP + NTN

NTP + NTN + NFP + NFN
(16)
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FIGURE 6 | FSR feature dataset for grasping objects of different sizes and weights. (A) RMS and (B) slope.

FIGURE 7 | Classification of TP, TN, FP, and FN samples.

Here, NTP, NTN, NFP, and NFN represent number of samples that
are true positive, true negative, false positive, and false negative,
respectively, as illustrated in Figure 7. Ppre, Prec, PF1, and Pacc are
the performance measures that represents precision, recall, F1-
score, and accuracy, respectively. Of these measures, precision,
recall, and F1-score are defined in the range of 0–1, whereas,
accuracy is expressed in percentage.

Using these four parameters we can evaluate the classification
performance comprehensively and in an unbiased manner. From
mathematical representations, we can see that the fundamental
difference between accuracy and other parameters is TN samples.
In our designed experiment the number of samples in each class is
not consistent. In such cases precision and recall can also provide
very useful insight into classification performance. Taking the
example of rest task, precision calculates from the total number
of samples that are classified as rest how many were actually
rest. Meanwhile, recall calculates, from the number of times a
user was instructed to keep rest state, how many samples were
correctly identified as rest state. Finally, the F1-score tells the
balance between precision and recall.

4. EXPERIMENTS AND RESULTS

With the developed method, three experiments are performed,
i.e., task identification, influence of sensor placement, and
grasping assistance. Details and results of each task are provided
in forthcoming sections.

4.1. Task Identification
Six subjects participated in this experiment. All of them were
healthy, right-handed, and aged between 25 and 35 years. Ethical

FIGURE 8 | Objects of different shape and weight that are grasped during

task identification experiment, (A) empty cup, (B) aluminum bar, and (C) solid

metal cylinder.

approval for these experiments was obtained from an ethical
committee, Region Nordjylland, Denmark.

In this experiment, performance measures, i.e., precision,
recall, F1-score, and accuracy, are computed to evaluate the
classification performance. For this purpose, an experiment was
designed where a subject performs hand opening and closing,
first without any object and afterwards with three objects, as
shown in Figure 8, of different attributes.

The protocol of the experiment is as follows: the subject
is instructed to sit in a chair with their hands resting on the
table beside the objects. The first task the subject performs is
calibration, as explained in section 3.1, which is followed by a
rest state gesture, as shown in Figure 4C, which is held for 5 s
to determine the threshold limits. Afterwards, real-time testing
tasks are performed in which, for open and close tasks, the subject
lifts his/her hand from the table and keeps it in open state, as
shown in Figure 4A. The subject closes his/her hand when the
instruction is shown on the screen and opens it up when the
instruction to open is shown on the screen again. The subject
is instructed that an open hand posture should be maintained
throughout the experiment. For the grasp task, hand is lifted
from the table and kept open, as shown in Figure 4A. When
the grasp instruction is shown on the screen, subject grasps the

Frontiers in Robotics and AI | www.frontiersin.org 6 November 2020 | Volume 7 | Article 567491
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FIGURE 9 | Tasks performed during (A) the whole span of time, (B) opening and closing of the hand, and (C) grasping object B.

object and slightly lifts it from the table with a small clearance of
approximately 1.0 cm.

The results of the experiment are shown in Figures 9–12
and summarized in Table 2. Figure 9 shows the experimental
results for one of the subjects. Figure 9A shows the reference
and predicted tasks. In the first 80 s of the experiment, the
subject is instructed to perform the rest, open, and close
tasks. From t = 80 to 155, t = 155 to 220, and t = 220
to 285 s, the subject is instructed to grasp objects A, B,
and C sequentially. In this figure, the solid blue line shows
the task to be performed and the dotted red line the result
predicted by a classifier when a subject performs that particular
task. A zoomed-in view of open and close tasks is shown
in Figure 9B and of grasping task for object B is shown in
Figure 9C.

Single instances of abovementioned tasks are shown in
Figure 10. Figure 10A is the result of an open and close task.
The results show that, initially, the hand was in the close state;
as the subject opens the hand, a drop in signal amplitude near the
elbow and an increase in signal amplitude near the wrist joint is
observed. The classifier is able to detect that the hand is opened
as the movement is performed. Afterwards, when the hand is
closed, the inverse muscle activity pattern can be seen, and, as

the movement is performed, the classifier is again able to detect
that the hand is closed.

The instances of grasping object A, B, and C are shown in
Figures 10B–D, respectively. Data is presented in the same order
as represented for Figure 10A. Initially, the subject is holding the
object. As the hand is opened, it is seen from the FSR readings
that their associated muscle contraction near the wrist increases,
and contraction near elbow is decreased. From the opened hand
state when the subject is instructed to grasp the object, it can be
seen that classifier first detects that the hand is closing. It can also
be seen from the FSR readings that it is increasing near the elbow
and decreasing near the wrist, indicating hand closing. As the
object is grasped, an increase in readings on both sensor bands
is seen, and the classifier correctly detects that an object is being
grasped. These results show that the threshold-based classifier is
able to distinguish between all four motion states, i.e., rest/steady,
open, close, and grasp, accurately.

Results in terms of precision, recall, F1-score, and accuracy are
shown in Figures 11, 12 and Table 2. In the figures, the error bar
represents the performance deviation within the tasks, i.e., rest,
open, close, and grasp.

The average performance values w.r.t each task are shown
in Figure 12. Considering the rest state, it can be seen that
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FIGURE 10 | Results of single instances (A) open/close, grasping objects (B) A, (C) B, and (D) C, shown in Figure 8.

average recall value is 0.98, which reveals that only 2% of the
rest states were not detected. It is to be noted that rest state
was held in all postures, i.e., open hand, close hand, and grasp.

In the context of real-time operation, this result is very critical.
Any miss-classification can cause undesirable movement/action,
especially if subject is holding an object. The results show that the
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FIGURE 11 | Results calculated for each subject individually (A) precision, (B) recall, (C) F1-score, and (D) accuracy.

FIGURE 12 | Average results of each performance measure w.r.t each task. Accuracy plot is shown normalized between 0 and 1.

algorithm is highly accurate in detecting the rest state. Precision
for detecting rest state is equal to 0.96, which shows that in only
few cases where subject was performing another task (open, close,
or grasp), classifier detected it as rest state.

For open and close tasks, it can be seen that recall and
precision scores are very similar. For grasp, we can see that
precision (0.97) is higher than recall (0.94). From precision,
we can deduce that, of all the tasks that were classified as
grasp, only 3% of them were miss-classifications. Meanwhile,
the recall result tells us that 6% of the times when a subject
grasped an object, the classifier did not detect it as grasp. To
improve precision, the threshold level should be raised, but this

will affect the performance of recall. Raising the threshold will
have the opposite impact on other performances. It will improve
the recall but might reduce the precision. With the current
setup, classification performance of the algorithm depends on
the trade-off between recall and precision. Depending on the
applications, threshold levels can be tuned to get better results.
The performance can be improved by incorporating more FSR
sensors or by using more features for threshold determination.

4.2. Influence of Sensor Placement
In this experiment, the effect of sensor placement on
motion detection is studied. To achieve this objective
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sensor bands are placed over the forearm in three different
orientations/placements, as shown in Figure 13. In placement
A, FSR1 from sensor bands SBe and SBw is aligned with
brachioradialis and near insertion of brachioradialis. In
placement B, it is aligned with brachioradialis and flexor carpi
ulnaris muscles. Finally, in placement C, it is aligned with
palmaris longus and near the insertion of brachioradialis.

Tasks performed for each placement of sensor bands are
as follows:

• Open and close of hand without grasping any object
• Grasping object C as shown in Figure 8.

Each task is performed 10 times under same conditions as
explained in section 4.1. The results of each experiment are
shown in Figure 14, where Figures 14A–C are the results of
placement A, B, and C, respectively, by sensor band orientation.
In each sub-figure of Figure 14, the first figure is the FSR sensors
data from the sensor band placed near the wrist, and the second
is the data of FSR sensors placed near the elbow, and the third
figure displays the reference and predicted tasks.

Even though the raw data is not similar for each sensor
placement, the developed method is able to detect all four hand
gestures accurately. The performance of task detection is less
affected. As seen from predicted results, rest state, hand opening,
closing, and grasping achieved the average accuracies of 98.15,
99.24, 100, and 98.16% for all three placements.

4.3. Grasping Assistance
In this work, grasping assistance is provided using SEM
Glove where the desired assistance level is regulated by
implementing a proportional control scheme. The block

TABLE 2 | Average results of performance measures calculated for each subject.

Performance

measures

Precision Recall F1-score Accuracy %

Subject 1 0.98 ± 0.013 0.99 ± 0.012 0.99 ± 0.010 99 ± 0.5

Subject 2 0.98 ± 0.019 0.97 ± 0.029 0.97 ± 0.011 99 ± 0.9

Subject 3 0.99 ± 0.012 0.98 ± 0.030 0.99 ± 0.014 99 ± 0.6

Subject 4 0.99 ± 0.029 0.96 ± 0.044 0.97 ± 0.019 99 ± 1.0

Subject 5 0.91 ± 0.063 0.92 ± 0.030 0.92 ± 0.032 96 ± 1.6

Subject 6 0.97 ± 0.024 0.98 ± 0.007 0.97 ± 0.013 99 ± 0.7

Average 0.97 ± 0.029 0.97 ± 0.024 0.97 ± 0.027 98 ± 1.3

diagram of the control scheme is shown in Figure 15.
Referring to Equation (11), the input of the proportional
control is the average MCI force measured by the sensor
band placed near the elbow, and the output u is then
relayed to the exoskeleton. Moreover, grasping assistance
provided by SEM Glove is further validated by measuring the
grasping force through force sensors embedded inside SEM
Glove exoskeleton.

In this experiment the sensor bands are worn on
right forearm and exoskeleton is worn on the left hand.
Furthermore, three different payloads, i.e., 1.2, 2.3, and
3.4 kg, applied from t = 0 to 20, t = 20 to 40, and t
= 40 to 60 s, respectively, are being grasped for three
times each. The results of the experiment are shown in
Figure 16.

Figure 16A shows the task predicted by the classifier. Net
MCI force measured by the SBe sensor band is shown in
Figure 16B. The resulting grasping force measured from SEM
Glove sensors is shown in Figure 16C. Whereas, the single
instance of grasp task is shown in Figure 17. With the detection
of a grasping task and MCI force, assistance is provided by the
exoskeleton, which is evident from the sensor reading of the
SEM Glove.

If we look closely at Figures 16B,C, we can see that the
MCI forces are increasing with the payload grasped by the
subject. It is also seen that the forces read by the sensors
placed at the middle finger and thumb are increasing with
the payload. These are the grasping forces that are caused
by the physical interaction between fingertips and the object.
When assistance provided by the exoskeleton is increased, the
exoskeleton will help to grasp the object tightly and in turn
grasping force measured the sensors, placed in finger tips, will
increase. This validates that with the increase in MCI force,
shown in Figure 16B, exoskeleton is able to provide the grasping
assistance accordingly.

5. DISCUSSION

In this work a novel method is developed for hand motion
detection and for the provision of assistance in carrying out an
object grasping task. We also addressed the challenge of data
collection for training and proposed an alternative solution for it.

The new method is advantageous in reducing the complexity
and increasing the usability of the system for a longer period.
In an AI-based pattern recognition method, obtaining a correct

FIGURE 13 | Three placements of sensor bands, (A) two FSR1 from SBe and SBw are aligned with brachioradialis and near insertion of brachioradialis, (B) aligned

with brachioradialis and flexor carpi ulnaris, (C) aligned with palmaris longus and near insertion of brachioradialis.
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FIGURE 14 | Hand motion detection with three placements of the sensor bands, (A) with placement A, (B) with placement B, (C) with placement C.

and sufficient training dataset is one of the major challenges.
Moreover, even if the training data is obtained correctly there
still exists another challenge of reusing it from time to time. The
reason is due to the placement of sensor at the exact location and
change in muscle activity levels. The method proposed in this

work effectively addresses these challenges. The method requires
sensor calibration and rest state data of the hand. Afterwards, the
system can detect the hand motions based on change in activity
level. Additionally, the requirement on placing sensor band at
exact location is mitigated. Moreover, the calibration procedure
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FIGURE 15 | Block diagram of the exoskeleton control.

FIGURE 16 | Hand exoskeleton control results: (A) task identified, (B) MCI force measured from sensor band placed near elbow joint, and (C) assistance force

provided by SEM Glove.

increases the sensor’s sensitivity and solves the problem of sensor
resolution if the band tightness is changed from one day to
the next.

Another advantage of this method is the dual working modes
of the sensor band. Besides motion recognition, the sensor band
is also used to control assistance level in grasping an object, which
is proportional to the MCI force measured.

The results in this work are significant for physical assistance
in workplaces. For a workplace environment, it is critical for
any solution that it be accurate, robust, involving less training,
and is not sensitive to environmental conditions. With these
requirements in mind, comparing our method to other detection
methods like sEMG, which is highly prone to noise that is
caused by sensor placement, orientation, and skin conditions, our
method is less affected by skin condition and can be worn without
very exact orientation and placement. Moreover, our developed
method has the advantage of using small training datasets. In
Arteaga et al. (2020) and Pinzón-Arenas et al. (2019), each gesture
was repeated for more than 10 times. Whereas, in our method
beside calibration, rest data is recorded for only one time. By
this advantage the user can take off the device and put it back
on conveniently without worrying about its performance.

This novel method using FSR sensor bands offers a robust
and accurate alternative for human-robot interaction. The
works presented in this paper and in previous studies (Islam
et al., 2018; Islam and Bai, 2019) have shown that FSR-based
sensor bands can be applied for control of upper-body assistive
exoskeletons in different ways. Beside these, sensor bands can
be applied for other types of applications of upper-limb and
lower-limb exoskeletons. Moreover, this method can be used to
assess the muscle activities for medical purposes and design of
control strategies.

Besides these advantages, some limitations of the method are
noted. External contact with the sensor band can change the
sensor readings, which can result in incorrect motion detection.
Hand motion speed is also a factor that can lead to miss-
classification. If the motion is performed at slow speed, the
algorithm might not be able to detect the task. These challenges
can be addressed by either placing the FSR array outside of
the sensor band or by implementing robust AI techniques for
fault detection. Movement speed challenge can be addressed
by increasing the window size during features extraction stage.
However, increasing the window size can introduce delay in
exoskeleton response.
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FIGURE 17 | History of task performed, average MCI forces, and grasping forces measured by SEM Glove.

6. CONCLUSIONS

This work is aimed at developing an effective and convenient
method to detect hand motions, i.e., rest, open, close, and grasp,
using FSR-based sensor bands, which is further used to control
hand exoskeleton and provide assistance in grasping task. The
objectives are achieved by developing a threshold-based task
detection algorithm to determine the hand motion, which is
based on the change in MCI forces. Moreover, with the detection
of grasping task a proportional force control is also implemented
to provide assistance through a soft hand exoskeleton.

The contribution of this work is to experimentally validate
whether the sensor bands can be used to detect hand motion
and to implement proportional assistance control. Detection of
hand motion with the requirement of minimal training data
and its validation with testing on multiple subjects are other
contributions of this work. The results showed that the developed
method can detect each task with high precision, recall, and
accuracy. Furthermore, experimental verification of proportional
assistance control with SEM Glove in a grasping task is another
contribution of this work. The results have shown that the
developed method can be used with soft exoskeleton to assist
workers in grasping tasks.

In this work, experiments were performed in a controlled
environment. In order to test the method for daily routine
activities, our future work will focus on sensor fusion techniques
to improve robustness against disturbances, which can be caused
by other limb movements. Furthermore, the method can be
extended to detect other hand gestures and elbow and lower
extremity motions.
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Abstract

In robotic assistive devices, the determination of required assistance is vital for proper functioning of
assistive control. This paper presents a novel solution to measure conveniently and accurately carried
payload in order to estimate the required assistance level. The payload is estimated using upper arm
forcemyography (FMG) through a sensor band made of force sensitive resistors. The sensor band is worn
on the upper arm and is able to measure the change of normal force applied due to muscle contraction.
The readings of the sensor band are processed using support vector machine (SVM) regression technique
to estimate the payload. The developed method was tested on human subjects, carrying a payload.
Experiments were further conducted on an upper-body exoskeleton to provide the required assistance.
The results show that the developed method is able to estimate the load carrying status, which can be
used in exoskeleton control to provide effectively physical assistance needed.

Keywords: Forcemyography, payload estimation, assistive exoskeleton, physical human-robot interaction.

1 Introduction

With the advancement in robot technology, exoskele-
tons are being developed for medical, industrial and
service applications. Based on the applications, ex-
oskeletons are categorized in three types i.e. rehabil-
itation, assistance and power augmentation exoskele-
tons Fan and Yin (2013); Hsieh et al. (2017); Cui et al.
(2016); Keller et al. (2016); Huang et al. (2015); Castro
et al. (2019); Christensen and Bai (2018); Gunasekara
et al. (2012); Zhou et al. (2015). Rehabilitation and
power augmentation exoskeletons are mainly focused
on serving humans to regain their mobility and helping
the users with extra power to enhance their capability,
respectively Bai et al. (2018). In this work, our inter-
est is to use exoskeletons to assist users, which can be
either factory workers, elderly or person weak muscle
strength, in load carrying tasks.

For physical assistance exoskeletons, the determina-

tion of required assistance level is one of primary con-
cerns. In load carrying tasks, one method to determine
required assistance level is by knowing the payload
value and joint configuration. In existing upper body
exoskeleton systems, payload information is acquired
by integrating force sensors at the end-effector, where
the weight is hanged on to the exoskeleton and not car-
ried by the human Rosen et al. (2001); Lee et al. (2014).
This method is useful in specific applications, partic-
ularly heavy-load carrying tasks. The implementation
of this method for daily routine activities or factory
tasks is not feasible, where the user carries objects of
different attributes. To overcome this challenge, Elec-
tromyography (EMG) based estimation methods are
used instead to determine joint torques and provide as-
sistance through exoskeletons McDonald et al. (2017);
Mangukiya et al. (2017); Leonardis et al. (2015); Ab-
dallah et al. (2017); Mghames et al. (2017); Tang et al.
(2014); Rahman et al. (2015); Li et al. (2013); Kiguchi
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and Hayashi (2012). In these methods the assistance
to each joint is provided by analyzing the muscle activ-
ities of its prime mover muscle group. In upper body
multi DOF exoskeleton, this approach brings computa-
tional complexity, as large number of EMG electrodes
need to be processed. Moreover, for daily usage place-
ment of EMG electrodes to right place, proper skin
preparation, low S/N ratio and convenience are other
challenges to be addressed.

In this work, we proposed FMG based method to
estimate the payload level. This method requires no
load cell to be attached at the end-effector and only
requires an Force Sensitive Resistor (FSR) sensor band
to perceive upper arm muscles activity and joint con-
figuration in estimating payload level. Compared with
other methods like EMG sensors, the new method re-
quires simple electronics. S/N ratio is also better and
is not affected by skin condition.

In literature, there are some reported works on using
FMG to detect upper body and lower body movements
Cho et al. (2016); Kadkhodayan et al. (2016); Xiao and
Menon (2017); Sadarangani and Menon (2017); Islam
and Bai (2017); Jiang et al. (2016); Xiao et al. (2014);
Islam et al. (2018). However, this approach has not
been used yet for payload estimation to control upper-
body exoskeleton in load carrying tasks. In this work,
we developed an FSR sensor band, which measures the
normal force applied by the muscles as they contract.
The required assistance level is then estimated from
the sensor readings, processed by machine learning, in
terms of carried payload. The new method provides
convenient and accurate estimates of payload carried
by a person.

This paper is organized as follow: Design and imple-
mentation of the sensor band is described in Section
2. Section 3 presents the algorithm design of payload
estimation. Experimental setup for sensor testing and
its results are described in Section 4. In Section 5, we
include briefly exoskeleton control with the developed
sensor band to demonstrate the application. Discus-
sion on the developed method is presented in Section
6 and the work is concluded in Section 7.

2 Sensor band design

Figure 1 shows an FSR sensor band developed. When
the sensor band is worn on an upper arm, it measures
the normal force applied due to muscle contraction,
called muscle contraction-induced (MCI) force. FSR
sensors register this applied force in terms of varying
resistance. An amplifier is used to read the resistance
change and output a smooth and amplified voltage sig-
nal. The output voltage signal is passed to a computer
for post processing. In post processing, the voltage

signal is converted to respective force measured by the
FSRs. Moreover, machine learning is implemented to
interpret the force signal in terms of payload. The de-
tails of all major components are described presently.

2.1 FSR distribution

The sensor band is comprised of an array of FSRs em-
bedded inside a flexible strap. In the current setup,
four FSR sensors of model FSR-402 are utilized, which
are able to measure applied force in the range of 0.1-
10N.

Figure 1: Sensor band working principle and it’s place-
ment on the upper arm.

FSRs distribution over the sensor band and its place-
ment on arm are shown in Fig. 1. The sensors are
distributed in a way that they can cover some areas
of muscles, specially, where they can read the maxi-
mum normal force. The flexibility of strap ensures a
good contact between FSRs and arm muscles, which
allows the FSRs to sense the normal force exerted by
the muscles on them. Moreover, the design of sensor
band allows it to apply same pressure over the muscles
every time the user puts it on.

2.2 FSR-amplifier coupling

The FSR responds to the applied force by varying its
resistance. Therefore, a non-inverting amplifier is in-
terfaced with the FSRs according to Fig. 2.

The output of the amplifier is given by the following
equation,

Vout = (1 +
Rref

Rfsr
)Vin (1)

where Vout is the output voltage of the amplifier, Vin
is the input voltage to the positive terminal of the am-
plifier, Rref is the reference resistance and Rfsr repre-
sents the resistance of FSR. The output of the amplifier
can be changed by varying Vin and Rref . In the imple-
mentation Vin was fixed and Rref was varied to read
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Figure 2: FSR amplification circuitry.

the desired force range of the FSR. Rref was finally
selected, so that the full range of amplifier output is
utilized and maximum resolution is obtained. In the
circuit a low pass filter is also included to filter out
high frequency noises.

3 Estimation algorithm

The algorithm of payload estimation is based on MCI
force and joint orientation. In this method two MCI
force profiles are modeled for carrying two different
payloads across human arm range of motion in sagit-
tal plane. The profiles are obtained using SVM based
regression technique, in which MCI force is treated as
output parameter and elbow and shoulder joint angles
as input parameters. In the real-time testing the given
MCI force is compared with the developed MCI profiles
to estimate the payload.

3.1 System setup

The data for training SVM regression models is ac-
quired through an instrumented passive exoskeleton.
As shown in Fig. 3, the passive exoskeleton has an ab-
solute encoder, Novotechnik RFD-4021, at elbow joint
and an accelerometer ADXL 335 to monitor the up-
per arm movement. The output of RFD-4021 encoder
determines the elbow joint angle, whereas the output
of accelerometer is calibrated and mapped to shoulder
joint (flexion/extension) angle as,

θs = −154.93V 2
a + 217.33Va + 18.53 (2)

here Va represents the x-axis output voltage of the ac-
celerometer.

3.2 Datasets

Two datasets are recorded in the training session,
namely, D1 and D2 to train the regression models for
payload estimation. The contents of these datasets are
as follows.

Figure 3: An instrumented passive arm exoskeleton to
collect the data for SVM training.

3.2.1 D1

This dataset is comprised of net MCI force fa mea-
sured by the sensor band in carrying a payload ρa. In
collecting the data subject lifts the payload in several
elbow and shoulder joint angle configurations.

3.2.2 D2

This dataset is comprised of net MCI force fa measured
by the sensor band in carrying a payload ρb. Arm
configuration used for D1 is followed in collecting this
dataset.

After collecting these datasets two regression mod-
els are trained, whose details are given in forthcoming
section.

3.3 Regression models

Both datasets, explained earlier, are used to train two
regression models i.e. R1 and R2.

Taking R1 as an example. Dataset D1 is used to
train this regression model with joint angles θe and
θs as predictor and net MCI force fa, sum of forces
measured by FSR sensors embedded inside the sensor
band, as response variable. Hence, during the real-time
testing, the regression model uses the joint angles θe
and θs to estimate the force, f1, that muscle generated
if a person lifts or carries payload ρa. Similarly, model
R2 is trained with dataset D2. The inputs and outputs
of both regression models are illustrated in Fig. 4.

3.4 Real-time estimation model

During real-time estimation, the algorithm first com-
putes forces f1 and f2 using regression models R1 and
R2, respectively.

After all forces are obtained, payload is determined
by following equation,
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ρ = (ρb − ρa)(fa − f1)/(f2 − f1) (3)

where ρ represent the estimated payload.

(a)

(b)

Figure 4: Flow diagram of algorithm design, (a) SVM
training session to compute regression mod-
els, (b) real-time estimation of payload.

A 3D surface plot illustrating the MCI variation with
respect to θe and θs is shown in Fig. 5.

Figure 5: Illustration of payload estimation when two
payloads are used for training the regression
models.

4 Payload estimation

Experiments were carried out to test the performance
of the developed payload determination method. The

experiments of payload estimation first include training
of SVM regression models, which is followed by real-
time testing of the developed estimation method.

4.1 Data collection protocol

A MATLAB based GUI is developed to collect the
data, which is comprised of MCI force readings from
sensor band, elbow joint and shoulder joint angles. The
GUI allows the data to be collected at a frequency of
200 Hz and sorting out the necessary information for
training session.

The protocol of data collection involves a set of static
postures, shown in Fig. 6, that the user maintains for
a few seconds. The detailed description of protocol is
as follow.

• Subject wears the sensor band and passive ex-
oskeleton as shown in Fig. 3.

• Subject is free of payload, i.e. ρa = 0 kg, and
keeps the elbow and shoulder angles according to
Fig. 6(a) for 10 s.

• Subject rests for 20 s and raises his/her arm to
the next configuration as shown in Fig. 6(b) and
maintains the pose for 10 s.

• Subject repeats the task for all the positions shown
in Fig. 6, with a rest for 20 s in between each
position.

• After completing all positions subject rests for 10
minutes and repeats the whole process for payload
ρb = 2.5 kg.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Joint configurations selected for collecting
sensors data.

The data collected in these experiments is divided
into two sets i.e. D1 and D2, which is followed by the
training of regression models R1 and R2, respectively.
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(a) (b)

(c)

Figure 7: Payload estimation testing results, (a) MCI forces measured by sensor band for a configuration of θe
= 76◦ and θs = 34◦, (b) payload estimated for case (a), and (c) payload estimated for a configuration
of θe = 76◦ and θs = 52◦.

4.2 Results of real-time testing

Five healthy subjects, aged between 20-30, partici-
pated in this experiment. Subjects were provided with
written consent forms prior to the experiments. More-
over, experiments were performed with ethical approval
obtained from ethical committee, Region Nordjylland,
Denmark.

In this testing the regression models for payload es-
timation were trained and tested for each subject sep-
arately. After training the regression models, real-time
testing was carried out with the passive exoskeleton, in
which three different payloads in the range of 0 kg to
5 kg were lifted by the subjects.

Figure 7 shows the test results with three payloads
ρ1 = 0.8 kg, ρ2 = 2.5 kg and ρ3 = 4 kg, which were
held by Subject 1 at his hand sequentially.

The testing is static, which means that the elbow
and shoulder joint angles remain fixed. Figure 7(a)
displayed raw data of FSR readings measured for an-
gles θe = 76◦ and θs = 34◦. Figure 7(b) shows the
estimated payload. Another result of payload estima-
tion is shown in Fig. 7(c), with the arm configuration
slightly changed i.e. θe = 76◦ and θs = 52◦.

The testing shows that the developed method can
determine the payload level correctly and close to real
values for varying configurations. It is also noticed in
Figs. 7(b) and 7(c) that even though the SVM models

were trained for up to 2.5 kg payload, the sensor can
even estimate correctly the payload level higher than
the top level used in the training.

The results of all the other subjects are shown in
Fig. 8, displaying errors in payload estimation. The
error in estimated payload is computed for all the tasks
performed in saggital plane, as the training condition
in payload estimation included arm configurations for
different shoulder and elbow joint angles.

Figures 8(a) and 8(b) show absolute and relative er-
ror of estimation, respectively. Absolute error is com-
puted as the difference between actual and estimated
payload value, whereas, relative error is obtained by
normalizing the error w.r.t the maximum payload. It
can be seen in Fig. 8(a) that the mean value of abso-
lute error varies from 0.14 kg to 0.37 kg. In Fig. 8(b)
mean value of relative error varies from 0.07 to 0.17 for
the five subjects.

5 Exoskeleton control

With the developed sensor for payload determina-
tion, we conducted further experiments of physical
assistance control on a 4-DOF upper-body exoskele-
ton (see Fig. 9), developed at AAU, Aalborg, Den-
mark Bai et al. (2017). The exoskeleton has 3 ac-
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(a)

(b)

Figure 8: Errors of estimation, (a) absolute error, and
(b) relative error, where red dot refers to the
mean values.

tive joints (i.e. elbow flexion/extension, shoulder flex-
ion/extension and shoulder abduction/adduction) and
1 passive joint (shoulder internal/external rotation). In
these experiments shoulder abduction/adduction and
internal/external rotation motions are restricted and
only elbow/shoulder flexion/extension motors are ac-
tuated.

Figure 9: Upper-body exoskeleton for physical assis-
tance testing.

The exoskeleton adapts admittance control and grav-
ity compensation. Admittance control is implemented
to control the elbow actuator motion, whereas, grav-

ity compensation is implemented to provide support
at shoulder joint. The block diagram of the control
algorithm is presented in Fig. 10.

The control input u relayed to exoskeleton is,

u = [τe τs] (4)

where τe represents the elbow actuator control input
and τs the shoulder actuator control input.

The elbow torque is dependent on interaction torque
τint at attachment cuff and assistance torque τa asso-
ciated to the payload ρ, which are computed by

τint = fp · r (5)

τa = kAL ρglpsin(θe + θs) (6)

where fp is the interaction port force that is measured
from the port cuff in Fig. 9, r is the distance from the
middle point of the interaction port cuff to elbow joint,
g is the gravity acceleration, lp is the distance from
elbow joint to the center of palm and kAL is assistance
coefficient, which is computed through

kAL =
A

1−A (7)

where A ∈ [0, 1), defines the percentage of assistance
provided by the exoskeleton. Eq. 7 ensures the equi-
librium between human effort and exoskeleton’s assis-
tance for a desired value of A, in order to perform the
task jointly.

After determining the interaction and assistive force,
the corresponding joint torque is computed, which is
followed by the admittance filter (Y(s)) to obtain the
desired velocity. Both are mathematically represented
as,

τnet = τint + τa (8)

Y (s) =
ωd(s)

τnet(s)
=

1

Bs+D + K
s

(9)

where τnet is the required joint torque, ωd is the de-
sired velocity and B, D and K represent the inertia,
damping and stiffness parameters of the admittance fil-
ter. Furthermore, the desired joint velocity is tracked
through a PI controller which outputs the control input
τe given by,

τe = kp ωe + ki

∫
ωedt (10)

where kp and ki are the proportional and integral gains,
respectively. ωe is the error signal and is given by,

ωe = ωd − ωa (11)
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Figure 10: Exoskeleton control block diagram, where A* and B* are two blocks for control of shoulder and elbow
joint, respectively.

Table 1: Exoskeleton and control parameters

Parameter Value Parameter Value
me 1.39 kg A 0.5
ms 0.307 kg ks 50
le 0.165 m B 0.05 kgm2

ls 0.15 m D 0.105 Nsm−1

lse 0.33 m K 0 Nm−1

r 0.27 m kp 1
rfr 0.30 m ki 0.0067

where ωa represents the actual joint angular velocity.
The shoulder actuation is controlled with gravity

compensation. The shoulder joint control input τs is
computed by,

τs = msglssinθs+(me+ρkAL)g(lesin(θe+θs)+lsesinθs)
(12)

where me and ms represent the forearm and upper arm
link mass, le is the distance from elbow joint to the
center of mass of forearm link, ls is the distance from
shoulder joint to the center of mass of upper arm link
and lse is the distance from shoulder joint to elbow
joint. The values of the exoskeleton and control pa-
rameters are provided in Table 1.

The results of the estimated payload and physical
assistance provided by exoskeleton are shown in Fig.
11. Figure 11(a) shows the results of subject holding a
payload of 2.5 kg without wearing the active exoskele-
ton, in an arm configuration i.e. θe = 88◦ and θs =
24◦ approximately. It can be seen that the estimated
payload value is close to the actual payload value i.e.
2.5 kg.

Figures 11(b) and 11(c) show the result of payload
estimation and joint torques, respectively, for subject
carrying the same payload while wearing the exoskele-
ton, in arm configuration similar to the payload carry-
ing task without exoskeleton. In this test, the exoskele-

(a)

(b)

(c)

Figure 11: Exoskeleton control results, (a) estimated
payload without exoskeleton, (b) estimated
payload with exoskeleton and (c) torques
provided by exoskeleton at each joint, first
in transparent mode (3-21 s) and then in
assistive mode (31-52 s).
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ton worked in transparent mode for t=3-21 s and then
in assistive mode for t=31-52 s.

It can be seen that in transparent mode the esti-
mated payload is approximately 2 kg, which is slightly
less than the estimated payload without exoskeleton
that was nearly 2.4 kg. This can be justified as in
transparent mode the exoskeleton provides slight as-
sistance and therefore, effort exerted by upper arm
muscles will decrease. The decrease in muscle effort
results in decrease of MCI force. Since our method of
payload estimation is based on upper arm MCI force,
therefore with the decease in MCI force the algorithm
will estimate reduced payload.

Comparing the results of payload carrying task with-
out exoskeleton and payload carrying task with ex-
oskeleton in assistive mode, it can be seen that the
estimated payload value decreased from 2.4 kg to 1.2
kg, respectively. The decrease in payload value justi-
fies that the exoskeleton is providing assistance in load
carrying task. As explained earlier, the payload esti-
mation algorithm is based on MCI force of upper arm
muscles. With assistance from exoskeleton, the up-
per arm muscles activity will decrease. The decrease
in muscle activity causes the MCI force to decrease.
Therefore, it is seen that in assistive exoskeleton con-
trol the 2.5 kg payload is estimated, or in other words,
felt as 1.2 kg payload carried by the subject.

6 Discussion

In this work, we developed a novel method for the esti-
mation of payload. The developed method shows some
advantages for exoskeleton assistance control.

The new method is advantageous in reducing com-
plexity in upper arm exoskeleton control. Convention-
ally, in order to provide assistance at elbow and shoul-
der joint, activities of muscles that govern the elbow
and shoulder joint movement need to be observed. This
makes the system physically and computationally com-
plex. In this work only biceps muscle readings along
with elbow and shoulder joint encoder are used to es-
timate the payload. The method has significantly re-
duced the complexity not only in real-time operations
but also in training sessions. Additionally, the sensor
band can be readily and conveniently put on human
arms and used when needed. Moreover, unlike EMG
based solutions FSR output is not affected by the skin
condition and slight displacement from optimum posi-
tion does not affect the sensor output.

It is noticed that the developed method has some
limitations. One limitation is that the sensor band
readings can be affected by external interference. Sen-
sor band primarily measures the contact force that
can result from external contact, which can be cuffs

to hold the exoskeleton. Therefore, the design of the
cuffs needs to be in a way to not come in contact with
the FSRs. Possible saturation of FSR sensor output is
another limitation. The amplifier is thus required to be
properly tuned in order to avoid saturation. These lim-
itations need further improvements in future research.

7 Conclusion

The paper presents a novel method of estimating pay-
load using an FSR based sensor band. The sensor
band is able to measure the muscle contraction-induced
forces. Machine learning is used to process and inter-
pret the readings of the sensor, which yields the pay-
load estimated. The method has been tested and val-
idated in a series of testing and then applied to the
assistive control of an upper-body exoskeleton to pro-
vide required assistance.

The main contribution of the presented work lies in
the convenient and accurate estimation of payload us-
ing an FSR based sensor band, which makes it sim-
ple and effective for practical use. In this work, the
accuracy of payload determination is tested through
experiments. This method also makes it possible for
exoskeletons to control physical assistance with a sim-
ple setup such as the FSR based sensor band. The
experimental work on the exoskeleton control for load
carrying assistance justifies this possibility, which is an-
other contribution of this work.

In the presented work sensor band is applied for
upper-body exoskeleton control. The sensor technol-
ogy can also be used in other systems, for example,
soft/rigid hand exoskeleton or lower limb exoskeleton
to detect the load level. The future work will focus on
more comprehensive testing of the payload estimation
and extending the current work to full upper-body ex-
oskeleton control. Moreover, comparative study of dif-
ferent regression algorithms for the estimation of pay-
load will be considered. The developed sensor technol-
ogy with various control strategies will also be consid-
ered.
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Chapter 6

Conclusions

The main objective of this work is to develop motion intention detection
methods for assistive exoskeleton control. Performance analysis, upper limb
motion detection methods and control of exoskeletons are covered in this
work. The performance analysis is performed by comparing FMG with sEMG
in terms of accuracy and repeatability. With FMG selected, hand gestures
detection and payload estimation methods are developed and tested with
healthy subjects. Upon validation, the methods are further tested for the
control of upper limb assistive exoskeletons.

6.1 Summary of articles

Paper I

In paper I performance of FMG and sEMG is compared classifying upper
limb movements. In this work forearm motions i.e. flexion, extension, prona-
tion, supination and rest state are classified by using NN technique and result
of the NN are further compared with four other classification schemes. The
study is focused on determining the performance of FMG and sEMG in terms
of long term accuracy and repeatability.

In order to determine long term accuracy and data repeatability, forearm
motion data is collected for three days. Each day the data is divided into
a training and testing dataset. Using the datasets, the results of accuracy
and repeatability are first calculated by training NN with 1st day training
dataset and then testing it with all three testing datasets. Afterwards, day 2
training data is also included for training NN and performance is computed
by testing it again on all three testing datasets. Finally NN is trained with
each day training dataset for testing purpose. It is observed that for train-
ing and testing datasets collected on same day, sEMG performed better then
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FMG. However, for the other days testing datasets FMG showed better re-
sults and quite similar to the ones obtained from testing dataset for the given
day. Whereas, sEMG performance declined as difference between training
and testing dataset day increased.

Overall, results showed that FMG has better performance in repeatability
than sEMG, which is very critical for the usability and implementation of
assistive exoskeletons in real life tasks.

Paper II

In paper II, forearm FMG data is studied to detect dynamic hand motions, i.e.
opening, closing, grasping and steady state, and to determine assistance level
when grasping task is detected. In this method two sensor bands are placed
on forearm, one near elbow joint and other near wrist. Hand motions are
classified by detecting threshold levels, where slope feature extracted from
raw FMG data is used to determine these threshold values.

In our daily routine tasks, human grasp objects of different shapes and
weight. FMG data obtained varies with the attributes of the grasped object.
For such tasks large dataset is required for training a machine learning algo-
rithm. In this study the aforementioned challenge is addressed by proposing
a threshold based classifier. The proposed method reduces the need of train-
ing data significantly. Moreover, with the detection of grasping task, required
grasping assistance is also computed which is proportional to the weight of
the object. The method is verified experimentally by testing on human sub-
jects.

The results showed that the hand motions can be classified with very
high accuracy, precision and recall. Moreover, the method is also tested to
control hand exoskeleton for providing assistance in grasping tasks. Exper-
iment showed that the required assistance level is determined correctly and
provided effectively by the exoskeleton to hold the object.

Paper III

In Paper III, FMG is used to estimate the carried payload. A sensor band is
placed on the upper arm, where four FSR sensors are distributed across the
biceps muscle belly. By this way, assistive torques for elbow and shoulder
joints that is to be provided using an active exoskeleton are determined.

The method is comprised of training SVM based two regression models
in order to map the joint orientation to sensor band readings. One regres-
sion model output the sensor band readings in case of free payload and the
second outputs the readings for a defined payload. Afterwards, using linear
interpolation payload is estimated for the given real-time sensor readings.
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6.2. Contributions

The method is validated by testing on healthy subjects. Furthermore, a
control strategy is also implemented to provide assistance through an active
exoskeleton i.e. active elbow and shoulder joints. The assistance to elbow
joint is provided using admittance control and assistance to shoulder is pro-
vided by implementing gravity compensation. The results showed that the
developed method is able to detect the carried payload and thus assistance
provided by exoskeleton helps in reducing the human effort in load carrying
task.

6.2 Contributions

Novelty of work presented in this thesis lies in knowledge creation in the
field of cHRI based exoskeleton control.

In this thesis a novel method of motion intention detection i.e. FMG, is
studied. The studies included performance comparison with sEMG, where
long term accuracy and repeatability of both methods is analyzed. FMG
based classification and regression techniques for detecting upper limb move-
ments and estimating assistance levels are also developed. The methods are
tested with upper limb exoskeletons in order to provide support in load car-
rying tasks.

Within this PhD thesis, the following contributions are made in reference
to the research questions addressed in Sec. 1.4.

• Rq1: What muscle activity detection method is suitable for the applica-
tions of daily use?

This research question is addressed in Paper I. In this work long term
performance comparison analysis of FMG and sEMG is analyzed for
classifying dynamic forearm movements. The work showed that of the
two methods FMG has better overall accuracy and data repeatability.

• Rq2: How can the usability of FMG based classification/regression
methods be improved for detecting upper arm movement intent?

Usability of FMG based motion detection methods is improved by ad-
dressing three challenges in Paper II and Paper III, i.e. requirement of
large training dataset, performance degradation caused by donning/doffing
and number of sensor for detecting desired movement.

In Paper II threshold based classification approach is implemented to
detect hand motions. In this work FMG sensor placement and data
was analyzed for object grasping task. Based on the analysis sensor
distribution is proposed and slope feature is selected that has shown
similar pattern across objects of different attributes. With the proposed

69



Chapter 6. Conclusions

method, requirement of training data is minimized significantly with-
out compromising the motion detection accuracy.

Literature has shown that motion detection performance is degraded
by donning/doffing of sensors. In Paper II it is demonstrated that the
proposed motion detection strategy is not effected by donning/doffing.

In Paper III regression approach is used to estimate the carried payload.
The proposed method presented the solution for dealing with sensors
requirement where only biceps data and arm orientation is required to
determine payload. The estimated payload can then be used to control
multi-DOF exoskeleton assistance level.

• Rq3: How can FMG based motion detection methods be integrated into
exoskeletons for intelligent physical assistance in load carrying tasks?

Methods to control upper body assistive exoskeletons i.e. hand and
elbow/shoulder are demonstrated in Paper II and III, respectively. In
Paper II with the detection of grasping task, FMG data is further pro-
cessed to implement proportional force control technique. In Paper
III the estimated payload information is used to determine assistive
torque, which is further regulated using admittance control strategy for
elbow joint support. Whereas, assistance to shoulder joint is provided
by adapting gravity model to the estimated payload.

In Paper II the increase in grasping force, measured through force sen-
sors at fingertips, was used to realize the physical assistance. Whereas,
in Paper III the results of physical assistance were verified by observing
the reduction in muscle activity.

From the findings and contributions of this thesis, it can be concluded that
the hypothesis “FMG can effectively and efficiently detect upper limb motion
intention in order to control upper limb exoskeleton for providing physical
assistance in load carrying tasks” is experimentally confirmed.

6.3 Limitations and future work

In the previous section, contributions made in this thesis were presented. The
studies have shown promising results of using FMG for upper limb motion
detection and assistive exoskeleton control by addressing the challenges iden-
tified in Sec. 1.3. However, the FMG sensing method still requires validations
from many other perspectives in order to apply it in real environment. For
that purpose, following are the limitations of this work identified and based
on that future works are recommended:

• In Paper I, comparison of FMG and sEMG is presented.
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– The pronation/supination movement was only performed at fully
extended elbow position Furthermore, fingers were also kept in
extended position all the time. Further investigation is needed by
extending the data collection protocol i.e. including more elbow
positions for pronation/supination, varying movement speed and
keeping hand in rest state.

– Average output of FSR sensors was used for FMG features extrac-
tion. The approach makes the classification algorithm computa-
tionally less expensive but using each FSR as a separate input can
improve the performance furthermore.

• In Paper II, hand motion detection and grasping assistance method is
developed. Some limitations and future work related to this study are
presented here.

– In the experiments of grasping assistance sensor bands and hand
exoskeleton were not worn on the same hand. It was hypothe-
sized that the hand exoskeleton is of soft nature and it will not
affect the dynamics of the muscle activity when worn on the same
hand as FMG sensors. However, the performance validation of
the hand motion detection and grasping assistance by wearing the
exoskeleton on the same hand requires more testing.

– In this work hand motions i.e. opening, closing, grasping and
rest state are detected by applying threshold based classification
method. These threshold levels can be registered for other hand/
wrist movements i.e. wrist flexion/extension, wrist rotation and
forearm pronation/supination etc. In order to apply the developed
method in actual environment advanced algorithms are required
that can distinguish between all these motions. With advanced al-
gorithms, requirement of training data will increase and in turn it
will affect the usability of developed method in work environment.
On the other hand, sensor fusion techniques, combining FMG and
IMU, can be the most suitable approach to tackle this problem.
IMU placed at back of the palm can register all of the motions per-
formed by wrist and forearm. Developing a generalized machine
learning algorithm using IMU is thus possible with high intra and
inter-subject repeatability.

• In Paper III, a method for payload estimation is presented. Limitation
and future work directions of this study are as follows.

– In this work experiments were performed for static load handling
tasks. Muscle activities caused by dynamic movements and co-
contractions can cause estimation errors. A classification algorithm
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that can detect aforementioned muscle activities are required. Based
on the detected activity, parameters of estimation model can be
modified to obtain correct results.

– The experiments of payload assistance were carried out with one
subject. The experiment was performed to validate that with cor-
rect payload estimation, assistance can be provided with the help
of exoskeleton. However, in this experiment weight of the ex-
oskeleton was supported by stand, not carried by the human. When
exoskeleton is worn by human subject, muscle dynamics will change
and modification in payload estimation algorithm will be required.
Therefore, validation of correct payload estimation while wearing
exoskeleton needs testing with more subjects.

– Payload estimation algorithm requires weight lifting task at mul-
tiple joint angles. Performing these tasks properly is physically
challenging. Therefore, few positions were considered for collect-
ing training data. Including training data from more joint angles
can improve the results but it comes with the expense of increased
physical effort and fatigue. Furthermore, fatigue can cause collec-
tion of incorrect training data and in turn poor estimation. Ad-
vanced calibration and estimation algorithms are thus required to
improve payload estimation accuracy without the need of increas-
ing physical effort in collection of training data.

• Lastly, related to overall thesis work following future works are pro-
posed.

– Performance analysis were carried out with healthy subjects. Fur-
thermore, the tasks were performed in controlled environment.
When the technology is implemented at actual work places peo-
ple can have different muscle volumes and attributes. Moreover,
age factor can also have influence on the performance. Therefore,
further investigation is required considering such conditions. The
results can provide more insight to make robust and stable detec-
tion using FMG.

– FMG is relatively a new domain to detect limb movements. It’s
performance can be influenced by varying the size and number
of sensors. Therefore, studies on optimizing number and size of
sensors can facilitate AI with more information in order to improve
convenience and applicability in actual environment.
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