2,956 research outputs found

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Integrating Internet of Things, Provenance and Blockchain to Enhance Trust in Last Mile Food Deliveries

    Get PDF
    Engineering and Physical Sciences Research Council - The work presented here was supported by an award made by the UKRI, EPSRC funded Internet of Food Things Network+ grant EP/R045127/1. FUNDING: The work presented here was supported by an award made by the UKRI, EPSRC funded Internet of Food Things Network+ grant EP/R045127/1. ACKNOWLEDGMENTS: We would like to thank G. McWilliam and Aberdeen University Services for their cooperation during the pilot deployments of the PROoFD-IT system. We would also like to thank Food Standards Scotland and the Semantic Web Company GmbH for their valuable comments on the project.Peer reviewedPublisher PD

    A Geographic Information System Framework for the Management of Sensor Deployments

    Get PDF
    A prototype Geographic Information System (GIS) framework has been developed to map, manage, and monitor sensors with respect to other geographic features, including land base and in-plant features. The GIS framework supports geographic placement and subsequent discovery, query, and tasking of sensors in a network-centric environment using Web services. The framework couples the GIS feature placement logic of sensors with an extensible ontology which captures the capabilities, properties, protocols, integrity constraints, and other parameters of interest for a large variety of sensor types. The approach is significant in that custom, GIS-based interfaces can be rapidly developed via the integration of sensors and sensor networks into applications without having detailed knowledge of the sensors’ underlying device drivers by leveraging service-oriented computing infrastructure within the GIS framework

    Develop a Spatial Decision Support System Based on Service-Oriented Architecture

    Get PDF

    Joining sustainable design and internet of things technologies on campus : the IPVC smartbottle practical case

    Get PDF
    Higher education institutions (HEIs) are favored environments for the implementation of technological solutions that accelerate the generation of smart campi, given the dynamic ecosystem they create based on the involvement of inspired and motivated human resources (students, professors, and researchers), moving around in an atmosphere of advanced digital infrastructures and services. Moreover, HEIs have, in their mission, not only the creation of integrated knowledge through Research and Development (R&D) activities but also solving societal problems that address the academic community expectations concerning environmental issues, contributing, therefore, towards a greener society embodied within the United Nations (UN) Sustainable Development Goals (SDGs). This article addresses the design and implementation of a Smartbottle Ecosystem in which an interactive and reusable water bottle communicates with an intelligent water refill station, both integrated by the Internet of Things (IoT) and Information and Communications Technologies (ICT), to eliminate the use of single-use plastic water bottles in the premises of the Polytechnical Institute of Viana do Castelo (IPVC), an HEI with nearly 6000 students. Three main contributions were identified in this research: (i) the proposal of a novel methodology based on the association of Design Thinking and Participatory Design as the basis for Sustainable Design; (ii) the design and development of an IoT-enabled smartbottle prototype; and (iii) the usability evaluation of the proposed prototype. The adopted methodology is rooted in Design Thinking and mixes it with a Participatory Design approach, including the end-user opinion throughout the Smartbottle Ecosystem design process, not only for the product design requirements but also for its specification. By promoting a participatory solution tailored to the IPVC academic community, recycled plastic has been identified as the preferential material and a marine mammal was selected for the smartbottle shape, in the process of developing a solution to replace the single-use plastic bottles.7519-C505-DF9E | Ant?nio Jos? Candeias CuradoN/

    Design of a web-based LBS framework addressing usability, cost, and implementation constraints

    Get PDF
    This research investigates barriers that prevent Location Based Services (LBS) from reaching its full potential. The different constraints, including poor usability, lack of positioning support, costs, and integration difficulties are highlighted. A framework was designed incorporating components based on existing and new technologies that could help address the constraints of LBS and increase end-user acceptance. This research proposes that usability constraints can be addressed by adapting a system to user characteristics which are inferred on the basis of captured user context and interaction data. A prototype LBS system was developed to prove the feasibility and benefit of the framework design, demonstrating that constraints of positioning, cost, and integration can be overcome. Volunteers were asked to use the system, and to answer questions in relation to their proficiency and experience. User-feedback showed that the proposed combination of functionality was well-received, and the prototype was appealing to many users. Ground-truths from the survey were related back to data captured with a user monitoring component in order to investigate whether users can be classified according to their context and how they interact. The results have shown that statistically significant relationships exist, and that by using the C4.5 decision-tree, computer proficiency can be estimated within one class-width in 76.7% of the cases. These results suggest that it may be possible to build a user-model to estimate computer proficiency on the basis of user-interaction data. The user model could then used to improve usability through adaptive user-specific customisations

    Internet of Things in Geospatial Analytics

    Get PDF
    Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things emerged as a holistic proposal to enable an ecosystem of varied, heterogeneous networked objects and devices to speak and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth jointly form interrelated infrastructures for addressing modern pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth.Comment: Book chapter at the Manual of Digital Earth Book, ISDE, September 2019, Editors: Huadong Guo, Michael F. Goodchild and Alessandro Annoni, (Publisher: Springer, Singapore

    COSPO/CENDI Industry Day Conference

    Get PDF
    The conference's objective was to provide a forum where government information managers and industry information technology experts could have an open exchange and discuss their respective needs and compare them to the available, or soon to be available, solutions. Technical summaries and points of contact are provided for the following sessions: secure products, protocols, and encryption; information providers; electronic document management and publishing; information indexing, discovery, and retrieval (IIDR); automated language translators; IIDR - natural language capabilities; IIDR - advanced technologies; IIDR - distributed heterogeneous and large database support; and communications - speed, bandwidth, and wireless

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore