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1. Introduction      

The increasing availability of network connection and the progress in information 

technology and in hardware miniaturization techniques, are determining new computing 

scenarios, where software applications are able to "configure themselves" based on 

information coming from heterogeneous sources (sensors, RFID, GPS, databases, user input, 

etc.) which form the so called "context". In other terms, such applications are based on the 

representation and codification of different kinds of data, such as biomedical parameters, 

environmental data, device location, user preferences, resource availability, every time, from 

every location and through different modalities (pervasiveness), and on the provision of 

services and contents adapted to current context (context-awareness). Such computing 

scenarios find application in a large number of real-life domains, as environment 

monitoring, supply-chain management and so on. Health-care is perhaps one of the most 

relevant and promising. Indeed, the perspectives opened by such technologies are wide and 

variegate: they range from the home-care of mobility-impaired people to the harmonization 

and presentation to hospital workers of information gathered from distributed 

heterogeneous sources.      

The implementation of context-aware systems is based on two distinct but strongly 

interlaced tasks: 1) monitoring and collection of sensorial data, with the related issues 

concerning data transmission, costs, enabling technologies as well as the heterogeneity and 

the number of data to be collected 2) processing and integration of data with available 

context information in order to activate decision processes which are in many cases not 

trivial.  

Key points are the selection of the enabling technologies for the collection, transmission and 

smart management of data gathered from heterogeneous sources, and the design of a 

system architecture having the following characteristics: 

a. simple to use; 

b. low-cost and low-power consumption in order to make possible the implementation of 

systems with a high number of nodes; 

c. interoperable with any type of sensors; 

d. customizable to different kinds of application domains with a limited effort; 

e. scalable with the number of nodes; 
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f. suitable response times so to be adopted also in emergency situations. 

Based on the above considerations, we developed a cost-effective RFID-based device for the 

monitoring and collection of sensorial data, and a pervasive and context-oriented system 

which operates on sensor data and is based on an innovative, flexible and versatile 

framework. The description of the RFID device and of the software framework is provided 

in this chapter, which starts with an introduction to potential applications for healthcare and 

to emerging techniques for both data collection and smart data management, and concludes 

with the validation of both hardware and software solutions in the real-life use-case of 

patient remote assistance.  

2. Potential applications 

This paragraph proposes an overview of the possible applications of emerging technologies 

for data sensing, gathering and smart data elaboration with a special focus to the healthcare 

domain. We partition applications into four groups, even though some overlapping between 

such groups exist.  

2.1 Knowledge sharing, availability and integration 
Management and delivery of healthcare is critically dependent on access to data. Such data 

are normally provided by several heterogeneous sources, such as physiological sensors, 

imaging technology or even handwriting and often spans different organisations. Moreover 

they are generally stored by using different formats and terminologies, such as electronic 

health records, clinical databases, or free-text reports. If such a rich collection of health and 

community data could be linked together, we would improve enormously our capability of 

finding answers to health and social questions and of tackling complex diseases (Walker, 

2005). Unfortunately, sharing such a complex aggregate of information and deriving useful 

knowledge from it is currently very difficult.  

A very promising answer to this need is provided by the enabling technologies for smart 

data collection and management which are named “ontologies”  [Section 3.4].  Ontologies 

define a formal semantically rich machine-readable specification of concepts and 

relationships which is unique and sharable among dispersed consumers. They provide 

coherent representations of biomedical reality thus enabling wide-area multi-organizational 

sharing of data by supporting publishing, retrieving and analysis of data in large-scale, 

diverse and distributed information systems. 

Moreover, when integrated with other enabling technologies (such as those listed in Section 

3.3 and 3.5) ontologies allow the identification of the correct information to be forwarded to 

health care professional depending on available information about context, such as time, 

place, patient current state, physiological data, and so on.  

2.2 Independent living 
The combination of sensors, RFID, wireless protocols and software solutions, is going to 

enhance aging population and impaired people capability of conducting a possibly 

autonomous independent living. Indeed, pervasive and context-aware applications are more 

and more recognized as promising solutions for providing continuous care services, while 

improving quality of life of people suffering from chronic conditions. 

www.intechopen.com



Smart Data Collection and Management in Heterogeneous Ubiquitous Healthcare 

 

 

687 

Support to independent living encompasses a wide range of applications ranging from the 

telemonitoring of vital parameters to scenarios involving home automation and domotics.  

In the former case (Paganelli, 2007), the system allows chronic patients, such as epileptics or 

persons with chronic mental illness, to conduct a substantially normal life as it makes a 

continuous measurement of vital data and/ or of the activities of daily living and social 

interactions. An immediate assistance is provided in emergency situations, when patients 

may be unconscious and unable to react. Indeed, the system is able to autonomously alert 

the best suited care giver and to forward her/ him a meaningful synthesis of real-time (e.g. 

physiological data) and static data (e.g. historical patient information). 

Smart homes (SM4ALL, 2010), instead, consist in homes augmented with networked 

sensors, communicating objects, and information appliances. Ambient sensors acquire 

information about the home environment, body near sensors acquire information about the 

habitant. The combination of these sensors enables the creation of activity profiles which 

allow the constant monitoring of patient daily life. Also in these cases, adverse events are 

recognized by the system (“the habitant leaves the home while the cooker is still switched 

on” , or “the patient has a fall”) and specific assistance is quickly provided. 

2.3 Tracking 
The capability to trace, localize and identify a large number of heterogeneous objects in a 

complex and dynamic environment is essential in many sectors, including the healthcare 

one (Bacheldor, 2008, 2009), (Swedberg, 2010). Moreover, the widespread diffusion of the 

object/ people to be traced, forces the use of flexible, easy to use and inexpensive 

technologies. Such requirements are typical of RFID systems. The joint use of RFID tags and 

smart software infrastructures in identification badges for health care professionals, 

patients, and fixed assets, therefore, is more and more gaining momentum. Thanks to these 

technologies, physicians and nurses are tracked in real-time or near real-time, and contacted 

in case of emergencies, whilst specific medical devices, such as multi-channel infusion 

pumps, are associated with patients. 

Tracking is also of utmost importance to control drug dispensation and laboratory results. 

Medical dosages and patient samples are validated, together with blood supplies and blood 

type matching.  

In the pharmaceutical supply chain, where security and safety are required to prevent 

compromising the health of patients, smart labels and sensors are fundamental. Smart labels 

are attached to drugs, in order to track them through the overall supply chain. Sensors 

continuously monitor the status of items requiring specific storage conditions and discard 

them if such conditions are violated. Drug tracking and e-pedigrees also support the 

detection of counterfeit products and for keeping the supply chain free of fraudsters.  

The smart labels on the drugs can also directly benefit patients in several manners, e.g. by 

storing the package insert, informing consumers of dosages and expiration date, by 

reminding patients to take their medicine at appropriate intervals and monitoring patient 

compliance, etc...   

2.4 Smart hospitals 
With the ability of capturing fine grained data pervasively, wireless sensors and RFID tags 

have numerous available and potential applications in hospitals (Wang, 2006). The quality 
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of patient care at the bedside is improved and errors reduced. This is accomplished by 

integrating the physical process of care delivery with medication information and software 

applications that provide clinical decision support, and quality and safety checks. 

Without such systems, healthcare providers traditionally use a paper-based “ flow chart”  to 

store patient information during registration time, which is updated by different 

professionals and forwarded to the incoming staff at the end of each shift. As a result the 

paper report is not always accurate. RFIDs allow for transmitting and receiving data from 

patient to health professionals without human intervention. RFID wristbands are used to 

identify patients during the entire hospitalization period. They are used to store patient data 

(such as name, patient ID, drug allergies, blood group, and so on) in order to constantly 

keep staff informed. Medical professionals can easy access and update patient’s records 

remotely via Wi-Fi connection using mobile devices.   

3. Emerging technologies 

Pervasive platforms derive from the merging of several technologies which recently had an 

impressive improvement, such as wireless communications and networking, mobile 

computing and handheld devices, embedded systems, etc.   

As a result, a review of the emerging technologies which enable the development of 

pervasive systems may reveal a hard and tedious task. The focus of this section is therefore 

restricted on a subset of such technologies. We substantially concentrate on the technologies 

which will be cited in the course of the chapter and which we believe actually constitute, 

and will probably still constitute in the future, the core of pervasive context-aware systems.   

Computing environments are inherently distributed and heterogeneous. They are made of 

components which can be mobile, embedded in everyday objects or in general hidden in the 

infrastructure surrounding the user (Weiser, 1991). The context data to be computed must 

be collected by spread, inexpensive and easy to use data collectors. Those based on the RFID 

technology (Section 3.1) guarantee both identification and localization. The integration of 

sensors on traditional RFID tags (Section 3.2) assure also the interaction with other physical 

values, mandatory for a realistic context reconstruction. Such heterogeneous and dispersed 

components have different requirements and capabilities and are expected to interact 

continuously and in a transparent manner.  

“Interaction”  and “transparency”  in a “distributed”  environment are well supported by the 

so-called multi-agent paradigms, which, as explained in Section 3.3, organize applications 

around the coordinated interaction of autonomous reasoning software entities, which wrap 

the “natural”  components of the distributed system. 

Pervasive systems must also exhibit some intelligent behavior in terms of context awareness, 

i.e. their components must be able to coordinate with one another in order to recognize and 

react aptly to environment modifications. “Coordination”  and “reasoning”  require a high 

level of (semantic) interoperability, i.e. the availability of a shared and agreed knowledge 

layer upon which agents base their inferences and cooperation.  

For this purpose, ontologies (Section 3.4) and rule based logic (Section 3.5) seem the best 

combination of technologies for enabling knowledge representation and reasoning, the 

former provide a sharable, reusable model of reality, the latter efficiently support 

inferencing and event recognition.  
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3.1 RFID 
Radio frequency identification is one of the emerging technologies that is having the most 
capillary diffusion, thanks to its low cost, its easiness and the very large number of 
applications where it can be crucial.  
RFID can be seen as the enhanced version of the union between radio frequency (RF) anti-
theft systems and bar codes.  
RF anti-theft systems are based on passive devices, called tags, essentially constituted by a 
spiral antenna in parallel to a capacitor. If a tag is exposed to a certain electromagnetic field, 
such as those generated by the RF gates at the shop exits, the spiral antenna receives enough 
power to charge the capacitor. Once the capacitor discharges, a new signal is transmitted 
through the spiral antenna and received by the RF gate, generating the alert. 
As well known, vice versa, a barcode is a series of bars and spaces through which 
information is encoded. The reading is then delegated to optical scanners which, however, 
work only a few centimetres away and only in line-of-sight condition. 
RFID technology, therefore, combines the capability of barcodes to transmit complex 
information with the peculiarity of responding only when interrogated through a proper RF 
signal, characterizing passive anti-theft systems.  
Substantially, if a book marked with an RF anti-theft tag passes through a RF gate, a 
nonspecific alert is generated (telling us that something has been stolen). A more detailed 
information about the book can be obtained only by reading its barcode through an optical 
scanner. When the same book is marked with an RFID tag, we can know which book is 
passing through the gate in terms of title, author, cost, number of pages, inventory number 
and so on. It is apparent, though, how this sophisticated anti-theft system is only one of the 
most simple applications which can take undeniable advantage from an RFID-based 
implementation. 
A generic RFID system is, hence, mainly based on two entities: on one side there are the 
tags, which store in a microchip information in terms of electronic product code (EPC), and 
can receive and transmit signals by means of an aluminium or copper antenna. On the other 
side there are the readers and the reader antennas, which emit electromagnetic signals and 
wait for an answer. When a tag is in the region covered by a reader antenna, the tag 
microchip is powered and a signal containing the EPC, is sent back towards the reader 
antennas. The reader decodes such an identifier code (ID), telling a middleware system that 
a specific tag has been read by a certain reader antenna. In Fig.1 a schematization of an RFID 
system is reported. 
The reasons for the spread diffusion of RFID technology, however, is not to be found in its 

working principle, but rather in its cost and its ease of use. The mere wireless transmission 

of an ID under certain electromagnetic solicitations, in fact, does not hide any particular 

technological impediment. On the contrary, the capability of using passive devices, which 

do not require maintenance and cost a few cents, is a peculiarity of RFID tags.  

This promises a widespread use, for instance, also in applications where the cost should 

remain affordable and reusability is not guaranteed. 

A comprehensive classification of the RFID technology in terms of working frequency, 

maximum working distance, tag powering method, cost, sensitivity, storage capacity etc., is 

certainly possible but is beyond the scope of this chapter. The interested reader is addressed 

to (Dobkin, 2007) for such a goal. 

On the contrary, it is worth highlighting that, among the others, passive RFID systems in the 

ultra high frequency (UHF) band are those that provide the wider perspectives of 

applications. 
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Fig. 1. Schematization of an RFID System 

Their work frequency varies accordingly to individual state regulations; it ranges from a 

minimum of 860 MHz, for instance in Europe, to a maximum of 960 MHz, in Japan, via the 

915 MHz of the United States (Dobkin, 2007). In Fig. 2 a prototype of a home-made UHF 

passive tag is shown. Both chip and antennas are clearly visible in the figure. RFID tags are 

generally bonded to a polyethylene terephthalate (PET) layer, which can be adhesive or dry. 

The prototype of Fig.2, on the contrary, is realized by cutting an adhesive sheet of copper by 

using a numerically controlled cutting plotter.  
 

 

Fig. 2. Home-made prototype of a UHF RFID Tag 

Although the apparent simplicity of the tag, it is important to stress that the antenna design 

plays a very crucial role. The chip exhibits a strong capacitive contribution, so that a 

conjugate matching technique, guaranteeing the maximum power transfer between chip 

and antenna, must be applied. Moreover, the need of a reduced size forces the use of 

miniaturization techniques (Dobkin, 2007). A well designed antenna guarantees reading 
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range up to 9 m, good enough to support the use of this technology in many applications 

based on auto-identification. Vice versa, when an application needs the management of 

more complex data, such as physical values representing the context around the tag, an 

integration between RFID and sensors is mandatory.  

3.2 RFID and sensor integration 
An evolution of RFID technology is represented by its integration with sensors, so that, along 

with the ID code, also the value measured by the sensor is sent towards the reader. In such a 

way, the collection and management of heterogeneous data, similarly to canonical wireless 

sensor networks, is made possible, with some advances in terms of benefit/ cost ratio. 

Indeed, many different wireless technologies are mature for the transmission of data 

measured by generic sensors, much more than the inexpensive RFID. Compared with RFID 

technology, Wi-fi, Bluetooth, GPRS, UMTS and GSM guarantee wider transmission 

distances, higher bit-rates as well as larger amount of exchangeable data. Unluckily, the 

benefit/ cost ratio of such technologies, depending on the target application, is often not so 

appropriate. Therefore, when a capillary diffusion of physical sources is needed, a cheaper 

wireless technology is desirable. Moreover, the easy interfaceability with Internet could be 

another added value.  

So far, the integration of wireless sensor networks with RFID-based sensor systems appears 

to be the most practicable way. UHF RFID technology, in fact, is quite inexpensive (passive 

RFID tags are as cheap as few euro-cents). It is also naturally compatible with Internet, and 

provides a reading range adequate for many applications. It is worth mentioning that some 

UHF RFID tags with embedded sensors of temperature or of pressure are already available 

on the market (Cho et al., 2005), being often inexpensive and rather accurate. Nevertheless 

the study of general purpose devices that support the integration of RFID and generic 

sensors, independently of the size and of the cost of the sensor itself, seems to be the new 

tendency.  

Furthermore, the ability to gather in an easy and low-cost way a large amount of 

identification and context data, paves the way to the solution of ambitious problems that 

require the smart management of data. For such a goal, though, it is necessary to 

complement this hardware resources with new adequate software technologies, able to 

smartly support the decision-making processes. 

3.3 Software agents 
Software agents (Bradshaw, 1997) are (semi)autonomous programs which represent objects 

from the real world, such as persons, devices and services. Real entities delegate to agents 

the capabilities which are requested by ubiquitous context-aware systems, such as the 

interaction with the environment and with other entities (i.e. agents). 

Agents are autonomous, i.e. they are distinct entities, separated, in some sense, from the 

world in which they exist. They are able to correctly operate with little or no direct human 

input or supervision, and have control of their internal state and behavior.  

Agents interaction with the environment happens in a both reactive and proactive manner. 

Reactivity means that the agent is able to acquire information about the operating 

environment – through sensors, messages or interaction with humans – and adapt to 

perceived changes. Pro-activity means that the agent has a number of goals and is able to 

take the initiative to realize them.  
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Agent-based systems are used in many situations. For instance, they are worth to be 

adopted when the knowledge required to solve a given problem is spatially distributed, 

when different computational entities must cooperate to reach a common goal and when a 

given task can be subdivided in autonomous sub-tasks. Many problems in the healthcare 

domain have such features: knowledge is usually distributed in different physical locations; 

medical problem solving strategies quite always require collaboration between different 

healthcare operators, structures and devices; finally medical procedures are complex and 

are suited to be partitioned into different sub-tasks. 

According to Nealon and Moreno (Moreno, 2003) the healthcare domain is a “vast open 

environment, characterised by shared and distributed decision making and management... 

requiring the communication of complex and different forms of information between a 

variety of clinical and other settings, as well as the coordination between groups of 

healthcare professionals with very different skills and roles” . As agents may tackle 

distributed problems, are able to communicate among each other, can partition complex 

problems in sub-problems, take decision autonomously and provide information to end 

users reactively and proactively, they represent a good choice in the healthcare domain. As a 

result, agents-based systems are currently used in a wide series of medical-related problems   

(Moreno, 2003): patient scheduling, organ and tissue transplant management, community 

care, information access, decision support systems, home healthcare monitoring, medicine 

and device management, healthcare operators scheduling.  

Agents coordinate and exchange information, have a representation of their goals, and 

determine their course of action on the basis of a model of the environment which is shared 

with other agents.  As explained below, ontologies are actually recognized as the best 

instrument for defining such a model.  

3.4 Ontologies 
The advent of ontologies  (Gruber, 1995) in computer science in the early nineties and the 

current effort in their settlement and development is making the “semantic interoperability 

dream” come true, i.e. ontologies are more and more recognized as the best suited 

instrument to harmonize complex and different sources of information and to get 

meaningful knowledge from them. 

Ontology is the branch of philosophy that provides a formal foundation for specifying, and 

making statements about, what exists and how the things that exist are related to each   

other. In computer science ontologies are used to describe the logical structure of a specified 

domain of interest, its concepts and the relations among them, and to present them in an 

explicit and standardized way.  

In order to encode knowledge in the form of an ontology an appropriate language must be 

used. The most recent emerging standard proposed by W3C is the so called Web Ontology 

Language (OWL)  (W3C OWL, 2005). OWL represents reality as a set of classes, properties 

and instances. Classes stand for the concepts which must be encoded; instances are the 

concrete individuals populating classes, whilst properties (relationships) assert general facts 

about the members of classes and/ or about individuals. OWL provides also a certain 

number of operators (constructors and restrictions) for expressing complex concepts, 

constraints and dependencies which reflect the human model of reality.  

An important feature of ontologies is that they can be processed by a reasoner, i.e. by a 

software tool able to extract new knowledge implied by explicitly codified knowledge. This is 

www.intechopen.com



Smart Data Collection and Management in Heterogeneous Ubiquitous Healthcare 

 

 

693 

very interesting for context aware computing. A simple example of reasoning can be given by 

the exploitation of “transitive relations”, which are supported by OWL. Given three entities, 

such relations bring the conclusion of the existence of a relation between the first and third 

entity, when a relation between the first and second and between the second and third occurs. 

For example, the ‘locatedIn’ relation between an ‘Entity’ and a ‘Location’ is commonly marked 

as “transitive”. As a result, if a user is ‘locatedIn’ the room ‘Bedroom’, which is in turn 

‘locatedIn’ the ‘Home’, then the reasoner concludes that the user is located in ‘Home’.  

Indeed, context-aware systems require more advanced reasoning mechanisms. They are 

expected to be able to derive higher-level, conceptual context, such as “what the user is 

doing”  from relevant low-level context, such as “the door is moving” , which is provided by 

context sensing. This is the reason why ontologies are normally accompanied by rule based 

systems. 

3.5 Rule based logic 
Rule-based logic (Partridge, 1994) is an expressive way to define situations. Rule-based 

systems (RBS) differ from standard procedural or object-oriented programs as they do not 

clearly define the order in which code executes. Their behaviour is embedded in a set of 

rules, each of which encodes a small piece of codified knowledge and can be executed 

according to the current content of the so-called working memory (or agenda). The working 

memory stores the so-called facts, which represent the factual knowledge of the RBS.  

Rules are similar to traditional if-then-else statements, but, differently from them, they are 

not executed in any predetermined order. They have a left hand side (the if part) and a right 

hand side (the then component). The left hand side contains information about facts and 

objects which must be true in order for the rule to potentially fire (i.e. execute).  

The process of firing rules is carried out by the so-called rule engine (or inference engine): a 

program (interpreter) that performs iteratively the so-called Match-Resolve-Act (MRA) cycle 

over the rule set and the working memory. In a MRA cycle, at any given time, rules are 

activated by matching them against the working memory elements (Match phase); then 

activated rules are chosen for execution according to some selection strategy (Resolve phase) 

and finally executed (Act or firing phase). In the Act phase, facts can be modified or deleted, 

and new facts can be added to the working memory as well.  

In synthesis, RBSs select and execute available rules according to the current context they 

perceive. This makes RBSs particularly suitable for implementing context-aware 

architectures that must be modular and easily extensible: facts contain a symbolic and 

declarative description of a current situation and the rule set puts in relationship context 

conditions and devices’ behavior and actions.  

4. A real-life application: a context-aware infrastructure based on RFID 
sensor tags 

4.1 Introduction 
In this section, we propose a framework for context-aware pervasive systems built around 

the above mentioned technologies: RFID, sensors, ontology representation, multi-agent 

paradigm and rule-based logic.  

The section is organized as follows. Section 4.2 introduces the general-purpose framework 

and its prototypal implementation. Section 4.3 synthesizes system implementation choices. 

Sections 4.4, 4.5 and 4.6 are centred around context modelling. First the ontology 
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representation, then the rule-based reasoning are illustrated. Section 4.7 focuses on data 

collection strategies. It describes “S-tag” , a novel low cost device enabling the integration of 

sensor networks with RFID systems. A home-health scenario in the “emergency 

management”  domain is finally provided in Section 4.8 as specific example of application 

and practical result. 

4.2 The Architecture 
The architecture of our system (Fig. 3) follows a widely accepted abstraction (Indulska, 2003) 

according to which context-aware systems are organized into three layers: context sources, 

context management middleware and context consumer level.  
 

 

Fig. 3. Layered system architecture 

Context sources include entities providing raw context data. They are conceptually 

partitioned into two groups: physical and virtual sources (Strang, 2004). Physical sources 

include hardware devices able to sense context data, such as RFID, sensors, positioning 
 

systems, etc. Virtual sources include software services able to gather context data, such as 

GUIs for user preferences input, databases, etc. Such data must be elaborated in an 

“ intelligent”  manner, so that the overall system reacts properly to context changes. This 

requires the availability of a machine-interpretable representation of context and of software 

components (agents) able to suitably process such knowledge. Both of them are conceptually 

situated at the intermediate level of the system architecture, the so-called middleware layer, 

as they provide the core building blocks of a context-aware application. Agents interoperate 

with one another thanks to the availability of a unified model of reality. Their behaviour is 

strongly influenced by data provided by context sources and substantially determines the 
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activities to be performed at the highest layer. Indeed, the context consumer layer includes 

all the entities, such as mobiles, Web interfaces, laptops, which interact with final users in 

response to meaningful context changes, thus determining the behaviour of the context-

aware application as a whole.   

Fig. 4 shows the fundamental components of the prototypal implementation of the 

framework. The system core is a team of cooperating agents, which share an ontology-based 

knowledge representation and reason by means of a rule-based inference engine.  
 

 

Fig. 4. The system follows a multi-agent paradigm and runs on distributed nodes connected 

by a local area network. Context Provider Agents (CPA) filter and integrate data provided 

by physical and virtual sensors. Context Interpreter Agents (CIA) identify the actions and 

the actors best suited for managing an emergency. Context Consumer Agents (CCA) 

perform the actions identified by CIAs 

4.3 Implementation choices 
Many ontology languages exist including Resource Description Framework Schema (RDFS) 

(W3C RDFS, 2004), DAML+OIL (DAML, 2010), and OWL (W3C OWL, 2005). OWL is a key 

to the Semantic Web and was proposed by the Web Ontology Working Group of W3C. It is 

much more expressive than other ontology languages such as RDFS. We chose OWL rather 

than DAML+OIL as the latter has been merged into OWL to become an open W3C standard. 

We took advantage of the Protégé (Protégé, 2010) graphical tool with the OWL plug-in and 

adopted Pellet (Pellet, 2010), a freeware, public domain ontology reasoner, to perform 

consistency checking. 

The rule-based domain knowledge was implemented with Jess (Friedman-Hill, 2003) on top 

of OWL ontologies. Jess is a rule engine and scripting environment written in Java. Its rule 

engine uses the Rete algorithm (RETE, 2010) which has been shown to be fast and efficient 

especially for large data sets and it is widely used within a professional programmers’ 

community. 
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Agents are implemented by using the Java Agent Development Environment (JADE).JADE 

(JADE, 2010) is a software framework to develop and run agent applications in compliance 

with the FIPA specifications (FIPA, 2010) for interoperable intelligent multi-agent systems. 

Inter-Agent communication is based on the FIPA ACL which specifies a standard message 

language by setting out the encoding, semantics and pragmatics of the messages. 

The three technologies were glued together (Fig. 5) by taking advantage of a local 

adaptation of BeanGenerator (OntologyBeanGenerator, 2010), a Protégé plugin able to 

convert OWL codification into Java classes. As a result, the semantics of agent messages and 

their reasoning are built over OWL concepts and predicates, having been matched with Jess 

and JADE vocabulary (see next section). 
 

 

Fig. 5. The system implementation is based on the matching between OWL vocabulary with 

Jade agent inner context representation (in the form of Java classes) and Jess shadow facts 

codification 

Finally, input data are provided by both physical and virtual context sources. Physical 

sources are obtained by integrating sensors with an RFID device (see Section 4.7), whilst 

virtual context sources consist in databases providing static information.  

In the following sections, the system components and their way of functioning are described 

more in detail, with reference to a home-care giving scenario. 

4.4 Context ontology 
A common practise, when developing ontologies, is to adopt a top level (upper) shared 

conceptualization (Guarino, 1998) on top of which domain ontologies are built. Top level 

ontologies codify general terms which are independent of a particular problem or domain. 

Once the top level ontology is available, several lower level ontologies can be introduced, 

with the scope of incrementally specializing concepts from the high level generic point of 

view of the upper ontology to the low level practical point of view of the application. This 
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way of structuring knowledge promotes sharing and reuse of ontologies in different 

application domains.   

The hierarchical architecture of our ontology is organized into three levels (see Fig. 6, left 

side). Indeed, the ontology of our framework provides the knowledge representation upon 

which agents reason and exchange messages. Therefore, the top level concepts of our 

taxonomy contain terms useful for codifying the multi-agent environment, thus facilitating 

their interoperation. These concepts can be reused in any agent-based environment, 

independently from the application domain. 

 

 
 

Fig. 6. A fragment (on the right) of the ontology, which is hierarchically structured in 

ontology modules (depicted on the left) 

In order to fully exploit them in a context-aware system, a specialization is needed. In other 

terms, the context knowledge must be represented. This is done by implementing a “context 

middle level ontology”  which specializes the top level ontology and codifies general 

concepts related to context. Terms specifically related to the application domain are 

introduced at the bottom level by making a further specialization. Some more details about 

the way our ontology is structured can be evinced by Fig. 6 (right side). Indeed, the top level 

ontology reflects the JADE codification of ACL message “slots” , as represented in the 

publicly available ontology named “OWLSimpleJADEAbstractOntology”  (JADE Tutorial, 

2010). This ontology allows agents to give a semantics to message components. It makes a 

distinction between “predicates”  and “terms”. Predicates can assume “true”  or “ false” 

values and are used to describe the current status of codified entities (e.g. 

“SingleParameterVariation_Predicate” ). Terms are specialized into “Agent Actions”  (not 

depicted in Figure 4) and “Concepts”  classes. Agent Actions codify the actions being 

performed by agents (such as “NotifyAnomaly” ). Concepts are used to characterize the 

entities upon which predicates and actions operate (such as “MonitoredParameter” , 

“MonitoringParameter” , “PhysicalRegion” , “Worker”  and so on). Agents are themselves 

codified in the ontology by instantiating a suited subclass of the “Concepts”  class, namely 

the “AID” class.  

The vocabulary related to context entities was defined starting from the widely accepted 

definition of context, provided in (Dey, 1999): “Context is any information that can be used 

to characterize the situation of an entity.”  As a consequence, an entity is a person, place, 
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computational entity, or object which is considered relevant for determining the behavior of 

an application. Moreover, in order to satisfy the ontology reusability requirement, the 

“MonitoredEntity” , “MonitoredParameter”  and “MonitoringEntity”  contextual entities have 

been introduced at domain level. On their turn, such entities specialize into different 

concepts depending on the context subdomain they belong to. For instance, a 

“MonitoredEntity”  can be a patient, an object or an environment; a “MonitoringEntity”  can be 

a relative of the patient or a health operator. Devices can be of different types as well.  

4.5 Context rules 
Jess rules are used to convert low-level information, given in a raw form by sensors, into 

high-level context. This is conceptually performed in an incremental fashion. When the 

system starts to work, the sensor network or other devices get data from physical world. 

Depending on the incoming events captured by sensors and context, the facts in the Jess 

working memory are updated. A set of rules determines if an alarm has to be triggered and 

which alarm level should be activated, according to measurement values and corresponding 

thresholds. Jess rule engine then searches automatically through the available combinations 

of facts to figure out which rules should be fired. Such rules, when matched, infer new facts 

which express the context switching to “situation of alarm”. In other terms, the system 

acquires a sort of anomaly awareness, i.e. the raw data interpretation infers facts which 

express the occurrence of an anomaly.  

In order to keep the system as general as possible (and easily customizable to different 

application scenarios) (Esposito, 2010), we adopted the so-called normalized rules  

(Williamson, 2010), i.e. rules that can be used in a variety of heterogeneous cases without 

changing their structure. For instance, rules concerning the identification of alarm events 

due to an anomaly behaviour of data provided by physical sensors have the same 

codification, independent from the specific monitored parameter.   

The following example shows a rule activating an alarm when a parameter has a monitored 

value (“?par-c”  variable) that exceeds the patient thresholds (“?par-max” and “?par-min”  

variables). When the rule is fired, the fact “Single Parameter Variation”  (“?f-SPVp” variable) 

is inferred (as another predicate) and the action “notify that abnormal event”  is activated 

(“send-single-alert”  action). The “?pn” variable, finally, identifies the monitored parameter 

having generated the alarm. 

 
The “anomaly awareness”  facts may fire other rules, which may on their turn infer other 

facts. This determines the switching to the higher level context. In other terms, the context 

switches to a new situation, which we may call “procedure awareness” , in which the 

activities to be performed in order to manage the alarm situation are known.  
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The following example shows how a rule is fired as a consequence of an abnormal status 

due to a couple of parameters. The rule infers the fact “Aggregated Parameter Variation”  

(“?f-APVp” variable) and starts the action “send-aggregate alert”  in order to notify the 

anomaly to entities at a higher logical level. 

 
Once that the procedures needed to manage the anomaly have been identified, the context 

consumers come into action by performing suited “anomaly management”  actions. 

As detailed in the following section, the kind of reasoning above described is carried out 

with the support of suited agents. 

4.6. Agent-based reasoning 
The following subsections respectively depict the multi agent organization of our system 

and an example of agents interaction.  

4.6.1 The multi-agent framework  
Fig. 7 shows the proposed multi-agent framework, which assigns three fundamental roles to 

agents: 
 

 
 

Fig. 7. The proposed multi-agent framework 
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Context Provider Agents (CPA). These agents wrap context sources to capture raw context 

data and instantiate the ontology representation. CPAs may encapsulate single sensors or 

multiple sources. In the former case (“single domain CPAs”) they are mainly responsible for 

gathering and filtering data and info from sensor devices. In the latter case, (Dockorn Costa, 

2005) they interact with single domain CPAs, in order to aggregate context information from 

various context sources (for instance sensed data must be aggregated with patient 

thresholds). Both kinds of CPAs are responsible also of making low level context inference 

and putting relevant context information into the rule engine as facts.  

Context Interpreter Agent (CIA). Context Interpreter Agents are responsible for observing 

context changes sensed by CPAs, and, as consequence of these changes, to identify the set of 

actions that should be performed by context consumer agents.  Substantially, they are 

responsible for identifying the monitoring entity best suited to manage an alarm situation, 

for contacting it and for forwarding context information to it. 

Context Consumer Agent (CCA). Context consumer agents are responsible for performing 

the actions triggered by CIAs. Actions provide the application reaction to context 

information changes, which may assume diverse forms, such as the generation of a signal, 

the delivery of a notification or a web services request. Moreover, they may request further 

data to CPAs by contacting the suited CPAv agent.  

Registration Agents (RA). are in charge of managing agents registration and deregistration. 

Indeed, the system is dynamic in nature, as monitored and monitoring entities can be added 

and removed during its functioning. The JADE environment provides a service, namely the 

Directory Facilitator (DF), which supports runtime registration and service advertizing. 

However, DF has limited capabilities in service description and reduced performances. 

Therefore we implemented our own system by using the Jess virtual machine, which 

demonstrated to be much more efficient and supports a much richer description of agent 

capabilities and features.  

4.6.2 Agents interaction  
A simple example of agents interaction is provided in Fig. 8. A logical CPA, i.e. a CPA in 
. 
 
  

 

 

Fig. 8. A simple example of agents interaction 
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charge of aggregating data coming from different context sources (and their CPAs), gathers 

data coming from a sensor device and from the patient archive and identifies alarm events. 

When an alarm is issued, the CPA communicates the event to the CIA by sending an 

“ inform” ACL message. The CIA, on its turn, requests information about the availability of 

physicians to the CPA being associated to the doctors archive. Finally, an “ inform” ACL 

message is forwarded to the suited CCA in order to communicate the alarm to the selected 

doctor. 

The code snippet below shows how ACL fields are perfectly aligned with the classes being 

codified in our “Ubiquitous Health-Care”  (UHC) ontology (see Section 4.4). It contains an 

example of “ inform” message sent by a physical CPA (namely 

“CpaP_BodyTemperature_Patient3”  in the following code snippet) to a logical CPA 

(indicated as “CpaL_Patient3”). The UHC vocabulary is adopted to communicate sensed 

data of a patient (identified by his id “MonitoredEntity_ID” slot) measured at a certain 

timestamp (“timestamp” slot). The UHC “HasMonitoredParameter”  predicate, together 

with its slots “NormalMinValue” , “NormalMaxValue” , “CurrentValue”  (indicating the 

thresholds and the current sensed value of the monitored parameter), enrich the message 

with a deeper semantic meaning. Once that the message is interpreted, the identification of 

consequent actions is done by means of rules similar to those described in Section 4.5.  

 

4.7 Context sources 
As previously stated, the input raw data of the proposed architecture is represented by the 

set of values, usually physical parameters, collected by the so-called physical sources. It has 

also been outlined that the realization of devices that integrate RFID technology with 

generic sensors has numerous advantages in terms of cost and easiness.  

Indeed, the scheme proposed in Fig. 9 represents the actually designed and realized  general 

purpose Sensor-Tag (S-Tag) connected to a generic sensor including, among the others, 

sensors for biomedical applications (patented). When Tag and sensor are connected one to 

another and are interrogated, the measured value can be read by a standard UHF RFID 

system and interpreted through an RFID middleware. In such a way, the system takes 

advantage from the standard RFID technology, preserving most of its peculiarities and 

maintaining the compatibility with all the devices already available and worldwide 

standardized.  

The working principle is as easy as effective: data measured by the sensor connected to the 

S-Tag is used to control a set of integrated RF switches which select the appropriate IDs to 

be transmitted back towards the reader when the S-Tag is interrogated. Actually, as the S-
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Tag is designed as a general-purpose device, the sensor signal must be preventively 

quantized through an ad-hoc circuit embedded in the sensor itself. Of course, the number n  

of bits used for the quantization must be equal to the number of available IDs on the S-Tag. 

As a result, the number of different combinations, excluding the one with all the bits equal 

to zero (which would cause interpretability problems) is n2 1− .  
 

 

Fig. 9. A simplified scheme of the designed RFID sensor tag 

Consequently, when the Tag is in the region covered by the RFID reader, it sends back a 

signal containing a proper combination of identity codes (IDs) depending on the value of 

the input itself, thus facilitating the transmission of sensor data. More specifically, the 

internal microwave circuit of the S-Tag samples the value at its input (which has been 

measured by the sensor) and quantizes it by using a number of bits equal to the number of 

available different IDs. For each bit with value equal to 1, the integrated micro-switch selects 

the corresponding ID to be transmitted; the combination of bits can be hence received by a 

standard RFID reader and easily decoded in order to rebuild the sensor-measured data. 

For a better clarification of the working principle of the S-Tag, Fig. 10 reports a block 

diagram referred to a temperature sensor applied to a 4-ID S-Tag. The sensor is supposed to 

work in the range 35-42 °C and to be provided with a 4-bit binary digital output (15 valid 

combinations), guaranteeing a resolution of 0.5 °C. The measured temperature, for instance 

assumed to be 38.3 °C, after the quantization and the digitalization, will correspond to the 

binary symbol “0110”, that will become, hence, the input signal of the S-Tag. Consequently, 

the internal logic of the S-Tag enables the transmission of the two IDs associated to the 

second and the third bit (those ending respectively in 752 and 753 in the figure), and 

disables the transmission of the others. When an RFID reader interrogates the S-Tag, hence, 

it receives back only the enabled IDs which are automatically associated to the logic state 

“1” . The non-received IDs, instead, are associated to the logic state “0”. The so-reconstructed 
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symbol is then reconverted, resulting in temperature value of 38.5 °C, slightly different from 

the actually measured one because of the quantization effect. 

This is not the most adequate context for a more exhaustive explanation of the 

implementation issues of the S-Tag; we only would like to observe that, as apparent from 

the picture, the sensor is an external unit. In such a way, generic sensors, with the only 

requirement of a specific digital output, can be used. Such sensors are not integrated into the 

S-Tag, so that they do not influence the tag cost. Moreover, thanks to an accurate 

electromagnetic design of the tag antenna and of the microwave circuit (microcontroller, RF-

switch and so on), also the implemented technological innovation is reasonably inexpensive. 
 

 

Fig. 10. Example of  temperature data transmission through a 4-ID S-Tag. The binary symbol 

at the S-Tag input is used to discriminate the IDs to be transmitted. Vice versa, the 

information about whether or not an ID has been received by the RFID allows a 

straightforward symbol reconstruction. The difference between measured and received 

temperature value is due to the quantization 

4.8 Results 
This section provides a number of results obtained from a benchmarking phase performed 

to test performance and efficacy of both the S-Tag component (subsection 4.8.1) and the 

overall software platform fed by S-Tag data  (subsection 4.8.2). 

4.8.1 Benchmarking the S-Tag  
In this section the proposed S-Tag is extensively tested in order to demonstrate its 

effectiveness and versatility. All the reported results have been obtained by using a 4-ID S-

Tag receiving in input the four binary signals of the quantized measured value. 

In the first presented results, the signal at the S-Tag input has been artificially generated in 

order to create extremely stressing conditions. Indeed, each of the four binary inputs is 

assumed to vary every two seconds at random. The random signal generator, hence, can 

generate 42 different uncorrelated combinations, thus covering the whole dynamic range of 

the S-Tag. 

In such a situation, the S-Tag has been positioned at different distances (varying from 50 cm 

to 4 m) from a standard UHF RFID reader antenna (for instance, the Alien ALR-8610-AC). 

For each distance, the random signal generator has been connected to the S-Tag for a testing 

time of 10 minutes, in which the RFID reader has collected data and the signal has been 

reconstructed via an ad-hoc but very uncomplicated software. The difference between actual 

and received signal has then been evaluated.  

www.intechopen.com



 Biomedical Engineering Trends in Electronics, Communications and Software 

 

 

704 

In Fig.11, for instance, transmitted and received samples are compared at a Reader-Sensor 

distance of 3 m. It can be observed that, despite the presence of one spike, the transmitted 

signal is quite perfectly reconstructed. It is worth mentioning, however, that the longer is 

the interrogation distance, the highest is the number of recorded spikes. The spikes 

correspond to erroneous received samples which, obviously, should be reduced as much as 

possible. Because of the strong correlation between consecutively measured values in real 

situations, however, software filters capable to correct most of the read erroneous values can 

be easily implemented and applied. For a detailed quantification of the performance of the 

system, hence, the circled-dotted line in the graph of Fig. 12 reports, for different distances, 

the percentage error evaluated as ratio between number of erroneous samples and number 

of samples. A sample is a transmitted symbol of four bits and it is considered erroneous if at 

least one bit is not correctly received. Many observations result from the graph. For 

distances superior to 3.5 m, for instance, the measured signal cannot be correctly 

reconstructed. 
 

 

Fig. 11. Comparison between the actual random signal at the input of the S-Tag and the 

signal received by a RFID reader at a distance of  3 m 

Even though passive RFID Tags can be read even at 9 m from the reader, in fact, the slight 

mismatch caused by the microwave circuits and the coupling among the S-Tag antennas, 

reduce the reading range. Work is in progress in order to improve such issue. For distances 

inferior to 3.5 m, however, the percentage error is definitely negligible, especially if it is 

considered that no software filter is applied to the received bits. In such a context, the 

squared-continuous line in the same Fig. 12 shows how the accuracy is improved after the 

use of a very simple filter that detects and removes the spikes. Since the RFID reader 

interrogates the S-Tag many times a second, the filter verifies the eventual difference among 
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samples referred to the same transmitted value, and where only one reading differs from the 

others, it corrects the erroneous sample. 

In order to verify that the S-Tag can be used with generic sensors, once disconnected from 

the random generator, it has been connected to a glucometer. In this case, it is expected an 

improving of the S-Tag performance. It is worth recalling, in fact, that the physical 

parameters potentially monitored, show much slower variation in the considered time 

intervals than the previously used random generator. In the same Fig. 12, for instance, the 

reported results refer to the blood glucose monitoring in the range 4 – 12 mmol/ l. More 

specifically, results have been obtained by loading into the used artificial glucometer some 

realistic glycemia values of a diabetic patient recorded during a whole day. For such a goal, 

glucose values to be transmitted have been obtained from AIDA web site (AIDA, 2010), that 

is an on-line educational simulator designed to assist interested parties in obtaining a better 

understanding of how insulin and glucose interact within the body  (Blanchard, 1998). More 

specifically, one of the sample cases proposed on the AIDA web site (the number 0015 

referring to the virtual patient named “Edward Carllson”), has been chosen, and the virtual 

patient’s blood glucose values have been charged on the artificial glucometer connected to 

the S-Tag. Results of Fig. 12 clearly show the optimal behavior of the system even at the 

maximum investigated distance both for the non-filtered and filtered received signals. 
 

 

Fig. 12. Comparison among the evaluated error percentages by using two different inputs 

(random signal and glycemia) and by varying the distance between S-Tag and reader 

antenna . The same error is also reported after the software filter is applied 

Finally, a more practical mobile scenario has been considered by positioning the S-Tag on a 

programmable robot that, moving itself in the RFID covered area, simulates patient motion. 

The robot has been programmed to alternate moments of stillness and moments of activity 

for a total test time of 24h, during which the blood glucose values are transmitted through a 

S-Tag each 15 minutes. After the reader has received the S-Tag signal, the blood glucose 

values are reconstructed both with and without the filtering process. In Fig. 13, for instance, 

the three reported graphs are referred to three types of signals: a) original transmitted blood 

glucose trend, b) reconstructed signal without filtering, and c) filtered signal. 

www.intechopen.com



 Biomedical Engineering Trends in Electronics, Communications and Software 

 

 

706 

Results show the optimum behavior of both non-filtered and filtered signals and 

demonstrate the very good matching between original transmitted blood glucose trend and 

received reconstructed signal. The slight differences among signals are due to the 

quantization, as described above.  

In addition to the glucometer many other kinds of sensors have been tested and the S-Tag 

used as a source data for elementary control systems, thus showing the S-Tag capability to 

effectively transmit data measured by different kinds of sensors towards standard RFID 

readers.  
 

 

Fig. 13. Comparison of the actual glycemia values at the input of the S-Tag with the received 

non-filtered and filtered values 

4.8.2 Benchmarking the overall system 
The overall system was tested in the framework of a network of computers connected by a 

TCP/ IP-based 100Mb/ s network. Computers run under Linux operating system and have 

the following characteristics: 

1. Intel Pentium, 3.00 GHz (single core); RAM: 512 MB; 

2. AMD Athlon, 1.8 GHz (single core); RAM: 478 MB; 

The experimentation consisted in collecting average alarm generation and transmission 

times in diverse configurations (Fig. 14). The simplest consists of a single patient monitored 

by one sensor and assisted remotely by four doctors. The most complex consists of 5 

patients, each being monitored by 4 sensors and being assisted by 4 doctors. Results concern 

average times obtained over 30 runs. The system monitors data sensed by sensors, and, 

based on patient info (loaded once at system start-up) determines alarm events. Alarm 

events trigger actions which basically consist in identifying the best suited doctor and 

contacting him/ her (via mobile). Such doctors are the ones having the appropriate 

specialization to tackle the out-of-range monitored parameters (i.e. cardiologists for alarms 

concerning heart-rate and/ or blood pressure) and the ones being available in the time 

interval nearest to the alarm measurement time. 

Measured times were taken by imposing four “stressing conditions”  that simulate a real 

scenario: 1) each sensed parameter has always out-of-range values, 2) in the same run, all 

sensors send data at the same time, 3) the time-spacing between consecutive measurements 

is equal to two seconds, 4) only one CIA has been activated, in order to create a fictitious 

bottleneck in the system. Measured times consist in: 
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- the time elapsing at the CPAp side between the reception of data from the sensor and 

the triggering of the corresponding alarm obtained by means of rule-based reasoning; 

- the time elapsing at the CPAl side between the reception of a message coming from 

CPAp and the triggering of the corresponding alarm obtained by means of rule-based 

reasoning; 

- the time elapsing at the CIA side between the reception of a message coming from CPAl 

and the forwarding of a message to CCA.  

 

 

Fig. 14. Experimentation setup 

As shown in Table I, CPAp are responsible for filtering data coming from a single sensor, 

therefore their times do not change when the number of sensors and/ or of patients change. 

Each CPAl, instead, elaborates data coming from sensors connected to a single patient. In 

our experimentation set-up, they elaborate data coming from up to four sensors and 

produce two kinds of aggregate alarms: the former associates “BodyTemperature”  and 

“BloodGlucose”  patterns, the latter combines “BloodPressure”  and “HeartRate”  patterns. 

Therefore, CPAl times increase with the number of sensors attached to single patients. CIA 

times, finally, depend both on the number of sensors and on the number of patients (i.e. 

both on the number of CPAp and on the number of CPAl). Table 1 also illustrates data 

obtained by aggregating the average times obtained for each configuration. As shown in the 

table, processing times are very good, thus demonstrating the amenability of the proposed 

approach to attach also more complex monitoring problems.  

 

Agent 

 

1 sensor 

1 patient 

2 sensors 

1 patient 

2 sensors 

2 patients 

4 sensors 

1 patient 

4 sensors 

2 patients 

4 sensors 

5 patients 

CPAP 3.68 3.68 3.68 3.68 3.68 3.68 

CPAL /  4.74 4.74 5.96 5.96 5.96 

CIA 2.24 2.87 2.93 3.28 6.97 24.49 

Ttot 5.92 11.29 11.35 12.92 16.61 34.13 

Table 1. Performance results [ms] 
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5. Conclusions 

Context-aware ubiquitous systems open a very large number of appealing perspectives for 

healthcare. They promise huge increases in performance, accuracy and availability of 

treatment. The range of application domains potentially benefiting from these technologies 

is wide and variegate, as it includes different areas, such as remote monitoring of mobility-

impaired patients and support to information flow among heath-care workers. 

In order to facilitate the implementation of this kind of systems, scientific community is 

working hard to define standards and to implement middleware solutions. In spite of that, 

the available systems still lack in flexibility and often are not accompanied by a well 

documented characterization of customization effort and/ or of performance data. A number 

of enabling technologies seems to provide a solid building block for the design and 

development of flexible and robust context-aware pervasive systems. They were briefly 

resumed and commented in this chapter, together with a framework for context-aware 

computing based on such technologies.   

The system harmonizes agents, ontologies and rule-based inference engines. The ontology 

provides the knowledge codification needed to support both agent reasoning and 

communication.  The system elaborates data coming from heterogeneous sources, including 

an innovative RFID system, which embeds RFID and sensors in a reasonably inexpensive 

tag, thanks to an accurate electromagnetic design of the tag antenna and of the microwave 

circuit (microcontroller, RF-switch and so on).  

The effectiveness of the system is demonstrated by reporting performance results obtained 

from validation in a real-life application in the home-care scenario.   

The very promising results, in terms of easiness of use, reconfigurability and performance, 

make the proposed approach a very good candidate for the solution of even complex 

monitoring problems, belonging to the healthcare domain and generally to other scientific 

domains provided that an ontology describing them is available.   
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