93 research outputs found

    On the Capabilities of the Italian Airborne FMCW AXIS InSAR System

    Get PDF
    Airborne Synthetic Aperture Radar (SAR) systems are gaining increasing interest within the remote sensing community due to their operational flexibility and observation capabilities. Among these systems, those exploiting the Frequency-Modulated Continuous-Wave (FMCW) technology are compact, lightweight, and comparatively low cost. For these reasons, they are becoming very attractive, since they can be easily mounted onboard ever-smaller and highly flexible aerial platforms, like helicopters or unmanned aerial vehicles (UAVs). In this work, we present the imaging and topographic capabilities of a novel Italian airborne SAR system developed in the frame of cooperation between a public research institute (IREA-CNR) and a private company (Elettra Microwave S.r.l.). The system, which is named AXIS (standing for Airborne X-band Interferometric SAR), is based on FMCW technology and is equipped with a single-pass interferometric layout. In the work we first provide a description of the AXIS system. Then, we describe the acquisition campaign carried out in April 2018, just after the system completion. Finally, we perform an analysis of the radar data acquired during the campaign, by presenting a quantitative assessment of the quality of the SLC (Single Look Complex) SAR images and the interferometric products achievable through the system. The overall analysis aims at providing first reference values for future research and operational activities that will be conducted with this sensor

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Characterizing slope instability kinematics by integrating multi-sensor satellite remote sensing observations

    Get PDF
    Over the past few decades, the occurrence and intensity of geological hazards, such as landslides, have substantially risen due to various factors, including global climate change, seismic events, rapid urbanization and other anthropogenic activities. Landslide disasters pose a significant risk in both urban and rural areas, resulting in fatalities, infrastructure damages, and economic losses. Nevertheless, conventional ground-based monitoring techniques are often costly, time-consuming, and require considerable resources. Moreover, some landslide incidents occur in remote or hazardous locations, making ground-based observation and field investigation challenging or even impossible. Fortunately, the advancements in spaceborne remote sensing technology have led to the availability of large-scale and high-quality imagery, which can be utilized for various landslide-related applications, including identification, monitoring, analysis, and prediction. This efficient and cost-effective technology allows for remote monitoring and assessment of landslide risks and can significantly contribute to disaster management and mitigation efforts. Consequently, spaceborne remote sensing techniques have become vital for geohazard management in many countries, benefiting society by providing reliable downstream services. However, substantial effort is required to ensure that such benefits are provided. For establishing long-term data archives and reliable analyses, it is essential to maintain consistent and continued use of multi-sensor spaceborne remote sensing techniques. This will enable a more thorough understanding of the physical mechanisms responsible for slope instabilities, leading to better decision-making and development of effective mitigation strategies. Ultimately, this can reduce the impact of landslide hazards on the general public. The present dissertation contributes to this effort from the following perspectives: 1. To obtain a comprehensive understanding of spaceborne remote sensing techniques for landslide monitoring, we integrated multi-sensor methods to monitor the entire life cycle of landslide dynamics. We aimed to comprehend the landslide evolution under complex cascading events by utilizing various spaceborne remote sensing techniques, e.g., the precursory deformation before catastrophic failure, co-failure procedures, and post-failure evolution of slope instability. 2. To address the discrepancies between spaceborne optical and radar imagery, we present a methodology that models four-dimensional (4D) post-failure landslide kinematics using a decaying mathematical model. This approach enables us to represent the stress relaxation for the landslide body dynamics after failure. By employing this methodology, we can overcome the weaknesses of the individual sensor in spaceborne optical and radar imaging. 3. We assessed the effectiveness of a newly designed small dihedral corner reflector for landslide monitoring. The reflector is compatible with both ascending and descending satellite orbits, while it is also suitable for applications with both high-resolution and medium-resolution satellite imagery. Furthermore, although its echoes are not as strong as those of conventional reflectors, the cost of the newly designed reflectors is reduced, with more manageable installation and maintenance. To overcome this limitation, we propose a specific selection strategy based on a probability model to identify the reflectors in satellite images

    GPS and PSI integration for monitoring urban land motion

    Get PDF
    Urban ground motion due to natural or man-made geological processes is an issue of major importance for local authorities, property developers, planners and buyers. Increased knowledge of this phenomena would benefit all involved but the measurement techniques in common use have either spatial or temporal inadequacies. A technique known as Persistent Scatterer Interferometry (PSI) has been developed which can map ground motion to high precision over large areas with a temporal scale measured in years. PSI takes advantage of the high number of Synthetic Aperture Radar (SAR) images available to mitigate the atmospheric effects that inhibit standard Interferometric SAR (InSAR) techniques. This however involves assumptions about the nature of atmospheric variability, such as its randomness over time, or its spatial extent. In addition, little is known about the Persistent Scatterers (PS) themselves and PSI is only able to provide results relative to a reference PS. The reference PS point is often arbitrarily chosen and may itself be in an area undergoing ground motion, thus adding a degree of ambiguity to any relatively derived motion. The purpose of this work is to investigate possible solutions to these shortfalls and quantify any improvements made. A corner reflector network is established in the Nottingham area of the UK. A data archive is collated over three years containing Global Positioning System (GPS) data at the corner reflector sites, data from surrounding Continuous GPS (CGPS) sites and levelling data. Due to conflicts with the European Space Agency (ESA) Environmental Satellite (ENVISAT), there were insufficient SAR images to com- pute a fully integrated corner reflector PSI study. Instead, the project focussed on atmospheric correction of PSI results using absolute ZWD estimates. Zenith Wet Delay (ZWD) estimates are derived from a Precise Point Positioning (PPP) GPS processing method which does not rely on a network of ground stations and therefore produces absolute ZWD estimates which are less prone to biases and noise. These are interpolated across a PSI study area and used to mitigate the long wavelength effects of atmopheric water vapour in the PSI differential interferograms. The corrected PSI results are then compared to uncorrected results, GPS derived motion and levelling data. Results between the ZWD corrected PSI study and the uncorrected study show statistical improvements in some areas and reductions in others. Correlation factors between double-differenced levelling observations and double-differenced PSI results improve from 0.67 to 0.81. PSI deformation rates also show improvement when compared to GPS deformation rates, although some results do not satisfy statistical tests

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Applications of ground-based radar to mine slope monitoring

    Get PDF
    "Slope failure accidents were responsible for about 12% of U.S. surface mine fatalities from 1995 to 2003. Small surface movements on a mine highwall may be precursors of failure that, if detected, could provide sufficient warning to enable workers and machinery to be withdrawn to safety. Radar interferometry offers the necessary precision to detect these movements. Radar has some advantages over other methods in its ability to cover large surface areas for true two-dimensional monitoring day and night under almost any weather condition. Radar's active transmit/receive mode of operation provides for more direct sampling than passive optical methods that depend on solar illumination. Improvements in microprocessor speeds and capacities have led to the development of a number of small, portable, ground-based systems. Such systems are now being deployed at several locations around the world. As part of an ongoing study of monitoring technologies, researchers from NIOSH and Brigham Young University, Provo, UT, cooperated to assess the feasibility of using interferometric radar to monitor mine slope stability. Field tests of a device incorporating prototype equipment were successful in that small, centimeter-scale displacements on rock slopes were detected." - p. NIOSHTIC-

    Insar measurements at high latitudes.

    Get PDF
    This thesis contributes towards understanding of Interferometric Synthetic Aperture Radar (InSAR) measurements at high latitudes. Luossavaara-Kiirunavaara Aktiebolag (LKAB) mining company, the sponsor of this Ph.D. research, intends to use the InSAR techniques for subsidence measurements around the Kiruna underground iron ore mine. The Kiruna underground iron ore mine is located in direct proximity to the city of Kiruna, with the active mining area currently about 1 km west of the city center (67°51'20" N, 20°13'30 E). At present LKAB is exploring the possibility of using InSAR measurements as an operational technique for subsidence measurements. High latitudes InSAR measurements are known to be particularly affected by long periods of ground snow cover that contributes to temporal de-correlation between subsequent radar images. The objectives of this Ph.D. research are (1) to quantify the seasonal effects in InSAR measurements and (2) to identify techniques to improve the high latitude InSAR measurements. In this research study, spatial coherence was used to quantify the seasonal effects in the Differential InSAR (DInSAR) measurements for Kiruna region. A comparison between Static Global Positioning System (Static-GPS) and Corner Reflector InSAR (CRInSAR) measurements were carried out to quantify the seasonal effects in CRInSAR measurements. Spatial ground deformation patterns were used to improve the DInSAR measurements. A theoretical analysis for compact active transponders (CAT) was carried out to improve the North-South InSAR measurements. DInSAR, CRInSAR and Coherent Target Monitoring (CTM) techniques were used to evaluate the applicability of InSAR techniques for high latitude mining induce deformation measurements. The results show seasonal variations in DInSAR, CTM and CRInSAR measurements. Furthermore, DInSAR measurements around the Kiruna iron ore mine can be improved up to sub-centimeter accuracies by using the spatial ground deformation patterns. Also, the compact active transponders identi ed as a possible candidate to improve the accuracy of the North-South InSAR measurements. It is concluded that, all InSAR techniques (DInSAR, CTM and CRInSAR) were affected by the winter snow condition, and only the summer (snow-free) months are suitable for ground deformation measurements. Moreover, the study shows that without the winter images still it is possible to achieve accurate CTM and CRInSAR time series estimations for Kiruna. The East-West vector is the least noisy deformation vector, and both East-West and vertical vectors can be used to determine the LKAB environmental criterion. At present, every year, LKAB is acquiring 45 Radarsat-2 images from three beam modes. However, this study shows that less than 35% of those data are useful for subsidence measurements

    Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data

    Get PDF
    A model for aboveground biomass estimation from single-pass interferometric synthetic aperture radar (InSAR) data is presented. Forest height and canopy density estimates Delta h and eta(0), respectively, obtained from two-level model (TLM) inversion, are used as biomass predictors. Eighteen bistatic VV-polarized TanDEM-X (TDM) acquisitions are used, made over two Swedish test sites in the summers of 2011, 2012, and 2013 (nominal incidence angle: 41 degrees; height-of-ambiguity: 32-63 m). Remningstorp features a hemiboreal forest in southern Sweden, with flat topography and where 32 circular plots have been sampled between 2010 and 2011 (area: 0.5 ha; biomass: 42-242 t/ha; height: 14-32 m). Krycklan features a boreal forest in northern Sweden, 720-km north-northeast from Remningstorp, with significant topography and where 31 stands have been sampled in 2008 (area: 2.4-26.3 ha; biomass: 23-183 t/ha; height: 7-21 m). A high-resolution digital terrain model has been used as ground reference during InSAR processing. For the aforementioned plots and stands and if the same acquisition is used for model training and validation, the new model explains 65%-89% of the observed variance, with root-mean-square error (RMSE) of 12%-19% (median: 15%). By fixing two of the three model parameters, accurate biomass estimation can also be done when different acquisitions or different test sites are used for model training and validation, with RMSE of 12%-56% (median: 17%). Compared with a simple scaling model computing biomass from the phase center elevation above ground, the proposed model shows significantly better performance in Remningstorp, as it accounts for the large canopy density variations caused by active management. In Krycklan, the two models show similar performance
    • …
    corecore