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Abstract 

Ground-based synthetic aperture radar (GBSAR), together with interferometry, represents a 

powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be 

collected with adjustable temporal resolutions through either continuous or discontinuous mode. 

The goal of this research is to develop a framework to effectively utilise GBSAR for 

deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-

time capability.  

To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been 

proposed to address existing issues in conventional interferometry for GBSAR deformation 

monitoring. The proposed interferometric algorithms include a new non-local method for the 

accurate estimation of coherence and interferometric phase, a new approach to selecting 

coherent pixels with the aim of maximising the density of selected pixels and optimizing the 

reliability of time series analysis, and a rigorous model for the correction of atmospheric and 

repositioning errors.  

On the basis of these algorithms, two complete interferometric processing chains have been 

developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. 

The continuous chain is able to process infinite incoming images in real time and extract the 

evolution of surface movements through temporally coherent pixels. The discontinuous chain 

integrates additional automatic coregistration of images and correction of repositioning errors 

between different campaigns. 

Successful deformation monitoring applications have been completed, including three 

continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have 

demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-

accuracy GBSAR interferometric measurement. Significant deformation signals were detected 

from the three continuous applications and no deformation from the discontinuous. The 

achieved results are justified quantitatively via a defined precision indicator for the time series 

estimation and validated qualitatively via a priori knowledge of these observing sites.  
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Chapter 1. Introduction 

1.1 Research background 

Natural hazards have been normal occurrences around the world. Large events are infrequent 

but catastrophic, while most hazards are of moderate size and common occurrence (e.g. Park, 

2013; Paton, 2008). Landslides behave as the movement of a mass of rock, earth or debris down 

a slope (Cruden, 1991) and represent typical hazardous natural phenomena of moderate size, 

often leading to significant human and economic losses (UNISDR, 2015, 2017). They are 

commonly triggered by earthquakes, heavy rainfalls, volcanic processes, ground subsidence, 

natural erosion, hydrogeological processes, human activities, or any combination of these 

factors (e.g. Clague and Stead, 2012; Haque et al., 2016; Lin and Wang, 2018). For 27 European 

countries over the period 1995 – 2014, a total of 1370 deaths and 784 injuries, along with the 

economic loss of approximately 4.7 billion Euros per year, were reported resulting from 476 

landslides (Haque et al., 2016). In China, 1,911 non-seismically triggered landslides from 1950 

to 2016 were recorded in the Fatal Landslide Event Inventory, which resulted in a total of 28,139 

deaths during that period (Lin and Wang, 2018). The direct economic losses caused by fatal 

landslide events ranged from 4 million to 1,255 million RMB per year from 2000 to 2016, 

averaging about 313 million RMB per year. In the United States, landslides cause in excess of 

$1 billion in damages and 25 to 50 deaths per annum (Coalition, 2007). It is reported that most 

landslide fatalities are from rock fall, debris-flows, or volcanic debris flows (Rice, 2014). 

Globally, they cause billions of dollars in damages and thousands of deaths and injuries per 

annum (Coalition, 2007). In comparison to elsewhere in the world, the United Kingdom 

presents a low risk environment (Gibson et al., 2013) with small scale failures and low fatality 

rates (Pennington et al., 2015). However, in recent years, the periods September 2012 – March 

2013, November 2013 – March 2014, and November 2015 – March 2016 experienced 

precipitous increase of landslides at both the coast and inland due to intensive rainfalls (BGS 

Landslides Team, 2018), and these events had significant impacts on infrastructure and people 

(Pennington et al., 2015). Beyond risk communication and public awareness campaigns, 

landslide risk can be mitigated by proactive strategies such as (i) structural slope-stabilization 

measures to reduce the probability of the occurrence of landslides and the vulnerability of the 

elements, and (ii) non-structural measures, e.g. early warning systems calling for actions in 

risky areas to reduce the hazard consequences, and measures to pool and transfer the risks (e.g. 

Calvello, 2017; Nadim and Lacasse, 2008). Landslide monitoring is the key to implement 
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proactive strategies. Firstly, ground movements can be detected through monitoring and the 

spatio-temporal variability can be analysed on the basis of the detected movements and 

numerical simulation, which plays an important role in understanding maintenance and 

remedial slope-stabilization measures (e.g. Calvello, 2017; Nadim and Lacasse, 2008; Scaioni, 

2015). The monitoring, especially in real-time or near-real-time, of slope movements ensures 

the efficient generation of risk maps, which is the fundamental basis of early warning and rapid 

decision-making for countermeasures or evacuation (e.g. Nadim and Lacasse, 2008; 

Rödelsperger, 2011; Van Westen, 2013). 

Apart from landslides, the effective monitoring of structural deformation for dams, levees, 

embankments, and other flood control structures that are subject to external loads has a critical 

role in detecting abnormal behaviour that may threaten the safety of the structure and 

implementing maintenance and remedial measures (Schroedel, 2002). Deformation monitoring 

(also referred to as deformation survey) is defined as the systematic measurement and tracking 

of the alteration in the shape or dimensions of an object as a result of external forces (Settles et 

al., 2008). In terms of landslide monitoring methods, they are classified into four broad 

categories: geotechnical, geodetic, geophysical and remote sensing (Settles et al., 2008). Except 

geophysical methods which usually measure direct geophysical parameters (e.g., direct current 

geoelectric, microseismic emission, earth strain) (Settles et al., 2008), the other three basically 

belong to the concept of deformation monitoring. Regarding structural deformation monitoring, 

Schroedel (2002) differentiated the surveying with reference from relative replacement 

observations, and the point-based surveying from the network-based. Despite the diversified 

categorization, geohazard monitoring and structural deformation surveying utilize similar 

sensors or technologies that are introduced as follows.  

(1) In-situ sensors, such as tiltmeters (or inclinometers), extensometers, and piezometers, 

represent the most common geotechnical technologies (Scaioni, 2015).  

A tiltmeter is a sensitive inclinometer that is usually installed either on the ground or in 

structures and used to measure very small inclination angles from the vertical level 

(Dunnicliff and Green, 1993). The measurement of changing inclinations with a tiltmeter 

can provide valuable data on the mechanics and activity of the instability (Settles et al., 

2008). 

An extensometer is a device that allows the continuous measurement of changes in the 
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length of an object or over convex surfaces with a rapid response rate (Brimacombe et al., 

1991). In practice, extensometers installed in boreholes can measure the extension along 

the borehole axis by means of rods or wires and measure the distance between any two 

specific points within the borehole (Corominas et al., 2000). The extensometer is simple 

and low-cost and has been one of the most commonly employed tools for landslide early 

warning systems (Fujisawa et al., 2007). 

A piezometer is a device capable of measuring groundwater pressures. Monitoring of 

groundwater conditions can provide important quantitative information on the slope and 

structure stability (e.g. Schroedel, 2002; Settles et al., 2008). 

This class of sensors or technologies are usually sensitive, precise and capable of 

subsurface measurement (e.g. Scaioni, 2015; Settles et al., 2008). The disadvantages are, 

however, multifold: (i) the deployment of such in-situ sensors requires physical access to 

the observing site/object, which is hazardous in some cases, and (ii) their point-based 

measurement is generally not sufficient for analyzing a landslide behaviour (Scaioni, 2015). 

(2) The common geodetic surveying techniques or technologies include conventional levelling, 

total stations, and the Global Navigation Satellite Systems (GNSS) especially the Global 

Positioning System (GPS). 

Levelling is a conventional, simple, and precise surveying means to measure and transfer 

the height difference between specific points or networks (Berry, 1976), which has been 

widely used in cartography and in structural monitoring (Clancy, 2013). It is particularly 

suitable for monitoring ground subsidence and uplift (Bitelli et al., 2000). 

A total station is an surveying instrument that integrates an electronic distance meter for 

distance measurement and an electronic theodolite for horizontal and vertical angle 

measurement (Kavanagh et al., 1996). With the measured distance and angles, a total 

station can determine the coordinates of an unknown point relative to a known coordinate. 

Currently, a state-of-the-art total station instrument, e.g. a Leica Nova MS60 instrument 

(https://leica-geosystems.com/en-gb/products/total-stations/multistation/leica-nova-ms60), 

can automatically pick up and repeat the measurement of a set of targets. Modern total 

stations are capable of measuring angles to 0.5’’, along with the distance measurement 

accuracy at the level of millimetres over a distance up to 1,500 metres (Settles et al., 2008). 

https://leica-geosystems.com/en-gb/products/total-stations/multistation/leica-nova-ms60
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Together with the necessary in-situ retroreflectors, total stations can be used in the 

continuous assessment of unstable slopes and structures (e.g. Schroedel, 2002; Settles et 

al., 2008).  

GPS is a global navigation satellite system that enables a GPS receiver to determine its 

geolocation and time information if four or more GPS satellites are in the view of the 

receiver (Djuknic and Richton, 2001). GPS surveying is combined with multiple 

techniques, such as static GPS, real time kinematic (RTK) or post-processing kinematic 

(PTK) GPS (Nickitopoulou et al., 2006), and precise point positioning (PPP) (e.g. 

Zumberge et al. 1997; Li et al., 2014). With necessary correction of relevant errors, the 

static GPS can achieve an accuracy of up to a few millimetres (Nickitopoulou et al., 2006), 

RTK and PTK a few centimetres (e.g. Berber et al., 2012; Nickitopoulou et al., 2006), and 

PPP several centimetres (e.g. Cai et al., 2015; Li et al., 2015). Continuous GPS observations 

are valuable data in long-term monitoring campaigns (e.g. Ching et al., 2011; Jin and Luo, 

2009; Sagiya et al., 2000) and high-frequency GPS is able to monitor fast-changing 

scenarios (e.g. Yi et al., 2013; Yue and Lay, 2011). Thus, GPS has been widely used in 

geohazard monitoring (e.g., landslides (e.g. Benoit et al., 2015; Wang, 2011), volcanic 

eruptions (e.g. Lagios et al., 2013; Larson et al., 2010), and crustal deformation (e.g. Borghi 

et al., 2009; Vigny et al., 2011)) and structural monitoring (e.g., bridges (Yi et al., 2013), 

dams (e.g. Barzaghi et al., 2018; Kalkan, 2014), and buildings (e.g. Casciati and Fuggini, 

2011; Jones and Rose, 2015)).  

Geodetic technologies have been widely used in geohazard monitoring. Their main 

weaknesses in deformation monitoring are (i) the requirement of some form of site access, 

such as the installation of total station retroreflectors or GPS receivers, and (ii) the point-

based nature of the resultant survey.  

(3) Unlike the conventional geotechnical and geodetic techniques, remote sensing represents 

a non-contact surveying technology of capturing, processing and analyzing imagery from 

sensors mounted on terrestrial, aerial  and spaceborne platforms (e.g. Chen et al., 2016; 

Settles et al., 2008). Remote sensing techniques can provide surface-based and dense 

measurements (Settles et al., 2008). Generally speaking, space imagery supplies wider 

swath while ground-based imagery provides better spatial resolution and accuracy 

(Delacourt et al., 2007). This class mainly includes photogrammetry, laser scanning, and 

synthetic aperture radar (SAR) interferometry (InSAR) (Settles et al., 2008).  
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Photogrammetry is a conventional remote sensing technology of extracting the exact 

positions of surface points from photographs (McGlone, 2013). In modern photogrammetry, 

photographs are mostly taken by digital cameras with prime lenses (Mikhail et al., 2001), 

also a few by zoom-lens cameras (e.g. Wang et al., 2017; Zheng et al., 2015). 

Photogrammetric measurement of deformation can be achieved through surface-point 

tracking or comparing multiple-temporal dense surfaces (Scaioni et al., 2015). 

Photogrammetric solutions are usually low-cost with high degrees of automation (e.g. 

Lucieer et al., 2014; Scaioni, 2015). The measurement accuracy depends on the platforms 

and the ground sampling distance, and the typical accuracy of close-range (generally less 

than 1,000 feet) photogrammetry in slope and structural monitoring applications ranges 

from centimetres to a few decimetres (e.g. Delacourt et al., 2007; Lucieer et al., 2014; 

Peppa et al., 2019; Scaioni et al., 2015). Limitations are (i) the requirement of illumination, 

thus, only applicable during day time, and (ii) conventionally the deployment of ground 

control points (James et al., 2017).  

Laser scanning is a technology that enables the rapid generation of a dense surface point 

cloud (Marshall and Stutz, 2004). Particularly, terrestrial laser scanning (TLS) and airborne 

laser scanning (ATS) have been widely used for deformation monitoring and change 

detection (e.g. Abellán et al., 2014; Mukupa et al., 2017). Deformation can be detected 

through the comparison of multiple-temporal point clouds or surface models (Barbarella et 

al., 2015). Compared to photogrammetry and the aforementioned point-based approaches, 

TLS and ATS systems usually require more up-front financial investment (Peppa et al., 

2019). The typical TLS accuracy of the coordinates in the medium-to-long range (a few 

hundred metres to a few kilometres) varies from millimetres to centimetres (Mukupa et al., 

2017), which may not be sufficient for the monitoring of millimetric displacement (Scaioni, 

2015).  

InSAR is the fundamental technique that is able to detect surface deformation and generate 

a digital elevation model (DEM) of an observed area by exploiting phase change between 

SAR acquisitions (Hanssen, 2001). InSAR was initiated with the development of related 

SAR satellites. Spaceborne InSAR has been extensively adopted in different deformation 

monitoring applications, such as landslides (e.g. Calvello, 2017; Dai et al., 2016), 

earthquakes (e.g. Fielding et al., 2009; Zhou et al., 2018), volcanoes (Spaans and Hooper, 

2016), and ground subsidence and uplift (Ding et al., 2004). Spaceborne InSAR is capable 



6 

 

of detecting millimetric ground displacements over large areas independent of solar 

illumination (e.g. Delacourt et al., 2007; Zhang et al., 2015). It is cost-effective, especially 

after the development of Sentinel-1 satellites which provide SAR data free of charge to all 

data users (Harris and Baumann, 2015). But the revisit period of SAR satellites (e.g. every 

12 days for Sentinel-1) constrains flexibility for deformation monitoring tasks (Pipia et al., 

2013).  

More recently, ground-based synthetic aperture radar (GBSAR) has been developed, which 

offers users enhanced capabilities in monitoring surface displacements (e.g. Crosetto et al., 

2015; Crosetto et al., 2017; Monserrat et al., 2014). Together with InSAR techniques, 

GBSAR has proven to be a powerful remote sensing tool for deformation monitoring 

(Caduff et al., 2015; Monserrat et al., 2014; Wujanz et al., 2013). As an active remote 

sensing technology based on microwave interferometry, GBSAR is independent of solar 

illumination and can be operated day and night (Scaioni, 2015). In comparison to other 

ground-based technologies, GBSAR is able to monitor natural and artificial surfaces with 

areal extents of up to a few square kilometres and offers the measurement of surface 

displacements towards the sensor with sub-millimetre precision in the ideal case (e.g. 

Caduff et al., 2015; Monserrat Hernández, 2012). In comparison to spaceborne SAR, 

GBSAR has inherent advantages in terms of portability and flexibility for data collection 

(e.g. Caduff et al., 2015; Monserrat et al., 2014). The GBSAR monitoring technique can 

also be applied to deformation phenomena with a wide range of surface change rates, 

theoretically ranging from a few millimetres per year up to metres per day (e.g. Monserrat 

Hernández, 2012; Rödelsperger, 2011). The aforementioned characteristics of GBSAR 

make it unique and complementary to existing deformation monitoring techniques, thereby 

possessing potential in the prediction and mitigation of relevant hazards. However, GBSAR 

is still a relatively new endeavour and requires improvements related to data processing for 

the exploitation of its ability and potential in deformation monitoring.   

It is worth noting that the inherent disadvantages of any InSAR techniques (spaceborne or 

ground-based InSAR) include (e.g. Caduff et al., 2015; Monserrat et al., 2014): (i) they 

require coherent data and are therefore not applicable to areas with thick vegetation; and 

(ii) the deformation measurement is limited to the line-of-sight (LOS) direction, which 

means that displacements perpendicular to the LOS cannot be measured.  

Overall, each technology has its own pros and cons. Given the specific characteristics of 
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GBSAR and the opportunity that Newcastle University purchased a state-of-the-art 

MetaSensing FastGBSAR system (Rödelsperger and Meta, 2014) in October 2015, this project 

focuses on the development, improvement and scientific application of GBSAR interferometry 

for deformation monitoring.  

1.2 Aims and objectives 

Due to the inherent flexibility, a typical GBSAR system can be performed in either continuous 

or discontinuous mode for different scenarios, depending on the rates of change or the practical 

environment for instrument deployment (e.g. Caduff et al., 2015; Crosetto et al., 2014a; 

Crosetto et al., 2017; Monserrat et al., 2014).   

The continuous operation mode offers a zero-baseline geometry, thus avoiding the effects of 

hardware related technical issues and leading to the best performances in terms of density, 

precision, reliability and real-time capability of deformation measurements (e.g. Crosetto et al., 

2014a; Tarchi et al., 2005). According to Crosetto et al. (2017), continuous GBSAR represents 

the most commonly used configuration, which generally aims to achieve the surface evolution 

of an event or to provide rapid response to an urgent situation. In continuous monitoring, the 

flexibility and portability of GBSAR systems usually leads to a stack of consecutive 

acquisitions and offers opportunities for time series analysis. InSAR time series analysis is the 

advanced form of the differential InSAR technique to identify and quantify ground movements 

based on multiple interferograms generated from a stack of SAR images (e.g. Ferretti et al., 

2001; Hooper et al., 2012; Lanari et al., 2007), which has advantages in terms of temporal 

resolution and decorrelation mitigation in contrast to the conventional differential InSAR. 

However, the majority of InSAR time series analysis algorithms were originally developed for 

spaceborne SAR imagery, and their applicability and performance has not been investigated by 

real-world GBSAR imagery which has its own unique imaging geometry and signal 

characteristics (e.g. Caduff et al., 2015; Rödelsperger, 2011). As a result, a special processing 

strategy for continuous GBSAR deformation monitoring needs to be developed, which has 

important implications for accurate estimation of surface movements and rapid response to 

deformation emergencies.  

As far as discontinuous GBSAR is concerned, hardware related technical issues, such as 

repositioning errors due to installation and the difficulties in precise measurement of the 

GBSAR position and orientation parameters in practice, degrade the high-accuracy 
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measurement of deformation in a discontinuous campaign. With technical effort on its 

installation, discontinuous GBSAR is useful for monitoring an event whereby the deformation 

becomes significant within a relatively long period and the deployment of continuous GBSAR 

cannot be achieved (Crosetto et al., 2014a). Therefore, to unlock the potential of GBSAR, it is 

important to resolve these relevant research issues and develop a complete discontinuous 

GBSAR strategy as a complementary tool to the continuous GBSAR deformation monitoring 

for all scenarios to which GBSAR is potentially suited. 

This research aims to design and develop an optimised processing framework to effectively 

utilise GBSAR for both continuous and discontinuous deformation monitoring applications. 

The research will emphasize the performance of InSAR time series analysis algorithms in terms 

of accuracy, robustness, and real-time capability. Specific objectives of this research are as 

follows: 

1. To evaluate the suitability and, where necessary, make necessary improvements to 

current fundamental InSAR techniques and advanced time series analysis algorithms 

for processing GBSAR imagery; 

2. To develop a (near-) real-time processing procedure with a high degree of automation 

for a current FastGBSAR instrument to minimise delay after each data acquisition and 

to maximise the precision and reliability of the output deformation maps; 

3. To develop a discontinuous GBSAR procedure as a complementary module to the 

continuous pipeline for a complete GBSAR interferometry framework; 

4. To establish case studies to prove the feasibility of the developed GBSAR data 

processing techniques and procedures for a range of deformation monitoring 

applications to which GBSAR is potentially suited. 

It is worth noting that experiments in the thesis have been conducted based on FastGBSAR 

datasets. Nevertheless, the algorithms proposed are independent of the GBSAR system and 

could in principle be applied to any GBSAR instrument and similar high-resolution ground-

based imaging radar instrument, e.g. the Gamma Portable Radar Interferometer (GPRI) (Werner 

et al., 2012) and multiple-input multiple-output (MIMO) radars (Tarchi et al., 2013). 

1.3 Thesis outline 

The thesis comprises seven chapters. The rest is outlined below. 
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Chapter 2 provides an overview of the concepts of GBSAR (especially FastGBSAR) and the 

principles of the GBSAR interferometric technique. It also details the methodological steps of 

the general procedure of GBSAR time series analysis for deformation monitoring. It explains 

the core process of GBSAR time series analysis, and highlights associated error sources. This 

chapter establishes the fundamental aspects and the basic workflow of the proposed GBSAR 

data processing software system. A review of various relevant algorithms, alongside their 

applications, are also presented. 

Chapter 3 proposes an efficient similarity measure to identify pixels with similar amplitude 

behaviours and presents a comprehensive non-local algorithm based upon this concept for 

accurate coherence estimation and phase filtering in GBSAR interferometric processing. 

Experiments are conducted to assess the performance of the proposed algorithm on coherence 

estimation and phase filtering.  

Chapter 4 presents an effective approach to selecting coherent pixels from a network of 

interferograms, aiming to maximise the density of selected pixels and optimise the reliability 

of GBSAR time series analysis. Experiments are carried out on two actual FastGBSAR datasets 

and a deeper analysis is performed by comparing the proposed approach with the selection of 

coherent pixels using a single pair of GBSAR images, as well as the persistent scatterer 

selection based on amplitude dispersion index. 

Chapter 5 describes the challenges of processing long and consecutive stacking GBSAR 

acquisitions and presents a complete GBSAR data processing chain for real-time continuous 

GBSAR deformation monitoring. The challenges in processing continuous GBSAR data have 

been rigorously resolved in the proposed GBSAR chain. Two continuous monitoring 

applications are completed in this chapter. The accuracy, reliability of the results are evaluated 

and the real-time capability of the proposed chain are assessed. 

Chapter 6 presents a complete interferometric processing chain for discontinuous GBSAR 

deformation monitoring. Automatic co-registration of GBSAR data is implemented in this 

processing procedure. Typical errors in GBSAR interferometry, such as repositioning and 

atmospheric errors, are investigated and simulated from the fundamental GBSAR observation 

geometry. A new model is proposed and integrated to this discontinuous processing procedure 

for the correction of these errors. Experiments on both synthetic and real GBSAR data are 

conducted, demonstrating the feasibility of the proposed chain.  
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Chapter 7 brings together the findings and contributions from Chapters 3, 4, 5 and 6 and 

addresses the advantages, limitations, challenges and opportunities related to the developed 

GBSAR data processing techniques and procedures for deformation monitoring.  
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Chapter 2. Principles of GBSAR interferometry 

2.1 GBSAR principles 

2.1.1 Radar basics  

Radar, the acronym for radio detection and ranging (Skolnik, 1962), is an active sensor 

technology which radiates electromagnetic pulses from an antenna to propagate in space and 

detects the returning pulses from reflecting objects in its LOS (e.g. Hanssen, 2001; Skolnik, 

2008). The range (𝑟) between a target and a radar sensor is determined by measuring the two-

way travel time (𝜏) of the pulse that propagates at the speed of light (𝑐) out to the target and 

back to the radar, i.e.: 

 𝑟 = 𝑐𝜏/2.  (2.1)  

To designate radar operating frequency bands, a list of letter-band nomenclature has been 

officially standardized by the IEEE (Institute of Electrical and Electronic Engineers) (IEEE, 

2003), as shown in Table 2.1. Radar technology, capabilities, and applications vary considerably 

with the operating frequency bands (Skolnik, 2008). Generally, it is easier to construct high-

power transmitters and large antennas, thus longer-wavelength and higher-frequency bands are 

easier to achieve. On the other hand, shorter-wavelength signals at lower frequency bands have 

advantages in measuring accurate range and location due to wider bandwidth, as well as 

narrower beam antennas at a given physical size antenna.  

Table 2.1. IEEE Standard Radar Frequency Letter-Band Nomenclature. 

Band Designation Frequency (GHz) Wavelength (cm) 

HF 0.003 to 0.030 10000 to 1000 

VHF 0.030 to 0.300 1000 to 100 

UHF 0.300 to 1 100 to 30.0 

L band 1 to 2 30.0 to 15.0 

S band 2 to 4 15 to 7.5 

C band 4 to 8 7.5 to 3.8 

X band 8 to 12 3.8 to 2.5 

Ku band 12 to 18 2.5 to 1.7 

K band 18 to 27 1.7 to 1.1 

Ka band 27 to 40 1.1 to 0.75 

V band 40 to 75 0.75 to 0.40 

W band 75 to 110 0.40 to 0.27 

Mm 110 to 300 0.27 to 0.10 
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Radar represents a broad concept and can be classified into more than ten types by Skolnik 

(2008) based on the major features. As a specific class of radar systems, imaging radars, such 

as side-looking (airborne) radar and later SAR, are built with the ability to resolve targets 

(Soumekh, 1999). This type of radar produces a two-dimensional (2D, i.e. in range and cross-

range) image of an observed scene. GBSAR belongs to the high-resolution imaging radar class. 

GBSAR was originally adapted from spaceborne platforms to terrestrial applications in the late 

1990s (e.g. Rudolf et al., 1999; Tarchi et al., 1999b). The last couple of decades have witnessed 

rapid advancement of GBSAR instrumentation in terms of operating flexibility, data acquisition 

efficiency, range and azimuth resolutions (Caduff et al., 2015). This section introduces the main 

features of a typical GBSAR system by making explicit reference to the FastGBSAR system 

manufactured by the Metasensing Company, The Netherlands. An overview of the FastGBSAR 

system is given in Figure 2.1. 

 

Figure 2.1. Overview of a FastGBSAR instrument. Main hardware components include laptop, 

power supply controller, radar unit, and rail. The background image (without labels) is courtesy 

of the Metasensing Company, The Netherlands. 

FastGBSAR is the product of the combination of the frequency modulated continuous wave 

(FMCW) technique and the SAR technique (e.g. Meta et al., 2007; Rödelsperger et al., 2012). 

The range imaging is achieved by FMCW and the cross-range imaging by SAR.  

2.1.2 Range imaging equation  

FMCW represents a special technique capable of determining the range with high resolution 

between the radar and the reflecting targets (Yang, 2017). In the simplest form of a FMCW 

radar (Melvin and Scheer, 2014), the transmitted signal (or pulse) is increased with a constant 
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rate, each successive signal thus has a higher frequency than its previous one. The frequency of 

the transmitted signal is usually linearly modulated and this process continues for a period that 

is at least several times as long as the two-way propagation time of the furthest target in an 

observing scene. During this period, the frequency difference between the transmitted and 

received signal can be measured and converted to the time delay and hence the range. The cycle 

is then repeated from the starting frequency. The basic principle of FMCW is actually to convert 

the problem of measuring the time lag to measuring the corresponding frequency difference, 

because the latter is usually much easier to be measured as it is in audio range (Wolff, 2018). 

To generate constant power, FMCW radars operate with low transmission power, which leads 

to their compactness but limits the measuring range to a few kilometres (Meta et al., 2007). In 

FastGBSAR, the transmitted pulse is linearly modulated (Metasensing, 2015b). The FMCW 

waveform of FastGBSAR is illustrated in Figure 2.2. 

 

Figure 2.2. FMCW waveform of FastGBSAR. 

As shown in Figure 2.2, 𝑓𝑐 is the centre frequency of the signal; 𝐵 the bandwidth; 𝑇𝑃𝑅𝐼 the pulse 

repetition interval; and 𝑓𝐷  a possible Doppler frequency caused by a moving target. The 

frequency difference between the transmitted and received signal is termed beat signal or beat 

frequency (denoted as 𝑓𝑏 ). The measured beat frequency 𝑓𝑏  is the raw data recorded by the 

FastGBSAR (Metasensing, 2015b). At any time, the beat frequency 𝑓𝑏 is proportional to the 

time delay 𝜏 between the transmitted and received signal and therefore proportional to the range 

𝑟 between the radar and the observing target:  

 𝑓𝑏 =
2𝐵

𝑐 𝑇𝑃𝑅𝐼
𝑟. (2.2) 

Therefore, the range can be measured through the observed 𝑓𝑏: 
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 𝑟 =
𝑐 𝑓𝑏 𝑇𝑃𝑅𝐼

2𝐵
.  (2.3) 

In terms of the range resolution (𝛿𝑟), it means the minimum distance between two targets in the 

range direction that a radar is able to distinguish and separate to each other. The range resolution 

depends on the bandwidth 𝐵 of the transmitted signal:  

 𝛿𝑟 = 𝑐/2𝐵.  (2.4)  

2.1.3 Cross-range imaging equation 

Cross-range direction is also known as azimuth direction, which is perpendicular to the range 

direction. To determine the 2D position of a target, it requires the angular measurement of the 

direction between the radar antenna and the target. This is achieved by the directivity (or known 

as directive gain) of the antenna, which is the ability of the antenna to concentrate the 

transmitted energy in a particular direction (Wolff, 2018). The transmitted energy for most radar 

antennas is designed in a one-directional lobe or beam (Wolff, 2018). The beam width of the 

transmitted signal determines the accuracy of angular measurement and therefore the spatial 

resolution in the cross-range direction. The beam width is the angular range of a radio antenna 

pattern (or signal) in which half power (-3 decibels) can be transmitted thus it is usually 

expressed in degrees (e.g. Edde, 1993; Van Trees, 2004). Cross-range resolution (𝛿𝑐𝑟), also 

known as azimuth resolution, is the minimum distance between two targets at the same range 

that a radar can distinguish and separate to each other. Figure 2.3 illustrates the relationship 

between the beam width (𝜃𝐵) and the cross-range resolution, as well as the range. 

 

Figure 2.3 The relationship between cross-range resolution and beam width. 

As shown in Figure 2.3, the relationship between 𝛿𝑐𝑟, 𝜃𝐵, and 𝑟 is: 
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 𝛿𝑐𝑟 ≈ 𝑟𝜃𝐵. (2.5) 

Therefore, cross-range resolution can be enhanced by narrowing the antenna beam width (Edde, 

1993). It is known that the beam width for the real aperture radar (RAR) is determined by the 

physical length (𝐿𝑎 ) of the antenna in the azimuth direction and the wavelength (𝜆 ) of the 

transmitted signal (Paul, 1997):  

 𝜃𝐵 =
𝜆

𝐿𝑎
. (2.6) 

Accordingly, to improve the cross-range resolution, RAR systems need to enlarge the physical 

size of the antenna. However, there are several practical restrictions: (i) it is almost impractical 

to construct such long antennas for the long-range space observation with the cross-range 

resolution better than several hundred metres (Paul, 1997); and (ii) mounting long antennas 

may be challenging or not cost-effective for airborne platforms. Therefore, SAR techniques 

were developed with the aim of overcoming the issues and achieving a finer azimuth resolution 

in airborne and spaceborne radar observation. SAR is usually mounted on a moving platform 

and uses the motion of the radar to synthesize a large size of the antenna (Skolnik, 2008). 

Particularly, FastGBSAR creates a synthetic antenna by moving the radar unit along a linear 

rail (Rödelsperger et al., 2012). A general 2D SAR imaging scenario is illustrated in Figure 2.4.  

 

Figure 2.4 SAR geometry for cross-range imaging. 

As shown in Figure 2.4, the scenario comprises a SAR system and an arbitrary target located at 

(x, y), where the x-axis is parallel to the radar rail and the y-axis is perpendicular to the rail 
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direction. 𝐿𝑆 is the length of the radar rail. For one acquisition, the radar unit (with antennas) 

moves along a linear track between the range [−𝐿𝑆/2, 𝐿𝑆/2]  with a constant velocity (𝑣 ). 

While the radar unit moves, the antennas continuously transmit and receive signals. That is to 

say the target is illuminated by the radar from many positions. Assuming the radar is at the 

position (u, 0), the antenna aspect angle (𝜃) and the range r with respect to the target are: 

 {
𝑟 = √(𝑥 − 𝑢)2 + 𝑦2,

𝜃 = arctan (
𝑥−𝑢

𝑦
) = arcsin (

𝑥−𝑢

𝑟
) .

 (2.7) 

The constant motion of the radar has a range-directional component (𝑣𝑟 = 𝑣 sin(𝜃), i.e. the 

velocity that the target approaches or recedes from the sensor), which results in a shift in 

frequency (𝑓𝐷) known as the Doppler effect (Paul, 1997):  

 𝑓𝐷 =
2𝑣 sin(𝜃)

𝜆
=

2𝑣

𝜆

 (𝑥−𝑢)

𝑟
.  (2.8) 

The azimuth coordinate of the target can thus be determined: 

 𝑥 = 𝑢 +
𝜆𝑟𝑓𝐷

2𝑣
.  (2.9) 

During the period that the radar moves along the track, the range between the target and the 

radar changes. Accordingly, the beat frequency changes with the radar position according to 

Equation (2.2). The total frequency shift (𝑓𝐵) is the difference between the frequencies of the 

two ends of the moving track, which determines the cross-range resolution (Rödelsperger, 2011):  

 {
𝑓𝐵 =

2𝐿𝑆

𝜆𝑟
,

𝛿𝑐𝑟 =
1

𝑓𝐵
=

2𝐿𝑆

𝜆𝑟
.
  (2.10) 

For FastGBSAR, the history of beat frequency is the raw data that is recorded by the system. 

However, the beat frequency history of one single target inside the antenna beam contributes to 

a sample in the recorded raw data (or a pixel in the raw image) therefore is defocused. The time 

of acquisition of the raw data is termed coherency time (Metasensing, 2015b). To form a 2D 

image with range and azimuth resolution, FastGBSAR coherently combines the acquired raw 

data during the coherence time and finally transforms the data into a grid, which is termed 

focusing (Rödelsperger, 2011).  
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Combining the range and cross-range imaging, the resolution of a GBSAR image is fixed in 

range but variable in cross-range. The concept of GBSAR image resolution is illustrated in 

Figure 2.5. 

 

Figure 2.5 GBSAR image resolution. 

It is worth mentioning that the SAR technique is not the only strategy to improve the spatial 

resolution for ground-based imaging radars. As the working range of a ground-based radar is 

usually limited to a few kilometres, which is much shorter than that of a spaceborne radar, 

obtaining a high cross-range resolution by increasing the physical aperture of the antenna is 

feasible for ground-based radars. A representative ground-based RAR system is the GPRI 

(Werner et al., 2012), the cross-range resolution can reach up to 8 metres at 1 km distance. More 

recently, the MIMO or MIMO-SAR concept has been demonstrated as a potentially equivalent 

technique to SAR for ground-based imaging radars and become an active area of research for 

the next generation of radars (e.g. Tarchi et al., 2013; Zeng et al., 2016). Unlike GBSAR, which 

moves the antenna for image acquisition, ground-based MIMO radars place and fix a set of 

antennas on a rail and transmit different waveforms at the same time while acquiring data. They 

can be superior to conventional GBSAR system in terms of portable size, financial cost, and 

more attractive acquisition efficiency (possibly at a rate of 25+ frames per second) (Tarchi et 

al., 2013). However, this technique is still under development (e.g. Aria et al., 2018; Liu et al., 

2018; Monserrat et al., 2014). Although the GPRI and MIMO radars utilise different techniques 

for high-resolution cross-range imaging, they produce 2D radar images in the same form as 

GBSAR.  
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2.1.4 GBSAR observation 

Like any SAR measurements, GBSAR acquisitions have two types of observable: amplitude 

and phase (Osmanoğlu et al., 2016). The amplitude is the strength of the back-scattered 

electromagnetic wave, which provides information on the reflectivity of the illuminated field 

(Deledalle et al., 2011) and can be used to interpret the observing scene (Monserrat et al., 2014). 

The phase is related to the round-trip time that the electromagnetic wave travels between the 

radar and the target, and thus can be exploited to measure the surface topography and 

displacement (Monserrat et al., 2014). In a GBSAR image, a pair of amplitude and phase 

observations can be represented as a complex number. For example, the amplitude 𝑎 and phase 

𝜙 are represented as complex number 𝑠: 

 𝑠 = 𝑎𝑒𝜙 = 𝑎cos𝜙 + 𝑗𝑎sin𝜙.  (2.11) 

where 𝑗 is the imaginary unit. The amplitude and phase information of an observing area is 

stored in the single-look complex (SLC) image, i.e. the focused SAR image. 

As mentioned in Section 2.1.3, the GBSAR image geometry is the result of a constant range 

sampling coupled with a constant angular sampling (Monserrat Hernández, 2012). However, as 

GBSAR has an oblique viewing geometry, irregular terrain elevation will result in slant-range 

distortions in the image. Figure 2.6 shows the typical effects of foreshortening, layover, and 

shadow. 
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Figure 2.6. Slant-range distortions in GBSAR: (a) foreshortening, (b) layover, and (c) shadow. 

Owing to the inherent geometric distortions, interpretation of GBSAR imagery is not as 

straightforward as in photographic imagery. Figure 2.7 shows a GBSAR amplitude mean image 

of a farm and the corresponding photographic image of the scene. For the sake of interpretation, 

the GBSAR amplitude mean image is manually co-registered with the planimetric view of the 

observing site in Google Earth. 
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Figure 2.7. GBSAR imagery compared to photographic imagery, acquired at Cockle Park Farm 

in Morpeth, UK. (a) Overview of the site. (b) The planimetric view of the site from Google 

Earth. (c) The GBSAR amplitude map (the mean amplitude over a stack of images), coloured 

in decibels (dB). (d) Approximate alignment and co-registration of the mean amplitude image 

with the planimetric view of the site in Google Earth. 

2.1.5 Relevant coordinate systems 

To visualize or georeference GBSAR imagery, several coordinate systems are introduced. 

Specifically, the object space coordinate system in three dimensions is defined as O − XYZ. The 

GBSAR image local coordinate systems include two planar coordinate systems: s − rθ (a polar 

coordinate system) and s − xy (a Cartesian coordinate system, also known as the orthogonal 

coordinate system). In particular, the x-axis of the Cartesian coordinate system is parallel to the 

moving rail. In addition, a transition coordinate system s − xyz is also introduced, which can 

be used to express the position and attitudes of a GBSAR instrument in operation.  
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Figure 2. 8. Illustration of GBSAR related coordinates systems. 

 

Figure 2.9. Illustration of GBSAR local systems, including the Cartesian coordinate system s −
xy and the polar coordinate system s − rθ.  

As shown in Figure 2.8, a ground target P is located at (𝑋, 𝑌, 𝑍) in space and observed by a 

GBSAR system. The location of P in the GBSAR local coordinate systems is at P′ with the 

polar coordinates of (𝑟, 𝜃)  and the Cartesian coordinates of (𝑥, 𝑦) . The coordinates in the 

transition coordinate system are (𝑥, 𝑦, 𝑧) . Note that P′  is different from the perpendicular 

projection position of P on the GBSAR image plane. The origin of the GBSAR local coordinate 

system is denoted as s , of which the object space coordinates are (𝑋𝑠, 𝑌𝑠, 𝑍𝑠) . The relations 

among these coordinate systems are summarized as follows: 

 {
𝑥 = 𝑋 − 𝑋𝑠,                                

𝑦 = √(𝑌 − 𝑌𝑠)2 + (𝑍 − 𝑍𝑠)2.
 (2.12) 
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 {
𝑟 = √𝑥2 + 𝑦2 ,    

𝜃 = atan2(𝑦, 𝑥).
 (2.13) 

 {
𝑅 = 𝑟/𝛿𝑟 ,          
𝐶 = (𝜋 − 𝜃)/𝛿𝜃 .

 (2.14) 

where atan2 is the four-quadrant inverse tangent function; 𝑅 and 𝐶 are the row number and the 

column number, respectively, in the GBSAR image.  

 

Figure 2.10. Simulation of GBSAR imaging geometry. (a) Overview of the simulation: the 

DEM is generated in the object space coordinate system with a spatial resolution of 0.5 m in X 

axis and 0.75 m in Y axis within the range (-640≤X≤640,20≤Y≤800). Elevation for the 

whole grid is zero, except for the “dome” which is simulated as a hemisphere from an ellipsoid 

with the mathematical expression:X2/2002+(Y-500)2/2002+Z2/1002=1 (Z>0). A FastGBSAR is 

located at (0, 0, 5), looking at (0, infinity, 5) with an angle of view of 90 degrees. (b) Removal 

of the non-imaging areas, including the shadow zone that is detected by means of occlusion-

test and the outside of the area of interest that is defined as (100≤R≤800,45°≤θ≤135°). (c) 

The 2D GBSAR occlusion-free map of the synthetic terrain, which is displayed in the planar 

Cartesian coordinate system. (d) The row and column numbers (i.e. pixel coordinates) with 

respect to the GBSAR occlusion-free map.  

To further explain the transformation of different GBSAR-related coordinate systems, a 

simulation of a synthetic DEM, together with FastGBSAR geometry, is given in Figure 2.10. 
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An occlusion-test is performed during the process of projecting the DEM defined in the 3D 

object space coordinate system to the 2D GBSAR local coordinate systems. Since the 

simulation focuses only on the geometry, the reflection (namely the radiation part) is not 

considered.   

2.1.6 FastGBSAR specifications  

FastGBSAR arguably represents the state-of-the-art GBSAR hardware available globally. The 

FastGBSAR system can be set up in either RAR or SAR mode (Liu et al., 2015). The spatial 

resolution for FastGBSAR can be adjusted and the technical specifications with respect to the 

finest resolution are summarized in Table 2.2.  

Table 2.2. Nominal FastGBSAR technical specifications with respect to the finest resolution. 

 RAR SAR 

Frequency  17.2 GHz (Ku) 17.2 GHz (Ku) 

Bandwidth 300 MHz 300 MHz 

Maximum working 

range 4 km 4 km 

Range resolution 0.5 m 0.5 m 

Rail length Not required 1.8 m 

Azimuth resolution Not available 4.8 mrad 

Repeat interval 0.25 ms 10 s 

 

In FastGBSAR RAR mode, each acquisition can be performed and repeated within a few 

milliseconds, which makes it ideal for monitoring vibrations of buildings and structures (Placidi 

et al., 2015). The incapability of azimuth resolution, however, excludes its application to 

scenarios in which 2D spatial resolution is required. In this research, only FastGBSAR SAR 

mode is used and FastGBSAR specifically indicates the SAR mode of FastGBSAR.  

In addition, the employed FastGBSAR system in this research is the polarimetric version 

(Metasensing, 2015b). Apart from deformation monitoring, this instrument allows the 

acquisition of full polarimetric data for retrieving additional information about the observed 

area, i.e. classification of vegetation. As this research focuses only on deformation monitoring, 

the potential of FastGBSAR polarization has not been explored and all FastGBSAR data used 

in this research is vertically polarized. 
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2.2 GBSAR interferometry 

2.2.1 Differential InSAR 

InSAR was developed to generate maps of surface deformation or digital elevation, using phase 

change between SAR acquisitions (Hanssen, 2001). The most common InSAR technique is 

differential InSAR (D-InSAR) which uses two SAR images, generally referred to as the master 

and the slave images, to identify and quantify ground movements (e.g. Hu et al., 2014; 

Osmanoğlu et al., 2016). In D-InSAR processing, an interferogram is formed by interfering two 

complex images, i.e. it is the product of the pointwise multiplication between the master 

complex image and the conjugate of the slave image (Hanssen, 2001):  

 s = 𝑠1𝑠2
∗ = 𝑎1𝑎2𝑒

𝑗(𝜙1−𝜙2), (2.15) 

where 𝑠1 and 𝑠2 are the complex backscattered signals of the same target on the master and the 

slave images, respectively. 𝑎𝑖  and 𝜙𝑖  are the amplitude and phase of the complex signals 𝑠𝑖 

(𝑖 = 1, 2), respectively. The superscript * denotes the complex conjugate operator and 𝑗 the 

imaginary unit. The phase difference between the master and slave SAR images is termed 

interferometric phase (𝜑𝑤 ) (Prati et al., 2010), which is the superposition of many terms 

including the change resulted from the surface movement in the LOS direction (𝜑𝑑𝑖𝑠𝑝), the 

topographic effect (𝜑𝑡𝑜𝑝𝑜), the variation of atmospheric delays (𝜑𝑎𝑡𝑚), the ambiguous cycles 

(𝑛) and noise (𝜑𝑛𝑜𝑖𝑠𝑒). The symbol 𝑤 represents the wrapping operation of angle in radians 

[−𝜋,   𝜋]. The differential interferometric phase for a pair of pixels on the two images with 

respect to the same target can be written as follows:  

 𝜑𝑤 = 𝑤(𝜙1 − 𝜙2) = 𝜑𝑑𝑖𝑠𝑝 + 𝜑𝑡𝑜𝑝𝑜 + 𝜑𝑎𝑡𝑚 + 𝜑𝑛𝑜𝑖𝑠𝑒 − 2𝑛π.  (2.16) 

The parameter of interest in D-InSAR application is the phase contribution 𝜑𝑑𝑖𝑠𝑝, which is 

directly related to the change of the ranges 𝑟1 and 𝑟2 from the radar system to the target at two 

acquisitions: 

 𝜑𝑑𝑖𝑠𝑝 =
−4𝜋

𝜆
(𝑟2 − 𝑟1) =

−4𝜋

𝜆
Δ𝑟 =

−4𝜋

𝜆
𝑑𝐿𝑂𝑆. (2.17) 

where Δ𝑟 is the range change, i.e. the surface displacement in the LOS direction (𝑑𝐿𝑂𝑆). Thus, 

the aim of D-InSAR is to extract the phase contribution 𝜑𝑑𝑖𝑠𝑝, together with other components. 

Once it is done, the surface displacement in the LOS direction for each pixel can be calculated 
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by: 

 𝑑𝐿𝑂𝑆 = 𝛥𝑟 = (𝑟2 − 𝑟1) = 𝜑𝑑𝑖𝑠𝑝
𝜆

(−4𝜋)
.  (2.18) 

The LOS displacement 𝑑𝐿𝑂𝑆  for each pixel is the GBSAR measurement in deformation 

monitoring. It is worth noting that 𝑑𝐿𝑂𝑆 is only the projection of the true displacement in the 

LOS direction, which is shown in Figure 2.11. This one-dimensional (1D) measurement 

represents the inherent disadvantage of InSAR as mentioned previously.  

 

Figure 2.11. The LOS displacement dLOS versus the true displacement d. 

To extract the LOS displacement, it requires a complex procedure of D-InSAR processing. 

Specifically, in Equation (2.16), the interferometric phase 𝜑𝑤  is wrapped into the range 

[−𝜋,   𝜋]. The interferometric phase is actually a relative value due to the integer ambiguity 𝑛 

(Osmanoğlu et al., 2016). To obtain the absolute value (i.e. unwrapped phase), the recovery of 

the ambiguity is required, and the process is known as phase unwrapping (Zebker and Lu, 1998). 

Figure 2.12 compares the wrapped and unwrapped phase with respect to a time series of 

displacements. This 1D phase unwrapping concept can be extended to the 2D and 3D scenarios, 

which are known as 2D and 3D phase unwrapping and further discussed in the next chapter.  

 

Figure 2.12. The wrapped and unwrapped phase of the same displacements (𝜆=17.43 mm). 
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After unwrapping, the unwrapped phase can be written as follows:  

 𝜑 = 𝜑𝑡𝑜𝑝𝑜 + 𝜑𝑑𝑖𝑠𝑝 + 𝜑𝑎𝑡𝑚 + 𝜑𝑛𝑜𝑖𝑠𝑒. (2.19) 

The topographic term 𝜑𝑡𝑜𝑝𝑜  is a function of the perpendicular spatial baseline 𝐵  and the 

elevation 𝑧 along the axes defined by the antenna vertical motion: 

 𝜑𝑡𝑜𝑝𝑜 =
4𝜋

𝜆
𝑟 (1 − √1 −

2𝑧𝐵+𝐵2

𝑟2
), (2.20) 

where 𝑟 is the range to the target when the antenna is positioned at z = 0 (Noferini et al., 2007).  

Unlike spaceborne SAR, GBSAR data can be acquired continuously and discontinuously 

(Takahashi et al., 2013). The continuous operation mode offers a zero-baseline geometry, thus 

the topographic phase component is always zero. In a discontinuous campaign, the topographic 

contribution resulting from small repositioning errors can be corrected by treating it as a 

spatially smooth signal (e.g. Crosetto et al., 2014a; Monserrat et al., 2014). Otherwise, the 

topographic term can be removed with the support of a DEM of the monitoring area and the 

precise geometry configuration of the radar equipment in the event of a significant spatial 

baseline. Without loss of generality, there are always at least three other terms that play a role 

in GBSAR interferometry (Crosetto et al., 2015):  

 𝜑 = 𝜑𝑑𝑖𝑠𝑝 + 𝜑𝑎𝑡𝑚 + 𝜑𝑛𝑜𝑖𝑠𝑒. (2.21) 

To obtain precise displacement, the atmospheric term 𝜑𝑎𝑡𝑚, also known as atmospheric phase 

screen (APS) in spaceborne SAR, must be properly compensated and removed by means of any 

suitable technique (Iannini and Guarnieri, 2011). The atmospheric term is caused by the 

variation of the refractivity at different times. A general and simple model explaining its 

physical existence is based on the velocity of an electromagnetic wave through the 

homogeneous troposphere by the refractivity 𝑁  , which strictly depends on pressure 𝑃  (in 

millibars or hectoPascal), temperature 𝑇 (in Kelvin) and relative humidity 𝐻 (as a percentage) 

(Iannini and Guarnieri, 2011; Iglesias et al., 2014b; Pipia et al., 2008): 

 𝑁 = 𝑁(𝑃, 𝑇, 𝐻) = 𝑁dry + 𝑁wet =
77.6∙𝑃

𝑇
+
3.73×105𝜔𝑃

𝑇2
, (2.22) 

where 𝑁dry represents a dry or hydrostatic component that is related to the partial pressure of 



27 

 

dry gases, and 𝑁wet a wet component that is dependent on the partial pressure of water vapour 

𝜔P:  

  𝜔P = 6.11e(19.7
T−273

T
)𝐻. (2.23) 

Accordingly, the atmospheric phase variation between the master and the slave images is: 

 𝜑atm = 10−6
4𝜋

𝜆
∆𝑁 𝑟 = 10−6

4𝜋

𝜆
[𝑁(𝑃2, 𝑇2, 𝐻2) − 𝑁(𝑃1, 𝑇1, 𝐻1)] 𝑟. (2.24) 

The aforementioned interferometric phase equations hold for every pixel in the interferogram. 

However, the application of D-InSAR to deformation monitoring encounters problems due to 

the phase noise term. Not all the observed pixels can be exploited for deformation measurement. 

A higher noise level means a lower phase quality and a lower capability of this pixel to derive 

deformation information (Monserrat Hernández, 2012). Filtering techniques are, therefore, 

applied to increase the signal-to-noise ratio (SNR) of interferograms (e.g. Bioucas-Dias et al., 

2008; Deledalle et al., 2011; Goldstein and Werner, 1998). Increasing the SNR leads to better 

phase statistics and fewer problems at the stage of phase unwrapping (Hanssen, 2001). The final 

step of D-InSAR processing is the geo-referencing, or geocoding, of the results through 

transformation of the relevant coordinate systems.  

2.2.2 GBSAR time series analysis 

The phase noise term in GBSAR interferometry results from variability in scattering from the 

target and thermal noise (e.g. Baran et al., 2003; Noferini et al., 2007), and the former source is 

dominant (Monserrat Hernández, 2012). The scattering variability depends on the physical and 

geometric characteristics of the measured target and its changes over the time elapsed between 

the master and slave images (Monserrat Hernández, 2012). The scattering variability due to 

physical and geometric characteristics are known as temporal and geometrical decorrelations, 

respectively (Hanssen, 2001). Specifically, the temporal decorrelation increases with the time 

span and the geometrical decorrelation increases with the spatial baseline (i.e. spatial separation) 

between acquisitions. Interferograms suffering from temporal decorrelations will have limited 

use for deformation monitoring. The advent of time series analysis has mitigated this limitation 

(e.g. Berardino et al., 2002; Ferretti et al., 2001). InSAR time series analysis is the advanced 

form of the differential InSAR technique to identify and quantify ground movements based on 

multiple interferograms generated from a stack of SAR images (e.g. Ferretti et al., 2001; Hooper 
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et al., 2012; Lanari et al., 2007). In comparison to D-InSAR, the InSAR time series analysis 

technique is primarily characterized by exploiting scattering properties of resolution elements 

and measuring mean velocities and incremental displacements (Hooper et al., 2012). 

A number of InSAR time series analysis algorithms have been developed over the last two 

decades (Osmanoğlu et al., 2016). The majority of these analysis algorithms were originally 

developed for the purposes of processing spaceborne SAR imagery. These algorithms fall into 

two broad categories regardless of various derivatives: the first being persistent scatterer (PS) 

InSAR (PSI) (e.g. Ferretti et al., 2001; Hooper, 2008) which targets pixels with consistent 

scattering properties in time and viewing geometry, thus making this technique more suitable 

for artificial surfaces with sufficiently strong back scatterers, and the second being the more 

general small baseline subset (SBAS) algorithm which uses distributed scatterers and singular 

value decomposition to connect independent unwrapped interferograms in time (e.g. Berardino 

et al., 2002; Lanari et al., 2004). PSI techniques are commonly based on a single-master 

configuration and the main drawback of PSI techniques is the low spatial density of targets 

behaving coherently over the whole observation span (Perissin and Wang, 2012). By contrast, 

SBAS approaches construct a network of interferograms with multiple master images and small 

baselines (Shanker et al., 2011). More recently, methods have been developed that take 

advantage of both types of scattering (e.g. Blanco-Sanchez et al., 2008; Ferretti et al., 2011; 

Hooper, 2008; Perissin and Wang, 2012). A review of InSAR time series analysis algorithms 

can be found in Crosetto et al. (2016) and Osmanoğlu et al. (2016). 

2.3 General procedure for GBSAR time series analysis  

In spite of many variations, InSAR time series analysis follows a general procedure: generation 

of a network of interferograms from a stack of SAR images, selection of coherent pixels 

including persistent and distributed scatterers, phase filtering and unwrapping for coherent 

pixels, separation of APS from deformation, and geocoding. In the GBSAR case, geocoding 

may be dispensable, depending on the monitoring target and the purpose of the monitoring. 

Nevertheless, interpretation or visualisation of GBSAR imagery should be accomplished. Since 

geocoding or visualisation of GBSAR imagery has been introduced in Section 2.1.5, it will not 

be discussed again in this chapter.  
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2.3.1 Generation of interferograms 

InSAR deformation monitoring with high accuracy is achieved by exploiting the interferometric 

phase. To generate an interferogram, any pixel pairs on master and slave images must 

correspond to the same observed target. In InSAR time series processing, SAR images are 

usually co-registered and resampled onto the same grid of a selected reference image (i.e. 

master image) before interferogram generation (Wang et al., 2014). As far as continuous 

deformation monitoring is concerned, a GBSAR instrument is usually installed on a fixed and 

stable base during the campaign. Continuous GBSAR acquisitions hold a zero-baseline 

geometry and they can be regarded as perfectly co-registered. Therefore, the co-registration of 

SAR images in traditional space-borne InSAR processing can be skipped for zero-baseline 

GBSAR data. Thus, a GBSAR interferogram can be easily generated from a pair of complex 

images based on Equation (2.15). In spaceborne SAR processing, multilooking is commonly 

applied in SBAS algorithms during the generation of interferograms, which aims to improve 

the SNR of the generated interferogram at the expense of spatial resolution. For the best 

preservation of spatial resolution, multilooking is not used in most GBSAR interferometric 

applications (e.g. Caduff et al., 2015; Crosetto et al., 2014a; Iglesias et al., 2015c; Monserrat et 

al., 2014; Rödelsperger, 2011), while it is used in some polarimetric applications (e.g. Iglesias 

et al., 2014d; Kang et al., 2009).  

The goal of InSAR time series analysis for deformation monitoring is to obtain the displacement 

time series with respect to a reference acquisition. To this end, a connected network of 

interferograms must be constructed (Perissin and Wang, 2012). There are two network types: 

single-master and multiple-master (Perissin and Wang, 2012), of which the choice depends on 

the particular time series analysis algorithms. Figure 2.13 shows the schematic diagram of 

different interferogram networks. PSI algorithms often operate a number of interferograms 

regarding a common master image (Hooper et al., 2012), as illustrated in Figure 2.13(a). The 

single-master network is formed with the assumption that each slave image is coherent with the 

master image for pointlike PS targets (Perissin and Wang, 2012). In SBAS algorithms, in order 

to mitigate the decorrelation issues, a multiple-master network (Figure 2.13(b)) is often adopted 

(e.g. Berardino et al., 2002; Shanker et al., 2011). Nevertheless, it should be noted that (i) not 

every PS algorithm adopts the single-master network and (ii) a multiple-master network of 

interferograms is often but not necessarily redundant. For instance, Rödelsperger (2011) 

exploited the interferometric phase of PS pixels between time-adjacent acquisitions for the real-
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time processing of GBSAR data. The network comprises only sequential interferograms and 

involves multiple masters. The network is not, however, redundant, which can be seen in Figure 

2.13(c).  

 

Figure 2.13. Schematic diagram of different types of interferogram networks based on seven 

single-look complex images (SLCs) in chronological order. Only the temporal baseline is 

considered in the network construction due to the spatial zero-baseline geometry of GBSAR 

data. IfgMN represents an interferogram that is generated by SLCM (as the master) and SLCN (as 

the slave). (a) A single-master network with SLC4 is set as the unique master. (b) A redundant 

multiple-master network, in which a SLC image can link with the neighbouring two for the 

interferogram generation. (c) A non-redundant multiple-master network, comprising of only 

sequential interferograms. 

2.3.2 Selection criteria for coherent pixels 

InSAR time series analysis relies on the exploitation of coherent interferometric phase with 

high quality and low noise, which is held by only a particular class of pixels (Monserrat 

Hernández, 2012). The selection of coherent pixels plays an important role for a successful 

analysis as their quality and density are key factors to estimate the parameters of interest (e.g. 

Hooper et al., 2004; Perissin and Wang, 2012). Different selection criteria can be used to select 

coherent pixels. Among them, coherence and amplitude dispersion are the two most commonly 

adopted criteria.  
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Amplitude dispersion  

Dispersion of amplitude (denoted as 𝐷𝐴), also termed as amplitude dispersion index (𝐴𝐷𝐼), is 

an index that indicates the stability of amplitude time series for a pixel along a stack of SAR 

images, which is defined as (Ferretti et al., 2001): 

 𝐷𝐴 =
𝛿𝐴

𝑚𝐴
, (2.25) 

where 𝑚𝐴 is the mean and 𝛿𝐴 the standard deviation of the amplitude time series, respectively. 

Reported by Ferretti et al. (2001), phase standard deviation 𝛿𝜙 is highly correlated with the 

amplitude dispersion index 𝐷𝐴 and the relationship 𝛿𝜙 ≈ 𝐷𝐴 is held by pixels with high signal-

to-clutter ratio (SCR). A lower 𝐷𝐴 implies a higher phase quality of a pixel. Typically, it requires 

a minimum of 20-30 SAR images to ensure the statistical reliability of 𝐷𝐴 (Crosetto et al., 2008) 

and pixels with 𝐷𝐴 ≤ 0.25  are selected as persistent scatterer candidates (Osmanoğlu et al., 

2016).  

ADI-based PS selection is reported to be more suitable for urban areas with strong 

backscatterers, while the density of selected PS is generally too low to obtain a reliable 

measurement of surface deformation in rural areas with primarily natural terrains (Hooper et 

al., 2004). In order to improve such density, Hooper et al. (2004) proposed a method which 

identified initial pixels with a high threshold value 𝐷𝐴 ≤ 0.4 and further selected pixels with 

low phase residuals (i.e. good phase stability) after removing spatially correlated errors. An 

example of PS selection using FastGBSAR data is shown in Figure 2.14.   
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Figure 2.14. PS selection from a stack of 60 FastGBSAR images with a temporal resolution of 

one minute. Data collection was undertaken in a dune area located in Changli, Hebei, China. (a) 

Overview of the data collection. (b) Mean amplitude of the dataset. (c). ADI of the dataset. (d) 

The selection of PS pixels with ADI < 0.25. 

Coherence 

The coherence between two zero-mean complex signals, 𝑧1  and 𝑧2   (Touzi et al., 1999) is 

defined as:  

 𝛾 =
𝔼(𝑧1𝑧2

∗)

√𝔼(|𝑧1|2)𝔼(|𝑧2|2)
= 𝜌 ∙ 𝑒𝑖𝜑 , (2.26) 

where the operation 𝔼 [∙] represents the mathematical expectation and the superscript * denotes 

the complex conjugate operator. 𝜌  is the coherence magnitude and 𝜑  is the interferometric 

phase. In practice, the ensemble average of signals cannot be achieved. The maximum 

likelihood coherence magnitude ρ̂ for a pixel is the magnitude of the coherence estimation γ̂ 

(i.e. 𝜌̂ = |𝛾| ), which is computed based on K samples related to the pixel (e.g. Jiang et al., 

2014a; Touzi et al., 1999): 

 𝛾 =  
∑ 𝑧1,𝑙𝑧2,𝑙

∗𝐾
𝑙=1

√∑ |𝑧1,𝑙|
2𝐾

𝑙=1 √∑ |𝑧2,𝑙|
2𝐾

𝑙=1

. (2.27) 
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The coherence magnitude between two complex signals, ranging from 0 to 1, is strongly 

correlated with the standard deviation of the phase noise (e.g. Bamler and Hartl, 1998; Hanssen, 

2001). Thus, coherence provides straightforward information on the SNR of interferometric 

phase and has been an efficient and commonly used indicator for masking out low-quality pixels 

in a SAR interferogram. Figure 2.15 shows two coherence maps estimated by a non-local 

estimator proposed in Chapter 3, one for a pair of images with a short time span of 10 seconds 

and the other for one hour. 

 

Figure 2.15. Coherence estimation examples using the data collected in Changli, Hebei, China. 

(a) Coherence map of a pair of SLCs with a 10-second time interval. (b) Coherence map of a 

pair of SLCs with a one-hour time interval. 

Other selection criteria 

Other measures such as thresholding on the amplitude or the SCR of a pixel are not widely used. 

For example, a pixel is selected as a PS point if its normalized radar cross section (i.e. the 

calibrated intensity) is above a specific threshold for a certain number of SLC images (Kamps 

and Adam, 2004). Additionally, a pixel is selected if the average SCR of the pixel is above a 

certain threshold (Adam et al., 2005). The relationship between the SCR  and the standard 

deviation of phase noise 𝛿𝜙 has been reported by Bert (2006) as:  

 {
𝛿𝜙 =

1

√2𝑆𝐶𝑅
,

𝑆𝐶𝑅 =
𝑠2

𝑐2
 .

  (2.28) 

where 𝑠 is the amplitude of the dominant scatterer that is surrounded by the clutter 𝑐 (i.e. the 

unwanted echoes). A threshold SCR=2 can select pixels with phase standard deviation 𝛿𝜙 <

0.5 rad (∼30◦). This method does not require calibrated amplitude to estimate the SCR or any 

assumptions on the temporal amplitude behaviour of the considered pixel. However, the 
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drawback is evident when it is applied to urban areas, where the clutter is likely to be 

overestimated using a spatial window because there are more point scatterers in close proximity 

to each other (Bert, 2006).  

More recently, a new strategy based on the number of statistically homogeneous pixels (SHPs) 

has been increasingly adopted in spaceborne InSAR (e.g. Ferretti et al., 2011; Goel and Adam, 

2012; Jiang et al., 2015). These algorithms aim to overcome the density limitation of PSI and 

improve the time series analysis over areas without enough persistent backscatterers by 

exploiting distributed scatterers (DSs) from areas with moderate coherence, where the 

neighbouring pixels share similar reflectivity values (e.g. Ferretti et al., 2011; Jiang et al., 2015). 

This type of area usually corresponds to non-cultivated lands with short vegetation, deserts, and 

debris areas (Ferretti et al., 2011). In these approaches (e.g. Ferretti et al., 2011; Goel and Adam, 

2012; Jiang et al., 2015), statistically homogeneous pixels (SHPs) for each pixel are identified 

by means of statistical homogeneity testing techniques. Most PSs correspond to isolated pixels 

and DSs are associated with many SHPs, thus a DS can be identified by the number of its SHPs 

(Ferretti et al., 2011). Thereafter, the SNR of DSs can firstly be improved by means of spatial 

filtering (Goel and Adam, 2012) or so-called “phase triangulation” (Ferretti et al., 2011) and 

then integrated with PSs in time series analysis. 

2.3.3 Phase filtering 

Filtering of interferograms is not applied in conventional PSI, but typically used in SBAS 

approaches. Filtering can increase the SNR of interferograms (e.g. Bioucas-Dias et al., 2008; 

Deledalle et al., 2011; Goldstein and Werner, 1998). Increasing the SNR leads to better phase 

statistics and fewer problems at the phase unwrapping stage (Hanssen, 2001).  

Phase information is contained in complex SAR images, and phase filtering is thus usually 

performed on the basis of complex numbers. A straightforward technique is “complex 

multilooking”, in which a number of looks in a rectangular window is simply averaged 

(Rodriguez and Martin, 1992). This technique is widely used because of its easy 

implementation and efficiency, but it results in resolution losses on the denoised images since 

the same smoothing effect is applied equally to homogeneous regions and to areas with edges 

or textures (Deledalle et al., 2011). InSAR phase filtering can be enhanced by dealing adaptively 

with the local phase noise and fringe rates in the frequency domain (Goldstein and Werner, 

1998), which can be further improved by introducing coherence as a filtering parameter (Baran 
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et al., 2003). To mitigate the resolution loss issue while phase denoising, a number of techniques 

have been proposed. Lee et al. (1998) selected a directional window among eight edge-aligned 

windows according to the local phase noise level and fringe rates. Vasile et al. (2006) proposed 

an intensity-driven adaptive-neighbourhood approach, which selects adjacent pixels with 

similar intensity by means of a region-growing criterion. More recently, non-local filtering 

techniques have become a significant topic in the field of spaceborne InSAR as they can achieve 

favourable performance in preserving textures (e.g. Deledalle et al., 2011; Goel and Adam, 2012; 

Lin et al., 2015). The fundamental procedure of non-local methods comprises the identification 

of homogeneous or sibling pixels from a certain search window and the weighted means 

filtering of these resembling pixels. The majority of the non-local family can be primarily 

distinguished by the selection strategy of homogeneous or resembling pixels, e.g. by patch 

similarity (Deledalle et al., 2011) or by statistical homogeneity (Goel and Adam, 2012). In 

accordance with the coherence estimation in Figure 2.15, the non-local filter proposed in 

Chapter 3 is applied to the same data and the results are given in Figure 2.16. It is evident that 

interferograms after filtering are visibly smoother and less noisy. 

 

Figure 2.16. The interferometric phase at coherent pixels with 𝛾>0.45. Pixels in decorrelated 

areas are marked in deep brown for the convenience of visualization. (a) The 10-second 

interferogram before filtering. (b) The 1-hour interferogram before filtering. (c) The 10-second 

interferogram after filtering. (d) The 1-hour interferogram after filtering. 
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2.3.4 Phase unwrapping 

InSAR measurement of surface movements relies on the exploitation of interferometric phase 

between SAR acquisitions. Since the phase is observed on a circular and repeating space, the 

interferometric phase is actually a relative value that is wrapped into the range [−𝜋,   𝜋]. The 

wrapped interferometric phase is always accompanied by the integer ambiguity or modulus 𝑛 

(Osmanoğlu et al., 2016). Phase unwrapping is therefore developed to recover the unambiguous 

interferometric phase from data with a modulo of 2π radian (e.g. Hooper and Zebker, 2007; 

Zebker and Lu, 1998). According to the dimension size of the processed data, unwrapping 

methods can be classified into three categories: 1D unwrapping (e.g. Huntley and Saldner, 1993; 

Itoh, 1982; Tribolet, 1977), 2D unwrapping (e.g. Chen and Zebker, 2001; Costantini, 1998; 

Flynn, 1997; Ghiglia and Romero, 1994; Goldstein et al., 1988) and three-dimensional (3D) 

unwrapping (e.g. Bert, 2006; Costantini et al., 2002; Hooper, 2010; Hooper and Zebker, 2007; 

Huntley, 2001).  

An InSAR interferogram represents a 2D space with the range and cross-range dimensions, and 

2D unwrapping techniques have been studied since the advent of InSAR (Goldstein et al., 1988). 

More recently, with the increasing number of SAR satellites and short revisiting periods, multi-

temporal SAR acquisitions are often available during InSAR application, and 3D phase 

unwrapping techniques have become a research focus in advanced InSAR time series analysis. 

In essence, the 3D represents a spatio-temporal concept that is comprised of 2D space and 1D 

time. In this section, the 2D and 3D unwrapping are further reviewed, whereas the 1D 

unwrapping is not listed alone as it can be a part of 3D unwrapping in InSAR processing.  

2D phase unwrapping 

To find the unwrapped solution for interferograms, spatial unwrapping algorithms are 

commonly based on the Nyquist criteria, i.e. assuming that the phase difference between 

neighbouring pixels in an interferogram is limited to the interval [−π, π] (e.g. Bert, 2006; 

Carballo and Fieguth, 2000). An ideal situation is that the assumption is held for all phase 

gradients in the interferogram. In such a case, a deterministic and unique unwrapped solution 

can be obtained through a straightforward integral along an arbitrary path (e.g. Carballo and 

Fieguth, 2000; Gens, 2003) as pixels are in a continuity 2D surface, in which the integral 

depends only on the start and the end positions. This also implies the integral along any closed 

loops is always zero. However, the assumption often fails in areas that are locally undersampled 
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due to phase noise or large gradient movements (e.g. Bert, 2006; Carballo and Fieguth, 2000; 

Hooper and Zebker, 2007). The phase difference of two neighbouring pixels that exceeds a half 

cycle will result in a discontinuity (Huntley, 1989). The presence of phase discontinuities 

renders the surface disconnected and the integral result varies and depends on the selected path 

on this surface. The identification of phase discontinuities thus plays an important role in the 

process of spatial unwrapping. Since prior knowledge about the phase discontinuities is 

generally not available, the presence of non-zero (including positive and negative) residues 

along any closed loops can provide clues for their locations (Hooper and Zebker, 2007). The 

goal of the phase unwrapping procedure is to locate and accommodate such discontinuities and 

to eliminate potential integration paths enclosing unequal numbers of positive and negative 

residues (e.g. Chen and Zebker, 2001; Zebker and Lu, 1998).  

To this end, the branch-cut (or residue-cut) algorithm firstly identifies the locations for all 

residues in an interferogram and then connects the residues with branch cuts to prevent the 

existence of integration paths that can encircle unbalanced number of positive and negative 

residues (Goldstein et al., 1988). This algorithm is computationally efficient and requires little 

computer memory, however, it typically generates regional errors in the noisy and layover 

portions of the interferogram. To enhance this algorithm, pre-processing strategies including 

spatial low-pass filtering and the formation of the so-called dipoles are suggested to mitigate 

the residues and make the selection of the appropriate path feasible (e.g. Goldstein and Werner, 

1998; Huntley, 1989). In contrast to Goldstein’s branch-cut algorithm, Flynn (1997) proposed 

a tree-growing approach which minimises the discontinuities by adding multiples of 2π to the 

phase values enclosed by the loops with residues. This algorithm can work with or without 

weighting factors.  

Unlike branch-cut or tree-growing approaches, a popular approach to 2D unwrapping is the 

minimum cost flow (MCF) (Carballo and Fieguth, 2000), which uses the network flow theory 

to pose phase unwrapping as a constrained-optimisation problem, seeking the MCF on a 

network with the constraint that all loop integrals are zero. The main difference among MCF 

approaches lies in the objective functions and respective minimisation techniques (Chen and 

Zebker, 2001). A generic form for the cost functions under the phase unwrapping framework 

can be found in Ghiglia and Romero (1996):  

 g(∆𝜑 − ∆𝜓) = 𝑤|∆𝜑 − ∆𝜓|𝑝,  (2.29) 
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where g(∙) is the cost function; ∆𝜑 and ∆𝜓 are the unwrapped and wrapped phase gradients, 

respectively; 𝑤  is the weight that determines each cost function’s scaling and it is often 

calculated based on the amplitude and/or the coherence of the interferometric phase (Carballo 

and Fieguth, 2000); 𝑝 is the power of the difference between a pair of corresponding unwrapped 

and wrapped phase gradients. The difference between the unwrapped and wrapped phase 

gradients is denoted by 𝐿. Thus, the objective function results in a weighted minimum 𝐿𝑝-norm 

problem. According to previous studies, the values for 𝑝 can be 0, 1, 2 and ∞.  

The objective 𝐿0-norm has been used in previous studies (e.g. Buckland et al., 1995; Chen and 

Zebker, 2000; Ghiglia and Romero, 1996). It is to minimise the number of discontinuities. The 

aforementioned residue-cut algorithm can be actually seen as a 𝐿0  representative, which 

behaves well in areas of good coherence but poorly in other areas (Chen and Zebker, 2000). 

The 𝐿0  minimum is not guaranteed to find a global optimisation as it generally contains 

extended discontinuities with many residues on them (Chen and Zebker, 2000). Moreover, the 

𝐿0 minimum has been demonstrated as a NP-hard (non-deterministic polynomial-time hardness) 

problem that is theoretically intractable (Chen and Zebker, 2000). Chen and Zebker (2000) 

proposed two algorithms to resolve the issue: (i) using the network ideas of shortest paths and 

spanning trees to improve the residue-cut algorithm and (ii) extending the ideas of linear 

network flow problems to the nonlinear 𝐿0 case.  

On the other hand, the objective 𝐿1 -norm has been employed by the MCF algorithms (e.g. 

Carballo and Fieguth, 2000; Costantini, 1998). 𝐿1-norm seeks to minimise the cost with respect 

to the number of cycles added to the wrapped phase gradients but not the total cut length that is 

sought in the residue-cut algorithm.  𝐿1 solutions can be usually calculated exactly and quite 

efficiently, however, the 𝐿1 objective would assign high costs to multiple-cycle discontinuities, 

leading the MCF algorithms away from the correct unwrapped phase (e.g. Chen and Zebker, 

2000; Costantini, 1998).  

Some approaches on the basis of the 𝐿2-norm have also been introduced, which actually treat 

phase unwrapping as a least-squares minimisation problem and the mean square of the discrete 

derivatives of the unwrapped phase is chosen as the error criterion (e.g. Fornaro et al., 1996; 

Fried, 1977; Ghiglia and Romero, 1994; Hunt, 1979; Pritt, 1996; Pritt and Shipman, 1994). The 

weight was not taken into consideration in initial least squares approaches (e.g. Fried, 1977; 

Hunt, 1979). In general, these approaches are computationally efficient by making use of fast 
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Fourier transform techniques. However, the unwrapping solution is not very accurate as errors 

are not well constrained within a limited set of points. The weighted least-squares algorithms 

were thus proposed to mitigate this problem, the procedure is iterative and not as efficient as 

the unweighted least-squares algorithms.  

It is reported that choosing 𝐿0-norm and 𝐿1-norm instead of 𝐿2-norm (the mean square) as the 

error criterion can reduce the spread of errors (e.g. Costantini, 1998; Ghiglia and Romero, 1996) 

and also 𝐿0 -norm and 𝐿1 -norm solutions are empirically more accurate than the 𝐿2  solution 

(Chen and Zebker, 2000). Moreover, a quasi-𝐿∞ approach has been developed by Hooper and 

Zebker (2007). 𝐿∞-norm is applicable to a surface with only single-cycle discontinuities and its 

solution is the same as 𝐿0 -norm in this case. The minimisation of the 𝐿∞ -norm objective 

function is equivalent to finding the minimal surface given that closed residue loop bounds an 

infinite number of surfaces. However, multiple-cycle discontinuities will lead to an incorrect 

𝐿∞-norm solution.  

Moreover, Chen and Zebker (2001) developed a statistical framework for generalized cost 

functions, in which the objective function was defined as the conditional probability density 

function of the estimated unwrapped phase given the observed wrapped phase. An alternative 

to formulating phase unwrapping as a constrained-optimisation problem, this algorithm 

considers phase unwrapping as a maximum a posteriori probability estimation problem, the 

most likely unwrapped solution can always be obtained given the observable input data. 

Together with the network-flow algorithm (Chen and Zebker, 2000), the implementation of the 

statistical-cost 2D phase unwrapping leads to one of the most widely used open-source 

packages in spaceborne InSAR, namely SNAPHU (Chen and Zebker, 2001, 2002). It is noted 

that it is usually impossible to unwrap an interferogam correctly at every pixel using a 

conventional spatial unwrapping algorithm. Therefore, the 2D phase unwrapping technique has 

been extended with sparse grid data (e.g. Agram and Zebker, 2009; Costantini and Rosen, 1999). 

3D phase unwrapping 

InSAR time series analysis introduces 3D wrapped phase data in both 2D spatial and 1D 

temporal dimensions. Any 2D phase unwrapping algorithms can be simply and directly applied 

to such 3D data, processing interferograms independently. However, as pointed out by 

Costantini et al. (2002) and Hooper and Zebker (2007), unwrapping the data in a 3D concept 

leads to more reliable and accurate solutions than treating it as a series of 2D problems. In this 
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section, some representative works related to 3D unwrapping for both spaceborne and ground-

based SAR data are briefly introduced.  

Similar to Delaunay triangulation in a 2D space, Costantini et al. (2002) applied the Delaunay 

tetrahedrization to sparse points in the 3D space-time. The unwrapping solution was achieved 

by empirically formulating phase unwrapping as a linear integer minimisation problem and 

determining a “discrete” irrotational vector field in which no residues existed along any cycles.  

Bert (2006) developed the spatial temporal unwrapping network algorithm for phase 

unwrapping on a spatially sparse grid, using the integer least-squares estimator and a linear 

temporal displacement model. In this approach, a portion of PS pixels were selected by spatial 

gridding whereby each candidate had the best coherence within a grid unit. A reference network 

was constructed based on such reference points. DEM errors and displacement parameters were 

first estimated at the arcs of the reference network using the interferometric phase time series. 

After this temporal estimation, the parameters at the reference points were obtained by a spatial 

least-squares adjustment of the estimated difference parameters. Once the reference network 

was estimated and unwrapped, other PS pixels were then connected to the network and 

estimated. The strategy of distinguishing the reference PS pixels from the ordinary PS library 

could reduce the requirement on computation memory and improve the computational 

efficiency.   

Pepe and Lanari (2006) addressed the 3D phase unwrapping problem for sparse grid data in 

SBAS time series analysis through a procedure of 1D temporal unwrapping and a following 2D 

spatial unwrapping. The MCF algorithm was applied to the unwrapping in both time and space 

and formulated a constrained-optimisation problem (Costantini, 1998). Particularly, the 

temporal evolution of the ground deformation was considered for the 1D unwrapping and the 

1D unwrapping solution was used to generate the weight in the following 2D unwrapping. An 

arc with a small temporal network cost would be assigned with a large weight in the 2D 

unwrapping.  

Hooper and Zebker (2007) gave a deep insight of 3D unwrapping for multi-temporal 

spaceborne InSAR and developed a theoretical framework and two unwrapping algorithms for 

PS pixels. The first approach was the quasi-𝐿∞ -norm 3D algorithm, which relied on the 

identification and processing residues along closed loops in the 3D space-time. The other 

approach is the stepwise 3D algorithm on the basis of a 1D plus 2D strategy: it combined a low-
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pass filtering in the frequency domain of time and then unwrapped the double differenced phase 

in the spatial domain using an iterative weighted least-squares approach. This 3D unwrapping 

algorithm was further converted to a series of maximum a posteriori probability estimation 

problems (Hooper, 2010) and implemented in the Stanford method for persistent scatterers 

(StaMPS) software (Hooper et al., 2012) that has been widely used in spaceborne InSAR time 

series.  

The aforementioned 3D unwrapping approaches are dedicated to spaceborne SAR data. The 

following paragraphs will introduce representative works about 3D unwrapping for GBSAR 

data. 

Rödelsperger (2011) developed a real-time 3D unwrapping approach for continuous GBSAR 

data. The real-time technique detected PSs based on ADI of a stack of consecutive SLCs. 

Similar to Bert (2006), a subset of PS candidates (PSCs) were selected from the initial PS library 

by spatial gridding based on each having the minimum ADI within a grid unit. A triangulation 

network of PSCs was used for temporal and spatial phase unwrapping. In particular, a recursive 

temporal unwrapping was conducted by the use of multiple model adaptive estimation (MMAE) 

for GBSAR data. The MMAE used a number of parallel Kalman filters, one for an ambiguity 

set of an arc, each implementing different models. The spatial unwrapping was then performed 

using a MCF algorithm to ensure that the temporal solution was spatially consistent (i.e. the 

sum of the unwrapped double differenced phase within each triangle must be zero). Once a 

consistent ambiguity set was determined for each arc, all detected PSs were integrated into the 

triangulation network by spatial unwrapping. Thus, the unwrapping solutions for PSs are 

smoothed and dependent on the reliability of PSC results, which is a drawback of this approach. 

Additionally, sudden phase changes can occur on any single PSC pixel and may cause regional 

unwrapping errors and propagate to the final cumulative deformation.  

Monserrat Hernández (2012) presented a two-stage procedure: a preliminary 2D phase 

unwrapping together with a subsequent 1D pixel-wise unwrapping. 2D phase unwrapping was 

first performed in this procedure and the 2D unwrapping errors for each pixel in the temporal 

dimension were then iteratively estimated and removed on the basis of the integer nature of the 

unwrapping errors (Biggs et al., 2007):  the unwrapping errors in 2D space can be checked in 

any temporal close loops. In practice, unwrapping errors often occur in a region and an example 

can be found in Biggs et al. (2007). Thus, the pixel-wise operation could be inefficient and even 

destroy the spatial consistency obtained in the 2D unwrapping. A potential improvement on the 
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detection and correction of 2D unwrapping errors might be that extending the pixel-wise 

operation to a region-based operation. 

Example of 3D unwrapping using synthetic data 

To illustrate 3D phase unwrapping, a stack of data is simulated based on a gradual process of a 

spatially diffused model with the assumption of additive white Gaussian noise only on 

interferograms. The greatest deformation occurs in the central area and diffuses to the margins. 

A stack of 16 epochs (𝑡0, 𝑡1, ⋯ , 𝑡15) are simulated. The first epoch is selected as the reference 

time. Thus, there are 15 temporal intervals. The lengths of temporal intervals are identical and 

each one is denoted as ∆t. In the processing, the temporal baseline constraint is fixed as 1∆t, 

i.e. the interval between the master and the slave cannot be longer than 1∆t . Thus, 15 

interferograms are formed. White Gaussian noise with the standard deviation of 1 rad is added 

to the interferograms. The interferograms are then filtered using a 5×5 “boxcar” filter and 

unwrapped using the StaMPS 3D unwrapping package (Hooper, 2010).  

The wrapped interferograms with additive Gaussian noise ( 𝛿𝑛_𝑝ℎ  = 1.0 rad) and their 

corresponding unwrapped interferograms are shown in Figure 2.17. The true and inverted 

incremental displacement maps, as well as their differences are given in Figure 2.18. Through 

visual inspection, it is evident that all the interferograms have been unwrapped correctly and 

the inverted displacement maps are consistent with the true counterparts. In the final cumulative 

displacement map (0-15) in Figure 2.18, the maximum displacement reaches up to 113.10 mm 

and the root mean square (RMS) of the difference is only 2.7 mm in the case of additive 

Gaussian noise (𝛿𝑛_𝑝ℎ = 1.0 rad). 
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Figure 2.17. Wrapped and unwrapped interferograms with additive Gaussian noise (δn_ph=1.0 

rad). 
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Figure 2.18. Deformation time series: true displacements without additional noise vs. inverted 

displacements from noisy interferograms (δn_ph=1.0 rad). 



45 

 

2.3.5 APS correction  

Relevant work 

Interferometric measurements can be strongly affected by variations in the troposphere, 

especially the atmospheric water vapour, even for those with a short time interval (e.g. Caduff 

et al., 2014; Caduff et al., 2015). Effort has been undertaken to correct atmospheric effects on 

GBSAR interferograms for deformation monitoring purposes. Representative works related to 

atmospheric correction in GBSAR deformation monitoring are reviewed in this section in 

chronological order. 

In an early work (Luzi et al., 2004), atmospheric variation was compensated using an 

atmospheric millimetre-wave propagation model (Liebe, 1985) utilising input meteorological 

data (humidity, temperature, and pressure). This study pointed out that the supposed 

homogeneity of atmospheric parameters was weak for the entire monitoring site with a 

significant topography variation along the range. The input weather observations from a single 

position could not be applied to the correction of an image corresponding to different ranges.  

Noferini et al. (2005) estimated the amount of interferometric phase variations by a term that 

was linear with the range and dependent on the measured humidity: 𝜑𝑎𝑡𝑚(𝑟, 𝑡) = 𝐾ℎ(𝑟, 𝑡)𝑟, 

where ℎ(𝑟, 𝑡)  was the function that represented the atmospheric effect, depending on the 

position vector 𝑟 (r = |𝑟|) and the time 𝑡; 𝐾 was an unknown constant. The term ℎ(𝑟, 𝑡) was 

assumed to be roughly constant and equal to the estimated ℎ(𝑡) in a single point of a small 

scenario. It, thus, became a first-order approximation. In this case, one known stable point was 

required. For a large scenario, ℎ(𝑟, 𝑡) could not be assumed constant over the entire observing 

area any longer. Instead it was modelled linearly with the range: ℎ(𝑟, 𝑡) = 𝐴(𝑡) + 𝐵(𝑡)𝑟, thus, 

𝜑𝑎𝑡𝑚(𝑟, 𝑡) = 𝑎(𝑡)𝑟 + 𝑏(𝑡)𝑟2, where 𝐴(𝑡), 𝐵(𝑡), 𝑎(𝑡) and 𝑏(𝑡) are coefficients, varying with 

the time 𝑡. In this case, two stable points were required to solve the equation. The work was 

based on the empirical equations of atmospheric contribution without sufficient justification. 

Pipia et al. (2006) presented several approaches to compensate for atmospheric artefacts in 

differential InSAR. The first two shared a similar procedure: a number of motionless and high-

coherent pixels were selected and the unwrapped phase of these pixels was used to recover the 

linear regression model between the atmospheric phase ramp and the range. The two approaches 

were actually similar and their only difference was the unwrapped phase, one used 1D 
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unwrapping and the other 2D. In these two approaches, the linear phase ramp was modelled 

under an assumption of the spatial atmosphere homogeneity and the model consisted of an 

angular coefficient and an offset. The third proposed approach was based on spectral variations 

in an interferogram. A bi-dimensional Chirp-Z transform was used to remove low-frequency 

components caused by the atmospheric variations. The main drawback of this approach is that 

it requires a sufficiently-wide, highly-coherent and motionless area to apply the transform. The 

approach relies on the size of the observing site and the time delay between acquisitions. 

Finding such a kind of region might be troublesome. 

Pipia et al. (2008) investigated the effects of atmospheric variations on displacement 

measurements using successive zero-baseline GBSAR polarimetric acquisitions. Four highly-

coherent pixels at four different ranges were identified as reference points in the study. The 

temporal evolution of the unwrapped differential phase for these reference points was compared 

with the simulated differential phase under the basic assumption that the wave propagates 

through a homogeneous medium. A strong similarity was found between the simulated and 

actual observed profiles in terms of the shape of the curves, the proportionality of phase errors 

to the range between the radar position and observing targets, and the magnitude of the angular 

fluctuations. A linear relationship between the range and the unwrapped phase of these targets 

was found. Based on these findings, the study proposed a coherence-based procedure for the 

removal of time-series atmospheric phase artefacts, which utilised stable control points to 

recover the linear regression model under the medium homogeneity hypothesis. 

Iannini and Guarnieri (2011) used meteorological measurements from a single weather station 

to model the slow-varying atmospheric variations under the hypothesis of a uniform atmosphere. 

One ground control point was required to calibrate the measured humidity. The procedure can 

be performed on the wrapped phase, thus not affected by phase unwrapping. As reported in the 

study, this approach is not as accurate as the compensation made by a set of ground control 

points distributed all across the scene. 

Caduff et al. (2014) presented an approach to separate atmospheric contribution from 

deformation in multiple continuous campaigns for hillslope instability monitoring. The 

atmospheric phase was firstly modelled from actual weather observations. Areas that exhibited 

displacements were masked through visual inspection. The phase over the masked areas was 

interpolated and then computed using a spatial low-pass filter. In particular, the window size 

used for filtering was case-dependent. To avoid highly variable atmospheric phase at the time 
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of data acquisition, this study used a solar radiation model (Rich et al., 1994) to predict the 

spatial and temporal variability of the atmospheric phase, which was claimed to be able to 

facilitate post-processing in the study. 

Iglesias et al. (2014b) highlighted the issue that in mountainous areas with steep topographic 

variations, the assumption of spatial homogeneity was no longer satisfied due to the fluctuations 

of atmospheric parameters such as temperature, pressure, and humidity in the spatial domain. 

The refractivity was considered vertically stratified. Therefore, for cases with a steep 

topography, atmospheric variation was modelled as a range- and height-dependent function 

(𝜑𝑎𝑡𝑚 = 𝛽0 + 𝛽1𝑟 + 𝛽2𝑟ℎ , where ℎ  is the height) and corrected with the support of height 

information and a set of highly-coherent pixels selected from stable areas. This approach was 

used to compensate for the atmospheric artefacts in both short-term and long-term differential 

InSAR processing with zero-baseline GBSAR data.  

Butt et al. (2016) treated the time-series APS as a so-called instationary, autocorrelated variate 

without second order stationarity.  The atmospheric phase was interpreted by a blend of two 

components: (a) deterministic relations among atmospheric phase, refractive index and 

meteorological quantities and (b) stochastic relations of the unmodelled residuals to 

atmospheric phase deduced from the meteorological measurements. Towards modelling the 

deterministic component of atmospheric phase, PS points were identified out of the area 

potentially containing moving objects and then used as stable control points. The usual 

regularity assumption of the second order stationarity on PS measurements was replaced by a 

weaker assumption being an intrinsic random function of order k. The atmospheric effects were 

mitigated through the combination of this assumption with existing approaches that used the 

ordinary least-squares estimation of trend functions. 

Based on the same theory as Iglesias et al. (2014b) (namely considering that the atmospheric 

conditions were constant in the horizontal direction and variable linearly with elevation), 

Dematteis et al. (2017) used a very similar approach with a slightly different range- and height-

dependent model (𝜑𝑎𝑡𝑚 = 𝑎0 + 𝑎1𝑟 + 𝑎2𝑧
2, where 𝑧 is the elevation) to compensate for the 

atmospheric contribution in a long-lasting campaign monitoring towards the Planpincieux 

glacier located on the Italian side of Mont Blanc. 
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Rigorous derivation of an APS correction model for GBSAR 

As reported in previous studies (e.g. Dematteis et al., 2017; Iglesias et al., 2014b), atmospheric 

conditions including pressure (𝑃 ), temperature (𝑇 ) and relative humidity (𝑅𝐻 ) vary with 

elevation and result in the spatial inhomogeneity of atmospheric refractivity 𝑁. The rigorous 

derivation of the APS correction model for GBSAR starts by considering atmospheric 

refractivity 𝑁  as a function of elevation 𝑧 , i.e. 𝑁(𝑧) . To clarify the derivation process, a 

schematic diagram of GBSAR observation geometry is depicted in Figure 2.19. 

 

Figure 2.19. The schematic diagram of GBSAR observation geometry 

As shown in Figure 2.19, for an arbitrary point at (𝑋, 𝑌, 𝑍), the atmospheric phase variation 

𝜑𝑎𝑡𝑚(𝑡1, 𝑡2) between two epochs 𝑡1 and 𝑡2 can be computed through a linear spatial integration 

(e.g. Dematteis et al., 2017; Iglesias et al., 2014b; Pipia et al., 2008): 

 𝜑𝑎𝑡𝑚(𝑡1, 𝑡2) = 10
−6 ∙

4𝜋

𝜆
∫ (𝑁𝑡2(𝑧) − 𝑁𝑡1(𝑧))𝑑𝑠𝐿

, (2.30) 

where 𝐿 is the integral path along the straight line from the GBSAR location (𝑋𝑆, 𝑌𝑆, 𝑍𝑆) to the 

target (𝑋, 𝑌, 𝑍) ; 𝑑𝑠  represents an elementary unit of definite integral. The length of L is 

equivalent to the range between the radar and the target: 𝑅 =

√(𝑋 − 𝑋𝑆)
2 + (𝑌 − 𝑌𝑆)

2 + (𝑍 − 𝑍𝑆)
2. The equation of the line 𝐿 is: 

 
𝑥−𝑋𝑆

𝑋−𝑋𝑆
=

𝑦−𝑌𝑆

𝑌−𝑌𝑆
=

𝑧−𝑍𝑆

𝑍−𝑍𝑆
(𝑋 ≠ 𝑋𝑆, 𝑌 ≠ 𝑌𝑆, 𝑍 ≠ 𝑍𝑆). (2.31) 

The integral path can be parameterized as follows: 

 

{
 

 
𝑧 = 𝑡, (𝑍𝑆 ≤ 𝑡 ≤ 𝑍),       

𝑥 = 𝑋𝑆 +
𝑋−𝑋𝑆

𝑍−𝑍𝑆
(𝑡 − 𝑍𝑆),

𝑦 = 𝑌𝑆 +
𝑌−𝑌𝑆

𝑍−𝑍𝑆
(𝑡 − 𝑍𝑆).

 (2.32) 
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In accordance with the parameterization, the elementary length can be written as: 

 𝑑𝑠 = √(
𝑑𝑥

𝑑𝑡
)
2

+ (
𝑑𝑦

𝑑𝑡
)
2

+ (
𝑑𝑧

𝑑𝑡
)
2
√(

𝑋−𝑋𝑆

𝑍−𝑍𝑆
)
2

+ (
𝑌−𝑌𝑆

𝑍−𝑍𝑆
)
2

+ 1 𝑑𝑡 [
𝑅

𝑍−𝑍𝑆
] 𝑑𝑡. (2.33) 

By substituting 𝑑𝑠 in Equation (2.30) with its expression in Equation (2.33), the atmospheric 

phase contribution can be further written as the following integral:  

 𝜑𝑎𝑡𝑚(𝑡1, 𝑡2) = 10
−6 ∙

4𝜋

𝜆

𝑅

𝑍−𝑍𝑆
∫ (𝑁𝑡2(𝑡) − 𝑁𝑡2(𝑡))
𝑍

𝑍𝑆
𝑑𝑡. (2.34) 

As far as the refractivity is concerned, its distribution through the whole troposphere can be 

modelled as a multilayer medium by an exponential function (Hall, 1980): 

 𝑁(𝑧) = 𝑁0𝑒𝑥𝑝 (−𝛼(𝑧 − 𝑧0)),  (2.35) 

where 𝛼 is the inverse of a height scale factor in km−1; 𝑁0 is the refractivity at the reference 

elevation 𝑧0 . For relatively small scenarios that GBSAR is suited, the refractivity can be 

approximated by the first two terms of the Taylor series expansion of Equation (2.35) around 

𝑧 = 𝑧0 (Iglesias et al., 2014b), thus being a linear model that the refractivity varies linearly in 

the vertical at any epochs: 

 𝑁(𝑧) = 𝑁0 − 𝛼𝑁0(𝑧 − 𝑧0). (2.36) 

The variation of refractivity at two epochs is: 

 𝛥𝑁(𝑧) = 𝑁𝑡2(𝑧) − 𝑁𝑡1(𝑧) = 𝑎𝑧 + 𝑏, (2.37) 

where 𝑎 = −𝛼 (𝑁0𝑡2
− 𝑁0𝑡1

) , and b = (𝑁0𝑡2 − 𝑁0𝑡1 + 𝛼𝑁0𝑡2
𝑧0 − 𝛼𝑁0𝑡1

𝑧0) . Combining 

Equations (2.34) and (2.37), the atmospheric phase variation for the arbitrary point at (𝑋, 𝑌, 𝑍) 

at two epochs 𝑡1 and 𝑡2 is obtained as follows: 

 {
𝜑𝑎𝑡𝑚(𝑡1, 𝑡2) = 10−6 ∙

4𝜋

𝜆
[

𝑅

𝑍−𝑍𝑆
] ∫ (𝑎𝑡 + 𝑏 )𝑑𝑡

𝑍

𝑍𝑆
= 𝑐0 + 𝑐1𝑅 + 𝑐2𝑅𝑍,

𝑐0 = 0, 𝑐1 = 10−6
4𝜋

𝜆
(
𝑎

2
𝑍𝑆 + 𝑏) , 𝑐2 = 10−6

4𝜋

𝜆

𝑎

2
.                                     

 (2.38) 

Therefore, the APS model from the rigorous derivation is 𝜑𝑎𝑡𝑚 = 𝑐0 + 𝑐1𝑟 + 𝑐2𝑟𝑧, which is 

the same as Iglesias et al. (2014b) but different from Dematteis et al. (2017).  
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APS correction using synthetic data 

Simulation of atmospheric stratification  

The atmospheric phase contribution in InSAR can be attributed to the variation of the 

refractivity which depends on atmosphere parameters such as pressure, temperature and relative 

humidity (e.g. Iannini and Guarnieri, 2011; Iglesias et al., 2014b; Pipia et al., 2008). It is well 

known that the pressure through the Earth’s atmosphere declines exponentially with altitude 

(McIlveen, 1991) and the temperature decreases with altitude by the environmental lapse rate, 

of which the average is defined as 6.49 K/km from sea level to 11 km (International Civil 

Aviation Organization, 2002). Unlike the atmospheric temperature and pressure, the relative 

humidity is diverse in different cases, but it typically decreases with altitude on a clear day (e.g. 

Folkins et al., 2006; Schmetz et al., 1995). The relative humidity is thus assumed to scale 

linearly with altitude in this simulation for simplicity. The aforementioned characteristics with 

respect to atmospheric parameters are summarised in Equation (2.39).  

 {

𝑃 = 𝑃(𝑧) = 𝑃0 exp (−
𝑧−𝑧0

𝐻
),               

𝑇 = 𝑇(𝑧) = 𝑇0 − 6.49(𝑧 − 𝑧0)/1000,

𝑅𝐻 = 𝑅𝐻(𝑧) = 𝑅𝐻0 + 𝑘(𝑧 − 𝑧0),       

 (2.39) 

where 𝑃0, 𝑇0, 𝑅𝐻0 are the observations at the reference elevation 𝑧0 for pressure 𝑃 (in mbar or 

hPa), temperature 𝑇 (in Kelvin) and relative humidity 𝑅𝐻 (in percentage), respectively; 𝐻 is 

the so-called scale height; k is the changing rate of relative humidity with elevation. According 

to Equation (2.39), the variation of atmospheric pressure, temperature, relative humidity with 

elevation and the corresponding refractivity is drawn in line graphs, as shown in Figure 2.20. 
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Figure 2.20. The variation of atmosphere parameters with altitude. Relevant simulation 

parameters: P0=1,013 mbar, T0=293.15 K (20 °C), RH0=80%, k=5%, H=7,000 m, z0=0 m. 

Simulation of APS and deformation 

On the basis of the synthetic DEM in Figure 2.10, atmospheric variations and surface 

displacements are simulated. In the simulation, the scale height 𝐻 is set as 7,000 m and the 

reference elevation 𝑧0 is at zero, GBSAR wavelength λ is 17.4 mm. The weather observations 

at the reference elevation for two epochs 𝑡1  and 𝑡2  are: 𝑃0𝑡1
 = 1013 mbar, 𝑇0𝑡1

 = 293.15 K 

(20 °C), 𝑅𝐻0𝑡1
=70%; 𝑃0𝑡2

= 1,013 mbar, 𝑇0𝑡2
= 288.15 K (15 °C, 𝑅𝐻0𝑡2

=75%). The changing 

rate of relative humidity with elevation is 𝑘𝑡1 = 𝑘𝑡2=5%. The corresponding APS (in mm) is 

shown in Figure 2.21(a). Surface displacements along the LOS direction are simulated to follow 

a diffuse deformation model within the circular area: √𝑋2 + (𝑌 − 500)2 ≤ 60 . The LOS 

displacement reaches a largest value of 1 mm at the centre and decreases gradually to zero at 

the margin of this area, as shown in Figure 2.21(b).  
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Figure 2.21. Simulation of atmospheric variations and displacements based on GBSAR 

observation. (a) Atmospheric variation map. (b) Displacement map. (c) The superposition map 

of atmospheric variations and displacements in mm. (d) The superposition map of atmospheric 

variations and displacements in radian. 

Comparison of different APS correction models 

The correction of APS is conducted using the synthetic data. Three APS correction models, 

employed in previous works, are compared. Specifically, a subset of points is selected from 

stable areas (stable areas are known in the synthetic data) and with each one from a 40 m × 40 

m grid. These motionless points are used to recover APS models. The results are summarized 

in Table 2.3.  

Table 2.3. Results for the separation of APS from displacements with the synthetic data. 

APS model R2 of 

regression 

RMS of displacement 

residuals (mm) 

Max of displacement 

residuals (mm) 

𝜑𝑎𝑡𝑚 = 𝑐0 + 𝑐1𝑟 
(Pipia et al., 2008) 

0.998929 2.66E-02 0.3050 

𝜑𝑎𝑡𝑚 = 𝑐0 + 𝑐1𝑟 + 𝑐2𝑧
2 

(Dematteis et al., 2017) 
0.999964 4.03E-03 0.0785 

𝜑𝑎𝑡𝑚 = 𝑐0 + 𝑐1𝑟 + 𝑐2𝑟𝑧 

(Iglesias et al., 2014b) 
1.000000 8.05E-05 0.0028 

 

Among the three models, the third one, of rigorous derivation, achieves the best accuracy. 
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Although the first model (without taking elevation into consideration) behaves the worst, it is 

still applicable to scenarios with smooth topography and its advantage is that an external DEM 

is not required for the correction of APS. In short, for scenarios with steep topography and 

available external DEM, the third model (𝜑𝑎𝑡𝑚 = 𝑐0 + 𝑐1𝑟 + 𝑐2𝑟𝑧) is preferable. Otherwise, 

APS in cases with smooth topography or without external DEM, the first model (𝜑𝑎𝑡𝑚 = 𝑐0 +

𝑐1𝑟) can be used.  

2.4 GBSAR deformation monitoring applications  

To fulfil a GBSAR deformation monitoring task, the first step is to decide the repetition rate of 

data acquisitions, which depends on the kinematics of the deformation event at hand and 

practical requirements in the real-world situation and event. For a fast-changing site, an 

interferogram formed by a pair of GBSAR images with a long time interval often suffers serious 

decorrelations. It is known that decorrelation is a serious issue in InSAR, which can render the 

measurement impossible (e.g. Hanssen, 2001; Monserrat Hernández, 2012). In such a situation, 

continuous GBSAR data acquisition with a high temporal resolution (i.e. short repeat interval) 

is therefore required to minimise decorrelations caused by fast ground movements. On the other 

hand, repeat campaigns are suitable if the goal is to measure slow displacement processes in 

highly coherent areas, the GBSAR system can be installed and dismounted at each campaign, 

revisiting a given site periodically, e.g., weekly, monthly or yearly. Accordingly, GBSAR data 

acquisition can be performed using two modes: the continuous mode and the discontinuous 

mode. 

Different data acquisition modes lead to different data processing techniques. Continuous 

GBSAR offers a zero-baseline geometry for all acquisitions, the topographic phase component 

for all interferograms is always zero and can be neglected. GBSAR data acquired under this 

operation mode can be processed by InSAR techniques including both D-InSAR and InSAR 

time series analysis, which allow users to have a (near-) real-time monitoring of the site of 

interest (e.g. Rödelsperger, 2011; Tarchi et al., 2005). In particular, Caduff et al. (2015) 

distinguished between short-term and long-term continuous interferometry. Continuous 

interferometry over a short time period can be applied to fast-changing sites where significant 

surface movements need to be detected during a short period, e.g. several hours up to a few 

days. By contrast, continuous interferometry over a long term, e.g. several days up to several 

months, may require substantial technical effort in terms of weather shelter, power-supply, and 
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data-transfer (Caduff et al., 2015).  

To process discontinuous GBSAR data acquired in multiple campaigns, both differential InSAR 

and non-InSAR techniques can be exploited (Caduff et al., 2015). In differential InSAR 

processing, special attention should be paid to the repositioning errors between different 

campaigns. As reported by Crosetto et al. (2014a), repositioning errors at the millimetre level 

cannot be neglected. Monserrat et al. (2014) suggested that such a phase component due to 

repositioning errors can be treated and corrected together with the atmospheric phase because 

they have similar low spatial frequency characteristics. Alternatively to InSAR, a non-InSAR 

approach was developed by Crosetto et al. (2014b) for the processing of discontinuous GBSAR 

data, using an image matching technique performed on GBSAR amplitude images. This 

approach is not influenced by strong atmospheric perturbations or total decorrelations due to 

very high displacement rates, but it is less sensitive to surface movements and it may reveal 

only centimetre- or decimetre-scale displacement (e.g. Caduff et al., 2015; Crosetto et al., 2014a, 

b; Monserrat Hernández, 2012). Regarding discontinuous GBSAR deformation monitoring via 

repeat campaigns, Crosetto et al. (2014a) pointed out the main drawbacks of discontinuous 

GBSAR include reduced density, precision and reliability of deformation measurements. 

Moreover, hardware related technical issues, such as the precise installation of the instrument 

in a fixed position with the same looking attitudes between different campaigns and the 

difficulties in measuring the existing “orbit” and “attitude” parameters of a GBSAR system, 

render the data processing more complicated.  

Based on the aforementioned data acquisition strategies and data processing techniques, a wide 

range of applications to which GBSAR is suited have been accomplished. Some representative 

works related to GBSAR deformation monitoring applications are summarized in Table 2.4 in 

chronological order.  
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Table 2.4. GBSAR deformation monitoring applications. 
 

Application LOS displacement 

/ velocity  

Device, 

(Band) 

Data acquisition 

information 

Baseline Data 

processing  

Tarchi et al. (1999a)  Dam 20.6 mm LISA (C) 

(Rudolf et al., 

1999) 

5 campaigns in 68 

days 

Non-zero D-InSAR 

Reeves et al. (2001) Mine walls 2 mm SSR (X) Twelve days of 

continuous 

monitoring 

Zero D-InSAR 

Leva et al. (2003) Landslide ∽5 cm/week LISA (Ku) Measurements have 

been done almost 

continuously from 

the October 7–14, 

1999. 

Zero D-InSAR 

Antonello et al. 

(2004) 

Landslides (a 

summary of 

several test 

sites) 

0.2 - 36 mm/h LISA (Ku) Short-term and 

long-term 

monitoring for 

different test sites 

NA D-InSAR 

Tarchi et al. (2005) Rockslide 0.3 - 5 cm / day LISA (Ku) 5-months radar 

permanent 

monitoring 

Zero D-InSAR 

Harries et al. (2006) Rockfall in 

open pit 

mines 

Up to 250 mm SSR (X) Continuous 

monitoring was 

performed 6 hours 

prior to the rock fall 

event 

Zero D-InSAR 

Luzi et al. (2009) Snow-covered 

slope 

Not mentioned -- (C and S) Continuous 

monitoring during 

the winter months of  

2005–2006 and 

2006–2007 

Not 

mentioned 

D-InSAR 

Herrera et al. (2009) Landslide Max displacement 

during the 

observing period: 

14.1 cm 

-- (C) Continuous working 

for 47 days, 

providing 

displacement map 

of the illuminated 

area at a rate of 1/h 

Zero InSARa 

Casagli et al. (2010) Landslides & 

volcano 

Not available GB-InSAR 

LiSALab 

(Ku) (Del 

Ventisette et 

al., 2011) 

Long-term 

monitoring with 

multiple campaigns 

Zero InSAR 

Riesen et al. (2011) Glacier ice 

motion 

~25 cm / day GPRI (Ku) 

(Werner et 

al., 2012) 

55 hours of 

operation (six 5-

hour interferograms) 

Not 

mentioned 

D-InSAR 

Lowry et al. (2013) Landslides Max 18 mm / day GPRI (Ku)  Two campaigns 

including 11.5 non-

continuous hours 

and 36 continuous 

hours of monitoring 

Zero InSAR time 

series 

Agliardi et al. (2013) Rock slope 

instability of a 

quarry face 

max 7.5 mm / day GBSAR 

LiSALab 

(Ku) 

4 days of short-term 

monitoring 

Zero InSAR  

Tapete et al. (2013) Surveillance 

of 

archaeological 

heritage  

±0.5 mm / day GBInSAR 

LiSALab 

(Ku) 

Continuous 

monitoring in 

almost one year 

Zero InSAR time 

series 

Crosetto et al. 

(2014b) 

Landslide max ~30 cm IBIS-L (Ku) Discontinuous 

monitoring mode 

Non-zero Non-InSAR 

Caduff et al. (2014) Landslide: 

hillslope 

instability 

Up to 3 mm/day GPRI-I & -II 

(Ku) (Werner 

et al., 2012) 

Three short-term 

campaigns from two 

fixed positions 

Zero D-InSAR 

Di Traglia et al. 

(2015) 

Volcano 

deformation 

1.2 – 2.1 mm/day GBInSAR 

LiSALab 

Multiple campaigns 

in  in 2010–2014 

Not 

mentioned 

InSAR time 

series 
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Pratesi et al. (2015) Urban 

structure (city 

walls) 

0.1 - 1.77 mm/h GBInSAR 

LISALab 

(Ku) 

Continuous data 

collection in 12 days 

Zero InSAR 

Mao and Chang 

(2015) 

Dam test Stable IBIS-FL (Ku) One continuous 

campaign in 15 

hours with a 

temporal resolution 

of 6 minutes 

Zero InSAR time 

series 

Frodella et al. (2016) Rock fall, the 

San Leo cliff 

Max 339 mm/year GBInSAR 

LISALab 

(Ku) 

One year 

monitoring 

campaign 

Not 

mentioned  

InSAR 

 

 

Urban 

buildings at a 

heritage site 

Max ±10 mm IBIS-L (Ku) Two campaign in 

one month 

Non-zero D-InSAR 

Serrano-Juan et al. 

(2016) 

Structure 

stability for a 

railway 

station 

> 3 mm  IBIS-L (Ku) Continuous data 

collection in 10 

days. 

Zero InSAR time 

series 

Frukacz and Wieser 

(2017) 

Rock fall in a 

quarry 

Stable IBIS-FM 

(Ku) (Farina 

et al., 2011) 

Multiple campaigns 

in 2 days 

Zero InSAR time 

series 

de Macedo et al. 

(2017) 

 

Landslide Max 4mm/h, 

average 20 

mm/day 

Sentir-Geo 

owned by 

Bradar, 

Brazil (X) 

Two continuous 

monitoring 

campaigns in six 

days 

Zero InSAR time 

series 

Schulz et al. (2017) Landslide  max 154 mm IBIS-L (Ku) Continuous data 

collection for hourly 

intervals during 4.3 

days 

Zero InSAR 

(particularly 

IBIS 

Guardian 

software) 

(Di Traglia et al. 

(2018)) 

Volcano: 

slope 

instability 

# 1: Cumulative 
displacement up 
to ∽2.85 m 

 

# 2: ±4.3 mm 

 

# 3: ±8.6 mm 

GBInSAR 

LISALab 

(Ku) 

Permanent-sited. 

 

# 1: > 4 years 

 

# 2: 8 hours 

 

# 3: ∽2 hours 

Zero InSAR  

(Carlà et al. (2018)) Open pit mine > 1 mm/day GBInSAR 

LISALab 

(Ku) 

Three weeks prior to 

the event, with a  

temporal resolution 

of 6 min 

Not 

mentioned 

InSAR 

a InSAR: the data processing technique is not specifically specified as D-InSAR or InSAR time series analysis in some 

literature, for which the generic term InSAR is used.  

As shown in Table 2.4, GBSAR has been used for a wide range of deformation monitoring 

applications over the last two decades. The applications include both slow-changing and fast-

changing scenarios and cover landslide or rockslide related processes, volcanoes, slope stability 

of open pit mines, urban monitoring, man-made structures, and surface changes of glaciers and 

snow. The monitoring duration of these applications varies from a few hours to several years. 

Zero-baseline geometry is achieved by most applications and nearly all applications except 

Crosetto et al. (2014b) are accomplished using GBSAR interferometry (including D-InSAR and 

InSAR time series). These applications demonstrate the flexibility and adaptability of GBSAR 

interferometry to various scenarios.  
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However, there remain many deficiencies in these works. Firstly, these works are on the basis 

of conventional InSAR processing algorithms, e.g. the coherence estimation and phase filtering 

with local “boxcar” windows, the ADI-based PS selection, etc. The advanced and improved 

InSAR algorithms, such as robust coherence estimation (Jiang et al., 2014b), adaptive or non-

local phase filtering (e.g. Deledalle et al., 2015; Lang et al., 2015), selection of partially 

coherent pixels (Perissin and Wang, 2012), exploitation of distributed scatterers (e.g. Ferretti et 

al., 2011; Jiang et al., 2015), and 3D phase unwrapping (Hooper, 2010), which have been 

demonstrated to be superior to conventional algorithms in spaceborne InSAR, but have not been 

applied in GBSAR interferometry. Secondly, the GBSAR systems adopted in the 

aforementioned studies usually take several minutes to half an hour for one acquisition, which 

is much longer than FastGBSAR that is able to repeat data acquisition every 10 seconds. Due 

to the high temporal-resolution and large data volumes (e.g. 360 images per hour) of 

FastGBSAR, there remains a significant challenge in processing such GBSAR data in real time. 

In addition, the accuracy of GBSAR interferometric measurement can be strongly affected by 

atmospheric and repositioning errors. Deep analysis should be conducted on the correction of 

these errors. All these mentioned research gaps will be discussed and addressed in the following 

chapters.  
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Chapter 3. A new non-local method for coherence estimation and phase 

filtering 

The study in this Chapter has been published in the following research journal paper: 

Wang, Z., Li, Z., Mills, J., 2018. A new non-local method for ground-based sar deformation 

monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing 11(10), 3769-3781. 

3.1 Introduction 

GBSAR (e.g. FastGBSAR) can acquire SAR imagery with a maximum temporal resolution of 

10 seconds, and can be performed in continuous or campaign mode for different scenarios (e.g. 

Caduff et al., 2015; Crosetto et al., 2017; Monserrat et al., 2014). No matter which acquisition 

mode is adopted in a monitoring task, interferometry is the preferred fundamental data 

processing technique for deformation monitoring applications (Monserrat et al., 2014). It is 

known that the interferometric phase suffers from both temporal and spatial decorrelation noise 

(Zebker and Villasenor, 1992) which may lead to errors in phase measurements. Such noise can 

cause problems in phase unwrapping and hamper data interpretation (Hanssen, 2001). 

Therefore, the interferometric phase quality should be guaranteed for any applications of the 

technique. Effort to address this has been made via two different strategies: coherence 

estimation and phase filtering. Coherence is an efficient and commonly used indicator for 

detecting pixels with coherent phase in a SAR interferogram (Bamler and Hartl, 1998). Phase 

filtering can increase the SNR of interferograms and facilitate phase unwrapping (Hanssen, 

2001).  

The coherence of a pixel is often estimated based on a rectangular window around it and phase 

filtering is implemented using local spatial averaging (multilooking) (Goel and Adam, 2012). 

As reported in previous studies (e.g. Deledalle et al., 2011; Spaans and Hooper, 2016), the 

adoption of local windows could result in biased estimates and resolution losses due to local 

heterogeneity. To address these issues, a prevailing approach is to select homogeneous or 

resembling pixels from the wider surroundings of each resolution cell for the estimation (e.g. 

Deledalle et al., 2011; Deledalle et al., 2015; Ferretti et al., 2011; Goel and Adam, 2012; Jiang 

et al., 2015; Jiang et al., 2014a; Spaans and Hooper, 2016; Wang and Zhu, 2016). Although 

these methods are known by different names, here they are collectively termed “non-local” 
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methods. Non-local methods are primarily distinguished by the selection strategy of 

homogeneous or resembling pixels and the majority have been specially designed only for 

either coherence estimation or phase filtering. Some representative works are briefly introduced.  

A patch-based method (termed “nl-InSAR”) was proposed by Deledalle et al. (2011). The patch 

similarity was measured by the conditional probability of the intensity and the interferometric 

phase. Coherence, reflectivity and interferometric phase were jointly obtained by estimation of 

the covariance matrix. The process involved an iterative weighted maximum likelihood 

estimation with weights iteratively refined based on similarity. This technique used only an 

interferometric pair of co-registered SAR images. The iterative process, however, was not 

computationally efficient (e.g. Deledalle et al., 2011; Lang et al., 2015). 

Ferretti et al. (2011), on the other hand, exploited the statistics of time-series amplitude of two 

pixels within a window and constructed a probability distribution on the basis of the statistics. 

SHPs were detected using a nonparametric hypothesis test, namely the Kolmogorov–Smirnov 

test (Kvam and Vidakovic, 2007). The method required at least twenty SAR acquisitions to 

effectively reject the null hypothesis and obtain reliable results (Jiang et al., 2015). This 

technique has been integrated into the “SqueeSAR” software. Jiang et al. (2015)  improved the 

selection of SHPs by forming a different probability distribution (Chebyshev's inequality) 

which increased the interval estimate of the hypothesis test based on the central limit theorem 

(CLT). By taking this measure, the required number of acquisitions could be reduced. This 

method is termed fast SHP selection (i.e. “FaSHPS”) due to its high computational efficiency. 

In addition, Goel and Adam (2012)  utilised the Anderson-Darling test to identify SHPs which 

were then used for coherence estimation and adaptive multilooking. This non-local method was 

combined with the SBAS algorithm for high-resolution deformation monitoring in non-urban 

areas.  

Spaans and Hooper (2016) named resembling pixels “siblings”, with siblings extracted simply 

by utilising two statistics: mean amplitude over all interferometric combinations, and mean 

amplitude difference between master and slave images over all interferometric combinations. 

The simple computation ensured that the identification of siblings was a fast process and the 

method was thus termed “RapidSAR”. Contrary to statistical hypothesis testing techniques, 

which tend to result in a binary outcome, this method could easily maintain a minimum number 

of pixels with similar statistics for robust calculation in cases of insufficient siblings.  
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The aforementioned non-local methods were originally developed for the purposes of 

processing spaceborne SAR imagery. This study is thus dedicated to developing a versatile non-

local method which addresses the three critical issues in GBSAR interferometry for deformation 

monitoring and possesses advantages over conventional non-local methods originally 

developed for spaceborne SAR: (a) the efficient and reliable identification of sibling pixels; (b) 

the accurate estimation of accurate coherence estimation and phase filtering; and (c) the 

application of the developed non-local method in GBSAR time series analysis. To this end, 

several hypothesis tests and statistics, typically employed in representative works, are first 

investigated with actual FastGBSAR data. Based on investigation and analysis, a new similarity 

measure is developed to overcome current limitations in terms of accuracy and computational 

efficiency. The similarity is based on the mean of time series amplitude. Pixels with high 

similarity are selected from a non-local window for each point. Coherence is calculated based 

on the selected sibling pixels and then enhanced by a second statistical estimator (e.g. 

Abdelfattah and Nicolas, 2006; Jiang et al., 2014c). Non-local means filtering is also performed 

using the extracted siblings to reduce interferometric phase noise.  

3.2 Methodology  

3.2.1 Identification of siblings 

The identification of sibling pixels is the basis of any non-local method. To investigate the 

feasibility of several non-local methods to GBSAR imagery, twelve pixels were manually 

selected from four different types of ground target using a stack of 60 FastGBSAR SLC images 

of the dataset depicted in Section 3.3.1 for the identification analysis. The time series of 

amplitude values for the selected pixels are shown in Figure 3.1.  
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Figure 3.1. Time series of unnormalized amplitude values for the twelve selected pixels. Pixels 

with the prefix “A-” were selected from castle roofs which is made of stone. The properties of 

“B-” and “C-” pixels are not clear, but based on knowledge of the illuminated region most likely 

correspond to weathered rocks and earth / vegetation. Pixels of prefix “D-” were selected from 

the background area without backscatterers. The coordinates of each pixel in the GBSAR local 

coordinate system are given inside the parenthesis after the pixel identifier. 

Statistics (i.e. mean amplitude and mean amplitude difference over all interferometric 

combinations) used in Spaans and Hooper (2016) were firstly computed by considering the first 

SLC as the single master in the interferogram network and all the successive images as slaves. 

The percentage values of the two statistics for all pixel pairs are summarized in Tables 3.1 and 

3.2, respectively. 

Table 3.1. Percentage of the mean amplitude for all pixel pairs. 

 A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 D-1 D-2 D-3 

A-1 0.00 0.19 0.25 0.64 0.65 0.72 0.90 0.93 0.83 1.00 1.00 1.00 

A-2 0.23 0.00 0.08 0.56 0.57 0.66 0.88 0.91 0.79 1.00 1.00 1.00 

A-3 0.34 0.09 0.00 0.51 0.53 0.63 0.87 0.90 0.77 1.00 1.00 1.00 

B-1 1.76 1.25 1.06 0.00 0.04 0.24 0.73 0.79 0.52 1.00 1.00 1.00 

B-2 1.86 1.33 1.13 0.04 0.00 0.21 0.72 0.79 0.50 1.00 1.00 1.00 

B-3 2.63 1.96 1.71 0.32 0.27 0.00 0.65 0.73 0.37 1.00 1.00 1.00 

C-1 9.28 7.37 6.67 2.72 2.59 1.83 0.00 0.24 0.79 1.00 1.00 1.00 

C-2 12.47 9.97 9.04 3.88 3.70 2.71 0.31 0.00 1.34 0.99 1.00 1.00 

C-3 4.74 3.68 3.28 1.08 1.01 0.58 0.44 0.57 0.00 1.00 1.00 1.00 

D-1 2285.8 1861.7 1704.3 827.3 797.9 628.53 221.4 168.82 397.14 0.00 0.88 0.73 

D-2 18553.0 15112.3 13835.4 6719.9 6481.3 5106.8 1803.7 1376.9 3229.4 7.11 0.00 1.19 

D-3 8487.7 6913.5 6329.3 3073.9 2964.7 2335.9 824.7 629.4 1476.9 2.71 0.54 0.00 

Current pixels are arranged in row order while sibling candidates are in column order. A value < 0.15 is 

marked in blue, which indicates the resemblance of the corresponding pixel pair. 
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Table 3.2. Percentage of the mean amplitude difference for all pixel pairs. 

 A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 D-1 D-2 D-3 

A-1 0.00 1.31 1.51 2.86 3.09 1.37 0.82 0.27 5.02 1.15 0.82 0.89 

A-2 4.21 0.00 0.62 4.96 5.70 0.18 1.57 5.09 11.89 0.51 1.58 1.34 

A-3 2.97 0.38 0.00 2.66 3.12 0.27 1.35 3.51 6.93 0.70 1.36 1.21 

B-1 1.54 0.83 0.73 0.00 0.12 0.80 1.10 1.69 1.16 0.92 1.10 1.06 

B-2 1.48 0.85 0.76 0.11 0.00 0.82 1.09 1.61 0.93 0.93 1.09 1.05 

B-3 3.71 0.16 0.37 4.03 4.66 0.00 1.48 4.45 9.89 0.59 1.49 1.29 

C-1 4.59 2.74 3.83 11.38 12.67 3.06 0.00 6.12 23.47 1.85 0.01 0.40 

C-2 0.21 1.24 1.40 2.46 2.64 1.29 0.86 0.00 4.15 1.12 0.86 0.92 

C-3 1.25 0.92 0.87 0.54 0.48 0.91 1.04 1.32 0.00 0.96 1.04 1.03 

D-1 7.55 1.04 2.32 11.16 12.67 1.42 2.17 9.34 25.32 0.00 2.18 1.70 

D-2 4.56 2.73 3.81 11.31 12.59 3.05 0.01 6.08 23.32 1.85 0.00 0.41 

D-3 8.36 3.92 5.74 18.38 20.54 4.46 0.67 10.93 38.62 2.43 0.69 0.00 

(Values < 0.30 (suggested threshold in Spaans and Hooper (2016)) are marked in blue, indicating the 

resemblance of the corresponding pixel pair.) 

Unfortunately, the two measures were not able to identify resembling pixels, no matter what 

threshold values were chosen. Firstly, both of the two percentage measures depend on the 

statistics owned by the current pixel as denominators. Therefore, they cannot provide symmetric 

results and the results may fluctuate dramatically when denominators are close to zero, which 

can be witnessed by pixels of class “D”. Secondly, the amplitude time series of some samples, 

such as pixels “A-2”, “A-3” and all “D-”, remain relatively stable over all acquisitions. For 

these pixels, the mean amplitude difference between the master and slaves can be close to zero. 

Thus, the percentage of the mean amplitude difference for these pixels also varies dramatically 

and cannot be used as a valid estimator. 

To overcome these limitations, a new similarity measure is proposed to identify siblings. Unlike 

Spaans and Hooper (2016), the developed similarity measure is not based on the interferogram 

network, but on the mean amplitude over all SLC images. Based on a stack of N SLC images, 

the similarity measure (denoted as 𝑆) between two pixels at (x1, 𝑟1) and (x2, 𝑟2) is defined as:  

 𝑆 = 1 − |𝐴̅(x1, 𝑟1) − 𝐴̅(x2, 𝑟2)| (𝐴̅(x1, 𝑟1) + 𝐴̅(x2, 𝑟2))⁄ , (3.1) 

where 𝐴̅(x𝑖, 𝑟𝑖)(𝑖 = 1,2) is the mean amplitude of a pixel at (x𝑖, 𝑟𝑖) over the N SLC images. 

The proposed similarity measure ranges from zero to one. Larger values imply more 
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resemblance between the pixel pairs. A candidate is considered as a sibling of the current pixel 

when the similarity between them exceeds a specified threshold. Typical values for the 

similarity threshold range from 0.85 to 0.95 according to the relevant analysis in Section 3.4. 

The proposed similarity measure was tested with the selected samples, with siblings for all 

pixels detected correctly (Table 3.3). According to the achieved results, it is clear that the 

proposed similarity provides symmetry and is robust for pixels with sharply different amplitude 

levels. Moreover, the proposed similarity inherits advantages introduced by Spaans and Hooper 

(2016), including fast computation and low RAM requirements.  

Table 3.3. Similarity among selected pixels 

 A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 D-1 D-2 D-3 

A-1 1.00 0.93 0.90 0.70 0.68 0.67 0.47 0.47 0.47 0.03 0.03 0.03 

A-2 0.93 1.00 0.97 0.76 0.75 0.73 0.52 0.52 0.52 0.04 0.03 0.03 

A-3 0.90 0.97 1.00 0.79 0.77 0.75 0.54 0.54 0.54 0.04 0.03 0.03 

B-1 0.70 0.76 0.79 1.00 0.98 0.97 0.73 0.73 0.73 0.06 0.05 0.05 

B-2 0.68 0.75 0.77 0.98 1.00 0.98 0.75 0.74 0.74 0.06 0.05 0.05 

B-3 0.67 0.73 0.75 0.97 0.98 1.00 0.76 0.76 0.76 0.06 0.06 0.06 

C-1 0.47 0.52 0.54 0.73 0.75 0.76 1.00 0.99 1.00 0.10 0.09 0.09 

C-2 0.47 0.52 0.54 0.73 0.74 0.76 0.99 1.00 1.00 0.10 0.09 0.09 

C-3 0.47 0.52 0.54 0.73 0.74 0.76 1.00 1.00 1.00 0.10 0.09 0.09 

D-1 0.03 0.04 0.04 0.06 0.06 0.06 0.10 0.10 0.10 1.00 0.93 0.93 

D-2 0.03 0.03 0.03 0.05 0.05 0.06 0.09 0.09 0.09 0.93 1.00 1.00 

D-3 0.03 0.03 0.03 0.05 0.05 0.06 0.09 0.09 0.09 0.93 1.00 1.00 

(Values > 0.85 are marked in blue, indicating the resemblance status of a pair of pixels. Several common 

hypothesis tests, including the Kolmogorov-Smirnov test (Ferretti et al., 2011), the CLT-based test (Jiang 

et al., 2015), the Anderson-Darling test (Goel and Adam, 2012), the paired t-test, and the Wilcoxon 

signed-rank test  (a non-parametric statistical hypothesis test used when comparing two matched 

samples) (Wilcoxon, 1945) were also applied to the selected samples in this study. The significance level 

for all hypothesis tests was set as 0.05 and the results of the identification of SHPs are illustrated in 

Figure 3.2.) 

Contrary to the result of the developed similarity measure shown in Figure 3.2(a), hypothesis 

tests tend to reject three samples of class “A” as heterogeneous. Obviously, the mean amplitude 

values of three “A-” pixels are different, but relatively close. They are considered as 

heterogeneous by the applied hypothesis testing methods, but as resembling by the developed 

similarity measure. This is not a paradox, but symptomatic of a difference between the two 
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types of methods. It reflects that the hypothesis testing techniques are prone to distinguish 

heterogeneity between pixels with similar mean amplitude. On the other hand, “B-1”, “B-2” 

and “C-1” are incorrectly recognized as homogeneous pixels by the Anderson-Darling test.  For 

deformation monitoring purposes, performance should be evaluated via coherence estimation 

and phase filtering.  

 

Figure 3.2. Identification of resembling or homogeneous pixels. Blue grids indicate the 

homogeneity of the corresponding pixel pair. (a) The proposed similarity. (b) Kolmogorov-

Smirnov test. (c) Hypothesis test using CLT. (d) Anderson-Darling test. (e) Paired t-test. (f) 

Wilcoxon signed-rank test. 

3.2.2 Estimation of coherence and interferometric phase 

The maximum likelihood estimation of the coherence for a pixel is based on K samples related 

to the pixel, as shown in Equation (3.3). In this study, the siblings identified by the developed 

similarity measure are used as K samples for the estimation of coherence. The siblings-based 

coherence magnitude ρ̂ is further estimated based on the second kind statistics (e.g. Abdelfattah 

and Nicolas, 2006; Jiang et al., 2014c):   

 ρ̅̂ = exp (
1

𝐾
∑ ln (𝜌̂𝑙)
𝐾
𝑙=1 ). (3.2) 

The coherence magnitude obtained by the second kind statistics is less biased and the variance 
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of the log-estimate is globally lower than that of the regular estimate (e.g. Abdelfattah and 

Nicolas, 2006; Jiang et al., 2014c).  

In addition, the filtered interferometric phase 𝜑̂  for each pixel is achieved by the non-local 

averaging of the complex values of its siblings: 

 {
𝑒𝑖𝜑̂ = ∑ 𝑒𝑖 𝑤𝑙𝜑𝑙𝐾

𝑙=1

𝑤𝑙 = ρ̅̂𝑙/∑ ρ̅̂𝑙
𝐾
𝑙=1

.  (3.3) 

3.3 Experimental results  

3.3.1 Data used in experiments 

The data used in the experiments was collected by mounting the FastGBSAR system on a 

stationary concrete base, continuously observing the cliff on the north side of Tynemouth Priory 

and Castle, near to Newcastle upon Tyne, UK. The scene mainly comprises the cliff façade, the 

castle buildings, some areas of beach and the sea close to the south side of King Edward’s Bay. 

An overview of the observed site and the geometric configuration for the data collection is 

shown in Figure 3.3(a). A close-up of the surface of the cliff façade can be seen in Figure 3.3(b), 

which mainly consists of outcrops, bare earth and vegetation, and a section of an artificial 

concrete wall. The mean amplitude, corresponding to 60 sequential SLC images, was manually 

aligned and projected onto the top view of the observed site for a better visual interpretation 

(see Figures 3.3(c) and 3.3(d)). The dimension of each SLC image was 294 by 254 pixels. A 

mask, displayed in Figure 3.3(e), was generated by thresholding the mean amplitude image, in 

which the area of interest in white indicates the illuminated region and the background in black 

corresponds to the shadow zones and sea areas. The background area without useful information 

should not be considered for precise interferometry analysis. The grey area in the mask was 

added to mark the ambiguous border between the area of interest and the background. The mask 

was then used for quantitative analysis in Sections 3.3.3 and 3.3.4.  
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Figure 3.3. An overview of data collection and the observed Tynemouth Cliff. (a) The 

deployment of the FastGBSAR system for the data collection. (b) A close-up of the cliff façade 

with respect to the area marked in red box in (a). (c) The mean amplitude image of 60 GBSAR 

SLCs (shown in decibels). (d) Co-registration of the mean amplitude image with the top view 

of the site in Google Earth. (e) An image mask, containing the area of interest (in white), the 

background (in black) and the ambiguous area (in grey) between them. 

Based on the same data acquisition configuration, two datasets with different acquisitions and 

different sampling temporal resolutions were used in the experiments. Dataset I-1 consisted of 

60 SLC images and the data acquisition frequency was every 10 seconds. Dataset I-2 consisted 

of 30 SLC images with a temporal resolution of four minutes.  

3.3.2 Identification of Siblings 

The identification of siblings was performed using the two datasets and results compared to the 

“FaSHPS” algorithm, namely the identification of SHPs using the CLT-based hypothesis test, 

which is representative of the SHP methods and possesses high computational efficiency (Jiang 

et al., 2015). The dimension of the non-local search window was fixed to 15 x 15. The similarity 

threshold for the proposed method was set as 0.85 and the significance level for the “FaSHPS” 

hypothesis test as 0.05. It is known that insufficient siblings can lead to inaccuracies in 

coherence estimation (Spaans and Hooper, 2016) and phase de-noising (Deledalle et al., 2011). 

If a pixel does not have sufficient siblings within the threshold, a minimum number of siblings 

are required for the sake of reliable coherence estimation and phase de-noising for this pixel. In 

such a case the most similar pixels (quantified by the developed similarity measure) beyond the 

threshold can be added as siblings. On the basis of previous relevant studies (e.g. Deledalle et 
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al., 2011; Spaans and Hooper, 2016) and analysis conducted and reported in Section 3.4, the 

minimum number of siblings was set as 10. The number of siblings and SHPs for the two 

datasets are shown in Figure 3.4. It can be observed that the identified siblings and SHPs in the 

background area are more than the area of interest . This is because the background contains no 

useful information and suffers from noise. Pixels in the background have similar amplitude 

statistics contributed by such noise, thus are likely to be siblings or SHPs to each other.  The 

histograms with respect to the number of siblings and SHPs for the area of interest are given in 

Figure 3.5. Based on the histograms, it is seen that the overall number of siblings identified by 

the developed method is greater than the number of SHPs detected by “FaSHPS”, and a large 

number of isolated pixels without SHPs can also be seen from the histograms of SHPs. 

 

Figure 3.4. Number of identified resembling pixels. (a) Number of siblings for Dataset I-1. (b) 

Number of SHPs for Dataset I-1. (c) Number of siblings for Dataset I-2. (d) Number of SHPs 

for Dataset I-2. 

“FaSHPS” is reported to be computationally efficient when compared with other multitemporal 

algorithms (Jiang et al., 2015). The computational efficiency of the developed method, termed 

Multi-temporal Interferometry based on Amplitude Similarity (“MIAS”), was compared with 

“FaSHPS” using the same computer with MATLAB R2016b software and an Intel i7 2.40 GHz 

CPU. For Dataset I-1 with 60 SLCs, “MIAS” cost 0.9 s completing the identification process, 

while “FaSHPS” cost 9.1 s. The time costs of Dataset I-2 with 30 SLCs was 0.8 s for “MIAS” 

and 7.6 s for “FaSHPS”.  
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Figure 3.5. Histograms of siblings and SHPs in the area of interest for two datasets. 𝑁̅siblings and 

𝑁̅ SHPs are the average number of siblings and SHPs respectively. 𝑁̅ siblings=0 and 𝑁̅ SHPs=0 

represent the number of isolated pixels without siblings or SHPs respectively. (a) Histogram of 

siblings for Dataset I-1. (b) Histogram of SHPs for Dataset I-1. (c) Histogram of Sibling for 

Dataset I-2; (d) Histogram of SHPs for Dataset I-2. 

3.3.3 Coherence Estimation 

Two GBSAR interferometric pairs were utilised in the experiments for coherence estimation. 

One interferogram was constructed by two temporally consecutive SLC images in Dataset I-1, 

with a time difference between the two acquisitions of 10 s. The second interferogram was 

constructed from two SLC images with a 2-hour interval from Dataset I-2. The coherence for 

the two interferometric pairs was obtained by the following methods: the “boxcar” estimator, 

the “nl-InSAR” technique, the direct SHPs-based estimator (denoted as “SHPs-based”), the 

direct siblings-based (denoted as “Siblings-based”), the SHPs-based estimation with the second 

kind statistics (denoted as “SHPs+Sec”) and the improved siblings-based coherence estimation 

with the second kind statistics (denoted as “Siblings+Sec”). Note that “SHPs+Sec” is the 

coherence estimation algorithm proposed in “FaSHPS” and “Siblings+Sec” is the developed 

coherence estimation method in this study. The coherence maps for the interferogram with short 

time difference are shown in Figure 3.6.  

In comparison to all non-local methods, it is visible that the “boxcar” estimator tends to 

overestimate the coherence in the background and suffer resolution losses in the area of interest. 
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The findings are consistent with previous spaceborne SAR studies (e.g. Goel and Adam, 2012; 

Spaans and Hooper, 2016). The coherence maps in Figures 3.6(d) and (f) achieved based on the 

second kind statistics are visibly smoother than the direct non-local estimation in Figures 3.6(c) 

and (e).  

 

Figure 3.6. The coherence maps of the interferogram with a 10 s time interval from Dataset I-

1. (a) “Boxcar” (5×5 window). (b) “nl-InSAR” (search window: 21×21, patch window: 7×7, 

minimum equivalent number of looks: 10, number of iterations: 10). (c) “SHPs-based”. (d) 

“SHPs+Sec”. (e) “Siblings-based”. (f) “Siblings+Sec”.  

To quantitatively compare the performance of these methods, the mean and standard deviation 

of the coherence for the area of interest and the background were calculated. Moreover, the 

number of pixels in the area of interest and the background with coherence greater than a 

specified threshold value was recorded. The background, consisting of shadow zones and sea 

areas, was dominated by high noise and was expected to show low coherence. Thus, a greater 

number of coherent pixels in the background means a lower performance of the method in 

coping with GBSAR signal noise. These statistics are summarised in Table 3.4.  
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Table 3.4. The statistics of the coherence for the interferogram with 10 s elapse. 

 Area of interest Background 

 mean stda pixels mean std pixels 

Boxcar 0.82 0.17 8,480 (γ>0.6) 0.33 0.17 3,559 (γ>0.6) 

nl-InSAR 0.80 0.18 8,189 (γ >0.6) 0.17 0.13 950   (γ>0.6) 

SHPs-based 0.83 0.22 7,905 (γ >0.6) 0.14 0.09 216    (γ>0.6) 

SHPs+Sec 0.82 0.22 7,808 (γ >0.6) 0.12 0.07 105    (γ>0.6) 

Siblings-based 0.70 0.22 8,064 (γ >0.45) 0.13 0.08 131   (γ >0.45) 

Siblings+Sec 0.67 0.14 8,031 (γ >0.45) 0.12 0.05 4        (γ >0.45) 

a std is the standard deviation of the estimated coherence. 

The overestimation of the “boxcar” coherence for the de-correlated area was again confirmed 

by the high mean and standard deviation values and the large amount of false coherence in the 

background. The “nl-InSAR” approach obtains high coherence in the area of interest but with 

too many false coherent pixels in the background. Overall, SHPs or sibling-related coherence 

estimation methods were more robust to the noisy background than “boxcar” and “nl-InSAR”. 

In particular, the methods based on the second kind statistics can significantly mitigate the false 

coherence estimation in the background. The overall sibling-related coherence in the area of 

interest was lower than other methods. Thus, a different threshold value was used for the 

statistics of “Siblings-based” and “Siblings+Sec”. From Table 3.4, it can be observed that the 

number of false coherent pixels detected by the developed method (“Siblings+Sec”) was much 

less than that of the other methods, indicating the best performance in this experiment. 

Furthermore, the coherence estimation was also conducted for the second interferogram with a 

2-hour interval. Figure 3.7 displays coherence maps and Table 3.5 compares the statistics in the 

area of interest and the background.  
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Figure 3.7. Coherence of the interferogram with a 2-hour interval from Dataset I-2.  (a) 

“Boxcar”. (b) “nl-InSAR”. (c) “SHPs-based”. (d) “SHPs+Sec” (the decorrelated area caused by 

the sea level rise is roughly marked in the black box). (e) “Siblings-based”. (f) “Siblings+Sec”. 

 

Table 3.5. Coherence statistics for the interferogram with a 2-hour time span. 

 Area of interest Background 

 mean std pixels mean std pixels 

Boxcar 0.51 0.24 3,444 (γ>0.6) 0.31 0.15 1,875 (γ>0.6) 

nl-InSAR 0.52 0.25 3,516 (γ>0.6) 0.14 0.10 365    (γ>0.6) 

SHPs-based 0.51 0.30 3,567 (γ>0.6) 0.12 0.07 44      (γ>0.6) 

SHPs+Sec 0.48 0.29 3,083 (γ>0.6) 0.11 0.04 19      (γ>0.6) 

Siblings-based 0.34 0.22 2,575 (γ>0.45) 0.12 0.06  12     (γ>0.45) 

Siblings+Sec 0.31 0.19 1,973 (γ>0.45) 0.10 0.04  3       (γ>0.45) 
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From comparison of the coherence maps shown in Figures 3.6 and 3.7, it is evident that the 2-

hour interferogram suffers temporal decorrelation. As mentioned previously, FastGBSAR 

works at Ku band and the short wavelength is sensitive to surface changes and atmospheric 

variations. The vegetation coverage on the illuminated cliff façade increases the decorrelation. 

Moreover, decorrelation on the left part of the area of interest that is roughly marked by the 

black box in Figure 3.7(d) was likely caused by the tide that submerged the beach and rocks 

close to the sea over the course of the 2-hour interval. The temporal decorrelation also 

demonstrates the requirement for GBSAR time series analysis. 

According to the experimental results, the coherence statistics (including the mean, standard 

deviation and coherence amounts) in the area of interest achieved by “Siblings-based” and 

“Siblings+Sec” are lower than the counterparts of “SHPs-based” and “SHPs+Sec”, which is 

related to the fact that the number of siblings identified by the proposed “MIAS” was greater 

than the number of SHPs detected by “FaSHPS”. There are a number of isolated pixels without 

SHPs detected by “FaSHPS” and the coherence for an isolated pixel is always one (Ferretti et 

al., 2011) as coherence in this case is estimated merely using two complex pixel values (one on 

the master and the other on the slave). Reported by Jiang et al. (2014a) and Spaans and Hooper 

(2016), the estimation with insufficient samples would produce a biased result.  

Table 3.5 shows that “SHPs-based” and “SHPs+Sec” selected more coherent pixels in the area 

of interest than “Siblings-based” and “Siblings+Sec”. However, some coherent pixels selected 

by “SHPs-based” and “SHPs+Sec” can actually be decorrelated in the left part of the area of 

interest . To explain this, assume a pixel in the left part of the area of interest, which corresponds 

to a ground rock close to the sea, was visible in the master image but was submerged by water 

two hours later and became invisible in the slave image. The pixel should be decorrelated with 

a low coherence value in the 2-hour interferogram. However, this target is prone to be an 

isolated pixel with high coherence in “FaSHPS”, as hypothesis tests tend to reject samples with 

a strong reflection as heterogeneous. A number of this kind of submerged isolated targets were 

de-correlated but still showed high coherence in the 2-hour interferogram. This can be 

confirmed by the discontinuous interferometric phase of coherent pixels selected by 

“SHPs+Sec”, shown in Figure 3.9. On the other hand, the proposed method obtained the least 

number of false coherent pixels. In the proposed method, a minimum number of ten siblings 

were kept. Admittedly, the coherence of an isolated scatterer surrounded by distributed 

scatterers would be degraded in this case. Experimental results demonstrate that maintaining a 
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minimum number of siblings is able to reduce the bias in coherence estimation, which was also 

reported in previous studies (e.g. Jiang et al., 2014a; Spaans and Hooper, 2016).  

3.3.4 Phase filtering 

Coherence is an indicator of the interferometric phase quality. Usually, the deformation 

measurement only focuses on coherent pixels. Thus, filtering is further carried out to increase 

the SNR of the interferometric phase for coherent pixels. To validate the feasibility of the 

developed non-local method on phase filtering, experiments were conducted using the two 

interferograms introduced previously. The results achieved by the developed method were 

compared with results from the “boxcar” multilooking, the “nl-InSAR” and the SHPs-based 

filtering method. Pixels for each filtering process were separately detected by their own 

coherence. Only pixels with coherence above the specified threshold values were processed. 

The performance of filtering methods can be indicated by a Quality Factor (denoted as Q) 

(Serkan et al., 2008). Q for the original image before filtering is always equal to one. Any shift 

in the mean value of the interferometric phase before and after filtering will decrease Q and be 

evaluated as a degradation in filter capability. A reduction of the standard deviation of the 

interferometric phase will increase Q. A higher Q value implies a better performance of the 

filtering technique. Thus, the quality factor Q is used to quantitatively compare the performance 

of these filtering methods.  

For the interferogram formed by two sequential acquisitions with only ten seconds time 

difference, an assumption is that no significant surface movements took place and the 

atmospheric conditions remained relatively stable over such a short period. Accordingly, the 

phase change of coherent pixels should be close to zero. The wrapped interferometric phase of 

coherent pixels and phase histograms before and after filtering for this interferogram are given 

in Figure 3.8. Q values achieved by different methods are annotated to the phase histograms in 

Figure 3.8. 
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                     (a)                                             (b)                                                 (c) 

Figure 3.8. Filtering results for the interferogram with 10 s elapse. (First line) The original 

wrapped interferogram. (Following lines) (a) the interferometric phase of coherent pixels before 

filtering; (b) the filtered interferometric phase, and (c) phase histograms and the filtering quality 

factor, obtained by (top to bottom) the “boxcar” multilooking (5×5 window), the “nl-InSAR”, 

the SHPs-based filtering and the developed siblings-based filtering. Correspondingly, coherent 

pixels are respectively determined by the “boxcar” estimation (γ>0.6), “nl-InSAR” (γ>0.6), 

“SHPs+Sec” (γ>0.6) and “Siblings+Sec” (γ>0.45). Pixels in decorrelated areas are marked in 

brown for the convenience of visualization. 
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From the phase histograms in Figure 3.8(c), it can be seen that the mean values of the 

interferometric phase in the coherent areas before and after filtering are close to zero. This 

supports the assumption that no significant surface movements and environmental variations 

occurred during the short time elapse in the observed area. Among the four filtering methods, 

the developed siblings-based filtering achieved the best Q values (22.82), followed by “boxcar” 

multilooking (10.97), nl-InSAR (2.88) and SHPs-based filtering (1.14).  

The number of pixels with an absolute phase change greater than π/3 were also recorded. A 

larger number implies a poorer filtering performance under the assumption of no significant 

surface movements and environmental variations. The values for “boxcar”, “nl-InSAR”, the 

SHPs-based filtering and the developed siblings-based filtering were 6, 16, 145 and 1 

respectively. Similarly, the developed siblings-based filtering outperformed other methods 

based on this experiment and the SHPs-based filtering obtained a large number of pixels with 

an absolute phase change greater than π/3. To discern the reason, the average number of detected 

SHPs and siblings for all 145 pixels was calculated. A striking contrast between the two values 

was witnessed: the average SHPs was 0.9 while the average siblings was 37.4. This finding 

agrees with previous studies (e.g. Ferretti et al., 2011; Spaans and Hooper, 2016) that 

maintaining a minimum number of resembling samples can facilitate spatial filtering and 

coherence estimation. The SHPs-based method was able to distinguish heterogeneity and lead 

to a large number of isolated pixels, this, however, may bring problems in phase filtering. It is 

worth noting that the “FaSHPS” algorithm was originally proposed only for coherence 

estimation. These findings were also verified by the experimental results for the 2-hour 

interferogram, as shown in Figure 3.9. The overall performance of different methods for this 

interferometric pair with a longer time elapse was similar to that with a shorter time elapse. The 

developed siblings-based filtering showed good filtering performance with a Q factor reaching 

9.41, which was much higher than the other techniques.  
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                     (a)                                                  (b)                                                      (c) 

Figure 3.9. Filtering results for the 2-hour interferogram. The implication of subfigures is as for 

Figure 3.8. Pixels in de-correlated areas are marked in brown for the convenience of 

visualization. 
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3.3.5 Demonstration 

Interferograms suffering from temporal decorrelation will have limited use for deformation 

monitoring. The interferogram with a 2-hour interval in this study displayed temporal 

decorrelation. Time series analysis is thus proposed to overcome this limitation. The proposed 

non-local method was integrated into a real time ground-based SAR (RT-GBSAR) time series 

chain (see Chapter 4 for details) based on the SBAS algorithm. The coherence of each 

interferogram in the network was calculated by the developed method, namely the siblings-

based coherence with the estimation of the second kind statistics. Coherent pixels were detected 

via a full-rank criterion (see Chapter 4 for details), which enables the selection of not only 

qualified PCPs, but also PSs. The interferometric phase of detected pixels was firstly de-noised 

using the non-local filter. The unwrapped phase of detected pixels was then obtained using the 

Minimum Cost Flow approach (Costantini and Rosen, 1999). Finally, atmospheric artefacts 

must be properly compensated in order to obtain precise displacement time series. Considering 

the moderate size of the test site, the atmospheric variation was modelled as a range-dependent 

model through highly-coherent pixels selected from stable areas and under the medium 

homogeneity hypothesis, referring to the approach presented in Pipia et al. (2008).  

In the experiments, the temporal baseline constraints were set as one minute for Dataset I-1 and 

20 minutes for Dataset I-2, with consideration for the computational efficiency and temporal 

decorrelation. Thus, there were 339 interferograms for Dataset I-1 and 135 for Dataset I-2. A 

full combination of interferograms can provide the most redundant observations, but it also 

increases the computation load and degrades the real-time performance in urgent situations. 

Parameter configurations were kept the same for both datasets: the similarity threshold was set 

to 0.85; the minimum number of siblings was set to 10; the non-local window size was 15 x 15 

pixels and the coherence threshold value was 0.45. A subset of highly-coherent pixels with 

mean coherence over all interferograms of > 0.85 was selected from stable areas to perform the 

linear regression of atmospheric variations (i.e. y = a0 + a1x, where y denotes the atmospheric 

variation and x the range between the radar sensor and the coherent target; a0  and a1  are 

coefficients). The stable areas can be identified through a priori knowledge and visual 

inspection of the superposition map of atmospheric variations and displacements. Based on the 

linear range-dependent model, the atmospheric variations of all coherent pixels were 

compensated and thus separated from the cumulative displacements.  
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Regarding Dataset I-1, the correction of atmospheric variations and the obtainment of 

cumulative displacements are given in Figure 3.10. The superposition map of atmospheric 

variations and displacements in Figure 3.10(a) can be used as an auxiliary visual material to 

identify stable areas. According to Figures 3.10(b) and 3.10(c), it appeared that the atmospheric 

conditions remained relatively stable during the 10-minute observation period. However, 

obvious deformation signals can be observed in three areas (Figure 3.10(d)). These areas are 

near the sea and the ground targets are primarily rocks and sands. To investigate these signals, 

three pixels (P1, P2 and P3) were selected to look into their temporal evolution. The physical 

feature of pixels P1, P2 and P3 are rocks. A stable pixel (P4) was also selected as a comparison. 

The line graphs in Figure 3.10(c) show the time series of the SLC raw phase (𝜓 ), the 1D 

unwrapped phase (𝜑1D) and cumulative displacements (𝑑) for these pixels. Particularly, 𝜑1D is 

a vector of temporally unwrapped phase on interferograms formed with the first (earliest) SLC 

as the master and others as slaves. It is worth noting that 𝜑1D is not the phase used in time series 

analysis and it is only used here as an auxiliary evidence of the high phase quality and the rough 

change trend of these pixels. In general, pixels P1, P2, and P3 experienced a gradual process of 

change. All the three pixels exhibited negative displacements which suggested the targets were 

moving towards the radar direction during the observation period. The overall trend of 

cumulative displacements agreed with the trend of 𝜑1D . On the other hand, there is 

inconsistency in scale as 𝜑1D is likely to have unwrapping errors and it is not the unwrapped 

phase used in time series analysis. Moreover, non-local filtering and atmospheric estimation 

also altered the principal value of the interferometric phase used for deformation derivation.  

The results of Dataset I-2 are shown in Figure 3.11. It can be observed that pixels P1 and P3 in 

Figure 3.10(d) disappeared from the results of Dataset I-2. This is because the first image of 

Dataset I-2 was acquired at around midday and the last one was captured two hours later. During 

that time, the areas where P1 and P3 were located became submerged due to the sea tide. 

Besides, the linear trend between the atmospheric variation and the range is visible in Figure 

3.11(b). The superposition (Figure 3.11(a)) is dominated by the atmospheric variation (Figure 

3.11(c)). From the deformation map in Figure 3.11(d), no significant signals can be found in 

the cliff façade or the castle buildings as the cumulative displacements at these areas vary within 

2 mm. Similar to Dataset I-1, deformation signals appeared in the areas near the sea. Pixels P2 

and P5 experienced approximate displacements of -3.5 mm, suggesting the targets moved 

towards the radar direction, while P4 remained stable over the 2-hour observation period 

(Figure 3.11(e)). 
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Figure 3.10. GBSAR time series analysis results of Dataset I-1. (a) The superposition map of 

displacements and atmospheric variations. (b) Linear regression of atmospheric variation. (c) 

Atmospheric variation map over 10 minutes of the acquisition time. (d) Co-registration of the 

displacement map with the top view of the site in Google Earth. (e) The time series raw phase, 

1D unwrapped phase and cumulative displacements of the four pixels.  
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Figure 3.11. GBSAR time series analysis results of Dataset I-2. (a) The superposition map of 

displacements and atmospheric variations over two hours of the acquisition time. (b) Linear 

regression of atmospheric variation. (c) The atmospheric variation map over 2-hour acquisition 

time. (d) The displacement map co-registered with the top view of the site in Google Earth. 

Note that the coverage of this displacement map is smaller than that of Dataset I-1 due to sea 

tides. (e) The time series atmospheric variations (datm) and cumulative displacements of pixels 

P2, P4 and P5. 

3.4 Analysis and discussions 

The performance of the developed non-local method on coherence estimation and phase 

filtering has been demonstrated and evaluated. Here the focus is on justification of parameters 

involved in the developed non-local method: the similarity threshold, the coherence threshold, 

the non-local window size and the minimum siblings. Based on Dataset I-2, different 

combinations of these parameters were used in time series analysis. The number of detected 

coherent pixels, the RMS of inversion precision (defined in Appendix A) for all coherent pixels 
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and the time cost is recorded in Table 3.6.  

Table 3.6. Results of different parameter configurations in GBSAR time series analysis. 

 𝑆𝑡ℎ𝑟
𝑎 𝑀𝑠𝑖𝑏

𝑏 𝛾𝑡ℎ𝑟
𝑐 𝑊𝑑 𝑛CPS

𝑒 RMS𝑓 𝑡  𝑔 

1 0.8 10 0.85 15×15 417 0.06 mm 310 s 

2 0.85 10 0.85 15×15 469 0.06 mm 283 s 

3 0.9 10 0.85 15×15 540 0.07 mm 267 s 

4 0.95 10 0.85 15×15 595 0.08 mm 211 s 

5 0.8 10 0.45 15×15 5,312 0.12 mm 304 s 

6 0.85 10 0.45 15×15 5,283 0.14 mm 300 s 

7 0.9 10 0.45 15×15 5,441 0.16 mm 277 s 

8 0.95 10 0.45 15×15 5,867 0.21 mm 211 s 

9 0.85 10 0.35 15×15 7,520 0.18 mm 297 s 

10 0.85 10 0.55 15×15 3,429 0.10 mm 296 s 

11 0.85 10 0.45 11×11 5,630 0.18 mm 206 s 

12 0.85 10 0.45 19×19 5,120 0.12 mm 378 s 

13 0.85 5 0.45 15×15 5,312 0.15 mm 277 s 

14 0.85 5 0.85 15×15 511 0.06 mm 275 s 

15 0.85 25 0.45 15×15 5,226 0.13 mm 276 s 

16 0.85 25 0.85 15×15 363 0.05 mm 272 s 

a𝑆𝑡ℎ𝑟  is the similarity threshold; b𝑀𝑠𝑖𝑏  is the number of minimum siblings; c𝛾𝑡ℎ𝑟  is the coherence 

threshold; d 𝑊 is the window size; e 𝑛CPS is the number of coherent pixels; f RMS is the root mean square 

of inversion precision; g𝑡 is the time cost. 

By comparing Configurations 1 - 8, it is found that the similarity threshold affects the number 

of coherent pixels. Particularly, Configurations 5 - 8 show that a higher similarity increases the 

number of highly-coherent pixels (γ > 0.85 ) and degrades the precision. This is because a 

higher similarity threshold means fewer siblings, which leads to increased computational 

efficiency and less smoothness in the coherence estimation and interferometric phase. 

Meanwhile, a too low similarity threshold should also be avoided as it would detect too many 

inaccurate siblings. Figure 3.12 compares the effect of the similarity threshold on coherence 

estimation. A low similarity threshold leads to serious resolution loss. 

Configurations 2, 6, 9 and 10 demonstrate that a lower coherence threshold value can enlarge 

the number of coherent pixels at the expense of precision. Based on Configurations 2, 11 and 

12, it is clear that the non-local window size has a considerable effect on computation efficiency. 

A small window size is efficient but may have limited ability in phase de-noising. In addition, 

maintaining more siblings will also degrade coherence estimation, especially for highly-
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coherent pixels in the areas with rich texture according to Configurations 2, 6 and 13 - 16. On 

the other hand, too few siblings would cause issues in phase filtering, which has been reported 

in the experiments. The parameter configuration is therefore a trade-off between characteristics.  

 

Figure 3.12. Coherence estimation by the developed method with different similarity threshold 

values. (a) Thresholding by 0.85. (b) Thresholding by 0.6.   

3.5 Summary 

In this chapter, a simple but efficient similarity measure has been presented to identify 

resembling pixels for distributed targets, together with a comprehensive non-local method 

(“MIAS”) based upon this concept. The accurate estimation of coherence and interferometric 

phase can be achieved by the developed method and has been integrated into a complete 

GBSAR time series analysis. The following conclusions are reached on the basis of the 

experimental results and related analysis:  

(1) The feasibility of the developed similarity on the identification of resembling samples 

from a non-local window has been verified by using a number of selected pixels. The proposed 

similarity measure overcomes the limitations of existing methods on processing FastGBSAR 

datasets and extracts all test samples correctly.  

(2) Experiments have been performed with two FastGBSAR datasets. It has been 

successfully demonstrated that the identification process of the proposed “MIAS” method is 

more efficient and faster than the “FaSHPS” algorithm. 

(3) Qualitative and quantitative analysis has been conducted to assess the performance of 

“MIAS” on coherence estimation and phase filtering. “MIAS” can largely mitigate the 

coherence estimation bias and avoid overestimating the de-correlated area without the cost of 

resolution. The non-local means filtering based on the identified siblings achieves a high quality 

factor in de-noising the interferometric phase.  
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(4) The integration of the proposed “MIAS” into a complete GBSAR time series analysis 

demonstrates the potential of “MIAS” in continuous deformation monitoring, thereby 

facilitating a range of applications for which GBSAR interferometry is suited. 

Although the experimental datasets were acquired with only short-term observation periods, 

the combination of the proposed non-local method and the SBAS algorithm is potentially 

suitable for GBSAR acquisitions for long-term observation periods as long as coherence exists 

between acquisitions with small temporal baselines. It is also worth noting that the developed 

non-local method can produce accurate results for coherence estimation and phase filtering but 

it may have limited use in low coherent areas, such as natural slopes with thick vegetation 

coverage. Decorrelation becomes a serious issue in this case due to the short-wavelength 

character of a typical GBSAR system, thus hampering the reliable use of microwave 

interferometry. Deformation monitoring in low coherent areas can, however, be achieved using 

artificial corner reflectors (Crosetto et al., 2014a). The application of the developed approach 

to discontinuous GBSAR acquisitions will be addressed in Chapter 6 in this thesis. 
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Chapter 4. A new approach to selecting coherent pixels 

The study in this Chapter has been published in the following research journal paper: 

Wang, Z., Li, Z., Mills, J., 2018. A new approach to selecting coherent pixels for ground-based 

SAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing 144, 

412-422. 

4.1 Introduction 

A critical step in InSAR time series analysis is the selection of coherent pixels with high SNR 

in interferometric phase (Blanco-Sanchez et al., 2008). Following selection, further analysis 

and interpretation is then conducted only on the selected pixels. ADI and coherence are two 

commonly used criteria (Iglesias et al., 2014c) for the selection of coherent pixels as they are 

strongly correlated with the standard deviation of the interferometric phase noise (e.g. Bamler 

and Hartl, 1998; Ferretti et al., 2001). According to the selection strategy and the processing of 

selected pixels, a number of InSAR time series analysis algorithms have been developed over 

the last two decades (Osmanoğlu et al., 2016). As introduced in Section 2.2.2, these algorithms 

fall into two broad categories: PSI (e.g. Ferretti et al., 2001; Hooper, 2008) and SBAS (e.g. 

Berardino et al., 2002; Lanari et al., 2004).  

PSI techniques are commonly based on a single-master configuration, with the main drawback 

of PSI techniques being the low spatial density of targets that behave coherently over the whole 

observation span (Perissin and Wang, 2012). By contrast, SBAS approaches construct a network 

of interferograms with multiple master images and small baselines (Shanker et al., 2011). 

However, as pointed out by Spaans and Hooper (2016), coherent points are variable from one 

interferogram to another, rendering time series analysis complicated. In other words, there are 

some partially coherent pixels (PCPs) that are coherent in some interferograms but not in others. 

Regarding the selection of coherent pixels in a redundant network, Crosetto et al. (2008) 

selected only pixels for which coherence was greater than a given threshold for all 

interferograms. PCPs were discarded in this approach, meaning the loss of some useful 

observations. Perissin and Wang (2012) formed a pixel-dependent network for each pixel by 

imposing a threshold on the coherence and only pixels with a connected network were analysed. 

The subset of interferograms with respect to the minimum spanning tree graph in the network 

were used for the estimation of height and deformation trends. Such an approach fails to make 
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the most effective use of redundancies and thus degrades the accuracy since a higher 

redundancy implies a more reliable displacement rate estimation. Therefore, a new selection 

criterion of PCPs is proposed in this chapter that aims to maximise the density of selected pixels 

and optimise the reliability of GBSAR time series analysis by making the most of coherent 

phase redundancies.  

Specifically, the approach proposed in this chapter forms a redundant interferogram network 

with a specified baseline threshold. A pixel-dependent matrix is then constructed for each pixel 

based on its coherence occurrences over all interferograms in the network. Pixels with a full-

rank matrix are selected for further time series analysis. The proposed criterion enables the 

selection of not only qualified PCPs, but also PSs that behave coherently over the whole time 

span. Interferometric phase observations of selected pixels are spatially filtered and unwrapped. 

The inversion of the deformation trend is achieved only based on the coherent interferometric 

phase after filtering and unwrapping, which guarantees a reliable solution. In principle, the 

proposed approach supports any co-registered SAR data, but this chapter only focuses on 

GBSAR deformation monitoring.  

4.2 Methodology 

4.2.1 Selection criterion of coherent pixels  

Analysis starts with a stack of SLC images (𝐸0, 𝐸1, … , 𝐸𝑁) relative to the same illuminated 

region, acquired at times 𝐭 (𝑡0, 𝑡1, … , 𝑡𝑁) in chronological order. A redundant network of L 

interferograms formed by SLC images is assumed. According to the description in Section 2.2.1, 

the differential interferometric phase for a target between the SAR acquisitions at times 𝑡𝑀 (for 

the master image) and 𝑡𝑆 (for the slave image) always comprises at least three terms (Crosetto 

et al., 2015):  

 𝜑𝑡𝑀𝑡𝑆 = 𝜑𝑡𝑀𝑡𝑆
𝑑𝑖𝑠𝑝 + 𝜑𝑡𝑀𝑡𝑆

𝑎𝑡𝑚 + 𝜑𝑡𝑀𝑡𝑆
𝑛𝑜𝑖𝑠𝑒. (4.1) 

The goal of InSAR time series analysis for deformation monitoring is to obtain the deformation 

time series, denoted as 𝑑𝑡𝑖
𝑑𝑖𝑠𝑝(𝑖 = 1,⋯ ,𝑁)  with respect to a reference acquisition 𝑡0 . As 

recognised in previous studies (e.g. Berardino et al., 2002; Li et al., 2009), the mean velocity 

between time-adjacent acquisitions is a preferable choice in InSAR time series analysis in order 

to avoid large discontinuities in cumulative deformations and to obtain a physically reliable 
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solution. In this case, no prior knowledge about the deformation is required in the network 

inversion. The displacement term in the interferometric phase can be expressed as: 

 𝜑𝑡𝑀𝑡𝑆
𝑑𝑖𝑠𝑝 =

4𝜋

𝜆
[𝑑𝑡𝑀
𝑑𝑖𝑠𝑝 − 𝑑𝑡𝑆

𝑑𝑖𝑠𝑝] =
4𝜋

𝜆
∑ 𝑣𝑘

𝑑𝑖𝑠𝑝𝑆−1
𝑘=𝑀 Δ𝑡𝑘 = ∑ 𝜑𝑡𝑘𝑡𝑘+1

𝑑𝑖𝑠𝑝𝑆−1
𝑘=𝑀 , (4.2) 

where 𝑣𝑘
𝑑𝑖𝑠𝑝

 is the displacement velocity and 𝜑𝑡𝑘𝑡𝑘+1
𝑑𝑖𝑠𝑝

 is the associated phase change between 

the 𝑘𝑡ℎ and the (𝑘 + 1)𝑡ℎ acquisitions and 𝑡𝑘 is the time interval between them. Similarly, the 

time-series atmospheric variation is denoted as 𝑑𝑡𝑖
𝑎𝑡𝑚(𝑖 = 1,⋯ ,𝑁) and the atmospheric phase 

contribution in the interferometric phase can be written as: 

 𝜑𝑡𝑀𝑡𝑆
𝑎𝑡𝑚 =

4𝜋

𝜆
[𝑑𝑡𝑀
𝑎𝑡𝑚 − 𝑑𝑡𝑆

𝑎𝑡𝑚] = ∑ 𝜑𝑡𝑘𝑡𝑘+1
𝑎𝑡𝑚𝑆−1

𝑘=𝑀 , (4.3) 

where 𝜑𝑡𝑘𝑡𝑘+1
𝑎𝑡𝑚  represents the atmospheric phase variation between the 𝑘𝑡ℎ and the (𝑘 + 1)𝑡ℎ 

acquisitions. Together with Equations (4.2) and (4.3), the matrix form with respect to Equation 

(4.1) can be generalized for the entire interferogram network:  

 

{
 

 
𝐁𝐿×𝑁 𝚽𝑁×1 = 𝛅𝚽𝐿×1 + 𝛆𝐿×1,                                                                     

𝚽 = [(𝜑𝑡0𝑡1
𝑑𝑖𝑠𝑝 + 𝜑𝑡0𝑡1

𝑎𝑡𝑚)   (𝜑𝑡1𝑡2
𝑑𝑖𝑠𝑝 + 𝜑𝑡1𝑡2

𝑎𝑡𝑚)  …  (𝜑𝑡𝑁−1𝑡𝑁
𝑑𝑖𝑠𝑝 + 𝜑𝑡𝑁−1𝑡𝑁

𝑎𝑡𝑚 )]
T

,

𝛅𝚽 = [𝜑𝑡1𝑡2    …   𝜑𝑡𝑀𝑡𝑆   …   𝜑𝑡𝑁−1𝑡𝑁]
T
,                                                  

 (4.4) 

where 𝐁 is the coefficient matrix; 𝚽 is the matrix containing the incremental time series of phase 

change with respect to the superposition of both displacement and atmospheric variation; 𝛅𝚽 is 

the matrix of redundant unwrapped interferometric phase 𝜑𝑡𝑀𝑡𝑆; 𝛆 is the noise matrix. Based on 

Equation (4.4), the inversion can be performed via least squares using reliable interferometric 

phase with high SNR and low noise for a reliable solution. Thereafter, to obtain the displacement 

trend, the atmospheric variations should be compensated by any suitable methods (e.g. Iannini 

and Guarnieri, 2011; Li et al., 2009).  

Within this context, a new approach for the robust selection of coherent pixels is proposed. 

Specifically, a threshold is imposed on coherence to determine whether a pixel is coherent for 

one interferogram or not. The coherence of the pixel above the threshold means an acceptable 

phase quality of the corresponding interferometric phase in the inversion. Considering a number 

of pixels are partially coherent in the network, the coherence occurrences with respect to a pixel 

must ensure Equation (4.4) is a well-determined system, namely the rank of matrix 𝐁 is equal 

to the number of unknowns. Accordingly, all elements in the kth row of 𝐁 will be set as zero if 
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the coherence on the kth interferogram is lower than the specified threshold. The selection 

criterion is that provided the matrix 𝐁 related to a particular pixel is full-rank, then this pixel is 

selected for the time series analysis. Consequently, the constructed matrix 𝐁 is based on the 

coherence occurrences over the entire interferogram network. For instance, it is assumed that 

there is a vector of interferograms (𝐼0,1, 𝐼0,2, 𝐼1,2, 𝐼1,3, 𝐼2,3)  formed by a vector of images 

(𝐸0, 𝐸1, 𝐸2, 𝐸3) acquired at times (𝑡0, 𝑡1, 𝑡2, 𝑡3) with 𝑡0 as the reference. For a pixel that is only 

coherent on  𝐼0,1, 𝐼1,3 and 𝐼2,3, the corresponding matrix 𝐁 is: 

 𝐁 =

[
 
 
 
 
1 0 0
0 0 0
0 0 0
0 1 1
0 0 1]

 
 
 
 

. (4.5) 

As 𝐁 is a full-rank matrix in this case, this pixel is selected. A completely coherent pixel always 

has a full-rank matrix 𝐁, thus can be selected by the proposed criterion. A pixel, associated with 

a full-rank 𝐁, is selected for time series analysis. A full-rank 𝐁 means that the interferogram 

network is connected and the inversion in the time series estimation via least squares is enabled 

using only the coherent phase of this pixel. The proposed approach makes the most of redundant 

observations and allows an adjustment to be made in order to obtain a final reliable value for 

the unknown.   

Particularly, coherence is estimated by the non-local method “MIAS” introduced in the previous 

chapter. Also, non-local filtering of “MIAS” is applied to improve the SNR of the 

interferometric phase of the selected pixels. 

4.2.2 Time series analysis procedure 

The aforementioned coherent pixel selection approach has been incorporated into an RT-

GBSAR time series analysis chain (see Chapter 5 for details) based on the SBAS algorithm. As 

datasets can be acquired continuously with a zero-baseline, only the temporal baseline is 

considered in this analysis. Specifically, a temporal baseline constraint is set to construct the 

redundant interferogram network. The coherence of each interferogram in the network is 

calculated by the non-local method “MIAS”, namely the siblings-based coherence with the 

estimation of the second kind statistics. Coherent pixels are detected via the criterion presented 

in this chapter. Further analysis and interpretation are then conducted only on the detected 

coherent pixels. The interferometric phase of detected pixels is de-noised using the non-local 
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filter of “MIAS”. The unwrapped phase of detected pixels is then obtained using the StaMPS 

3D unwrapping approach (Hooper, 2010). Thereafter, the least-squares solution for each pixel 

can be achieved in the time series estimation using only the coherent phase of this pixel.  

The inverted result at this stage is the sum of the surface displacements and the atmospheric 

variations. To obtain precise displacement time series, any atmospheric artefacts should be 

properly compensated, which can be approached by means of different techniques (Iannini and 

Guarnieri, 2011). The proposed approach adopts two previous representative works (e.g. 

Iglesias et al., 2014b; Pipia et al., 2008) to achieve this. For scenarios with flat topography, the 

atmospheric variations are modelled as a linear function of range under the medium 

homogeneity hypothesis (Pipia et al., 2008) and separated from the displacements. In scenes 

with significant topographic variations, the assumption of spatial homogeneity no longer 

applies due to the fluctuations of atmospheric parameters such as temperature, pressure, and 

humidity on the spatial domain (Iglesias et al., 2014b). Therefore, for cases with significant 

topography, atmospheric variation can be considered as a range- and height-dependent model 

and compensated with the support of the height information (Iglesias et al., 2014b).   

4.3 Experimental results 

4.3.1 Data used in experiments 

Two datasets were used to validate the proposed approach. The first dataset was Dataset I-2 of 

the Tynemouth Cliff (30 SLC images with a temporal resolution of four minutes), which was 

introduced in Section 3.3.1. The second dataset (Dataset II) was collected by monitoring the 

Queen Elizabeth II Metro Bridge, spanning the River Tyne in Newcastle upon Tyne, UK. The 

FastGBSAR unit was tilted up to an angle of 30 degrees to scan the bridge superstructure which 

has a steel truss with fabricated box chords construction. The four concrete piers of the bridge 

and their expansion joints were also imaged. An overview of the site is given in Figure 4.1. 

Dataset II consisted of 16 acquisitions collected within two and a half minutes with an equal 

repeat interval of 10 seconds. The dimension of each image was 256 by 88 pixels. The 

polarization and spatial resolution of this dataset were identical to the first dataset. A train 

crossed the bridge during the period of data acquisition, taking around 16 seconds from entering 

the bridge to completely exiting. Consecutive acquisitions over this short period of time were 

used to detect the movements of the bridge as the train travelled across it. 
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Figure 4.1. An overview of Dataset II. (a) The deployment of the FastGBSAR system for data 

collection. (b) The mean amplitude image of this dataset, shown in decibel. Two reference 

points are identified, based on the relative geometry parameters between the bridge and the 

radar system, added to assist interpretation of the GBSAR image geometry. 

4.3.2 Demonstration 

The temporal baseline constraint was set as 24 minutes for Dataset I-2, considering the 

computational efficiency and the temporal decorrelation, the justification for which is given in 

Section 4.4.2. Thus, one image was used to generate interferograms with its six previous and 

six subsequent images and there were 159 interferograms in the network. A full combination of 

interferograms can provide the most redundant observations, but it also increases the 

computation load and degrades the real-time performance in time-critical applications. The 

coherence threshold value was set as 0.45 and other parameters related to non-local coherence 

estimation and phase filtering were set as follows: the similarity threshold was empirically set 

as 0.85; the non-local window size was 15 by 15; a minimum of 10 siblings were kept for each 

pixel for a reliable estimation.  
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Figure 4.2. Results of the GBSAR time series analysis. (a) Coherent pixels. (b) Inversion 

precision (Appendix A). (c) Coherent pixel candidates. (d) Linear regression of atmospheric 

variations. (e) The atmospheric variation map over the entire period of acquisition (two hours). 

(f) The cumulative displacement map over the whole period of acquisition time (two hours). 

The results of Dataset I-2 are summarized in Figure 4.2. The number of detected coherent pixels 

was 5,068 (Figure 4.2(a)), consisting of 2,042 fully- and 3,026 partially-coherent pixels. Further 

analysis was carried out only on detected coherent pixels. Least squares inversion with 

redundant observations allows a precision assessment of the solution. The inversion precision 

for each pixel was achieved on the basis of phase residuals, with the definition of inversion 

precision for each pixel given in Appendix A. The overall precision is appraised by the RMS of 

the inversion precision values. Small precision values were achieved in this experiment, as 

summarized in Figure 4.2(b), implying a high consistency of the filtered and unwrapped 

interferometric phase in the least squares inversion. Drawing on previous studies (e.g. Pipia et 

al., 2008; Rödelsperger, 2011), a subset of highly coherent pixels, termed coherent pixel 

candidates (Figure 4.2(c)), were selected by spatial gridding whereby each candidate had the 
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best coherence within a grid unit. Coherent pixel candidates were used to perform the linear 

regression of atmospheric variations with the assumption that their displacement components 

were randomly distributed along the range. The regression result is summarized in Figure 4.2(d), 

which shows a reasonable trend that atmospheric variation increases with the range. Residuals 

of the linear regression can be mainly attributed to atmospheric turbulence and stratification 

(e.g. Hanssen, 2001; Iglesias et al., 2014b). Based on the linear model in Figure 4.2(d), the 

atmospheric variations of all coherent pixels were compensated, and thus separated from any 

cumulative displacements. The modelled atmospheric variation map over the whole acquisition 

period (two hours) is shown in Figure 4.2(e) and the final cumulative displacement map is 

shown Figure 4.2(f). It is clear that the atmospheric variation dominates the change and no 

significant local signals can be found in the final cumulative displacement map. Moreover, the 

cumulative displacements of all coherent pixels are within 2 mm, which can be contributed by 

observation noise and the residuals of atmospheric compensation. Thus, it is a fair conclusion 

to state the cliff and castle buildings were stable over the observation time.  

Regarding Dataset II and the bridge monitoring, deformation took place in a short period when 

a train travelled across the bridge. To produce a quick response for the fast-changing process, 

the temporal baseline constraint was set as half a minute for Dataset II. In this case, each image 

was involved in the interferogram generation with its three previous and three subsequent 

images. Thus, 42 interferograms were formed in the redundant network. Based on a priori 

geometry information about the bridge and the radar system, a shadow zone, caused by the near 

expansion joint and ranging from 70 m to 90 m, was masked out before the selection of coherent 

pixels. The coherence threshold was set as 0.6 to select qualified coherent pixels. The 

parameters related to the non-local estimation were the same as the first dataset. In this 

experiment, a total of 5,720 pixels were selected, comparing 4,446 fully- and 1,274 partially-

coherent pixels (Figure 4.3(a)). The RMS of the inversion precision was 0.08 mm (Figure 

4.3(b)).  



93 

 

 

Figure 4. 3. Results of Dataset II. (a) Detection of coherent pixels. (b) Inversion precision of 

coherent pixels. 

As the acquisition time for this dataset was only two and a half minutes, an assumption made 

was that the environmental conditions were stable over this extremely short observation period. 

In other words, the atmospheric phase change was deemed to be zero and not considered in 

time series analysis. Based on this assumption, the time series of displacement was achieved 

without compensation for the atmospheric artefacts. To highlight the bridge deformation as the 

train travelled across it, the incremental displacement maps with regard to coherent pixels are 

shown in Figure 4.4.  
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Figure 4.4. Dataset II: time series of cumulative displacements at selected coherent pixels. The 

time interval was 10 s. The first image acquired at 11:58:33 was selected as the reference. A 

train crossed the bridge, resulting in significant deformation signals in the 6th and 7th 

displacement maps (first two of the second row).  

A synchronous video shows that a train crossed the bridge from the far side of the bridge 

(relative to the location of the FastGBSAR) at around 11:59:28 and completely exited the 

nearest end at around 11:59:44, taking approximately 16 seconds and spanning two FastGBSAR 

acquisitions created at UTC times 11:59:33 and 11:59:43, respectively. Constrained by the field 

of view of the video camera, the complete crossing of the bridge could not be recorded. Three 

video frames are given in Figure 4.5 to illustrate the situation.    
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Figure 4.5. Three video frames showing the train crossing the bridge. 

Negative displacement values mean targets move closer to the radar system along the LOS 

direction relative to their reference positions. In this case, negative deformation implies a 

lowering of the bridge superstructure and positive deformation means uplift, as the radar was 

tilted up to observe the bridge. The first obvious deformation signal appears in “115833-115933” 

and shows that the middle bridge superstructure lowers by approximately 2 mm and the near 

portion of the bridge superstructure uplifting by several sub-millimetres, suggesting the train 

was primarily located at the far side of the bridge during the period of the acquisition “115933”. 

The next deformation map “115833-115943”, shows an uplift of approximately 1.4 to 0.5 mm 

for the superstructure from ranges between 95 to 150 m, respectively, and subsidence occurring 

at the very nearside, which implies the train was primarily located at the near side of the bridge 

during the period of the acquisition “115943”. The deformation signals are therefore consistent 

with the synchronous video recording. 

Note that the aliasing of the near two piers with the nearside bridge superstructure exists due to 

the inherent azimuth ambiguities caused by the oblique view geometry of the radar system. It 

is possible that results are degraded with respect to the corresponding area as a consequence. 

Moreover, the bridge might have vibrated with a certain magnitude whilst the train crossed. In 

SAR mode, it is not possible to measure higher-frequency vibrations of the bridge, however, 

the experiment demonstrates the potential of GBSAR time series analysis for monitoring sites 

with a fast-changing rate. 
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4.4 Analysis and discussions  

4.4.1 Coherent pixels selection 

The proposed approach was compared with: (a) the selection of coherent pixels using a single 

pair of GBSAR images; and (b) the PS selection based on ADI using a stack of GBSAR SLC 

images. Based on the same coherence estimation algorithm and threshold value used in the time 

series analysis, the coherence between the first and the last SLCs in Dataset I-2 was calculated. 

Coherent pixels were then selected on the basis of the single pair of GBSAR images, as shown 

in Figure 4.6. By comparing the coherence of the single pair of GBSAR images (Figure 4.6(a)) 

with the mean coherence image of the entire network of interferograms formed in the time 

series analysis (Figure 4.6(b)), it is clear that the interferogram suffers temporal decorrelations. 

The number of coherent pixels selected in this single interferogram was 2,340 (Figure 4.6(c)), 

which is much fewer than that (5,068, Figure 4.2(a)) achieved by the proposed selection 

approach. The displacement map produced by single-pair interferometry is shown in Figure 

4.6(d). With the exception of several pixels near the top-left position (-110, 385) that show 

approximately 2.5 mm of displacement and is probably due to residual atmospheric artefacts, 

no other significant signals can be observed. However, the limited density of coherent pixels 

can result in difficulties in phase unwrapping due to local under-sampling and phase 

discontinuities (e.g. Hooper and Zebker, 2007; Perski et al., 2009), and thus impede the 

interpretation of the GBSAR data.  
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Figure 4.6. (a) Coherence between the first and the last SLCs in Dataset I-2. (b) The mean 

coherence of the entire interferogram network, shown for comparison. (c) Coherent pixels 

selected based on the single-pair of GBSAR images. (d) Displacement over the 2-hour 

observation period, achieved by single-pair interferometry. 

For Dataset II, the analysis focused on the two key images (“115933” and “115943”) acquired 

when the train was on the bridge. The selection of coherent pixels and the inversion of 

deformation were achieved by using this single pair of acquisitions and the same parameters 

used in the time series analysis. Figure 4.7 shows the coherence and displacement maps between 

the two acquisitions. It is visible that the decorrelation for this 10-second data is not significant 

and the results achieved by the single-pair interferometry and the time series analysis are 

consistent. 
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Figure 4.7. Results of the pair of acquisitions: “115933” and “115943”. (a) The coherence map. 

(b) The displacement map achieved by the single-pair interferometry (coherent pixel count: 

4,742). (c) The displacement map by the proposed times series analysis (coherent pixel count: 

5,720), namely the difference between the 6th and 7th maps in Figure 4.4. 

PS detection was also conducted using Dataset I-2, as depicted in Figure 4.8. A pixel with an 

ADI lower than 0.25 (a commonly used threshold) is considered as a PS target. 1,312 PSs were 

detected from Dataset I-2. By comparing the detected PSs in Figure 4.8(b) and coherent pixels 

in Figure 4.2(a), the former is found to be only a subset of the latter, which demonstrates the 

feasibility of the proposed approach in selecting persistent scatterers. In addition, the ADI 

threshold values were also increased to investigate the performance of PS detection. Figure 

4.8(c) shows that several PSs were detected from shadow zones and sea areas where the ADI 

threshold was set as 0.30. The situation worsened (Figure 4.8(d)) when the ADI threshold was 

set as 0.35. This result demonstrates an advantage of the proposed approach on selecting dense 

and reliable coherent pixels over the ADI-based PS selection technique. The conclusions are 

confirmed by the PS analysis on Dataset II, as depicted in Figure 4.9.  
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Figure 4.8. Dataset I-2: PS detection via ADI. (a) ADI for Dataset I-2. (b) PSs with ADI<0.25 

(PS count: 1,312). (c) PSs with ADI<0.30 (PS count: 2,052). (d) PSs with ADI<0.35 (PS count: 

3,273).  

 

Figure 4.9. Dataset II: PS detection via ADI. (a) ADI for Dataset II. (b) PSs with ADI<0.20 (PS 

count: 3,924). (c) PSs with ADI<0.25 (PS count: 5,016). (d) PSs with ADI<0.30 (PS count: 

6,135). 

4.4.2 Justification of relevant parameters  

There are two main parameters in the proposed approach for the selection of coherent pixels: 

(a) the coherence threshold; (b) the temporal baseline constraint. A higher coherence means 

better statistics for the interferometric phase. Accordingly, a higher coherence threshold will 

lead to fewer coherent pixels but with better interferometric phase quality. As mentioned 

previously, the density of coherent pixels plays an important role in the time series analysis, 

and a trade-off between the quantity and quality of coherent pixels should be exercised in 
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practice.  

In addition, the temporal baseline directly determines the network of interferograms, thus it is 

a key factor in GBSAR time series analysis for deformation monitoring. Therefore, the entire 

GBSAR time series analysis based on Datasets I-2 and II with different temporal baseline 

constraints was performed to investigate the effects of this parameter on the number of selected 

coherent pixels, the RMS of inversion precision and the computational efficiency. The results 

are illustrated in Figure 4.10.  

 

Figure 4.10. Influence of the temporal baseline on the selection of coherent pixels, inversion 

precision and computational efficiency. ∆t is the repeat interval (4 minutes for Dataset I-2 and 

10 seconds for Dataset II). The RMS of inversion precision is not applicable when the temporal 

baseline is set as 1∆t as a zero-redundancy network is formed in this case. (a) Dataset I. (b) 

Dataset II. 

Unsurprisingly, the number of coherent pixels increases with the temporal baseline. This is 

because a longer temporal baseline leads to more redundancy in the network and thus offers 

more coherent opportunities for a pixel to construct a connected network and achieve a full-

rank matrix 𝐁. It is worth noting, however, that the improvement achieved by increasing the 

temporal baseline is not significant after a certain value is reached since the majority of coherent 

pixels have been excavated and temporal decorrelation also becomes significant.  

Moreover, a longer temporal baseline will lead to more redundancy in the network and obtain 
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more reliable results, but at the expense of computational efficiency. Similarly, the improvement 

in the achieved precision is limited when the temporal baseline reaches a certain value (around 

7 for Dataset I-2 and 5 for Dataset II). However, processing time keeps increasing with the 

temporal baseline, and is approximately proportional to the number of interferograms being 

processed. Moreover, there is little purpose to enlarging the temporal baseline once the density 

of coherent pixels reaches a density sufficient for the interpretation requirements. Therefore, in 

practice, the selection of the temporal baseline is made on the basis of computational efficiency 

and the required accuracy.  

4.5 Summary 

In this chapter, a criterion for the selection of coherent pixels from a redundant network of 

interferograms has been demonstrated. The proposed approach has been incorporated into the 

RT-GBSAR time series analysis for deformation monitoring. The following conclusions are 

reached from the experiments reported in this paper:  

(1) Experiments were performed on two continuous observational datasets, one for a coastal 

cliff and the other for a rail bridge. The cliff was stable during the monitoring period 

while deformation signals of several mm were detected when a train crossed the bridge. 

The time series estimation for both datasets reached up to a few sub-millimetres, which 

supports the feasibility of the proposed approach for GBSAR deformation monitoring 

purpose.  

(2) Temporal decorrelation is a serious issue in SAR interferometric measurement (Caduff 

et al., 2015), especially for short-wavelength GBSAR systems. In comparison with the 

single-master InSAR technique, the proposed approach is able to largely overcome the 

temporal decorrelation problem and ensure a successful interpretation.  

(3) The proposed approach enables the selection of not only qualified PCPs, but also all 

PSs. The proposed approach makes the most of redundant observations and allows an 

adjustment to obtain a final reliable value for the unknown. Finally, a reliable solution 

was achieved in least squares inversion.  

On the basis of these findings, the proposed approach appears to facilitate a range of 

deformation monitoring applications to which GBSAR is suited. Although the experimental 

datasets were acquired continuously under zero-base line mode, the proposed selection criterion 
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is potentially suitable for any well co-registered discontinuous SAR datasets.  
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Chapter 5. A novel processing chain for real-time GBSAR deformation 

monitoring 

The study in this Chapter has been submitted as a research journal paper for publication: 

Wang, Z., Li, Z., Liu Y., Peng J., Long S., and Mills, J., A novel processing chain for real-time 

ground-based SAR (RT-GBSAR) deformation monitoring, Manuscript submitted to IEEE 

Transactions on Geoscience and Remote Sensing on 31st January, 2019  for publication. 

5.1 Introduction 

In comparison to spaceborne SAR, GBSAR has an inherent flexibility of allowing adjustable 

temporal resolution in data acquisitions. Depending on the rate of change in any particular case 

study, or the practical environment for instrument deployment, GBSAR data acquisition can be 

performed in either continuous or discontinuous mode (e.g. Caduff et al., 2015; Crosetto et al., 

2017; Monserrat et al., 2014). According to its temporal resolution and spatial geometry, 

GBSAR data can be further divided into two types: (I) zero-baseline single-campaign data, 

which is acquired continuously with zero-baseline geometry and equal temporal resolution; (II) 

multi-campaign data with/without rail repositioning errors, which contains certain (short or 

long) discontinuities between different campaigns. The schematic graphs with respect to the 

two data types are illustrated in Figure 5.1. Data type (I) can actually be an individual campaign 

in type (II). Moreover, the entire type (I) and the zero-baseline type (II) (i.e. without 

repositioning errors) correspond to the continuous data acquisition mode defined in Monserrat 

et al. (2014). According to Crosetto et al. (2017), the continuous mode of operation is the more 

commonly deployed technique. The continuous mode employs a zero-baseline geometry for all 

acquisitions, thus avoiding influences of hardware related technical issues and leading to better 

performance in terms of the density, precision, and reliability of deformation measurements (e.g. 

Crosetto et al., 2014a; Tarchi et al., 2005). This chapter therefore focuses only on continuous 

GBSAR deformation monitoring. 
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Figure 5.1. Schematic diagram of GBSAR data types (I) and (II). A black dot represents one 

acquisition and a rectangle represents a single campaign of GBSAR data. 

In the continuous mode, consecutive acquisitions with a high temporal resolution (up to several 

seconds) enable time series analysis of fast-changing scenarios that can provide insight into 

mechanisms and triggering factors of hazardous events, or even act as the basis for early 

warning systems. However, in practice, the processing of continuous GBSAR data has the 

following characteristics:  

(1) A large number of image acquisitions are usually performed in a continuous campaign due 

to the requirement or desire for high temporal resolution GBSAR data. For instance, the current 

FastGBSAR system can repeat an acquisition at the best resolution every ten seconds, implying 

up to 360 images can be acquired every hour. There are significant challenges in processing 

such a large volume of consecutive GBSAR imagery: (a) the management of computational 

random-access memory (RAM) for such a large number of images, and (b) the inevitable 

presence of targets which are temporally coherent for a certain length of time, but not for the 

entire observation period. 

(2) Real-time processing of GBSAR imagery may be required in urgent situations, e.g. landslide 

early-warning systems, where the creation of displacement maps is required in as short a time 

frame as possible.  

(3) Continuous data collection is performed by fixing the radar instrument in a stationary 

position. In this case, the spatial baseline is always zero and the topographic effect is absent in 

the interferometric phase (e.g. Caduff et al., 2015; Monserrat et al., 2014). Therefore, the 

operations related to a spatial baseline, such as the co-registration of master and slave images, 

the removal of topographic phase contribution, and the estimation of orbital errors in 

spaceborne InSAR processing, can be omitted in GBSAR interferometric processing.  

(4) APS is usually considered spatially correlated and temporally uncorrelated for spaceborne 
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SAR (e.g. Ferretti et al., 2000; Li et al., 2009). The estimation of APS in spaceborne SAR data 

is often performed through temporal high pass and spatial low pass filtering, which is not 

applicable in the GBSAR case due to the extremely short time intervals between SAR 

acquisitions (Rödelsperger, 2011).   

With consideration of these characteristics, a novel processing chain has been developed for 

real-time continuous GBSAR deformation monitoring, termed Real-Time GBSAR (RT-

GBSAR).  This chapter describes the main endeavours addressing RAM management, real-time 

capability and the reliability of processing continuous GBSAR data with high temporal 

resolution and large data volumes. 

5.2 Methodology  

In a continuous GBSAR monitoring campaign, attempted simultaneous processing of all data 

together in a time series procedure leads to three issues: (i) delay in production of displacement 

maps, (ii) extreme cost of computational memory; (iii) the loss of temporal evolution. To 

address these issues, the proposed RT-GBSAR chain exploits the SBAS concept and processes 

consecutive GBSAR SLC images on a unit by unit basis. SLC images within a temporal window 

form a basic unit in the chain. The flow is controlled by two parameters: the window size and 

the temporal baseline constraint. The window size represents the number of SLC images in a 

unit, and the temporal baseline constraint specifies the number of preceding images which are 

allowed to form interferograms with the current image. The overlap of two neighbouring units 

is fixed as a twofold temporal baseline constraint. A schematic of the proposed strategy is 

illustrated in Figure 5.2. A complete time series analysis is performed within each unit and 

adjacent units are connected via the overlapping SLC images. 

 

Figure 5.2. Schematic of the RT-GBSAR processing flow. 

By adopting this strategy, the RT-GBSAR chain has several merits. Firstly, the RAM 

requirement is limited to only one unit of SLC images, and the chain can theoretically process 

an infinite number of oncoming images. Secondly, it affords the opportunity to investigate the 

evolution of surface movements since it preserves temporally-coherent pixels which are present 
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in one or more units, but not in the entire observation period. Thirdly, this chain supports real-

time processing of oncoming data and any latency of the creation of displacement maps can be 

minimised since there is no requirement to wait for the entire dataset before processing 

commences.  

 

Figure 5.3. Flowchart of the SBAS time series analysis in the RT-GBSAR chain. 

The SBAS concept in the proposed RT-GBSAR chain is illustrated in Figure 5.3. The procedure 

in each unit starts with a new SLC. Once a new SLC is received, interferograms can be created 

using the new SLC and its previous 𝑇  SLC images (where 𝑇  denotes the temporal baseline 

constraint). As reported in Chapter 4, in practice the selection of the temporal baseline is made 

on the basis of both computational efficiency and the required accuracy. A longer temporal 

baseline constraint results in a more redundant network of interferograms at the expense of 

computational efficiency. Additionally, the temporal baseline should be relatively short for 

rapidly changing scenarios as temporal decorrelations can become significant. In the procedure, 

the SBAS analysis will not begin until the number of available SLC images is sufficient (i.e. 

equivalent to a full time window). Details about the SBAS time series analysis procedure have 

been given in Section 4.2.2.   

The SBAS time series estimation produces a least-squares solution, which is the optimal 

solution within the individual unit. However, the solution for an individual unit is not 

necessarily globally optimal when deformation spanning multiple consecutive units is required. 

To address this issue, adjacent units can be linked by their common coherent pixels in the 

proposed RT-GBSAR chain. The adjacent units are then merged into a longer unit and the 

optimal solution for the resultant merged unit can be achieved. For example, assume two units 

defined with a window size of 30 and a temporal baseline constraint of 3 (i.e. overlap size of 

6). The first unit runs from the 1st to the 30th image and the second unit from the 25th to the 54th 
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image. These two units can be merged into a new contiguous unit running from the 1st to the 

54th image. As time series analysis is performed within each unit independently, the selected 

coherent pixels in these two units (denoted as 𝐶𝑃𝑠𝑢𝑛𝑖𝑡1  and 𝐶𝑃𝑠𝑢𝑛𝑖𝑡2 , respectively) may be 

different. To pursue an optimal solution for the newly merged contiguous unit, the time series 

analysis may be performed again on the basis of the intersection of the two coherent pixel sets, 

i.e. 𝐶𝑃𝑠𝑢𝑛𝑖𝑡1⋂𝐶𝑃𝑠𝑢𝑛𝑖𝑡2.  

5.3 Applications 

To demonstrate the feasibility of the proposed RT-GBSAR chain for continuous deformation 

monitoring, two applications involving short-term but large-volume continuous FastGBSAR 

data were conducted. The case studies include a coastal cliff and a sand dune. 

5.3.1 Coastal cliff case study 

The first application was conducted on 16 November 2016 by continuously observing the 

Tynemouth Cliff. The FastGBSAR observation lasted two hours from 12:31:24 to 14:29:24 

with a temporal resolution of 10 seconds and a spatial resolution of 0.75 m in range and 5 mrad 

in azimuth. Somehow, a small percentage (3.3%) of images was occasionally not recorded by 

the system, probably due to the hardware insufficiency in data acquisition at such a high 

temporal and spatial resolution. The continuous dataset in this application (Dataset I) consisted 

of 696 continuous SLC images. The dimension of each SLC image was 294 by 254 pixels. An 

overview of the data collection was introduced in Figure 3.3 in Section 3.3.1. Dataset I was 

processed using the proposed RT-GBSAR chain with a temporal baseline constraint of five 

images, implying that any one image can be allowed to generate interferograms with its five 

previous and five subsequent images. Overlap size was fixed as a twofold temporal baseline 

constraint, namely 10 images, in this experiment. The entire dataset of 696 images was 

processed in 14 units with a unit size of 60 images. The information about each unit is given in 

Table 5.1. 

To display the temporal evolution, displacement maps for all 14 units of Dataset I are shown in 

Figure 5.4. In addition, the final cumulative displacement map for pixels that are coherent over 

the entire observation period is also given in Figure 5.4.  
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Table 5.1. Information about processing units of Dataset I. 

Unit Start End Coherent pixels 

1 1 60 11,859 

2 51 110 10,975 

3 101 160 10,671 

4 151 210 10,046 

5 201 260 10,303 

6 251 310 9,273 

7 301 360 9,508 

8 351 410 8,887 

9 401 460 8,391 

10 451 510 7,503 

11 501 560 6,661 

12 551 610 5,691 

13 601 660 4,531 

14 651 696 4,331 
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Figure 5.4. RT-GBSAR results of Dataset I. The displacement maps of all units from the first 

to the last are respectively shown in subfigures (a) to (n). The cumulative displacement map 

with respect to pixels that are coherent over the entire observation period is given in (o).  

As shown in Figure 5.4, three areas of interest with deformation signals are visible in some 

units but not in the final cumulative displacement map. Specifically, the deformation signals 

indicated by the red ellipse were obvious from the 1st to the 7th unit and faded from the 8th unit 
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onwards. The deformation signals in the black rectangles were weak at the beginning and 

became active in the 5th unit, and the deformation signal indicated by the red square temporally 

existed from the 9th to the 10th unit. The practical locations of these areas of interest are all near 

the sea. Among them, the area of interest indicated by the red ellipse is at the lowest altitude 

and nearest to the sea and the red square is at the highest altitude and furthest from the sea. 

During the observation period, the water level rose with the sea tides and gradually submerged 

these areas. The tidal elevation for the observation area on the day of data collection is given in 

Figure 5.5.  

 

Figure 5.5. Tidal elevation for North Shields, Tynemouth, UK on 16 November 2016, obtained 

from the National Tidal and Sea Level Facility (NTSLF, 2018). The variation of tidal elevation 

over the period of GBSAR observation is marked as red.  

With the increasing water level, the number of coherent pixels in each unit generally decreased. 

The number of coherent pixels shared by all units totals only 3,428. However, only a very few 

pixels with significant deformation can be found in the total cumulative displacement map in 

Figure 5.4(o), and the temporal evolution of the marked areas of interest near the sea are nearly 

lost. This demonstrates the importance of exploiting temporally-coherent pixels and processing 

continuous GBSAR data on a unit by unit basis. Otherwise, the temporal evolution of ground 

deformation cannot be detected. 

In order to investigate the time series process, a set of pixels (P1, P2, P3, P4, and P5) were 

selected from the results of units 1-14 in Figure 5.4(o). Pixels P1-P4 correspond to beach rocks 

near the sea while P5 is located on a building. The time series of displacements and APS for 

these pixels are shown in Figure 5.6. According to the displacement time series, pixels P1-P4 

were stable for the first 0.6 hour. After that these pixels gradually moved as the sea tide 

approached these targets. In contrast, pixel P5 remained stable for the entire observation period. 
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Besides, the APS time series show that the smallest APS was experienced by P4 as it is the 

nearest target to the radar system, while the greatest by P1 as it is the furthest among the selected 

targets. This is consistent with the APS correction model (APS = 𝑎0 + 𝑎1𝑟, where 𝑎0, 𝑎1 are 

coefficients and 𝑟 the slant range between the radar and the target) used in this experiment. The 

deformation maps, time-series displacements and relevant analysis therefore suggest that the 

ground deformation is related to the sea tides. Without proper validation data, it is difficult to 

interpret the deformation signals. The findings which may be useful for the interpretation are 

summarised as follows: (i) the physical feature of the moving targets was rock; (ii) targets 

moved always from the sea and towards the coast during the observation period with incoming 

tide; (iii) the occurrence of movement was consistent with the sequence of the sea tide 

approaching these targets; and (iv) deformations behaved as local signals. 

 

Figure 5.6. The time series of displacements and APS for the five selected pixels (P1, P2, P3, 

P4, and P5). 
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5.3.2 Sand dune case study 

 

Figure 5.7. Overview of the sand dune at Feicuidao on the Changli Gold Coast, Hebei Province, 

China. (a) Optical view of the site. Three corner reflectors (CRs) were marked in yellow circles. 

Two areas of interest were roughly outlined: Area #1 is covered with sparse vegetation and Area 

#2 is devoid of vegetation. (b) A corresponding amplitude image of this site. 

An experiment was also conducted on another dataset (Dataset III) collected on 5 January 2015 

and consisted of a sand dune area at Feicuidao on the Changli Gold Coast, Hebei, China. It was 

reported that this area experienced a fast-changing process during the period of 2006-2008 with 

a significant movement of up to 10.68 m at the leeward slope bottom and up to 7.12 m at the 

crest of the dune (Dong et al., 2013). An overview of this site can be seen in Figure 5.7.  

The image size of Dataset III was 371 × 306 pixels and the spatial resolution 0.5 m × 5 mrad. 

Dataset III consisted of 478 continuous SLC images with a temporal resolution of 10 seconds 

over an observation period of 1 hour 20 minutes. Two acquisitions were not recorded by the 

system due to hardware related issues. Dataset III was processed using the proposed RT-

GBSAR chain with the same parameters as Dataset I. The entire dataset of 478 images was 

processed in 10 units. Information about these units is summarised in Table 5.2.  

Table 5.2. Information about processing units of Dataset III. 

Unit Start End Coherent pixels 

1 1 60 5,085 

2 51 110 3,643 

3 101 160 5,222 

4 151 210 5,664 

5 201 260 6,128 

6 251 310 6,102 

7 301 360 3,298 

8 351 410 4,569 

9 401 460 6,887 

10 451 478 6,831 
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Figure 5.8. RT-GBSAR results of Dataset III. The displacement maps of all units from the first 

to the last are shown in subfigures (a) to (j), respectively. The cumulative displacement map 

with respect to units 3-6 is given in (k) and that of units 8-10 in (l). Note that Area #1 is indicated 

in a black loopand Area #2 in a red one. 

Deformation maps for all 10 units of Dataset III are shown in Figure 5.8. It should be noted that 

coherent pixels in Area #2 disappear in unit 7. This is because the corner reflector CR #2 was 

moved to the location of CR #3 during the period of data collection in unit 7. The process is 

illustrated by the sequential amplitude images shown in Figure 5.9. The moving corner reflector 

produced side-lobe patterns and contaminated Area #2. Therefore, very few coherent pixels are 

present in Area #2 of unit 7. Thus, two cumulative displacement maps (before and after unit 7) 

are also plotted in Figure 5.8. The displacement map of units 3-6 is shown in Figure 5.8(k) and 

that for units 8-10 in Figure 5.8(l). It is apparent that Area #1 was generally stable over the 
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entire observation period, with deformation primarily exhibited in Area #2. Here a maximum 

cumulative displacement of up to 8 mm within a period of 35 minutes spanning units 3-6 can 

be seen in Figure 5.8(k) and 5 mm over another 22 minutes spanning units 8-10 in Figure 5.8(l). 

Negative displacement values imply that targets moved closer to the radar system along the 

line-of-sight direction. Thus, the observed deformation most likely arises due to the process of 

sand sliding down the slope, which is consistent with the prevalent wind observed during 

fieldwork.  

Area #1 is covered with sparse and shallow vegetation while Area #2 comprises only loose sand 

devoid of any vegetation. During the short period of data collection, the Beaufort wind force 

scale was recorded at the level of light air, approximately 1~2 miles per hour. In addition, both 

areas were occasionally intruded by humans over the observation period. Therefore, the sand 

motion can be attributed to three factors, namely natural slope instability of the dune, wind 

force and human intrusion/activity. No matter what triggered the sand motion, the FastGBSAR 

results provide evidence that the presence of vegetation in coastal dunes plays an important role 

in helping stabilise the surface against sand motion. 

 

Figure 5.9. Sequential amplitude image during the period from 05:17:07 to 05:19:27. 

5.4 Analysis and discussions 

5.4.1 Identification of unwrapping errors 

Computation of a successful InSAR time series analysis heavily relies on the performance of 

phase unwrapping. In this study, the detection and identification of unwrapping errors was 
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accomplished. Assuming that there is a set of three interferograms (𝐼𝑙𝑚, 𝐼𝑚𝑛, 𝐼𝑙𝑛)  formed by 

three complex SAR images (𝐸𝑙, 𝐸𝑚, 𝐸𝑛), the raw phase for a pixel on the three complex images 

is denoted as (𝜓𝑙, 𝜓𝑚, 𝜓𝑛)  and the interferometric phase on the three interferograms is 

(𝜑𝑙𝑚, 𝜑𝑚𝑛, 𝜑𝑙𝑛). If phase unwrapping is correct for all three interferograms, the relationship 

𝜑𝑙𝑚 + 𝜑𝑚𝑛 − 𝜑𝑙𝑛 = 0  should be held by any coherent pixel on these interferograms (e.g. 

Biggs et al., 2007; Usai, 2003). The three interferograms form a closed temporal loop. 

Unwrapping errors always result in multiples of 2π phase misclosures and can be identified by 

summing round a closed temporal loop or checking a misclosure map (Biggs et al., 2007). Note 

that the spatial filtering is often applied before phase unwrapping, which breaks the phase 

triangularity in a closed loop (e.g. Ferretti et al., 2011; Samiei-Esfahany et al., 2016). Therefore, 

the phase misclosure threshold for the identification of unwrapping errors was empirically and 

conservatively set as 𝜋, namely an unwrapping error was defined by  |𝜑𝑙𝑚 + 𝜑𝑚𝑛 − 𝜑𝑙𝑛| > 𝜋 

in this study.  

For a unit of 60 images with a temporal baseline constraint of five images, there are 560 closed 

temporal loops. The proposed chain summed the unwrapping errors along all the temporal loops, 

which can be used to identify unwrapping errors that are present. Note that the displacement 

maps shown in Figures 5.4 and 5.8 are only for coherent pixels without unwrapping errors. The 

number of coherent pixels, both with and without unwrapping errors, for units in the two case 

studies are shown in Tables 5.3 and 5.4. As can be seen from the results in Tables 5.3 and 5.4, 

phase unwrapping is correct for the vast majority of selected coherent pixels in the applications. 

The average percentage of correct unwrapping is 99.95% for Dataset I and 99.47% for Dataset 

III. The results achieved by the RT-GBSAR chain for the two datasets can thus be considered 

reliable. Between the two results, a few more unwrapping errors can be identified in Dataset III, 

an issue related to data quality. The scene of Dataset I primarily consisted of rocks, concrete 

structures, and buildings, which can provide backscattering signals with better SNR than the 

sand dune with its smooth sand or sparse vegetation. Moreover, human intrusion onto the sand 

dune also added noise to Dataset III. 
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Table 5.3. Statistics w.r.t unwrapping errors for Dataset I. 

Unit Coherent pixels Pixels without unwrapping 

errors (percentage) 

Pixels with unwrapping 

errors (percentage) 

1 11,859 11,857 (99.98%) 2 (0.02%) 

2 10,975 10,973 (99.98%) 2 (0.02%) 

3 10,671 10,668 (99.97%) 3 (0.03%) 

4 10,046 10,032 (99.86%) 14 (0.14%) 

5 10,303 10,297 (99.94%) 6 (0.06%) 

6 9,273 9,272 (99.99%) 1 (0.01%) 

7 9,508 9,506 (99.98%) 2 (0.02%) 

8 8,887 8,868 (99.79%) 19 (0.21%) 

9 8,391 8,388 (99.96%) 3 (0.04%) 

10 7,503 7,502 (99.99%) 1 (0.01%) 

11 6,661 6,659 (99.97%) 2 (0.03%) 

12 5,691 5,691 (100.00%) 0 (0.00%) 

13 4,531 4,531 (100.00%) 0 (0.00%) 

14 4,331 4,331 (100.00%) 0 (0.00%) 

1-14 3,428 3,421 (99.80%) 7 (0.20%) 

 

Table 5.4. Statistics w.r.t unwrapping errors for Dataset III. 

Unit Coherent pixels Pixels without unwrapping 

errors (percentage) 

Pixels with unwrapping 

errors (percentage) 

1 5,085 5,070 (99.71%) 15 (0.29%) 

2 3,643 3,613 (99.18%) 30 (0.82%) 

3 5,222 5,219 (99.94%) 3 (0.06%) 

4 5,664 5,660 (99.93%) 4 (0.07%) 

5 6,128 6,119 (99.85%) 9 (0.15%) 

6 6,102 6,043 (99.03%) 59 (0.97%) 

7 3,298 3,255 (98.70%) 43 (1.30%) 

8 4,569 4,528 (99.10%) 41 (0.90%) 

9 6,887 6,868 (99.72%) 19 (0.28%) 

10 6,831 6,781 (99.27%) 50 (0.73%) 

3-6 4,030 4,021 (99.78%) 9 (0.22%) 

8-10 3,712 3,690 (99.41%) 22 (0.59%) 
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5.4.2 Precision of time series analysis 

The inversion precision of SBAS time series analysis for a pixel is defined in Appendix A. The 

precision maps for both applications are shown in Figures 5.10 and 5.11, respectively. The 

overall precision indicator for all the coherent pixels is the RMS of the inversion precision 

values, which is deduced on the basis of misclosure of the redundant interferometric phase in 

the time series estimation. A small precision value represents good consistency in the redundant 

observations. According to the precision maps shown in Figures 5.10 and 5.11, the overall 

precision reaches a few submillimetres, which supports the feasibility of the proposed chain for 

high-precision GBSAR deformation monitoring. 
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Figure 5.10. Dataset I: precision maps for coherent pixels without unwrapping errors. The 

precision maps for unit 1 to unit 14 are shown in subfigures (a) to (n), respectively. The 

precision map with respect to the total units 1-14 is given in subfigure (o).  
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Figure 5.11. Dataset III: precision maps for coherent pixels without unwrapping errors f. The 

precision maps for unit1 to unit 10 are shown in subfigures (a) to (j), respectively. The precision 

map with respect to units 3-6 is given in (k) and that of units 8-10 in (l).  

5.4.3 Real-time capability of RT-GBSAR  

The proposed RT-GBSAR chain supports the real-time processing of a continuous stream of 

GBSAR images. Real-time capability depends on the theory of the time series strategy and its 

implementation. The latency (time cost) is thus twofold: (i) the acquistion time for a full 

window of images (denoted as  𝑇W ); and (ii) the processing time for time series analysis 

(denoted as 𝑇P). Accordingly, the real-time capability is actually controlled by two parameters 

in the proposed RT-GBSAR chain, namely the window size of a unit (denoted as 𝑊) and the 

temporal baseline constraint (denoted as 𝑇). Note that the overlap size is fixed as the twofold 
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temporal baseline constraint (i.e. 2𝑇). The acquisition time for a full window of images in a unit 

is thus 𝑇W = (𝑊 − 2𝑇)∆𝑡, where ∆𝑡 denotes the temporal resolution. The effects of the two 

parameters on the real-time capability, the density of coherent pixels, and the overall precision 

for the coherent pixels in the time series estimation have been analysed using 100 images of the 

sand dune dataset (i.e. Dataset III). The temporal resolution is 10 s, i.e. ∆𝑡 = 10 𝑠. The results 

of multiple sets of the two parameters based on this test dataset are summarized in Table 5.5.  

Table 5.5. Real-time capability and time-series results of different sets of parameters. 

W T 

(Δt) 

Overlap: 

2T (Δt) 

Ifgsa in a 

full unit 

Units CPsb over 

all units 

Lc CPs with 

uwd errors 

RMSe 

(mm) 

Total 

ifgs 

TW 

(Δt) 

TP (s) 

5 1 2 4 33 1,826 0 NA NA 131 3 467 

10 1 2 9 9 2,122 0 NA NA 111 8 320 

15 1 2 14 8 2,264 0 NA NA 106 13 319 

20 1 2 19 6 2,319 0 NA NA 104 18 293 

5 2 4 7 94 2,194 98 0 0.33 662 1 1,881 

10 2 4 17 16 2,997 98 0 0.38 272 6 713 

15 2 4 27 9 3,229 98 0 0.4 237 11 645 

20 2 4 37 6 3,410 98 0 0.44 222 16 620 

5 3 NA NA NA NA NA NA NA NA NA NA 

10 3 6 24 23 3,166 292 0 0.27 558 4 1,443 

15 3 6 39 11 3,673 292 1 0.3 414 9 1,102 

20 3 6 54 7 3,691 292 0 0.31 366 14 927 

5 4 NA NA NA NA NA NA NA NA NA NA 

10 4 8 30 44 3,175 580 0 0.19 1336 2 3,231 

15 4 8 50 13 3,670 580 7 0.23 654 7 1,632 

20 4 8 70 8 3,972 580 6 0.26 544 12 1,386 

a “Ifgs”: interferograms; b “CPs”: coherent pixels; c L: the number of temporal closed loops; d uw: 

unwrapping; e RMS: the precision indicator for time series estimation. 

The following conclusions can be reached according to the results presented in Table 5.5:  

(1) The total time cost comprises the data acquisition time (TW) and the data processing time 

(TP). It is intuitive that a higher temporal resolution leads to a shorter latency since data is 

provided more quickly to begin processing. The latency is also dependent on the difference 

between the unit size and the overlap size (𝑊 − 2𝑇). The processing time increases with 

the number of interferograms (“Total ifgs”), which mainly depends on the temporal 

baseline constraint. Therefore, the real-time capability can be jointly enhanced by 

improving the temporal resolution and reducing the temporal baseline constraint.  

(2) The density of coherent pixels (i.e. “CPs over all units”) increases with the temporal 

baseline constraint when using the full-rank approach presented in Chapter 4. A longer 

temporal baseline constraint will lead to increased redundancy in the interferogram 
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network and to more reliable results (indicated by a lower RMS value), but at the expense 

of the computational efficiency (indicated by a longer processing time TP). An 

insufficiently small unit size (e.g. 𝑊=5) may reduce the density of coherent pixels over all 

units. Thus, a small unit size is only recommended if the monitoring campaign is involves 

an extremely fast-changing site with a high real-time demand, e.g. for early warning 

purposes. Otherwise, the unit size can be increased. 

It is worth noting that processing time TP depends on the adopted programming language, the 

algorithm implementation and the computer configuration. Here, processing time cost was 

based on MATLAB R2016b software and a laptop with an Intel i7 2.40 GHz CPU. Processing 

time could therefore be significantly improved with effort made on high-performance 

computation. 

5.4.4 RT-GBSAR versus SePSI 

FastGBSAR is accompanied by an InSAR time series analysis software package, i.e. “SePSI” 

(Metasensing, 2015a). The algorithms adopted in this package were developed by Rödelsperger 

(2011). SePSI starts with the detection of PS pixels on the basis of ADI. A subset of PSCs are 

then selected for temporal and spatial phase unwrapping. Note that FastGBSAR “Ranger” 

(Metasening, 2016) is a more recently developed software package with an improved user 

interface, using the same algorithms as SePSI. Therefore, RT-GBSAR was compared only with 

“SePSI”.  

30 images in Dataset II (i.e. the Queen Elizabeth II Metro Bridge) were used for analysis.  In 

SePSI, PSs were detected by ADI<0.35 and PSCs by ADI<0.2 with at most one PSC in each 10 

m × 10 m grid. The number of time steps was set as three, which meant the a-posteriori solution 

was achieved with a delay of three acquisitions (3∆𝑡). The processing time (excluding focusing) 

in SePSI was 168 seconds. In RT-GBSAR, the data was processed in eight units with a window 

size of seven images and a temporal baseline constraint of two images. Thus, the acquisition 

time for a full window of images in RT-GBSAR was equivalent to the delay of the a-posteriori 

solution in SePSI (i.e. 3∆𝑡). The processing time in RT-GBSAR (excluding focusing) was 121 

seconds. Considering the observation period was short, no APS correction was applied in both 

SePSI and RT-GBSAR. Several key displacement maps from the results achieved by SePSI and 

RT-GBSAR are shown in Figure 5.12. 
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Figure 5.12. The displacement maps achieved by SePSI are shown in the first row and the 

counterparts by RT-GBSAR in the second row.  

To further analyse the results, interferograms with respect to the displacement maps shown in 

Figure 5.12 are generated and shown in Figure 5.13.  

 

Figure 5.13. Interferograms corresponding to the displacement maps in Figure 5.12. 

Interferograms (“11.58.33_11.59.33” and “11.58.33_11.59.43” in Figure 5.13) suggest that the 

bridge vibrated during the train crossing and then the bridge recovered (see “11.58.33_11.59.53” 

and “11.58.33_12.01.33” in Figure 5.13). It is intuitive that the RT-GBSAR results are 

reasonable and consistent with the practical process. However, SePSI produced a false 

deformation signal around the position (x=0, y=80), which is visible in the displacement maps 

after 11.59.43.  

SePSI utilises a two-step unwrapping strategy, which firstly unwraps the PSC network and then 

extends the unwrapping to all PS pixels. As pointed out by Rödelsperger (2011), sudden phase 

changes at any arc would probably lead to unwrapping errors. Accordingly, all PS pixels 
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connected to the incorrectly unwrapped arcs are affected. Figure 5.14 displays the PSC network, 

the phase time series, and the displacement time series for PSCs and arcs that are related to the 

false deformation signal. Sudden phase changes of two PSCs near the position (x=0, y=80) at 

the moments “11.59.33” and “11.59.43” (in Figure 5.14(c)) lead to unwrapping errors on these 

PSCs related arcs (in Figure 5.14(d)). These errors propagated to the subsequent displacement 

maps and led to the false deformation signal. 

 

Figure 5.14. The occurrence of unwrapping errors and the production of false deformation in 

SePSI. 

5.5 Summary 

The significant challenges in processing continuous GBSAR data have been resolved through 

the implementation of the proposed RT-GBSAR chain. The chain has three notable features: (i) 

low computational requirement; (ii) insights into the evolution of surface movements through 

temporally-coherent pixels; and (iii) real-time capability to process a theoretically infinite 

number of images.  
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The applications of monitoring a fast-changing sand dune and a coastal cliff have demonstrated 

that the proposed chain can achieve a inversion precision of a few submillimetres in time series 

estimation. In the sand dune application, the movement took place only at areas without any 

vegetation while areas with sparse vegetation coverage remained stable over the short 

observation period of 1 hour and 20 minutes,  which suggests that the preservation of vegetation 

in the dune area plays an important role in stabilising the surface against sand motion. In the 

coastal cliff application, the RT-GBSAR results reveal displacements only in the area near the 

sea and suggest that the triggering of ground deformation is related to the sea tides. 
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Chapter 6. A new interferometric processing chain for discontinuous 

GBSAR deformation monitoring 

The study in this Chapter has been submitted as a research journal paper for publication: 

Wang, Z., Li, Z., Mills, J., Modelling of instrument repositioning errors in discontinuous Multi-

Campaign Ground-Based SAR (MC-GBSAR) deformation monitoring, Manuscript submitted 

to ISPRS Journal of Photogrammetry and Remote Sensing on 5th May 2019 for publication. 

6.1 Introduction 

In practice, GBSAR data acquisition can be performed either in a continuous or discontinuous 

(campaign) mode, depending on the rate of surface motion, and/or the environment for 

instrument deployment (e.g. Caduff et al., 2015; Crosetto et al., 2014a; Crosetto et al., 2017; 

Monserrat et al., 2014). Continuous mode is more commonly deployed and has been 

demonstrated in Chapter 5. The discontinuous mode with repeated campaigns is especially 

useful for monitoring an event whereby the deformation becomes significant over a relatively 

long period and the deployment of continuous GBSAR cannot be easily achieved (e.g. Caduff 

et al., 2015; Crosetto et al., 2017; Monserrat et al., 2014). Therefore, this chapter focuses on 

discontinuous GBSAR deformation monitoring, namely the monitoring of surface deformation 

between two or more campaigns.  

In discontinuous mode, the radar instrument is required to be installed over the same monitoring 

station in each campaign, but repositioning errors may occur due to the lack of forced centring 

and/or the instability of the monitoring station, which can lead to inaccuracies in GBSAR 

interferometric observations (e.g. Barla et al., 2017; Caduff et al., 2015; Crosetto et al., 2014a; 

Monserrat et al., 2014). However, the effects of repositioning errors on GBSAR interferometry 

has not been investigated before. It was only simply considered as a low-frequency signal and 

removed by low-pass filtering (Crosetto et al., 2014a). This study thus aims to accurately model 

and correct the effects of repositioning errors between different campaigns of GBSAR data for 

interferometric measurement. 

To illustrate the effects of such repositioning errors, this study starts with the geometry of 

GBSAR. In 3D object space, a GBSAR system (including radar sensor and rail), can be 

considered as a rigid body. Repositioning errors of the radar instrument can be expressed as a 
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set of rigid transformation parameters (Challis, 1995). As illustrated in Figure 6.1, a GBSAR 

system is moved from the position 𝑠 to another position 𝑠’ with a 3D rotation, including a roll 

angle (denoted as 𝜙, around the 𝑦 axis), a yaw angle (denoted as 𝜔, around the 𝑥 axis), and a 

pitch angle (denoted as 𝜅, around the 𝑧 axis). The position and orientation of the radar before 

repositioning can be expressed by the sensor-centred coordinate system 𝑠 − 𝑥𝑦𝑧, where 𝑥 is 

parallel to the GBSAR rail, 𝑦 is the look direction, and 𝑧 is perpendicular to the 𝑥 − 𝑦 plane. 

After repositioning, the transition coordinate system becomes  𝑠’ − 𝑥’𝑦’𝑧’ . The geometric 

transformation between the two coordinate systems before and after repositioning can be 

expressed as:  

 [
𝑥′
𝑦′

𝑧′

] = 𝐑 [
𝑥
𝑦
𝑧
] + [

𝑡𝑥
𝑡𝑦
𝑡𝑧

], (6.1) 

where [𝑡𝑥 𝑡𝑦 𝑡𝑧] is the translation vector from 𝑠 to 𝑠’; R is the rotation matrix of (𝜙,𝜔, 𝜅). 

 

Figure 6.1. The geometries of GBSAR before and after repositioning. 

Due to repositioning errors, GBSAR images before and after repositioning can be shifted. 

Besides, an additional phase component is introduced as the range between the radar and the 

target changes with the radar position and orientation, which is  illustrated in Figure 6.1. Hence, 

the additional phase component due to repositioning errors can be termed as repositioning phase 

errors, and denoted as 𝜑𝑟𝑒𝑝𝑜𝑠 in this study.  

To quantify these effects, FastGBSAR observations were simulated over a dome-shaped 

topography with additional considerable repositioning errors (𝜙 =  𝜔 =  𝜅 = 1°, 𝑡𝑥 = 𝑡𝑦 =

 𝑡𝑧 = 0.1 𝑚) (Figure 6.2(a)). The shadow area was masked out in the simulation. It appeared 

that the additional phase component caused by the repositioning errors (Figure 6.2(b)) 

resembled the orbital ramps in spaceborne InSAR (Shirzaei and Walter, 2011). In addition, the 
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azimuth offsets were bigger than the range ones (Figures 6.2(c) and 6.2(d)).  

 

Figure 6.2. Simulation of repositioning errors  (𝜙 = 𝜔 =  𝜅 = 1°, 𝑡𝑥 = 𝑡𝑦 = 𝑡𝑧 = 0.1 𝑚). (a) 

Topography. (b) Repositioning phase errors. (c) Azimuth offsets. (d) Range offsets. 

In GBSAR deformation monitoring, it is optimal to install the radar equipment on a stable and 

reproducible monitoring station for data collection (e.g. Bardi et al., 2016; Barla et al., 2017; 

Del Ventisette et al., 2011; Iglesias et al., 2015a; Montuori et al., 2016). The majority of previous 

GBSAR studies (e.g. Barla et al., 2017; Casagli et al., 2010; de Macedo et al., 2017; Frukacz 

and Wieser, 2017; Lowry et al., 2013; Tarchi et al., 2005) managed to obtain a zero-baseline 

geometry in repeated campaigns by means of precise mechanical positioning systems, such as 

a forced centring device. However, repositioning errors are present in many practical cases, 

where the monitoring station is not stable or a precise mechanical positioning device cannot be 

deployed (Crosetto et al., 2014a). In this study, a steady concrete base was placed at a stable 

area. Simple marks were engraved onto the top surface of the concrete base to aid in positioning 

and orientating the instrument rail. According to practical experience, the repositioning errors 

can be easily controlled within a moderate tolerance (i.e. |𝑡𝑥| < 5𝑚𝑚, |𝑡𝑦| < 5𝑚𝑚, |𝑡𝑧| <

5𝑚𝑚, |𝜑| < 0.3°, |𝜔| < 0.3°, |𝜅| < 0.3° ). Thus, another simulation was made with a set of 

moderate repositioning errors (𝜙 =  𝜔 =  𝜅 = 0.3°, 𝑡𝑥 = 𝑡𝑦 = 𝑡𝑧 = 5𝑚𝑚). 
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Figure 6.3. Simulation of repositioning errors (𝜙 =  𝜔 =  𝜅 = 0.3°, 𝑡𝑥 = 𝑡𝑦 = 𝑡𝑧 = 5 𝑚𝑚). (a) 

Topography. (b) Repositioning phase errors. (c) Azimuth offsets. (d) Range offsets. 

It is clear from Figure 6.3 that, although the repositioning errors are only at the level of several 

millimetres, the resultant phase ramps and azimuth offsets are significant and cannot be 

neglected. Effort must be made to mitigate the impacts of the repositioning errors between 

different campaigns. It has been reported that such repositioning errors in discontinuous 

GBSAR can be addressed by a non-interferometric approach (Crosetto et al., 2014b). However, 

non-interferometric measurement is not sensitive to surface movement and the measurement 

inaccuracies can be a few decimetres (e.g. Caduff et al., 2015; Crosetto et al., 2017). Therefore, 

a new interferometric processing chain has been developed for discontinuous GBSAR 

deformation monitoring. The proposed discontinuous GBSAR chain aims to measure 

deformation between two or more campaigns, and is thus termed “MC-GBSAR” (Multi-

Campaign GBSAR). Details about the methodology are introduced in Section 6.2. Experiments 

with both synthetic and real-world data are given in Section 6.3 and a discussion presented in 

Section 6.4.  

6.2 Methodology 

6.2.1 Overview of methodology  

In MC-GBSAR, temporal averaging is first carried out on a stack of SLC images in a single 

campaign in order to improve the SNR and minimise the loss of coherence (e.g. Caduff et al., 
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2015; Iglesias et al., 2015b; Iglesias et al., 2014a). Without loss of generality, this chain supports 

the processing of multi-campaign GBSAR data both with and without repositioning errors. As 

illustrated in Figure 6.4, the main difference between the two scenarios is that the presence of 

repositioning errors requires (i) co-registration of GBSAR images and (ii) correction of 

repositioning errors. Adaptive estimation of coherence with respect to interferograms is 

achieved using the non-local “MIAS” method presented in Chapter 3. Coherent pixels are 

selected for further analysis via the full-rank criterion presented in Chapter 4. The 

interferometric phase of the detected coherent pixels is then de-noised using the non-local 

“MIAS” filter. Thereafter, unwrapped phase of the detected coherent pixels can be achieved 

using 2D/3D phase unwrapping algorithms provided in StaMPS (Hooper, 2010).  

 

Figure 6.4. The procedure of MC-GBSAR. 

6.2.2 Automatic co-registration of GBSAR images 

Co-registration in spaceborne and ground-based InSAR is often based on cross correlation (e.g. 

Crosetto et al., 2014b; Hanssen, 2001; Hooper et al., 2007; Li and Bethel, 2008) or feature 

matching (e.g. Suri et al., 2010; Wang and Zhu, 2015) of the amplitude images. Given that the 

GBSAR instrument may be rotated after repositioning, an amplitude-based feature matching 
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approach is developed for the automatic co-registration of GBSAR images in this study as 

feature matching tends to be invariant to image rotation (Bay et al., 2008). The commonly used 

features such as Harris corner points (Harris and Stephens, 1988) and speeded-up robust 

features (SURF) (Bay et al., 2008) are supported in MC-GBSAR. Before feature extraction, 

oversampling is applied to the GBSAR images as it is able to avoid aliasing and improve the 

co-registration accuracy (e.g. Li and Bethel, 2008; Sousa et al., 2011). To co-register the master 

and slave images, the slave image is resampled to the master image coordinate system via a 

polynomial function, the affine transformation is typically used for GBSAR co-registration 

(Crosetto et al., 2014b). An example of GBSAR co-registration is given in Figure 6.5.  

 

Figure 6.5. An example of co-registration between two campaigns of FastGBSAR data. 

Between the two campaigns, the radar rail was deliberately moved approximately 15 cm 

backwards and slightly rotated with a small unknown angle. The time difference between the 

two campaigns is 342 s and each campaign consists of 15 continuous images. (a) The averaged 

amplitude image of the first campaign. (b) The averaged amplitude of the second campaign. (c) 

Feature matching based Harris corner points with an accuracy of 0.19 pixels (i.e. RMS of the 

image coordinate residuals for corresponding points between the master and slave images). (d) 

Coherence without co-registration with an assumption of no repositioning error. (e) 

Interferogram without co-registration. (f) Amplitude cross correlation without co-registration. 

(g) Coherence after co-registration. (h) Interferogram after co-registration. (i) Amplitude cross 

correlation after co-registration.   
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As shown in Figure 6.5, the coherence (6.5(d)) between the averaged images of the two 

campaigns suggests that they are completely decorrelated without co-registration, and their 

interferogram (6.5(e)) is dominated by noise. After co-registration, the coherence (6.5(g)) is 

significantly improved and the resultant phase ramps are visible (6.5(h)), suggesting the 

necessity of co-registration in the scenario with considerable repositioning errors. The 

robustness of the co-registration is evidenced by comparing the amplitude cross correlations in 

Figures 6.5(f) and 6.5(i).  

6.2.3 Correction of geometric phase ramps 

In spaceborne InSAR, the most widely used approach to correct for orbital ramps is to 

estimate a best-fit plane using a 1st-order polynomial function (e.g. Biggs et al., 2007; Shirzaei 

and Walter, 2011):  

 𝜑𝑔𝑒𝑜𝑚(𝜂, 𝜉) = 𝛼0 + 𝛼1𝜂 + 𝛼2 𝜉, (6.2) 

where 𝛼𝑖(𝑖 = 0,1,2)  are coefficients; 𝜂  and 𝜉  are the range and azimuth in the radar image 

coordinate system, respectively; 𝜑𝑔𝑒𝑜𝑚 is the geometric phase error at (𝜂, 𝜉). Given that the 

geometric phase ramps in GBSAR resemble the orbital ramps in spaceborne InSAR, the best-

fit plane model was firstly investigated in this study. Specifically, three types of topography 

were simulated (in Figure 6.6): flat, slope, and dome. Together with the simulated topography, 

two sets of additional repositioning error parameters were investigated: (Errors − I ∶ 𝜙 =

 𝜔 =  𝜅 = 0.3°, 𝑡𝑥 =  𝑡𝑦 = 𝑡𝑧 = 5 𝑚𝑚) and (Errors − II: 𝜙 =  𝜔 =  𝜅 = 1°, 𝑡𝑥 = 𝑡𝑦 = 𝑡𝑧 =

0.1 𝑚). As mentioned earlier, Errors-I represents the margin of repositioning errors in practice 

(with moderate effort given to instrument installation), while Errors-II is a set of considerable 

errors for comparison.  
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Figure 6.6. Three types of topography and their corresponding elevation maps in the GBSAR 

coordinate system. 

 

Figure 6.7. Simulation and correction of geometric phase errors with respect to Errors-I for all 

three types of topography: flat, slope and dome.  
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Figure 6.8. Simulation and correction of geometric phase errors with respect to Errors-II for all 

three types of topography: flat, slope and dome.  

It is clear in the first column of Figures 6.7 and 6.8 that both repositioning error sets lead to 

significant phase ramps in all topography scenarios. To correct such errors, the conventional 

1st-order correction model (in Equation (6.2)) was firstly applied. The residual maps for the two 

error sets are given in the second column of Figures 6.7 and 6.8, respectively. The geometric 

phase errors are largely mitigated by the 1st-order model, but there are obvious residuals 

remaining that are clearly correlated with the azimuth coordinate 𝜉. Therefore, the correction 

model was raised to the 2nd-order of 𝜉 as follows.  

 𝜑𝑔𝑒𝑜𝑚 = 𝛼0 + 𝛼1𝜂 + 𝛼2𝜉+𝛼3𝜉 
2. (6.3) 

The residual maps with respect to the 2nd-order model for the two error sets are shown in the 

third column of Figures 6.7 and 6.8, respectively. The RMS and maximum of residuals are 

summarised in Table 6.1. In all the scenarios, the RMS and maximum of residuals from the 2nd-

order correction model are much less than those from the 1st-order correction model, suggesting 

the geometric phase correction with the 2nd-order model outperforms the 1st-order model. 
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Therefore, the 2nd-order model was chosen to correct the geometric phase error ramps in this 

study. 

Table 6.1. Statistics of geometric error correction. 

Type Error 𝜑𝑔𝑒𝑜𝑚 = 𝑐0 + 𝑐1𝜂 + 𝑐2𝜉 𝜑𝑔𝑒𝑜𝑚 = 𝑐0 + 𝑐1𝜂 + 𝑐2𝜉+𝑐3𝜉 
2
 

  

RMS of residuals: 

rad (mm) 

Max of residuals:  

rad (mm) 

RMS of residuals: 

rad (mm) 

Max of residuals: 

rad (mm) 

Flat I 0.32 (0.45) 0.91 (1.26) 0.05 (0.07) 0.30 (0.42) 

Slope I 0.37 (0.52) 1.00 (1.39) 0.04 (0.05) 0.24 (0.34) 

Dome I 0.36 (0.50) 1.18 (1.63) 0.14 (0.20) 0.55 (0.77) 

Flat II 6.46 (8.94) 18.27 (25.27) 0.95 (1.32) 6.28 (8.70) 

Slope II 7.52 (10.41) 20.12 (27.87) 0.79 (1.10) 5.02 (6.95) 

Dome II 7.23 (10.02) 23.54 (30.60) 2.87 (3.97) 11.10 (15.38) 

In the simulation, the 2nd-order model was able to reduce the errors from ~-6.8 mm (the value 

was converted from the unwrapped 𝜑𝑟𝑒𝑝𝑜𝑠) to ~-0.7 mm (the value was converted from the max 

of residuals after geometric correction) for Errors-I and  from ~-137 mm to ~-15 mm for Errors-

II in the dome area with a 100 m height variation. However, the residuals after correction are 

dependent on local topography variations to some extent and even the 2nd-order model cannot 

completely remove the phase errors for areas with local topography variations (Figures 7(i) and 

8(i)). Additional effort should be made to further correct the systematic residuals due to 

topographic variation for accurate InSAR measurement. 

6.2.4 Correction of topographic phase errors 

The topographic phase (denoted as 𝜑𝑡𝑜𝑝𝑜) in InSAR is a function of the perpendicular spatial 

baseline 𝐵⊥ and the elevation 𝑧 along the axes defined by the antenna vertical motion, which 

can be approximated by the linear term in GBSAR configuration (e.g. Noferini et al., 2007; 

Rödelsperger et al., 2010) as follows: 

 𝜑𝑡𝑜𝑝𝑜 =
4𝜋

𝜆

𝐵⊥𝑧

𝑟
. (6.4) 

where 𝑟 is the range to the target when the antenna is positioned at z = 0. According to Equation 

(6.4), the removal of the topographic effect requires both an appropriate DEM and known 

perpendicular spatial baseline. However, in practice, the precise measurement of the position 

and orientation of a GBSAR system (e.g. a FastGBSAR) is usually not achievable without 

significant technical effort. This implies that the perpendicular spatial baseline is unknown.  
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Therefore, this subsection focuses on the correction of the topographic effect without knowing 

the spatial baseline. Due to the linear relationship between the elevation and the topographic 

phase in Equation (6.4), the topographic correction model in the case of an unknown spatial 

baseline can be written as:  

 𝜑𝑡𝑜𝑝𝑜 = 𝛼0 + 𝛼1
𝑧

𝑟
. (6.5) 

where 𝛼0 and 𝛼1 are coefficients of the linear topographic correction mode. 

On the basis of such geometric correction, the topographic correction is further applied. The 

results before and after topographic correction for the simulated three types of topography with 

respect to both Errors-I and Errors-II are shown in Figures 6.9 and 6.10, respectively.  

 

Figure 6.9. Topographic correction with respect to Errors-I. 
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Figure 6.10. Topographic correction with respect to Errors-II. 

It is evident from Figures 6.9 and 6.10 that the topographic phase errors have been effectively 

removed for both repositioning error sets in all topography scenarios. The statistics of 

topographic correction are summarized in Table 6.2. The feasibility of the proposed topographic 

correction approach can be straightforwardly demonstrated by the efficient mitigation of both 

the RMS and maximum of residuals for all the simulation cases. It is worth noting that greater 

repositioning errors lead to greater residuals by comparing the residuals of Errors-I and Errors-

II in Table 6.2. Therefore, the repositioning of GBSAR instrument between different campaigns 

should be as precise as possible.  

Table 6.2. Statistics of topographic correction. 

Error Topographic 

correction 

RMS of residuals: rad (mm) Max of residuals: rad (mm) 
 

Flat Slope Dome Flat Slope Dome 

I Before 0.05 (0.07) 0.04 (0.06) 0.14 (0.20) 0.30 (0.42) 0.24 (0.34) 0.55 (0.77) 

I After 0.04 (0.06) 0.03 (0.05) 0.04 (0.06) 0.15 (0.21) 0.09 (0.13) 0.10 (0.14) 

II Before 0.95 (1.32) 0.79 (1.10) 2.87 (3.97) 6.28 (8.70) 5.02 (6.95) 11.1 (15.38) 

II After 0.86 (1.20) 0.72 (1.00) 0.89 (1.23) 3.08 (4.26) 1.91 (2.65) 2.10 (2.91) 

 

6.2.5 Combined correction of atmospheric, geometric, and topographic errors 

Modelling approach 

As demonstrated in Section 2.3.5, the rigorous model for atmospheric correction is a range- and 
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height-dependent function: 

 𝜑𝑎𝑡𝑚 = 𝛽0 + 𝛽1𝑟 + 𝛽2𝑟𝑧. (6.6) 

The range 𝑟 is linear with 𝜂: 𝑟 = 𝜂Δ𝑟. Thus, Equations (6.3), (6.5) and (6.6) can be combined 

to give Equation (6.7) and used to correct for atmospheric, geometric and topographic errors.  

 𝜑𝑎𝑡𝑚+𝑔𝑒𝑜𝑚+𝑡𝑜𝑝𝑜 = 𝑐0 + 𝑐1𝑟 + 𝑐2𝜉+𝑐3𝜉 
2 + 𝑐4𝑟𝑧 + 𝑐5𝑧/𝑟. (6.7) 

where 𝑐𝑖(𝑖 = 0,⋯ , 5)  represents the model parameters that can be estimated using the 

unwrapped phase of a set of highly-coherent pixels from stable areas . The stable areas can be 

identified through a-priori knowledge of the study site and visual inspection of interferograms 

(Caduff et al., 2014). However, in some situations without sufficient knowledge, or if the 

interferogram is dominated by atmospheric, geometric, and/or topographic phase errors, pixels 

carrying deformation information may be selected for modelling. To mitigate the potential 

inaccuracies caused by these pixels, this study employs an IRLS (iteratively reweighted least 

squares) algorithm to estimate the model parameters (Green, 1984). The weight for any pixel 

in the first iteration is set as one and  is subsequently updated by its deviation to the model 

estimated in the previous iteration. A pixel with a large deviation will be assigned a small weight 

in the next iteration and its contribution to the solution can be minimised.  

Filtering approach 

Apart from the modelling approach, the APS and geometric errors can be mitigated by filtering 

as they share low spatial frequency characteristics (Crosetto et al., 2014a, b). In this study, the 

filtering of low-frequency atmospheric and geometric phase errors refers to the approach 

proposed by Hooper et al. (2007), namely a band-pass filter combined with a low-pass filter is 

applied in the frequency domain.  

Simulation results  

Synthetic data was used to validate the modelling and filtering approaches for the combined 

correction of atmospheric, geometric, and topographic errors. The simulation was based on the 

three types of topography with the additional repositioning Errors-I. Surface displacements 

along the LOS direction were simulated as a diffuse deformation model within a circular area. 

The displacement reached the largest magnitude of -5 mm at the centre and decreased gradually 
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to zero at the margin of this area. Details of the APS was given in Section 2.3.5. The dimensions 

of the simulated images were 999×313 pixels (i.e. 999 pixels in range and 313 in azimuth). 

Figure 6.11 displays the common displacement map and different APS maps for the three types 

of topography. 

 

Figure 6.11. Simulation of deformation and APS. (a) The common displacement map for all the 

three types of topography. (b) APS map for flat topography. (c) APS map for slope topography. 

(d) APS map for dome topography. 

Both the modelling and filtering approaches were used to remove APS and repositioning errors 

and then extract the deformation signal. In the modelling approach, only one percent of points 

that were evenly distributed in space and outside the deformation area were used to recover the 

model in Equation (6.5). In the band-pass filtering approach, the interferometric phase (complex 

number) was firstly transformed from the spatial domain to the frequency domain using a two-

dimensional fast Fourier transform (2D FFT) with a typical grid size of 64×64 cells. The 

intensity of the 2D FFT was then smoothed with a 7×7 Gaussian convolution filter. Low-

frequency errors were finally removed by a 5th-order Butterworth filter with a cut-off 

wavelength of 100 cells. The results are shown in Figure 6.12 and the statistics of the 

displacement residuals are summarised in Table 6.3.  
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Figure 6.12. Simulation and separation of deformation from APS, geometric and topographic 

errors (Errors-I).  

 

Table 6.3 . Statistics of separation of deformation from APS and repositioning errors. 

Topography Error Modelling Filtering 

  

RMS of 

displacement 

residuals 

Max of 

displacement 

residuals 

RMS of 

displacement 

residuals 

Max of 

displacement 

residuals 

Flat I 0.07 mm 0.27 mm 0.17 mm 1.78 mm 

Slope I 0.05 mm 0.14 mm 0.19 mm 1.83 mm 

Dome I 0.06 mm 0.19 mm 0.20 mm 1.97 mm 

 

As shown in Figure 6.12, displacement residuals in the filtering approach for all three 

topography types are much greater than those in the modelling approach, which is also 

evidenced in Table 6.3. Smaller residuals imply better accuracy for surface displacements. 

Therefore, the modelling approach outperformed the filtering approach in the simulation. The 

maximum displacement residual in the filtering approach was 6.6 – 10.1 times greater than that 
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of the modelling approach. 

6.3 Experimental results with real-world GBSAR data 

To validate the proposed discontinuous GBSAR processing approach, experiments were 

conducted using a real-world FastGBSAR dataset acquired in discontinuous mode. The dataset 

was collected by observing the southern hillside of Tynemouth Priory and Castle, Tynemouth, 

UK. Two campaigns were performed at the same site. Each campaign consisted of 30 SLC 

images with a temporal resolution of 10 seconds and a spatial resolution of 0.75 m × 5 mrad. 

Concrete blocks were used as the FastGBSAR monitoring station. The radar system was taken 

away from the concrete base after the first campaign and then repositioned in the subsequent 

campaign. Simple marks were made onto the top of the concrete blocks in order to install the 

radar precisely and minimise repositioning errors. The radar system and the observing hillside 

were scanned by using a Leica P40 laser scanner (https://leica-geosystems.com/en-

gb/products/laser-scanners/scanners/leica-scanstation-p40--p30). In this case, the topography 

was linked to GBSAR by transferring the point cloud of the hillside to the GBSAR image 

coordinate system. An overview of the data collection and the topography in this case study is 

illustrated in Figure 6.13. 

 

Figure 6.13. Overview of the case study. (a) Deployment of the FastGBSAR system. (b) Point 

cloud of the radar system and the observing hillside. (c) Height in the GBSAR coordinate 

system. (d) A close-up of the FastGBSAR and the laser scanner geometry, corresponding to the 

area in the red box of subfigure (b). 

This FastGBSAR dataset was processed with the MC-GBSAR chain using the modelling 

https://leica-geosystems.com/en-gb/products/laser-scanners/scanners/leica-scanstation-p40--p30
https://leica-geosystems.com/en-gb/products/laser-scanners/scanners/leica-scanstation-p40--p30
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approach for the correction of APS and geometric errors. The temporally averaged image of the 

first campaign was named as “145219” and that of the second was “165024”. The time 

difference between the two averaged images was approximately two hours. Figure 6.12 shows 

the interferogram and coherence between the two averaged images, as well as the estimated 

low-frequency errors (APS and repositioning errors) and displacements. The results achieved 

by the procedure, both with and without co-registration processing, are given for comparison 

purposes. 

 

Figure 6.14. The results achieved by the MC-GBSAR using the modelling approach for the 

correction of APS and geometric errors. 

As can be seen in Figure 6.14, the results with respect to the two situations are consistent with 

each other, coherence is retained and no phase ramps can be seen from the interferograms, 

which means that the image shift due to repositioning errors was not significant in this case. 

Finally, no significant deformation is detected in the hillside over the 2-hour observation period.  



142 

 

6.4 Discussion 

Experiments have been conducted using both synthetic and real-world GBSAR datasets in this 

study. Both moderate and considerable repositioning errors have been investigated in 

experiments. Based on these experiments, it is observed that greater repositioning errors lead 

to greater residuals and less reliable displacements. Therefore, in any multi-epoch campaign, 

the installation of the GBSAR instrument should be replicated as precisely as possible for 

accurate interferometric measurement. In other words, repositioning errors should be kept as 

small as possible. The proposed MC-GBSAR chain offers two approaches for the correction of 

APS and repositioning errors, either through modelling or filtering. The modelling approach 

produced better results than filtering, based on the synthetic data results in this study.  

In addition, highly-coherent pixels from unstable areas carrying unknown displacements may 

be selected for modelling, which can lead to a biased estimation of APS and repositioning errors. 

To mitigate the inaccuracies contributed by these pixels, an IRLS algorithm has been 

implemented. The IRLS estimation is an iterative process: the more that a pixel deviates from 

the estimated model, the smaller its weight will be in the following iteration. Thus, the weight 

for a pixel that is carrying deformation but accidently selected for modelling will decrease 

gradually in the ILRS estimation. An analysis was conducted based on the synthetic data 

together with repositioning Errors-I (introduced in Section 6.2.5). One percent of pixels were 

used to estimate the model for the correction of APS and geometric errors, these pixels were 

evenly distributed in space (including the deformation area). Some pixels were thus selected 

from the deformation area. Figure 6.15 shows the RMS and maximum of displacement residuals 

decreasing with the number of iterations, which converges after a very limited number of 

iterations. This suggests the feasibility of the IRLS estimation for modelling in the presence of 

some pixels that are selected from unstable areas. 

  

Figure 6.15. The RMS and maximum of displacement residuals for the synthetic data together 

with additional repositioning Errors-I. 
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6.5 Summary 

This chapter has reported a new interferometric processing chain, MC-GBSAR, that has been 

developed for discontinuous GBSAR deformation monitoring. Automatic co-registration of 

GBSAR images has been implemented through the feature matching of amplitude images and 

integrated into this processing procedure. A sub-pixel co-registration precision can be achieved. 

The additional phase component due to repositioning errors was further identified as geometric 

and topographic phase errors. The geometric phase error ramps have been removed by 

recovering a polynomial function of the range and azimuth image coordinates. Topographic 

phase errors can be corrected in the case of an unknown spatial baseline. The approach therefore 

overcomes the practical difficulty of measuring the precise position and orientation of a linear 

GBSAR system. 

A new model has been proposed for the combined correction of atmospheric, geometric and 

topographic phase errors in a single step. Simulations have shown that the proposed model 

outperformed the traditional filtering approach. The maximum displacement residual of the 

filtering was 6.6 – 10.1 times greater than that of the proposed model over different types of 

topography. 

Experiments using both synthetic and real-world GBSAR data have demonstrated the feasibility 

of the proposed MC-GBSAR chain for measuring deformation between discontinuous 

campaigns. In addition, advanced InSAR algorithms presented in previous chapters, including 

adaptive coherence estimation, non-local filtering, and selection of (partially) coherent pixels, 

have been integrated into the MC-GBSAR chain, creating a unique and complementary tool to 

the RT-GBSAR chain for a comprehensive GBSAR interferometry processing framework. MC-

GBSAR, together with RT-GBSAR, facilitates a range of engineering and environmental 

deformation monitoring applications to which GBSAR is potentially suited. 

It is worth highlighting that zero-baseline geometry is strongly recommended during data 

collection as it ensures the optimal performance of GBSAR interferometry. In cases where the 

zero-baseline cannot be achieved, moderate technical effort is still encouraged to minimise the 

repositioning errors as much as possible for deformation monitoring purposes.  

 



144 

 

  



145 

 

Chapter 7. Conclusions 

7.1 Contributions of this research 

The goal of this research was to design and develop a framework to effectively utilise GBSAR 

interferometry for deformation monitoring applications. A range of aspects of GBSAR 

interferometry has been involved. This section summarises the main research outcomes from 

this project, as follows: 

1. Non-local “MIAS” method.  

A simple but efficient similarity measure has been presented to identify resembling pixels for 

distributed scatterers, together with a comprehensive non-local “MIAS” method based upon 

this concept, which is able to accurately estimate coherence and interferometric phase. “MIAS” 

can largely mitigate the coherence estimation bias and avoid overestimating the decorrelated 

area without the cost of the spatial resolution.  

2. Selection of (partially) coherent pixels.  

A full-rank criterion for the selection of coherent pixels from a redundant network of 

interferograms has been developed, which enables the selection of not only qualified partially 

coherent pixels, but also all persistent scatterers. The proposed method makes the most of 

redundant observations and allows an adjustment to obtain a reliable value for the unknown. 

Finally, a reliable solution can be achieved in the InSAR time series analysis. 

3. RT-GBSAR.  

A novel processing chain (i.e. RT-GBSAR) for continuous GBSAR deformation monitoring has 

been demonstrated on the basis of the SBAS time series concept. The SBAS procedure in RT-

GBSAR integrates the non-local “MIAS” method and the presented coherent pixel selection 

approach. RT-GBSAR processes continuous GBSAR images on a unit by unit basis. Significant 

issues in processing continuous GBSAR data (including the delay of displacement maps, the 

extreme cost of computational memory, and the loss of temporal evolution in the simultaneous 

processing of all data together) have been addressed by the proposed RT-GBSAR chain with 

three notable features: (i) low requirement of computational memory; (ii) insights into the 

temporal evolution of surface movements through temporally-coherent pixels; and (iii) real-
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time capability for processing an infinite number of images. 

4. MC-GBSAR.  

A new interferometric processing chain (i.e. MC-GBSAR) has been proposed for discontinuous 

GBSAR deformation monitoring, in which repositioning errors often occur in repeated 

campaigns and cause inaccuracies in interferometric observations. In this processing chain, 

GBSAR imagery can be automatically co-registered through amplitude-based feature matching 

with sub-pixel precision. By analysing the characteristics and effects of the typical errors 

(including atmospheric and repositioning errors) in GBSAR interferometry from its 

fundamental geometry, a new model has been developed and integrated into this chain for the 

combined correction of these errors. Based on experiments using both synthetic and real-world 

GBSAR data, it was found that greater repositioning errors always lead to less reliable 

displacement determination. With moderate effort in hardware deployment, the MC-GBSAR 

chain will potentially facilitate a range of deformation monitoring applications, especially in 

slow-changing scenarios. The MC-GBSAR chain can be a complementary tool to the RT-

GBSAR chain for processing GBSAR data collected from all operation modes.  

5. Deformation monitoring applications.  

The presented algorithms and processing chains have been fully implemented and integrated 

into an in-house GBSAR data processing package (see Appendix B), making it a versatile tool 

for GBSAR deformation monitoring. Using this package, four deformation monitoring 

applications have been undertaken, including three continuous (a dune, a bridge, and a coastal 

cliff) and one discontinuous (a hillside) scenarios. The results were verified quantitatively via 

a defined precision indicator for the time series estimation and validated qualitatively via a 

priori knowledge of these observing sites. These successful applications have demonstrated the 

feasibility and effectiveness of the presented algorithms and chains for reliable, high-precision 

GBSAR deformation monitoring. 

In the application of monitoring a fast-changing sand dune, observed movement took place only 

in areas devoid of vegetation while the area with sparse vegetation coverage remained stable 

over a short observing period of 1 hour 20 minutes, which suggests that the preservation of 

vegetation in the dune area plays an important role in stabilising the surface against sand motion.  

The application of monitoring the Queen Elizabeth II Metro Bridge showed that the bridge 
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superstructure vibrated with a few millimetres of deflection when a train crossed it. It presents 

the feasibility of GBSAR interferometry for measuring rapid structural deformation.  

In the application of monitoring the cliff on the north side of Tynemouth Priory and Castle, 

displacement maps reveal deformation signals only at locations near the sea. Time-series 

displacements, cumulative displacement maps, and relevant analysis suggest that the triggering 

of ground deformation is related to sea tides.  

In the discontinuous monitoring of the southern hillside of Tynemouth Priory and Castle, two 

GBSAR campaigns were processed by the MC-GBSAR chain with and without co-registration 

processing, using both modelling and filtering approaches for the correction of atmospheric and 

geometric errors. The achieved results with respect to the two situations were consistent with 

each other. Finally, no significant movement was detected on the hillside over the observing 

period of two hours, presenting an anticipated result.   

On the basis of these successful applications, it is fair to conclude that the research outcomes 

from this project will facilitate a range of deformation monitoring applications to which 

GBSAR is potentially suited. 

7.2 Revisiting research objectives 

This research aimed to design and develop a framework to effectively utilise GBSAR 

interferometry for deformation monitoring applications. The research emphasizes the 

performance of InSAR techniques in terms of accuracy, robustness, and real-time capability. 

The aim has been achieved through the accomplishment of the original four objectives as 

follows: 

1. To evaluate the suitability and, where necessary, make necessary improvement to current 

fundamental InSAR techniques and advanced time series analysis algorithms for processing 

GBSAR imagery.  

This has been addressed in Chapters 3 and 4, corresponding to research outcomes 1, 2 and 4 (in 

part). The non-local “MIAS” method overcomes the limitations in the conventional algorithms 

and achieves accurate coherence estimation and phase filtering. The new approach to selecting 

coherent pixels based on the full-rank criterion is able to maximise the density of selected pixels 

and optimise the reliability of GBSAR time series analysis by making the most of coherent 
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phase redundancies. The atmospheric and repositioning errors in GBSAR interferometry have 

been investigated and a new model has been proposed for the correction of these errors. 

2. To develop a (near-) real-time processing procedure with high degree of automation for a 

current FastGBSAR instrument to minimise delay after each data acquisition and to maximise 

the precision and reliability of the output deformation maps.  

This has been addressed in Chapter 5, corresponding to research outcome 3: the novel RT-

GBSAR processing chain for continuous GBSAR deformation monitoring. The real-time 

capability of RT-GBSAR was evaluated in Chapter 5 and successful applications have 

demonstrated that sub-millimetre measurement precision can be achieved in the time series 

estimation aspects of the RT-GBSAR chain.  

3. To develop a discontinuous GBSAR procedure as a complementary module to the continuous 

pipeline for a complete GBSAR interferometry framework. 

This has been addressed in Chapter 6, corresponding to research outcome 4: a new 

interferometric processing chain, MC-GBSAR, for discontinuous GBSAR deformation 

monitoring. MC-GBSAR has integrated the automatic co-registration of GBSAR images and 

the correction of atmospheric and repositioning errors between repeated campaigns. With 

moderate effort on hardware deployment in practice, MC-GBSAR can be a complementary tool 

to RT-GBSAR for a complete GBSAR interferometry framework. 

4. To establish case studies to demonstrate the feasibility of the developed GBSAR data 

processing software system for a range of deformation monitoring applications to which 

GBSAR is suited. 

Multiple applications have been completed in Chapters 4, 5, and 6. A summary of these 

applications is given in research outcome 5. 

7.3 Recommendations for future research and applications 

This research has involved a range of aspects of GBSAR interferometry and produced a 

complete in-house software package (see Appendix B) for deformation monitoring. Additional 

research effort is now needed to further improve the performance of the developed package and 

exploit its value in geohazard monitoring and structural deformation surveying. The following 

work could be considered to add value in the future. 
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1. Automatic correction of phase unwrapping errors 

The detection of phase unwrapping errors has been integrated into the developed package. 

However, the automatic correction of unwrapping errors has not been achieved, and would 

represent a valuable topic for future work. Although several previous studies in both spaceborne 

and ground-based SAR (e.g. Biggs et al., 2007; Crosetto et al., 2011; López-Quiroz et al., 2009; 

Monserrat et al., 2009; Zhao et al., 2016) attempted to address this issue, these approaches 

perform pixel-wise correction of unwrapping errors in post-processing, and generally require 

visual inspection (Biggs et al., 2007). Unwrapping errors usually present regional patterns 

(Biggs et al., 2007), and the accurate identification of regional unwrapping errors is required. 

In the case that unwrapping errors are detected, RT-GBSAR requires the fully automatic 

correction of unwrapping errors to be achieved in real time.  

2. Graphical processing unit (GPU) acceleration 

The whole data processing package has been developed using MATLAB release 2016b (The 

MathWorks, Inc.), with some code converted into C++. The entire program is currently based 

on central processing unit computation. To meet the increasing requirements associated with 

the advancement of GBSAR hardware, especially the ground-based MIMO radar (or MIMO-

SAR) which is potentially capable of generating a number of images per second, the real-time 

capability of this package should be enhanced, possibly via high-performance computational 

techniques such as GPU acceleration (e.g. Reza et al., 2018; Zhang et al., 2014). 

3. 1D (LOS) measurements to 3D measurements  

Like other InSAR techniques, GBSAR interferometry provides 1D surface displacements along 

the LOS direction. In comparison to 3D measurements, 1D LOS displacements may be 

insufficient to interpret some of the processes behind observations (e.g. Caduff et al., 2015; 

Kristensen et al., 2013). To achieve 3D measurements, GBSAR observation can be performed 

from multiple stations, which is similar to the concept of multiple geometries in spaceborne 

InSAR (e.g. Hu et al., 2012; Wright et al., 2004). Alternative strategies could include prior 

knowledge (or assumption) about the displacement direction (Caduff et al., 2015) and 

integration with other measurements, such as GNSS, TLS, and spaceborne InSAR (e.g. Bardi 

et al., 2016; Kristensen et al., 2013; Rödelsperger et al., 2010).  

4. Long-term deformation monitoring  
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Although all of the applications presented in this research are short-term cases, the developed 

software package is actually ready for both short- and long-term deformation monitoring 

applications. Long-term monitoring cases may require extra effort in hardware deployment and 

management. In terms of data acquisition, it can be carried out through long-term continuous 

operation or multi-campaign discontinuous operation. Data acquisition in any operation mode 

can be processed by the developed package together with RT-GBSAR and MC-GBSAR chains. 

It should be noted that in the long-term monitoring of a natural slope with thick vegetation 

coverage, temporal decorrelations can be serious, thus constraining the feasibility of GBSAR 

interferometric measurement. The use  of corner reflectors may be beneficial in such cases 

(Crosetto et al., 2014a). 

5. Early warning systems for landslides and infrastructure failures 

Early warning systems work as risk mitigation tools by calling for actions in specific 

circumstances and in areas where hazard risk goes beyond a tolerable level (Calvello, 2017). 

Apart from monitoring, an efficient landslide early warning system also comprises analysis and 

forecasting, warning, and response elements (Intrieri et al., 2012). GBSAR interferometry has 

been increasingly adopted to implement landslide early warning systems (e.g. Atzeni et al., 

2015; Casagli et al., 2010; Intrieri et al., 2012). Future effort should be made on combining the 

proposed GBSAR interferometric framework with appropriate forecasting, warning, and 

response to implement a more effective landslide early warning system. In addition, future work 

also includes exploiting the GBSAR monitoring of structural deformation for dams, levees, 

embankments, and other infrastructure, in order to effectively analyse abnormal behaviour that 

may threaten the safety of the structures, implement maintenance and remedial measures, and 

predict potential failures. 
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Appendix A: Inversion precision 

The goal of InSAR time series analysis for deformation monitoring is to obtain the deformation 

time series. The mean velocity between time-adjacent acquisitions is a preferred choice in 

InSAR time series analysis to avoid large discontinuities in cumulative deformations and to 

obtain a physically sound solution (e.g. Berardino et al., 2002; Li et al., 2009). Accordingly, the 

prerequisite is to obtain the incremental time series of phase change between time-adjacent 

acquisitions. We assume a redundant network of L interferograms formed by N SLC images. 

Each pixel is associated with a system in the following matrix representation: 

 𝐁𝐿×𝑁 𝚽𝑁×1 = 𝛅𝚽𝐿×1 + 𝛆𝐿×1, (A.1) 

where 𝐁  is the coefficient matrix; 𝚽  is the matrix containing the incremental time series of 

phase change with respect to the superposition of both displacement and atmospheric variation; 

𝛅𝚽 is the matrix of redundant unwrapped interferometric phase; 𝛆 is the noise matrix. With 

redundant interferometric phase, the optimal estimation of the incremental time series of phase 

change 𝚽̂ for each pixel can be performed based on equation (A.1) via any appropriate solvers 

(e.g. singular value decomposition, normal least squares). The phase residuals in the inversion 

are:  

 𝐕𝐿×1 = 𝐁𝐿×𝑁 𝚽̂𝑁×1 − 𝛅𝚽𝐿×1. (A.2) 

The root mean square of phase residuals for a pixel is: 

 𝜎0 = √
𝐕T𝐕

𝑟
= √ 𝐕T𝐕

𝑛−𝑁+1
, (A.3) 

where 𝑟 is the number of redundancies and 𝑛 is the number of coherence occurrences in the 

redundant network. Accordingly, the covariance matrix of the estimated 𝚽̂𝑁×1  can be 

calculated by:  

 D𝚽̂𝚽̂ = 𝜎0√(𝐁T𝐁)−1. (A.4) 

As the final cumulative displacement is obtained by removing atmospheric variation from the 

sum of them, we introduce an estimator 𝑑̂ which is the sum of the cumulative displacement and 

atmospheric variation between the first image and the last image: 
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 𝑑̂ = −
𝜆

4𝜋
∑ (𝜑̂𝑡𝑘𝑡𝑘+1

𝑑𝑖𝑠 + 𝜑̂𝑡𝑘𝑡𝑘+1
𝑎𝑡𝑚 )𝑁−1

𝑘=0 = 𝐅1×𝑁𝚽̂𝑁×1, (A.5) 

where 𝐅 = [− 𝜆 4𝜋⁄ ⋯ −𝜆 4𝜋⁄ ] . The theoretical precision of d̂  is used as the precision 

indicator in the estimation for each pixel, which is calculated by: 

 𝜎𝑑̂𝑑̂ = √D𝑑̂𝑑̂ = √𝐅D𝚽̂𝚽̂𝐅
T. (A.6) 
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Appendix B: Ground-based Synthetic Aperture Radar Interferometry 

Software (GBSAR-InS) 

Ground-based Synthetic Aperture Radar Interferometry Software (GBSAR-InS) is a GBSAR 

data processing software package for deformation monitoring developed by the author. The 

relevant InSAR algorithms, processing strategies described in this thesis have been 

implemented and integrated into GBSAR-InS. The software package is able to process GBSAR 

data acquired in any operation modes and therefore supports both continuous and discontinuous 

GBSAR monitoring, and it was used to generate the results shown in this thesis. The notable 

features of GBSAR-InS are highlighted as follows: 

(1) A fully automatic chain, RT-GBSAR presented in Chapter 5, has been developed 

and integrated into GBSAR-InS for the (near-) real-time processing of continuous 

GBSAR data. RT-GBSAR possesses three features: (i) low requirement of 

computational memory; (ii) insights into the temporal evolution of surface movements 

through temporally-coherent pixels; and (iii) (near-) real-time capability of processing 

an infinite number of images. 

(2) Another fully automatic chain, MC-GBSAR presented in Chapter 6, has been 

developed and integrated into GBSAR-InS for processing discontinuous multi-

campaign GBSAR data. In MC-GBSAR, (i) images from different campaigns with 

repositioning errors can be automatically co-registered; and (ii) atmospheric, 

geometric, and topographic errors can be corrected in a single step without any 

additional materials or a-priori knowledge. 

(3) GBSAR-InS uses advanced InSAR techniques in every processing step, including 

(i) the non-local “MIAS” method, presented in Chapter 3, for accurate coherence 

estimation and phase filtering; and (ii) the approach to selecting fully and partially 

coherent pixels, which is presented in Chapter 4.  

 (4) GBSAR-InS provides user interfaces for data management and data visualisation. 

The package is able to output cumulative displacement maps, deformation velocity 

maps, atmospheric and/or repositioning error maps between any two epochs, as well 

as the line graph of time-series displacement for every coherent pixel. It is also able to 

output precision maps and unwrapping error maps to assess the reliability of InSAR 
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time series analysis.  

GBSAR-InS was developed based on Matlab release 2016b software. The data processing of 

GBSAR-InS starts with focused single-look complex images, and it uses SNAPHU 

(https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/, accessed: 08 December, 

2018) for 2D phase unwrapping and partial StaMPS unwrapping source codes 

(https://homepages.see.leeds.ac.uk/~earahoo/stamps/, accessed on 08 December, 2018) for 3D 

phase unwrapping. Using the continuous GBSAR dataset (i.e. Dataset I), Figures B.1 to B.6 

show the key user interfaces and outputs of GBSAR-InS.  

 

Figure B.1. The main user interface of GBSAR-InS.  

https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/
https://homepages.see.leeds.ac.uk/~earahoo/stamps/


155 

 

 

Figure B.2. The user interface for cumulative displacement map plotting.  

 

Figure B.3. Error map (APS map in this case) and inversion precision map.  
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Figure B.4. The user interface for examining phase unwrapping errors. 

 

Figure B.5.  Cumulative displacement map (the left one) and line graphs of displacement and 

error time series (the right two). 
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Figure B.6.  Basic plots: (mean) amplitude, interferogram, and coherence maps. 
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