177 research outputs found

    Design of high-isolation and wideband RF switches in SiGe BiCMOS technology for radar applications

    Get PDF
    RF switches are an essential building block in numerous applications, including tactical radar systems, satellite communications, global positioning systems (GPS), automotive radars, wireless communications, radio astronomy, radar transceivers, and various instrumentation systems. For many of these applications the circuits have to operate reliably under extreme operating conditions, including conditions outside the domain of commercial military specifications. The objective of this thesis is to present the design procedure, simulation, and measurement results for Radio Frequency (RF) switches in 130 nm Silicon Germanium (SiGe) BiCMOS process technology. The novelty of this work lies in the proposed new topology of an ultrahigh-isolation single-pole, single-throw (SPST) and a single pole, four-throw (SP4T) nMOS based switch for multiband microwave radar systems. The analysis of cryogenic temperature effects on these circuits and devices are discussed in this work. The results shows that several key-figures-of-merits of a switch, like insertion loss, isolation, and power handling capability (P1dB) improve at cryogenic temperatures. These results are important for several applications, including space-based extreme environment application where FET based circuits would need to operate reliably across a wide-range of temperature.MSCommittee Chair: Cressler, John D.; Committee Member: Jeffrey Alan Davis; Committee Member: Papapolymerou, Ioanni

    Design of A Low-power Precision Op Amp with Ping-pong Autozero Architecture

    Get PDF
    Precision op amps are widely used in instrumentation, automotive, and industrial applications. This thesis presents the design and characterization of a low-power precision operational amplifier that uses “ping-pong” autozero architecture for automatic offset correction. The op amp is designed for extreme environment applications, operating across a wide temperature range (minus 180 degree Celsius to plus 120 degree Celsius) with low offset, low drift and low power consumption. This design has been fabricated in a SiGe BiCMOS 0.5-micron process and the measured results demonstrate that the op amp is fully functional and achieves less than 40 microvolt input-referred offset voltage with 0.1 microvolt per degree offset voltage drift and 1 microwatt power consumption

    Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies

    Get PDF
    This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance

    Design and characterization of BiCMOS mixed-signal circuits and devices for extreme environment applications

    Get PDF
    State-of-the-art SiGe BiCMOS technologies leverage the maturity of deep-submicron silicon CMOS processing with bandgap-engineered SiGe HBTs in a single platform that is suitable for a wide variety of high performance and highly-integrated applications (e.g., system-on-chip (SOC), system-in-package (SiP)). Due to their bandgap-engineered base, SiGe HBTs are also naturally suited for cryogenic electronics and have the potential to replace the costly de facto technologies of choice (e.g., Gallium-Arsenide (GaAs) and Indium-Phosphide (InP)) in many cryogenic applications such as radio astronomy. This work investigates the response of mixed-signal circuits (both RF and analog circuits) when operating in extreme environments, in particular, at cryogenic temperatures and in radiation-rich environments. The ultimate goal of this work is to attempt to fill the existing gap in knowledge on the cryogenic and radiation response (both single event transients (SETs) and total ionization dose (TID)) of specific RF and analog circuit blocks (i.e., RF switches and voltage references). The design approach for different RF switch topologies and voltage references circuits are presented. Standalone Field Effect Transistors (FET) and SiGe HBTs test structures were also characterized and the results are provided to aid in the analysis and understanding of the underlying mechanisms that impact the circuits' response. Radiation mitigation strategies to counterbalance the damaging effects are investigated. A comprehensive study on the impact of cryogenic temperatures on the RF linearity of SiGe HBTs fabricated in a new 4th-generation, 90 nm SiGe BiCMOS technology is also presented.Ph.D

    Integrated Circuit Design in US High-Energy Physics

    Full text link
    This whitepaper summarizes the status, plans, and challenges in the area of integrated circuit design in the United States for future High Energy Physics (HEP) experiments. It has been submitted to CPAD (Coordinating Panel for Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the whitepaper was distributed to the attendees before the workshop, the content was discussed at the meeting, and this document is the resulting final product. The scope of the whitepaper includes the following topics: Needs for IC technologies to enable future experiments in the three HEP frontiers Energy, Cosmic and Intensity Frontiers; Challenges in the different technology and circuit design areas and the related R&D needs; Motivation for using different fabrication technologies; Outlook of future technologies including 2.5D and 3D; Survey of ICs used in current experiments and ICs targeted for approved or proposed experiments; IC design at US institutes and recommendations for collaboration in the future

    A GHz-range, High-resolution Multi-modulus Prescaler for Extreme Environment Applications

    Get PDF
    The generation of a precise, low-noise, reliable clock source is critical to developing mixed-signal and digital electronic systems. The applications of such a clock source are greatly expanded if the clock source can be configured to output different clock frequencies. The phase-locked loop (PLL) is a well-documented architecture for realizing this configurable clock source. Principle to the configurability of a PLL is a multi-modulus divider. The resolution of this divider (or prescaler) dictates the resolution of the configurable PLL output frequency. In integrated PLL designs, such a multi-modulus prescaler is usually sourced from a GHz-range voltage-controlled oscillator. Therefore, a fully-integrated PLL ASIC requires the development of a high-speed, high-resolution multi-modulus prescaler. The design challenges associated with developing such a prescaler are compounded when the application requires the device to operate in an extreme environment. In these extreme environments (often extra-terrestrial), wide temperature ranges and radiation effects can adversely affect the operation of electronic systems. Even more problematic is that extreme temperatures and ionizing radiation can cause permanent damage to electronic devices. Typical commercial-off-the-shelf (COTS) components are not able withstand such an environment, and any electronics operating in these extreme conditions must be designed to accommodate such operation. This dissertation describes the development of a high-speed, high-resolution, multi-modulus prescaler capable of operating in an extreme environment. This prescaler has been developed using current-mode logic (CML) on a 180-nm silicon-germanium (SiGe) BiCMOS process. The prescaler is capable of operating up to at least 5.4 GHz over a division range of 16-48 with a total of 27 configurable moduli. The prescaler is designed to provide excellent ionizing radiation hardness, single-event latch-up (SEL) immunity, and single-event upset (SEU) resistance over a temperature range of −180°C to 125°C

    Operation of silicon-germanium heterojunction bipolar transistors on silicon-on-insulator in extreme environments

    Get PDF
    Recently, several SiGe HBT devices fabricated on CMOS-compatible silicon on insulator (SOI) substrates (SiGe HBTs-on-SOI) have been demonstrated, combining the well-known SiGe HBT performance with the advantages of SOI substrates. These new devices are especially interesting in the context of extreme environments - highly challenging surroundings that lie outside commercial and even military electronics specifications. However, fabricating HBTs on SOI substrates instead of traditional silicon bulk substrates requires extensive modifications to the structure of the transistors and results in significant trade-offs. The present work investigates, with measurements and TCAD simulations, the performance and reliability of SiGe heterojunction bipolar transistors fabricated on silicon on insulator substrates with respect to operation in extreme environments such as at extremely low or extremely high temperatures or in the presence of radiation (both in terms of total ionizing dose and single effect upset).Ph.D.Committee Chair: Cressler, John D.; Committee Member: Papapolymerou, John; Committee Member: Ralph, Stephen; Committee Member: Shen, Shyh-Chiang; Committee Member: Zhou, Hao Mi
    • 

    corecore