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ABSTRACT

SILICON GERMANIUM BICMOS INTEGRATED 
CIRCUITS FOR SCALABLE CRYOGENIC SENSING 

APPLICATIONS

FEBRUARY 2022

MOHSEN HOSSEINI

B.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

M.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Joseph C. Bardin

This dissertation is focused on an investigation of BiCMOS cryogenic low noise 

amplifiers (LNAs based on Silicon-germanium (SiGe heterojunction bipolar transis-

tors (HBTs for simultaneous low noise and low power design and also taking advan-

tage of CMOS circuitry for adding flexibility t o t he L NA d esign. C ryogenic LNAs’ 

scalability challenges are discussed and addressed in the dissertation. To achieve 

that, first, H BTs o f t hree s tate-of-the-art t echnologies a re c haracterized a nd mod-

eled at cryogenic temperature. It is shown that SiGe HBT provides a promising 

compromise of noise temperature, power consumption, and bandwidth. Moreover, a 

scalable on-chip approach is proposed and verified f or b iasing o f S iGe H BTs based 

LNAs. Finally, the first cryogenic re-configurable LNA is designed, implemented, and 

measured.
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CHAPTER 1

BACKGROUND MATERIAL AND MOTIVATION

Cryogenic low noise amplifiers are regularly used in a wide range of applications,

including radio astronomy [62], quantum computing [11, 13], and fundamental physics

research [41]. For many years, InP high-electron-mobility transistors (HEMT) were

the only choice for the implementation of these amplifiers [19, 91]. In the last decade,

it is shown that SiGe HBT is a promising choice for these applications [93, 14] partic-

ularly for low power purposes [63] and lower than 10 GHz frequency range. However,

state-of-the-art readout systems in different applications require larger arrays, and

consequently, higher scalability and better noise performance for cryogenic LNAs are

desired. For example, currently, 54 qubits quantum processor is the state of the art

[7], and scaling quantum computers to million qubits is required for practical quantum

computers [12], and consequently, it demands implementation of a massive amount of

microwave electronics blocks, including scalable, high-performance cryogenic LNAs.

Here in this chapter application of the cryogenic LNAs are described as a motiva-

tion for the dissertation. Particularly, it is focused on the applications of the LNAs

which are designed in the next chapters of the dissertation.

1.1 Need for Highly Scalable Integrated Cryogenic LNAs
1.1.1 Terahertz Detection

The terahertz part of the spectrum (0.1–10 THz) is described as the final unex-

plored area of the spectrum. Even though human beings have relied on sun radia-

tion (including terahertz band) since a long time ago, the development of terahertz
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technologies started in the 1940s, and it was mostly about laboratory applications.

Terahertz radiation is resistant to the well-known approaches used for infrared and

microwave radiation detection, making it challenging. Despite the fact that the sig-

nificant use of terahertz spectroscopy is for astronomers and chemists, detection of

terahertz is an engineer’s challenge [78].

Terahertz remote sensing is challenging because ambient moisture of Earth’s at-

mosphere causes strong absorption at this frequency range. Moreover, unlike visible

light and infrared detectors, terahertz detectors have not yet reached fundamental

quantum limit characteristics. Therefore, there is still an opportunity for research in

this field [84].

Signal to noise ratio of the detected signal is that of the signal current to the shot

noise, namely [28]:

SNR =
isig

in,shot
=

Φp,sigηq√
2qi∆f

=
Φp,sigηq√

2q(Φp,sigηq + ϕp,bkgηq)∆f
, (1.1)

In which,Φp,sig and Φp,bkg are desired signal and background noise flux and η is quan-

tum efficiency (electrons per photon). Depends on the type of the telescope (ground-

based or space-based) the dominant noise contribution can be the shot noise gener-

ated by the signal-power envelope or background noise. With a weak signal source

detected against a large background which is the most common situation, the domi-

nant shot noise contribution is the shot noise of the background (Φbkg ≫ Φsig). The

background-limited infrared photo-detector (BLIP) can be calculated from the below

equation:

SNRBLIP ≃ Φp,sigη√
2Φp,bkgη∆f

= Φp,sig

√
ητ

Φp,bkg

, (1.2)

It shows the SNRBLIP is inversely proportional to the square root of the background

flux; so, reducing the background photon flux increases the SNR. The ultimate per-

formance of the detectors is reached when the readout (including both detector and
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LNA) input-referred noise temperature is low (more than a factor of 3–5) compared

to the photon noise.

The performance of BLIP detectors can be improved by reducing the background

photon flux (Φp,bkg). This can happen by two approaches. First, a cryogenic or

reflective spectral filter for limiting the spectral band. Second, a cooled shield to

limit the angular field of view of the detector. The first approach will eliminate

background radiation from out-of-spectrum regions. In conclusion, the best detectors

yield background-limited directives in a narrow field of view [56].

All radiation detection of terahertz can be divide into two main groups: 1. in-

coherent Detection and 2. Coherent Detection. Here I briefly describe these two

approaches and the pros and cons of each.

1.1.1.1 Incoherent Detection

Incoherent detection is done by direct sensors, which allow just amplitude of the

signal, and typically, it has wide instantaneous bandwidth. Incoherent detection

provides more effortless scalability than a coherent approach but with lower spectral

resolution, and it is also commonly used for ultraviolet, infrared, and visible directions.

The schematic of a typical incoherent detection is shown in Fig. 1.1, in which WS is

the desire signal power and WB is background radiation power. Usually, an optic filter

is located before detectors to remove background radiation at frequencies other than

the desired one. Most sensitive direct detectors are cooled to T ≈0.1–0.3 K reaching

noise equivalent power (NEP) limited by cosmic background radiation fluctuation.

The threshold power detected by direct detectors is higher than heterodyne be-

cause of the LNA’s added thermal noise, which is why the noise performance of LNA

is critical for this type of detector. On the other hand, the main advantage of di-

rect detection is simplicity and the possibility to design a large array, which requires
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Figure 1.1. Schematic of direct detection. WS is the signal power and WB is the
background radiation power.

an array of LNAs and consequent power consumption considerations [35]. Power

consumption of the LNA is also important for scalable coherent detection method.

Here in this dissertation, I am focusing on a specific type of incoherent detection

technology: MKID. In Fig. 1.2 you can see 1800 pixels as an MKIDs array which will

be implemented inside, and a millimeter-wavelength camera. Three different arrays

are implemented inside the camera to cover 2, 1.4, and 1.1 mm wavelengths. The

total number of detectors is 7718, and 13 LNAs are required to read out detectors.

The design and implementation of the LNAs for this particular example are described

in the dissertation.

For this type of detection, typically, thousands of detectors are coupled to a single

transmission line, and an array of LNAs should amplify the detected signal at once.

That is why intermodulation of the detected signals is also important for the LNA,

and consequently, linearity specifications of the LNA should be characterized.

1.1.1.2 Coherent Detection

Coherent detection is done by a heterodyne structure in which the terahertz signal

is down-converted to an intermediate frequency (IF) by a mixer. It can preserve

both phase and amplitude information. This method usually provides high spectral

resolution compared to the previous method because νIF ≪ ν. A schematic of typical
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Figure 1.2. TolTEC 1.1 mm MKID Array 1800 pixels, 3600 detectors [10].

heterodyne structure is shown in Fig. 1.3. As shown, a mixer and local oscillator

are required to down-covert the detected terahertz frequency to IF.

Typically the mixer contributes the most noises to the heterodyne receiver [27].

Basically, any nonlinear electronic device can be used as a mixer. However, the choice

of mixer is essential for receiver sensitivity. The most used technologies (at THz

frequencies) for the mixer are superconductor-insulator- (SIS) tunnel junctions, semi-

conductor and superconducting hot-electron bolometers (HEBs), Schottky diodes.

SIS provides the best sensitivity for lower than 1.3 THz frequency range and usually

requires >4 GHz IF. At larger frequencies (higher than 1.3 GHz), intrinsic noise of

SIS mixer is increasing because high-frequency losses increase. HEB is typically used

for 1.3–5 THz frequency range and νIF <4 GHz [83].

Scalability is even more challenging for coherent detectors. The biggest challenge

is the requirement of an IF channel for each element. Another challenge is the lim-

itation of solid-state LO power, which is on the range of milliwatt or microwatt in

the terahertz range. Moreover, semiconductor lasers that are used in IR and optical
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Figure 1.3. Schematic of heterodyne detection. WS is the signal power and WB is
the background radiation power. Wo is LO radiation power.

bands are not available in most of the terahertz bands. The Fig. 1.4 is showing the

terahertz gap with respect to source technology.

A scalable 64 pixels heterodyne array that integrates mixers and amplifiers into a

single array is implemented [38]. In this case, IF LNA power consumption is limiting

the scalability of coherent detectors. Cryocoolers efficiency drops significantly (∼1 %

of Carnot efficiency at 4 K [72]) with temperature, and it limits the capacity to remove

the heat generated inside a cooler. That is why sub-milliwatt cryogenic LNAs are

required for practical thousands pixels array.

An integrated wideband low-power LNA is proposed in the dissertation for the

heterodyne structure based on an HEB mixer. Usually, the noise performance of the

HEB mixer is poor at higher than 4 GHz IF bandwidth. Therefore, having wideband

cryogenic LNA working at the lowest possible frequency is desirable for this particular

application.

1.1.2 Quantum Computing Scalable Readout

Quantum computing technology is grown quickly in the past decade. It heav-

ily relies on microwave technologies for readout and control parts. As an example,

currently, for a 50-qubit Google quantum processor, four racks of microwave electron-

ics, including 250 base-band arbitrary wave generators (AWGs), 50 single side-band
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Figure 1.4. Terahertz emission power regard to frequency which shows the gap with
respect to source technology [88].

(SSB) modulators, 10 SSB demodulators, 8 frequency synthesizers, and 10 digitizers,

are used [11]. State-of-the-art error rates for control and readout depend on the type

qubit, that are in the range of 10−4 to 10−2, which is much higher than typical classical

computers. That is mainly because of the noise toleration difference between classical

and quantum computers. That is why there are some error correction techniques for

large-scale computations in the quantum computing field [77]. Integrated circuits will

be the ultimate solution because thousands/millions of qubits are required for reliable

error counted quantum processors.

Recently, in the literature, an integrated approach is investigated for the control

part of these processors [12] as shown in Fig. 1.6. However, here, I am focusing on

just the readout part of quantum computing.

For practical quantum algorithms, 1% error rate is required. Since a qubit’s state

energy level is much lower than the sensitivity of detectors (for example, for trans-
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Figure 1.5. Fault-tolerant quantum computer with feedback loop of classical com-
puter.

mon qubit, a single 5 GHz microwave photon carrying the energy of about 20µeV),

reflection coefficient difference is measured rather than the absolute value of energy

level by radio frequency reflectometry [13]. This approach is also used for spin qubit

readout because of the higher charge sensitivity of this approach. In the rest of this

section, the quantum processor readout approach and LNA requirements are briefly

described for two types of qubits (spin and transmon).

1.1.2.1 Spin Qubit Readout

A single spin qubit device can be built as a double-gate nanowire FET imple-

mented in a fully-depleted silicon-on-insulator (SOI) process. Since the gate impedance

of an FET is high, an impedance matching network is required for conversion of the

high impedance to 50Ω. A simplified electrical model of a single spin qubit including

an LC matching network is shown in Fig. 1.7. Depends on the state of a qubit, the

capacitor value at the gate can be different (∆C), and this information via phase

difference of the LC matching network response can be detected [70]:

tg(∆φ) ≃ (
1− Γ0

1 + Γ0

)QM(
2∆C

Cp + CM

), (1.3)

where CM and QM are matching network capacitor and quality factor, Cp is parasitic

gate capacitor, and Γ0 is the return loss of state zero. Typically, ∆C is lower than
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Figure 1.6. Integrated quantum control approach described in [12].

1 fF [4], and the minimum value of ∆φ determines type of modulation. As shown in

Fig.1.8, for demodulation of a signal with a lower than 0.01% bit error rate (BER),

around 8, 12, 16, and 22 dB SNR for 4, 8, 16, and 32-PSK modulation are required,

respectively. SNR of the readout is mainly determined by the LNA and insertion loss

of the circulator, and the noise performance of the LNA can be calculated based on

the calculated SNR (from Fig. 1.8), qubit probe signal power, and bandwidth of the

readout. A simplified block diagram of spin qubit readout is shown in Fig. 1.7.

1.1.2.2 Transmon Qubit Readout

The idea of reflection coefficient measurement for a single transmon qubit is shown

in Fig. 1.9. The nonlinear behavior of the qubit resonator pulls readout resonator

frequency into different states. This frequency difference between two states of the

qubit is called ”dispersive shift.” If the dispersive shift is selected to be equal to the

resonator linewidth, a phase-contrast as high as 180 degrees between 0 and 1 can be

measured. A sample of a phase difference measurement is shown in Fig. 1.10.
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Figure 1.7. Simplified model of a spin qubit and readout front end block diagram.
Figure is reproduced from [70].
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Figure 1.9. Simplified model of transmon qubit and readout block diagram. Figure
is reproduced from [13, 54].
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(a) (b)

Figure 1.10. (a) State-dependent dispersive frequency shift which can be detect as
a phase shift in reflection phase. (b) Typical baseband constellation measurement.
Blue and red colors correspond to 0 state and 1, respectively[11].

To characterize readout accuracy measurement, error probability function of 180

degree phase shift measurement should be minimized (Perror =
1
2
erfc(

√
SNR)). After

adding system parameters to the error probability function [74] :

Perror =
1

2
erfc(

√
ϵnκτ

1 + TRX/TQ

), (1.4)

Where ϵ is loss factor ( because of limited quantum efficiency which is less than

1), n is the average number of photons, κ is ring-up rate, τ is an integration time,

TRX is input-referred noise temperature of measurement readout, and TQ is quantum

limit for noise (TQ = ~f/2k) added by a phase-preserving amplifier. To improve

error rate, the obvious way is to increase the number of photons. However, there

is a fundamental limitation because of the non-linear nature of the qubit resonator,

which causes frequency variation for a high number of photons. Typically, n ≤25 for

transmon qubits [80]. Another factor in improving the error rate in quantum com-

puter readout related to this dissertation is TRX. It can be shown that for reaching an

error rate lower than 1%, a cryogenic LNA near the quantum limit noise is required.

Currently, the best state-of-the-art semiconductor-based cryogenic low noise ampli-

fiers based on InP HEMT are eight times higher than the quantum limit of noise [1].
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Moreover, even if the quantum noise limit was achievable, it would be impractical

to put a semiconductor cryogenic amplifier due to the required nanowatt level power

consumption. This is because of the heatsink considerations of the 10-mK stage of

the dilution refrigerator. Currently, the only approach is using Josephson parametric

amplifier before the semiconductor LNA [20, 3].

Integrated circuit readouts will be the most promising approach because thousands

of qubits are required for reliable quantum processors. Consequently, the integrated

readout is an open problem for quantum processors. In this dissertation, I tried to

address those issues which are related the LNA scalability. Notably, in [95], it is

shown that the proposed SiGe HBT based LNA is a promising replacement for InP

HEMT LNA (which is currently the first choice for readout of the specific type of

qubit quantum computer readout) in the readout.

1.2 Need for Programmable Integrated Cryogenic LNAs
An LNA with tunable specifications is studied due to demands for versatile ra-

dio transceivers for multiple standards such as ISM, WiFi, Bluetooth, and WiMAX.

Particularly, for the applications which are vulnerable to undesired interferes, and

when power consumption is critical, having an LNA with tunable frequency response

is more desirable rather than a wideband LNA. As an example for the mentioned

application, Fig. 1.11 shows a room temperature CMOS LNA with programmable

frequency response is designed and implemented for 2.1–6 GHz frequency band based

on transistor scaling approach.

Moreover, for multi-standard wireless sensor applications, having an LNA with

tunable frequency response to avoid wideband LNA and reduce power consumption

is desirable. In [59], authors designed and implemented a band-tunable CMOS LNA

based on 45 nm CMOS SOI technology for the mentioned application. An LC switch

tank approach is used to achieve the tunable frequency response as shown in Fig. 1.12.
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(a)

(b) (c)

Figure 1.11. Tunable frequency response LNA with transistor size scaling approach
for versatile radio transceiver applications [92]. (a) LNA schematic, (b) Measured S
parameters, and (c) Measured noise figure.

(a) (b) (c)

Figure 1.12. Tunable frequency response LNA with LC-switch approach for wireless
sensor applications [59]. (a) LNA simplified schematic, (b) Measured S11 and voltage
gain, and (c) Measured noise figure.
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Figure 1.13. Different frequency ranges requiered for different type of qubits control
and readout. For example, the carrier frequency for trapped ions can be in the a
few MHz range. The narrow trapped ion carrier frequency bands at ∼10 GHz and
∼12.6 GHz. The figure is reported in [13].

The ability to tune characteristics of LNA is also desirable for cryogenic ap-

plications because the warming up and cooling down process of the LNA is time-

consuming, and typically there is uncertainty in the exact LNA requirement for a

particular application. For example, for the readout of quantum processors, which I

discussed in the last section, different frequency ranges are required depending on the

type of qubit, as shown in Fig. 1.13. In the dissertation, I have taken advantage of

full CMOS stacks of the BiCMOS process to design and implement a programmable

cryogenic LNA with tunable gain, power consumption, and frequency response.
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CHAPTER 2

OPEN PROBLEMS OF CRYOGENIC LNAS
SCALABILITY

Here in this chapter, some specific open issues of cryogenic LNAs are summarized.

These open problems are addressed in the dissertation.

2.1 Open Issues
1. In general, sensitive THz heterodyne receivers require ultra-low-noise and sub-

milliwatt cryogenic LNAs. Particularly, scalability of Hot-Electron Bolometer

(HEB) mixer-based receiver requires ultra-low noise and low power cryogenic

LNA, which covers a wide very-low-frequency band because of the limited IF

bandwidth of this type of technology. It was shown before that SiGe HBTs

provide an excellent compromise between noise temperature and power con-

sumption, ideal for SIS mixer-based heterodyne receivers. However, based on

the author’s knowledge, no cryogenic LNA is reported, which satisfies the band-

width, noise temperature, and power consumption required for LNAs of HEB

mixer-based receivers.

2. Cryogenic compression characteristic of the LNA is essential for scalable inco-

herent detection, using multiplexed detectors. However, there is no significant

research about linearity performance and characterizations of SiGe HBT cryo-

genic LNAs for this specific type of application. Here I tried to characterize

compression point and inter-modulation of a cryogenic LNA as a part of MKID

readout.
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3. Scaling up the number of cryogenic LNAs to thousands ( which is the require-

ment of future quantum processor detectors and focal plane array) requires a

robust biasing circuitry that allows all LNAs to be biased simultaneously. This

biasing approach should be extremely low noise and low power, not to cause

degradation of the LNA noise and power performance. Preferably, the on-chip

method is more desired because of easier scalability with other readout compo-

nents. The biasing requirement is even more extreme for SiGe HBT because of

these devices’ exponential I-V curve function. Typically, a sub-mV resolution

is required to bias up these transistors.

4. Noise reproducibility of cryogenic LNAs must be understood and optimized

to implement a large-scale array of LNAs. Therefore, automatic adjustment

of the amplifier parameters is essential for this purpose. Moreover, different

applications require LNAs for different frequency bands. For example, each

type of qubit works in a specific frequency range. Having a cryogenic LNA with

tunable frequency response while maintaining noise and power performance can

satisfy all of these applications. Furthermore, as thermal cycling of a cryogenic

system is time-consuming, there is often considerable uncertainty in the exact

LNA requirements (e.g., frequency and bandwidth) for a particular application.

BiCMOS process potentially can be used for this cryogenic tunable LNA, which

has not been done yet based on the author’s knowledge. Also, there are some

considerations for the design of this LNA, such as accurate passive components

cryogenic modeling, low noise digital part, and characterization approaches.

2.2 Dissertation Contributions
The contributions of the dissertation for the open scalability issues of cryogenic

LNA are listed as follow:
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1. Device Cryogenic Performance Characterization: In this chapter, the

SiGe HBT cryogenic performance of three different state-of-the-art BiCMOS

technologies are investigated. This chapter is focusing on noise performance

comparison and evaluation of these technologies for cryogenic LNAs. Notably,

a specific process is optimized for SiGe HBT noise performance. Therefore,

cryogenic performance comparison is done between standard and optimized

transistors of the process. It is shown how fabrication optimization improves

the cryogenic performance of SiGe HBT. After that, based on the on-wafer cryo-

genic measurement, a cryogenic standard noise and small-signal model of the

transistors are created for amplifier simulations. Finally, some passive com-

ponent characterizations across the temperature are done as a part of BiC-

MOS LNA design process. The optimized noise process cryogenic performance

and modeling are published in the 2020 IEEE/MTT-S International Microwave

Symposium (IMS) [95].

2. State-of-the-Art SiGe HBT Cryogenic LNAs: Three state-of-the-art SiGe

HBT cryogenic LNAs are designed and implemented for radio astronomy appli-

cations based on the created models of the previous chapter. The first amplifier

is characterized for readout of a millimeter-wavelength camera detection, and

both room temperature and cryogenic performance are measured. The second

amplifier is characterized as a part of the HEB mixer-based receiver. The third

amplifier is a wideband design for heterodyne mixer-based applications. The

design process and measurement results of two of these LNAs are published in

IMS 2019 and 2021 [46, 47].

3. Biasing Integration of BiCMOS Cryogenic LNA: Different approaches

of biasing of SiGe HBT cryogenic LNAs are described and investigated. An

on-chip and low power method is used for integration of bias of cryogenic LNA,
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and the first bias integrated cryogenic LNA is designed and implemented to

verify the. Moreover, the first on-chip low-power cryogenic digital to analog

converter (DAC) is designed and used as a part of the LNA biasing circuit.

4. Programmable Cryogenic LNA: The ability to tune the performance char-

acteristics of a cryogenic LNA is described as an advantage for the BiCMOS

stack. Furthermore, the first programmable cryogenic LNA is designed and

implemented for quantum computing readout application. As experimental re-

sults, critical LNA specifications such as ripple, noise temperature, bandwidth,

center frequency, absolute value of gain, and bias currents are programmed

digitally. The amplifier is measured in different tuning states at cryogenic tem-

perature, and the mentioned biasing approach is used for the LNA. Moreover, a

programmable RLC resonator which is the core of the designed is characterized

and verified at cryogenic temperature. The programmable LNA is a collabora-

tive project with Zhenjie Zou. Some portions of this chapter are published in

IMS 2021 [100].
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CHAPTER 3

FUNDAMENTAL REVIEW OF SIGE HBTS AND
EXPECTED CRYOGENIC PERFORMANCE

In this chapter, the fundamental physics and operation principles of SiGe HBTs

are described. Then, the expected cryogenic performance of SiGe HBTs is reviewed.

Moreover, standard small-signal and noise models of the devices are briefly explained.

These models will be used in the next section for the cryogenic model creation of

the SiGe HBTs, consequently, for design and simulations of cryogenic LNAs in the

dissertation.

The evaluation and expected cryogenic performance of SiGe HBTs is explored

deeply in the literature [18, 26, 25, 64, 42]. In [18], it is shown that the SiGe HBT is a

promising choice for cryogenic LNA design because of a large increase in DC current

gain (βDC) and moderate gain in ft and fmax with cryogenic cooling. Moreover,

author proposed a small-signal and noise model for a HBT at cryogenic temperature.

This model was verified experimentally through cryogenic LNA measurements. In

[64], the authors proposed a modified small-signal model for cryogenic SiGe HBTs

and showed these devices can keep their performance at VCE near knee voltage which

proves SiGe HBTs are also ideal choices for low-power cryogenic LNA design. The

linearity of these devices is investigated in [42], and a non-linear model of cryogenic

HBT is proposed and verified [96]. Cryogenic performance of SiGe HBT based LNAs

are verified for a wide frequency range from near DC to 120 GHz [90, 73, 58, 86, 15].

19



3.1 Device Physics of SiGe HBTs
In order to better understand SiGe HBT physics, this chapter is began by review-

ing the physics of a standard bipolar junction transistor (BJT), and its main noise

performance limitation are discussed.

3.1.1 BJT Energy Band Diagram

The energy band diagram of a BJT device in the active region is shown in Fig. 3.1.

The DC current gain (βDC) of the BJT, which it will be shown as an important

parameter for noise performance of the device, can be calculated as [26]:

βDC,BJT ≈ µnbLPEN
+
DE

µpeWBN
−
AB

, (3.1)

where µnb and µpe are carrier mobilities in the base and emitter, respectively. LPE and

WB are emitter diffusion length and base width, N+
DE is ionized donor concentration

in emitter, and N−
AB is ionized acceptor concentration in base.

The ratio of doping in the emitter to the base can be increased, or the base width

can be decreased to improve current gain of a BJT. However, both of these approaches

cause higher base sheet resistance which can degrade the noise performance of the

device. Explicitly, the base sheet resistance can be calculated as [6]:

RB =
1

qµpbWBN
−
AB

(Ω/square), (3.2)

where µpb is the mobility of holes in the base. A solution to the trade-off between DC

current gain and base sheet resistance was proposed by Kroemer in 1957 [55], and

will be discussed below.

3.1.2 Band Engineering in SiGe HBT

The idea of the energy band diagram of SiGe HBT is shown in Fig. 3.2. As shown,

by adding Germanium (which has a significantly lower energy bandgap compared to
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Figure 3.1. Energy band diagram of simple BJT device under active forward oper-
ation.

Silicon) in the base, the non-uniform energy band diagram can be achieved. Since the

emitter material has a wider bandgap than the base material, the minority carrier

from the emitter to the base will face a smaller barrier than carriers back from the

base to the emitter. As a result of this heterojunction, the DC current gain of the

transistor is enhanced exponentially [55]. Typical doping and Ge profile are appear

in Fig. 3.3 [85]. As shown, Ge concentration is increased gradually from emitter to

base.

The improvement in DC current gain achieved due to the Ge content in a SiGe

HBT with respect to that of an otherwise identical Si BJT can be quantified as [26]:

βSiGe

βSi

≈ χ
µnb,SiGe

µnb,Si

×∆Eg,Ge(grade)/kTa ×
e∆Eg,Ge(0)/KTa

1− e−∆Eg,Ge(grade)/KTa
, (3.3)

where χ is effective density-of-states ratio (typically <1), µnb is mobility of carrier

in base, ∆Eg,Ge(0) is difference of energy bandgap at emitter, and ∆Eg,Ge(grade) is

difference of energy bandgap at collector. The last two parameters are the function

of Ge doping profile, which is the key factor in improving the DC current gain in SiGe

HBTs.
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Figure 3.2. Energy band diagram of simple SiGe HBT device under active forward
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Figure 3.3. Schematic of doping and Ge profile for a typical SiGe HBT. Figure
reproduced from [85].

22



3.1.3 SiGe HBT Fabrication Process

Since the full BiCMOS stack is used to implement cryogenic LNAs, understanding

the fabrication process, including CMOS integration, will be helpful. The CMOS

integration approaches and processing steps associated with each technology platform

technology can be different. However, there are some common fabrication process

steps for a typical SiGe HBT device. Here these steps are summarized [26]:

1. Adding n+ sub-collector on a p− substrate to allow CMOS integration.

2. High temperature lightly doped n-type collector.

3. Polysilicon trenches to isolate sub-collector of devices.

4. Thin oxide trenches to isolate devices from each other.

5. Implementation of collector sinker to the sub-collector.

6. SiGe epitaxy layer including Si buffer, the active layer, and a-Si cap.

7. Emitter-base self alignment which is similar to Si BJT technology.

8. Collector implantation to improve high current density performance.

9. Polysilicon extrinsic as base contacts and silicided extrinsic base.

10. Heavy-doped or implanted polysilicon as the emitter.

11. Back-end-of-line (BEOL) metalization (Al or Cu).

A typical cross-section of a fabricated SiGe HBT device is shown in Fig. 3.4. This

picture is drawn through first metal.
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Figure 3.4. Cross section of a typical SiGe HBT device [26].

3.1.4 CMOS Integration with SiGe HBT

One of the most important advantages of SiGe technologies compare to III-V

technologies is that they are generally integrated within CMOS processes. This ad-

vantages allows digital circuits to be co-integrated in a high performance circuit; this

capability is leveraged in this dissertation. A brief overview of the BiCMOS fabrica-

tion process is described in this section.

There are two approaches for integration of SiGe HBTs with CMOS. The first

is ”base-during-gate” (BDG) and second is ”base-after-gate” (BAG) [44, 43]. Each

one has it’s own pros and cons. BDG has less complex structures, however, the

SiGe HBT epitaxial base sees all CMOS thermal cycles which causes broadening of

the base profile. Modern technologies are using BAG which first CMOS process is

completed then SiGe epitaxial base is deposited. CMOS fabrication process in BAG

is very similar to pure CMOS process. In BAG the SiGe HBT can be optimized for

RF performance. The flowchart of both BDG and BAG process including SiGe HBT

fabrication steps is shown in Fig. 3.5.
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Figure 3.5. BiCMOS fabrication process flowchart for BDG and BAG approaches.
Figure is reproduced with some changes from [26].

3.2 SiGe HBT Equivalent Circuit Model
3.2.1 Ebers-Moll Equivalent Model

The first equivalent circuit proposed for a bipolar transistor is the Ebers-Moll

model [26]. The model of an NPN device is shown in Fig. 3.6. It consists of two

back-to-back diodes, which IF and IR are the emitter currents at forward and inverse

operations, respectively. Also, αF and αR are common-base (CB) current gains at

forward and inverse operations. IF and IR are a function of VBE and VBC as:

IF = IF0(e
qVBE/kT − 1), (3.4)

IR = IR0(e
qVBC/kT − 1), (3.5)

Where IF0 and IR0 are the saturation currents of forward and inverse emitter currents.

3.2.2 Small-signal Equivalent Model

The large-signal model described can be linearized as a small-signal model for

a specific dc operation point. The schematic of this model is shown in Fig. 3.7(a).

gm = IC/VT and rbe = β/gm. By adding parasitic resistors and capacitors and

substrate nodes, a high-frequency small-signal model of SiGe HBT can be achieved,
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Figure 3.7. (a) Simple linearized small-signal model of BJT device (b) High fre-
quency small signal model of SiGe HBT.

which is shown in Fig. 3.7(b). ft and fmax which are two critical factors of SiGe HBT

describing RF performance of the device, can be calculated from this model as:

ft ≈
gm

2π(Cbe + Ccb)
, (3.6)

fmax ≈
√

ft
8πrbCcb

, (3.7)
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3.3 Noise Sources in SiGe HBT
An understanding of the source of noise in a SiGe HBT permits the design of

cryogenic low noise amplifiers. Here the primary noise sources of SiGe HBTs are

listed.

3.3.1 Shot Noise

Shot noise is generated when a carrier passes a barrier in a junction. Shot noise

exists in every forward biased diode structure. It can be assumed the shot noise is

frequency independent because the phase delay in the junction is negligible in typical

target frequency bands of cryogenic LNAs [71]. The spectral density of shot noise

current can be written as |i|2 = 2qI, where I is the dc current of the junction and q

is the electron charge.

As discussed, there are two junctions in the SiGe HBT device. The first one is

between base and emitter. Therefore, the total shot noise at the base-emitter junction

can be obtained from this formula:

|in,e|2 = 2q(IEn + IEp), (3.8)

where IE,n and IE,p are electrons injected from the emitter to the base and holes back

injected from base to emitter, respectively [32].

Another junction is between base and collector. The current magnitude going

through this junction is the same as the emitter junction, but there is a delay. It can

be formulated as:

|in,c|2 = |in,ee−jωτn |2, (3.9)

where τn is the transit time. As mentioned, these two shot noise sources are correlated

to each other [67].
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Since the common-emitter topology is mostly used for cryogenic LNA design, it

can be rewritten and represent the noise sources for common-emitter structure as:

|in,c|2 = 2qIC, (3.10)

|in,b|2 = |in,c|2 + |in,e|2 − 2R{i∗n,ein,c}, (3.11)

where in,c, in,e, and in,b are total noise current power spectral densities of collector,

emitter, and base, respectively. The base and collector shot noises are correlated as

[67]:

|i∗n,bin,c| = |i∗n,ein,c| − |in,c|2, (3.12)

it can be shown that the shot noise correlation factor between base and collector in

the CE topology can be calculated as:

|i∗n,bin,c| = 2qIC(e
−jωτn − 1), (3.13)

ωτn is negligible in the target frequencies of this dissertation (<10 GHz). So the noise

correlation factor between emitter and collector can be neglected in our HBT noise

models.

3.3.2 Thermal Noise

Thermal noise exists wherever carrier charge is excited thermally. The available

thermal noise power can be calculated as [50, 68]:

P =
hf

ehf/kTa − 1
∆f, (3.14)

Where f is the frequency range, ∆f is the bandwidth, Ta is the ambient temperature,

k is the Boltzman’s constant, and h is the Plank’s constant. If hf ≪ kTa which is a
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Figure 3.8. SiGe HBT small signal model including noise sources.

reasonable assumption at our target frequency range and ambient temperature, the

above equation can be simplified as:

P ≈ kTa∆f, (3.15)

In SiGe HBTs, the main sources of thermal noise are coming from parasitic resistors.

The power spectral density (PSD) of each resistor can be written as:

SV = 4kTaR (V 2/Hz), (3.16)

where R is the parasitic resistor value. For cryogenic applications of SiGe HBTs,

which is the target of this dissertation, thermal noise has less effect on noise perfor-

mance compared to shot noise. The small-signal model of SiGe HBT, including both

shot noise and thermal noise sources, is shown in Fig. 3.8. This model is used for sim-

ulations at cryogenic temperatures. In the next chapter, the parameters extraction

process of this model is described.

3.4 Expected Cryogenic Performance of SiGe HBTs
Cryogenic expected performance of SiGe HBT are studied deeply in the literature

[18]. Here, a summary of the expected performance of SiGe HBT at cryogenic tem-
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perature is described. The focus is on important parameters that directly affect the

noise performance of the device.

3.4.1 Base Current Density

The base current density (JB) can be written as:

JB(T ) ≈
kTµpe(T )n

2
io(T )

LPE(T )N
+
DE(T )

eqVBE/kT , (3.17)

where T is the ambient temperature, k is the Boltzmann’s constant, µpe is the mobility

of holes in the emitter, LPE is emitter diffusion length, and N+
DE is the concentration

of acceptors in the emitter.

µpe dependence on temperature is a function of dopant concentration, and it is

weak because of high dopant concentration (typically > 1019cm−3) in the emitter.

N+
DE is almost independent of the ambient temperature. LPE can be written as

LPE =
√

µpτpkT/q [2]. Where µp is the mobility of holes, and τp is the hole minority

carrier lifetime. All of these parameters are nearly temperature-independent [34]. So,

LPE is a function of the square root of ambient temperature. The ratio of base current

density at cryogenic to room temperature after some approximations can be written

as [18]:
JB0(T )

JB0(300)
≈ 7.83× 1018(

T

300
)3.5e−Eg(T )/kT , (3.18)

where Eg is the energy bandgap of Silicon which increases from 1.12 eV at room to

1.17 eV at 4 K [21]. From this analysis, it can be said that JB will decrease signifi-

cantly at cryogenic temperatures, which improves dc current gain of SiGe HBT and,

consequently, the noise performance of the device.

3.4.2 Collector Current Density

A similar process can be applied for the collector current density (JC). However,

since the Germanium profile is different among processes, it is difficult to predict
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how much the collector current density increases at cryogenic temperature. Never-

theless, the ratio of collector current between cryogenic and room temperatures can

be obtained from the below equation [18]:

JC0(T )

JC0(300)
≈ 7.83× 1018(

T

300
)3e−Eg(T )/kT e(∆Eg,app+∆Eg,Ge(0))/kT

e(∆Eg,app+∆Eg,Ge(0))/k300
, (3.19)

where ∆Eg,app and ∆Eg,Ge(0) are difference of energy bandgaps after adding Germa-

nium to the SiGe HBT.

3.4.3 DC Current Gain

DC current gain (β) is a critical factor that shows the noise performance of SiGe

HBT, especially at the low-frequency range (few GHz). The ratio of β between room

and cold based on the last two equations can be written as:

β(T )

β(300)
≈

√
300

T

e(∆Eg,app+∆Eg,Ge(0))/kT

e(∆Eg,app+∆Eg,Ge(0))/k300
, (3.20)

This shows an exponential improvement on β at cryogenic temperatures. Also, since

∆Eg,app and ∆Eg,Ge(0) are different among fabrication processes, the amount im-

provement in β depends on the type of technology.

Please note this is an optimistic ideal analysis for the expected improvement of β

at cryogenic temperature, and it is valid only to the onset of cryogenic temperature

(∼150 K). In [75], it is experimentally shown that tunneling of electrons through the

base dominates the collector current density of SiGe HBT at lower cryogenic temper-

atures. Collector current density is found experimentally to be weakly dependent on

temperature below 40 K.

3.5 Conclusion
As shown, the noise performance of SiGe HBT is improved significantly with

cryogenic cooling. However, the amount of improvement depends on the Germa-
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nium profile and is different among technologies. Therefore, experimental cryogenic

performance evaluation is required for each technology. In the next chapter, three

state-of-the-art technologies are reported that show excellent improvement of β among

other technologies with cryogenic cooling.
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CHAPTER 4

SIGE HBT CRYOGENIC CHARACTERIZATION AND
TRANSISTOR MODELING

This chapter describes cryogenic characterization and modeling of SiGe HBT from

three BiCMOS technologies from Tower Semiconductor, IHP Microelectronics, and

Global Foundries, and the potential cryogenic performance of each process for the

design of cryogenic LNA is discussed and compared. In addition, HBTs of one of these

processes (IHP Microelectronics SG13G2) are optimized particularly for cryogenic

noise performance.

The SiGe HBT cryogenic models described in chapter are used and published in

[95, 47, 100].

4.1 Tower Semiconductor-SBC18H5/SBC18S5
The SBC18H5 BiCMOS process has six layers of aluminum metal, including a top

thick metal layer, suitable for the implementation of RF inductors and transmission

lines. It includes two 1.8 V and 3.3 V CMOS transistors. The minimum gate length for

the 1.8 V MOS is 180 nm and for the 3.3 V PMOS and NMOS is 300 nm and 360 nm,

respectively. The technology also includes high and low-value unsilicided resistors,

suitable for cryogenic applications because of the low-temperature coefficient. Hyper-

abrupt junction varactor are also available, and, as described below, these devices are

characterized at cryogenic temperature. Metal-Isolator-Metal (MIM) capacitors with

2, 2.8, 4, and 5.6 fF/µm2 are also available. Importantly, this technology contains

three HBT variants. High-speed NPN, standard NPN, and high voltage NPN. Based
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Figure 4.1. DC Gummel measurement setup. Collector and base DC currents are
measured regards to VBE while VCB =0. Bias tee is used in the measurements.

on the foundry information, ft for the high-speed one is higher than the other two

SiGe HBTs (>300 GHz). Of these, the high speed variant is most appropriate for

cryogenic operation and is characterized and used in this work.

4.1.1 Gummel Measurement of SiGe HBT

Gummel measurements can be used to evaluate gm and β, and hence provide initial

indications as to the noise performance of a given technology. This measurement is

done for this technology at physical temperature of 7 K and 300 K. Through this

measurement, βDC, extrinsic transconductnace (GM), as well as re are evaluated.

The Gummel measurement setup is shown in Fig. 4.1. Two DC voltage sources

are used to sweep the base and collector voltages while VCB is constant. Example

Gummel curves for a 0.09×20×1µm2 SBC18H5 transistor biased at both 7 and 300

K appear in Fig. 4.2. For these curves, VCB was set to 0 V.

As shown, the base current density dropped by more than a factor of 100 with

cryogenic cooling. Also, in Fig. 4.2(b), DC current gain (βDC) plotted as a function

of collector current density (JC). The βDC improvement between 300 K and 7 K is

more than a factor of 10 and maximum βDC can reach to 50,000.
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Figure 4.2. DC Gummel measurement results of SiGe HBT of SBC18H5 process.
(a) Collector (solid lines) and base (dotted lines) current densities regards to VBE

for room (black lines) and cryogenic (blue lines) temperatures. (b) DC current gain
(βDC) of SiGe HBT for room (black line) and cryogenic (blue line) temperatures.
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4.1.2 RF Measurement and ft/fmax Plots

Other important parameters to evaluate cryogenic RF and noise performance of

SiGe HBTs for LNA design are ft and fmax.

After measuring scattering parameters for a wide range of collector current densi-

ties, to obtain the ft/fmax plots, first, de-embedding of the test structure wiring and

pads (described in Appendix A) is required. Then ft can be obtained by extrapolating

the ac current gain from the below equation:

h21 =
Y21

Y11

= 1, (4.1)

h21 rolls off with 20 dB per decade and that ft can be extrapolated at a given frequency

as h21 × f .

Also, fmax can be found by extrapolating unilateral gain, defined as [60]:

U =
|Y21 − Y12|2

4(R{Y11}R{Y22} − R{Y12}R{Y21})
, (4.2)

where Yij are Y-parameters converted from measured scattering parameters after de-

embedding.

Measured cryogenic ft and fmax of the SiGe HBT of SBC18H5 are shown in

Fig. 4.3. The maximum of ft and fmax are 360 and 340 GHz at 7 K ambient temper-

ature while JC ≈12–15 mA/µm2.

4.1.3 Cryogenic Model Parameter Extraction

To simulate the cryogenic LNA and noise performance of the HBT, cryogenic

small-signal model including the noise sources, described in the previous chapter

(Fig. 3.8), are created. Then, each model parameter can be extracted from specific

cryogenic DC and/or RF measurements. This model is done for a wide range of cur-

rent densities (typically wider than 0.1–10 mA/µm2). In this section, the parameter
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Figure 4.3. ft (blue) and fmax (black) measurement results of SiGe HBT of SBC18H5
process at 7 K ambient temperature regards to collector current density. The mea-
sured transistor size is 0.09×20×1µm2. VCE =0.7 V while VCE is swept.

extraction procedure and the related test setup are briefly described are described

briefly.

4.1.3.1 re and rc Extraction

There are different methods to extract re and rc parameters [18]. In this work,

the open-collector method are used for the extraction. The measurement setup is

shown in Fig. 4.4. Two DC current sources are used to provide base and collector

biases. The base current source is swept from a low current until ∼20 mA/µm2 while

the collector current is held constant and the collector voltage is measured. A sample

of these measurement results is shown in Fig. 4.5. It can be shown that re can be

estimated as [18]:
dVC

dIB

∣∣∣∣
IC=0

≈ re +
VT

IB
(nc − nbr), (4.3)

Therefore, by taking derivative of the curve in Fig. 4.5 (IC = 0), it can be obtained

the emitter resistance. It is obtained re =2.9Ω.µm2 at 7 K ambient temperature. It

is assumed this resistor is bias independent. Also, for this measurement, DC cable
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Figure 4.4. Open-collector measurement setup for re and rc parameters extraction.
IB is swept in wide range for different values of IB.

resistances should be de-embedded. The details of the de-embedding are described in

the Appendix B.

The open-collector measurement was also used to obtain the collector parasitic

resistor (rc). The resistor can be approximated as [18]:

dVC

dIC
≈ rc + re +

ncVT

IB + IC
, (4.4)

For this process, rc =5.4Ω.µm2 at 7 K ambient temperature, and it is also assumed

to be bias independent.

4.1.3.2 CCB and CCS extraction

Cold bias measurements were used to determine CCB and CCS. The base voltage is

kept at zero for this measurement, and collector voltage is swept in the range of 0.3–

0.7 V. Then scattering parameters of the SiGe HBT are measured with a commercial

probestation and Vector Network Analyzer (VNA). The small-signal model of SiGe

HBT at the off-bias region is shown in Fig. 4.6. It can be shown that CCB and CCS

can be calculated as [18]:
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CCB = − lim
ω→0

Im{Y12,off}
ω

, (4.5)

CCS = lim
ω→0

Im{Y12,off + Y22,off}
ω

, (4.6)

where Yij are the converted Y-parameters of the measured transistor. The extracted

CCB and CCS versus to VCE is plotted for this process in Fig. 4.7. The average of cryo-

genic parasitic capacitor density for CCB and CCS are 26.3 and 6 fF/µm2, respectively.

It is important to be noted that these capacitors are junction capacitors. So, for cryo-

genic model creation, those plots should be fitted on CCB,S =
CCB0,S0

(1+VCB,S/VCB0,S0
)mcb,s

equa-

tion. This has done this by curve fitting functions of Matlab software.The parameters

of the equation cannot be obtained for CCB because of the collector-base bias range

in the off-bias measurement. Therefore, active bias measurement is used to extract

the capacitor in the practical bias voltage range. However, off-bias measurement is

used to verify the extracted collector-base capacitor from active bias measurement is

not out of the range.
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Figure 4.8. Cryogenic (Ta=7 K) small-signal model parameters extraction from ac-
tive sweep measurement. (a) CBE, (b) gm, (c) rb, (d) rbe, and (e) τ regards to collector
current density while VCE=0.7 V. The measured device size is 0.09×20×1µm2. Ex-
tracted τ is greater than be anticipated for this process (τ ≈ Cbe/gm). It might be
due to a measurement error.

4.1.3.3 gm, rb, CBE, rbe, and τ extraction

After de embedding the small-signal model with the extracted parameters which

were obtained from previous sections, the rest of the parameters can be extracted by

the method described in [97]. For the active sweep measurement, the base voltage of

SiGe HBT is swept while it is in the active forward region. Thus, the extraction is

done for a wide range of current densities (0.01–10 mA/µm2). Also, this measurement

is done for three different VCE voltages (0.3, 0.5, and 0.7 V). After extracting all

small-signal model parameters, each parameter with a polynomial function are fitted

in Matlab and imported the acquired functions into AWR software for cryogenic

simulations. The inputs of the polynomial functions are collector current density

and device emitter area, and the outputs are small-signal model parameters. Finally,

shot noise sources of collector and base (without correlation factor) are added to the

model. In the next section, a summary of cryogenic simulation results of the modeled

SiGe HBT will be presented.
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4.1.4 Cryogenic Simulation Results of the SiGe HBT

Since the modeled SiGe HBT was going to be used for the cryogenic LNA, essential

noise specifications are summarized and simulated based on the created cryogenic

model to evaluate noise performance.

The most important parameter is the minimum noise temperature (Tmin) of the

device. It can be shown that Tmin of the SiGe HBT can be approximated as [18]:

Tmin ≈ Tanc

√
1

βDC

(1 + 2
gm(rb + re)

nc

) + 2
gm(rb + re)

nc

(
f

ft
)2, (4.7)

where nc = IC/gmVT is the collector current ideality factor and VT is the thermal volt-

age. The simulated cryogenic Tmin of the SBC18H5 SiGe HBT at 16 K temperature is

plotted in Fig. 4.9. As shown, the optimum current density for this device is around

∼1 mA/µm2, and the minimum achievable noise temperature at 1, 4, and 7 GHz is

0.5, 1, and 1.7 K, respectively. The reason Tmin is simulated for 16 K temperature.

This is the minimum available temperature of cryostat was available the lab and it

was calibrated for noise measurement.

Another parameter that is critical for noise performance evaluation is the optimum

noise impedance (Zopt). This parameter directly affects the complexity of the input

matching network of the LNA and its power consumption. Another parameter, noise

resistance (Rn), shows how sensitive the device is to the source impedance. In other

words, if the input matching network is not ideal, how much it affects the noise

performance of the LNA. These parameters can be written as [18]:

Ropt ≈
βDC

gm(1 + βDC(f/ft)2)

√
1

βDC

(1 + 2
gb(rb + re)

nc

) + 2
gb(rb + re)

nc

(
f

ft
)2, (4.8)

Xopt ≈
βDC

gm

f/ft
1 + βDC(f/ft)2

, (4.9)

Rn ≈ nc

2gm

Ta

T0

(1 + 2
gm(rb + re)

nc

), (4.10)
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Figure 4.9. Simulated cryogenic (16 K) Tmin of SBC18H5 SiGe HBT regards to
current density when VCE=0.7 V.

The simulated cryogenic Ropt, Xopt, and Rn are plotted versus frequency while VCE=0.7 V,

JC=1 mA/µm2, and the transistor size is 1×20×0.09 µm2. As shown, the optimum

noise impedance is higher than 50Ω, particularly for low frequencies. That is com-

mon in cryogenic temperature and it is because of the high βDC of the SiGe HBT at

cryogenic temperatures. Larger transistors should be used to decrease Ropt, which

causes higher power consumption and higher Xopt. This trade-off is discussed in the

subsequent chapters of the dissertation.

4.2 IHP Microelectronics-SG13G2
4.2.1 Technology Description

As part of a collaboration with IHP, a set of devices from the IHP SG13G2 130-nm

BiCMOS technology platform are characterized. Two flavors of devices were provided

to us. First, devices from the standard SG13G2 technology platform. Second, devices

that were optimized for low-noise cryogenic operation. At room temperature, these
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Figure 4.10. Simulated cryogenic (16 K) (a) Ropt (blue line) and Xopt (black line)
and (b) Rn of SiGe HBT regards to frequency when VCE=0.7 V and JC=1 mA/µm2.
Transistor size is 1×20×0.09 µm2.

devices demonstrate peak ft and fmax vaules of 350 GHz and 450 GHz at a current

density of 20 mA/µm2 for the standard HBT.

In comparison with the devices fabricated in the standard SG13G2 process, the

optimized transistors featured modified the doping profile of the base and emitter and

Ge profile of the SiGe layer. An schematic of the modification is shown in Fig. 4.11(b).

This optimization targets improved cryogenic βDC, with the goal of improving the low

frequency limit of Tmin:

Tmin,LF ≈ qIC
kgm

1√
βDC

, (4.11)

This approximation of Tmin is more valid at cryogenic because the added thermal

noise from re and rb is less significant.

A higher Ge profile at the base provides a larger collector current by reducing the

potential barrier height for electron tunneling, as shown in Fig. 4.11(a). Moreover,
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Figure 4.11. (a) Energy band diagram (blue: optimized HBT and red: standard
HBT) and (b) Doping structure of standard and optimized HBT devices.

increasing As in the emitter results in reducing the emitter parasitic resistance, which

improves HBT extrinsic transconductance (GM) at high current densities.

4.2.2 Cryogenic Characterization and Comparison

The DC and RF performance of standard and optimized SiGe HBT are measured

and compared at 7 K. The measurement is carried-out for three different transistors

for each type of HBT to make sure chip-to-chip variation is negligible. The de-

embedding process, including test structure and DC resistors of the measurement

setup, is explained in the Appendix A and B.

The Gummel measurement results for both standard and optimized HBTs at

room and cryogenic temperatures are plotted in Fig. 4.12. As shown, the cryogenic

DC current gain of the optimized device improved by more than a factor of 10 in

comparison to the standard device (Fig. 4.12(b) and (e)). The maximum cryogenic β

for standard and optimized devices is 2000 and 20000, respectively. Also, ft and fmax

plots are shown in Fig. 4.12(c) and (f). The peak of cryogenic ft and fmax are 480

and 620 GHz, respectively. The high cryogenic AC and DC current gain is indicative

of excellent cryogenic noise performance. Moreover, the chip-to-chip variation looks

small along three measured HBTs.
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Figure 4.12. (a) and (d) Room (Ta =300 K) and cryogenic (Ta =7 K) collector and
base current densities regards to base-emitter voltage of standard (dashed black lines)
and optimized (solid blue lines) of SiGe HBT coming from Gummel measurement.
(b) and (e) Room (Ta =300 K) and cryogenic (Ta =7 K) DC current gain of standard
(dashed black lines) and optimized (solid blue lines) of SiGe HBT coming from Gum-
mel measurement. ft (solid blue) and fmax (dashed black) of (c) standard HBT and (f)
optimized HBT at Room (Ta =300 K) and cryogenic (Ta =7 K) temperatures regard
to collector current density coming from active sweep measurement while VCE =0.7 V.
Three different samples are measured for each type of transistor.

Cryogenic approximated Tmin,LF regards to current density is plotted for both

HBTs based on the approximated equation mentioned above. The results are shown

in Fig. 4.13. The minimum of Tmin,LF for standard and optimized transistors is 2.2

and 0.9 K, respectively. Also, the current density, which minimum of Tmin,LF occurs,

is around 0.3 mA/µm2, which is ideal for low-power design.

4.2.3 Small-signal Model Parameters Extraction and Comparison

Small-signal noise models were extracted using the procedure described in previous

section. Based on the parameters and mentioned curve fitting, the cryogenic models

are created for AWR simulations in a wide range of current density (0.01–20 mA/µm2)

and frequency (0.01–10 GHz for noise simulations and 0.01–40 GHz for s-parameters

simulations). All data were acquired using a commercial cryogenic probe station,
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Figure 4.13. Room and cryogenic (7 K) minimum noise temperature regards to
current density for both standard (dashed black lines) and optimized (solid blue
lines) HBTs. Three different samples are measured for each type of transistor.

Table 4.1. Model Parameters at 7 K. Units: Current denisty–mA/µm2, Area–µm2,
Res.–Ω · µm2, Cap.–fF/µm2, Transcond.–mS/µm2, Delay–ps

Process JC Emitter Area RB RE RC CCB CCS CBE gm τ β rbe
IHP (SG13G2, Optimized) 0.51 4.56 2.3 2.8 5.2 14.9 4.4 37.1 71.2 0.3 1.7e4 24e4
IHP (SG13G2, Standard) 0.51 4.56 5.9 3.9 4.8 14.1 2.2 46.8 76.7 0.3 1.5e3 20e3

which permitted on-wafer measurements at a physical temperature of 7 K. As the

transport properties of SiGe HBTs change little below 20 K, these models should be

sufficient to predict the noise performance at temperatures below 20 K.

The small-signal parameters of HBTs are summarized in Table 4.1. While trans-

conductance (gm) and collector current density (JC) are similar for both of the process

variants, the DC current gain (β) of the optimized device is improved by a bit more

than a factor of 10. The parasitic base and emitter resistances (rb and re) decreased,

improving noise performance, particularly in high current density design (because of

drop voltage decreases on emitter).

The cryogenic models of SiGe HBT are created based on the extracted parameters,

and simulation results are shown for Tmin at 5 GHz at Fig. 4.14. The minimum of Tmin
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Figure 4.14. Modeled noise parameters of the optimized (blue) and standard
(dashed black) HBTs at 5 GHz: (a) Tmin and (b) Γopt (4–8 GHz).

is 1.2 and 2.7 K for the optimized and standard HBTs, respectively. For both devices,

the optimum collector current density is around 0.5-1 mA/µm2. Please note that

these simulation results are different from Fig. 4.13 and involve all model parameters,

including frequency. However, the plots are consistent with the Tmin plot coming

from the approximated equation. The optimum reflection coefficient (Γopt) of both

types of HBTs is plotted in Fig. 4.14(b). The frequency range of the simulation is 4-

8 GHz and optimum current densities are selected for each device. The optimum noise

impedance of the standard HBT is nearer to 50Ω because of the lower β. Moreover,

the real and imaginary parts of optimum noise impedance are plotted at 5 GHz as a

function of current density in Fig. 4.15; these results are consistent with expectation.

In summary, the optimized device noise performance is improved significantly, and

it requires scaling of transistor size. All in all, the optimized HBT of SG13G2 looks

promising for low-noise and low-power cryogenic LNA design.
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Figure 4.15. Modeled noise parameters of the optimized (blue) and standard
(dashed black) HBTs at 5 GHz and regards to collector current density: (a) Ropt×AE

and (b) Xopt × AE.

4.3 Global Foundries-SG03
The last technology characterized at cryogenic temperatures in this thesis is an

experimental variant of the SG03 Global Foundries SG03 BiCMOS process technology

which was tuned for high dc current gain. The results presented here were enabled

through a collaboration in which Global Foundries provided an 8 inch wafer from

this experimental process variant. The peak of ft and fmax of these HBTs at room

temperature is 300 and 380 GHz, respectively. Based on the information provided

by Global Foundries, the normal HBT (0.12×2×1 HP CBEBC) from this technology

platform has a peak dc current gain of 560; the peak room temperature dc current

gain of the samples provided by the foundry was 6300.

The RF and DC characteristics of the HBT from the high-β wafer at 300 and 7 K

temperatures are measured using the same experimental setups described above. The

results of the Gummel measurement are shown in Fig. 4.16. The peak DC current gain

is 5000 and 30000 for room and cryogenic temperatures, respectively. Such high dc
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Figure 4.16. Room (300 K, black lines) and cryogenic (7 K, blue lines) Gummel
measurement of optimized HBT from SG03 BiCMOS technology. (a) Base (dashed
lines) and collector (solid lines) current densities regards to base-emitter voltage and
(b) DC current gain (β) regards to collector current density. The sample HBT size is
0.12×12×1µm2 with CBEBC layout structure.

current gain is promising for the implementation of low-noise cryogenic LNAs in this

technology. However, the maximum DC current occurs at JC ≈15 mA/µm2, which is

well into the high-injection regime and is not an ideal bias for cryogenic LNAs both

due to the high power consumption and increased noise compared to the more typical

bias of <1 mA/µm2. Nevertheless, βDC remains high over a wide range of current

densities, which motivated us to measure the RF performance of these devices at

cryogenic temperatures.

To verify the HBT cryogenic performance and study chip-to-chip variation, the

Gummel measurement for different HBT sizes and from different locations across the

8 inch wafer are repeated. The DC current gain of these devices is plotted in Fig. 4.17.
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Figure 4.17. cryogenic (7 K) DC current gain regards to collector current density
for different HBT sizes in different locations of the wafer. The plots are based on
Gummel measurement setup.

As shown, the maximum β is in the range of 26000–32000 and remains above 4,000

for current densities above 0.1 mA/µm2.

Next, the cryogenic RF performance of this technology are characterized. The in-

trinsic values of ft and fmax as a function of collector current density while VCE =0.7 V

are plotted in Fig. 4.18. The maximum values of ft and fmax are 410 and 580 GHz,

respectively.

Finally, to evaluate the cryogenic noise performance, extraction of small-signal

and noise model parameters, with the approach described above, is done for JC in

the range of 0.1–20 mA/µm2. Cryogenic (7 K) Tmin simulation results are shown in

Fig. 4.19. Tmin is plotted as a function of frequency for three practical current densities

in Fig. 4.19(a). Based on these simulations, Tmin can reach 0.8 K at low frequencies.

Also, to find the optimum collector current density of the HBT, the simulated values

of Tmin have plotted as a function of JC at 4 and 10 GHz in Fig. 4.19(b). The optimum

collector current density is in the range of 0.5–1 mA/µm2.
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Table 4.2. Summary and comparison of some important cryogenic specifications of
HBT in different technologies for LNA design. The ambient temperature is 7 K and
frequency of simulated Tmin is 4 GHz.

Technology Fabrication Company ft,peak fmax,peak βDC,peak JC|βDC,peak
Tmin|JC=JC,opt

GHz GHz - mA/µm2 K
SBC18H5 Tower Semiconductor 360 340 50,000 4 0.8
SG13G2 IHP Microelectronics 480 610 20,000 5 1

SG03 Global Foundries 420 580 30,000 15 0.8

4.4 Summary and Conclusion
HBTs from three state-of-the-art BiCMOS technologies are characterized cryo-

genically, and small-signal models are created based on the RF and DC measure-

ments. HBT of SG13G2 is particularly optimized for cryogenic noise performance by

the foundries. A summary of the measured or modeled results appears in Table 4.2.

In general, all three technologies are promising for cryogenic LNA design. However,

SBC18H5 provides the highest value of DC current gain while the ft and fmax are

lower than two other processes. On the other hand, the optimum current density of

SG03 is higher than the two other processes, which is not ideal for low power design.

In the following chapters of the dissertation, several cryogenic LNAs are designed

based on the SBC18H5 and SG13G2 processes.

53



CHAPTER 5

SIGE HBT CRYOGENIC LNAS FOR MKID READOUT

The design and characterization of a low noise amplifier optimized for the readout

of microwave kinetic inductance detectors (MKIDs) is described here. These results

were previously published in the Transactions of the 2019 International Microwave

Symposium [46].

This chapter is first motivated through a description of microwave kinetic in-

ductance detectors and a discussion of the requirements for the low-noise amplifiers

employed for the readout of these devices. Then, the design of a two-stage SiGe

cryogenic integrated circuit low noise amplifier is presented.

The small-signal and large-signal characteristics of the fabricated amplifier are

then measured and explained. It is shown that at a physical temperature of 16 K, the

amplifier achieves a gain of greater than 30 dB and an average noise temperature of

3.3 K over the 0.4–1.2 GHz frequency band while dissipating less than 7 mW. More-

over, the wideband compression characteristics are measured. It is found that the

amplifier’s linearity is sufficient to support frequency domain multiplexed readout of

more than 500 detectors.

Moreover, for biasing an array of the LNAs in the system, a servo bias board

is designed and implemented. By using this bias board, a single unregulated power

supply is sufficient to bias up to 16 LNAs. Finally, system implementation wiring of

the LNA array is discussed in the last section of this chapter.
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Figure 5.1. Equivalent model of a single MKID, including readout line. The kinetic
inductance (LK) is modulated by photon flux, resulting in a shift in the series resonant
frequency of the coupled MKID, as observed from the transmission line.

5.1 Microwave Kinetic Inductance Detector (MKID)
Microwave kinetic inductance detectors (MKIDs) have become popular for use

in terahertz direct detection systems due to their low noise effective power (NEP)

and favorable scalability [29, 37, 30]. An MKID is a planar device that consists

of a superconducting resonator, weakly capacitively coupled to a transmission line,

as shown schematically in Fig. 5.1. The resonator is typically realized using thin-

film superconducting materials and may be implemented with distributed [29] or

lumped-element structures [33]. In either case, an MKID is designed to leverage

the dependence of a superconductor’s kinetic inductance on the density of Cooper

pairs in the material; that is, when the superconducting film absorbs photons with

sufficient energy, they break Cooper pairs, thereby modulating the kinetic inductance

and leading to a detectable shift in the series resonant frequency of the coupled MKID.

The inductance of the MKID (LR) is dominated by kinetic inductance and can be

approximated as:

LR ≈ LK =
1

nC

m

q2
l

A
, (5.1)
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where nC is Cooper pair density, m is electron effective mass, q is electron charge,

and l and A are the length and cross sectional area of the superconducting film. The

resonant frequency of the MKID can be written as:

f0 ≈
1

2π
√

LK(CC + CR)
, (5.2)

where CC and CR are the resonator coupling capacitor and parasitic capacitor of the

resonator, respectively.

The minimum frequency of a photon that can be detected using this technique is

determined by the gap energy of the superconducting film (∆) and is approximated

as:

fmin ≈ 2∆

h
≈ TC(73.5 GHz/K), (5.3)

where h is Planck’s constant and TC is the critical temperature of the superconducting

film. As such, THz MKIDs typically employ superconducting materials such as Al

and TiN, which have critical temperatures in the range of 1–3 K, and the devices are

usually cooled to the 100 mK range.

Measured quality factors for MKIDs capacitively coupled to a transmission line

are on the order of 15,000 [61], meaning that the fractional frequency range over

which any single MKID interacts with the transmission line is well below 0.1%. As

the relative value of f0 can be engineered by varying the relative size of CC and/or

CR, it is feasible to couple hundreds or even thousands of MKIDs, each with a unique

value of CC + CR, to a single microwave line (see Fig. 5.2). The ability to multiplex

hundreds of detectors on a single line makes MKIDs appropriate for use in large focal

plane array systems.

As shown in Fig. 5.2, multiple resonators with different resonance frequencies can

be capacitively coupled to a single transmission line. Since quality factors of MKID

resonators are high (can be reached up to 10,000), thousands of these resonators can

be coupled in a reasonable frequency range.
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Figure 5.2. Frequency domain multiplexing of MKIDs

Here, LNAs are developed for frequency domain multiplexed readout of the ToLTEC

camera, which leverages MKID arrays developed at NIST [9]. There are three inde-

pendent detector arrays with more than 7718 pixels in the TolTEC camera. The

three detector arrays cover bands of 125–170 GHz, 195–245 GHz, and 245–310 GHz

respectively.

5.2 MKID Readout System
An overview of the MKID readout system is shown in Fig. 5.3, where a simplified

block diagram of one of the 13 readout channels is shown. The readout line is excited

by a comb of probe tones generated by an I-Q modulator, with each of the probe

tones tuned to the average resonant frequency of one resonator of the MKIDs. As

the signals pass through the readout line, the readout tones will be modulated due to

power-dependent frequency shifts in the resonant frequency of the associated MKID.

After significant amplification by the LNA and a room temperature post amplifier, the

amplitude and phase information corresponding to the power absorbed by each MKID

is recovered through homodyne detection. Since the information in such a system is

carried in the modulation applied to probe tones, SNR is maximized when one uses the

strongest possible tones (limited by the power level at which the microwave excitation

breaks Cooper pairs [31]).
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Figure 5.3. Simplified system block diagram of the MKID readout.

Typical readout tones are in the 1 pW range at the detector coupling capacitor

and, while the phase of each tone can be randomized, the peak to average ratio of the

aggregate waveform used to readout a large MKID array can be well above 10 dB.

The cryogenic low noise amplifier (LNA) used for readout must be able to handle

such excursions.

Here the requirement of two parts of the ToLTEC readout system is described

briefly: Cryogenic LNAs and LNAs array biasing board. The design, implementation,

and measurement results of the TolTEC LNA are described in detail in the following

sections of this chapter.

5.3 Cryogenic LNA Design Overview and Specifications
The primary considerations that must be taken into account in specifying a cryo-

genic LNA for MKID readout are (1) the required probe signal power and frequency

band,(2) the impact of LNA noise on overall sensitivity, (3) the available power bud-

get, and (4) the system complexity associated with biasing the cryogenic LNAs. In

the case of the camera currently under development, the 6,000 pixels will be inter-
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faced to using a total of 13 readout lines, each operating in the 0.5–1 GHz frequency

range. As such, thirteen amplifiers are required, and a frequency band of 0.4–1.2 GHz

is targeted to provide a margin. The number of detectors coupled to each readout

line varies from 450 to 601, so the larger number is considered in setting the linearity

requirement. Since the detectors are fabricated out of TiN, the power of each probe

tone is assumed to be −90 dBm [48], corresponding to a worst case average power of

about −62 dBm. Thus, the amplifiers should remain linear with input powers in this

range. The 0.1 dB compression point is considered for the linearity specification to

ensure LNA linearity does not affect the readout.

Another consideration is noise performance. Assuming the amplifier has high

gain (i.e., > 30 dB), its noise contribution will dominate the noise of the overall

receiver. It can be shown that the microwave receiver chain contributes a fractional

frequency noise of approximately
√

kTe/Pprobe/QC where Te is the LNA input-referred

noise temperature, Pprobe is the microwave probe tone power, and QC is the coupling

quality factor [61]. While the relative impact of this noise depends strongly on the

responsivity of the MKID, it is aimed to minimize this effect by realizing an amplifier

with a noise temperature below 4 K. Such noise performance has previously been

demonstrated using SiGe BiCMOS technologies [23].

The power consumption of each amplifier is less constrained, as the heat-lift of a

typical commercial closed-cycle refrigerator operating at 4 K is on the order of 1 W.

Nonetheless, in anticipation of larger-scale arrays, A power consumption of less than

7 mW is targeted to keep the aggregate DC power consumption of the 13 amplifiers

required to read out the TolTEC detector arrays around 90 mW.

Finally, it is considered the complexity associated with biasing of the amplifier

array. The most straightforward approach is to employ self-biasing, which has the

advantage that it makes single-supply operation feasible. However, there is a signifi-

cant mismatch between the voltage required at the base (≈1.05 V at 16 K) and that
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required at the collector (≈300 mV at 16 K) of an HBT operated at cryogenic temper-

atures [63]. As such, this approach is avoided and opted for independent control of

each base voltage. To ease the challenge of generating and distributing a large num-

ber of bias voltages to the 13 amplifiers, a servo-bias system is designed to maintain

constant collector current while operating from a low collector supply voltage. The

bias circuitry and implementation are described later in this chapter.

5.4 LNA Design and Implementation
A two-stage SiGe HBT cryogenic LNA was targeted for this application. The

LNA is based on ST BiCMOS9MW process. In [14], it is shown that this process is

promising for cryogenic noise performance and LNA design. 30 dB gain, lower than

4 K noise temperature, lower than 10 mW power consumption, and higher than 10 dB

input/output return loss are targeted for this LNA. Cryogenic simulations are carried

out in Microwave office (AWR) design environment. Additionally, room temperature

simulations and circuit layout layout is carried-out in Cadence Virtuoso leveraging

foundry PDK models and technology information.

The amplifier schematic design is shown in Fig. 5.4. The amplifier is a two-stage

common emitter design with inductive emitter degeneration; this topology is selected

to minimize the noise temperature. The first stage device size and current den-

sity are selected for minimum noise temperature and 50Ω optimum noise impedance

(Ropt =50Ω), and the second stage provides the rest of the required gain. An off-chip

second-order LC ladder input matching network is chosen to tune the noise perfor-

mance of the LNA after fabrication. A 60Ω resistor is used for the collector of the

first stage, which helps the stability of the LNA with power consumption cost. Also,

1 nF wire-bondable off-chip silicon bypass capacitors is placed right beside the chip

for stability and low-frequency noise reduction.
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Figure 5.4. Schematic design of cryogenic LNA for MKID array readout including
off-chip bypassing components and input matching network. Bias points are related
for 16 K measurements.

Table 5.1. Model parameters extracted at a physical temperature of 18 K. WE=0.13
µm, JC1,2=0.46, 0.58 mA/µm2. A standard hybrid-π model topology is used [14].

LE RB RE RC CCB CCS CBE gm τ β
µm Ω Ω Ω fF fF fF S pS -
80 0.75 0.12 0.65 190 60 436 0.4 0.45 4.6e4
40 1.5 0.24 1.3 95 30 232 0.25 0.47 3.9e4

The extracted transistor parameters for both stages at 18 K temperature are shown

in Table 5.1. The DC current gain (β) of this process is promising even at low current

densities. The chip is integrated inside a custom-designed module for cryogenic noise

characterizations, as shown in Fig. 5.5. The chip (Fig. 5.5(a)) dimensions are 1.1×1.2

mm2 including bondpads. As shown in Fig. 5.5(b), a nano-D 9-pin DC connector is

used to supply dc bias to the module. However, DC bondpads are on both the north

and south sides of the chip (RF input/output is on the west/east side of the chip).

To route the DC bias to one side of the module, a four layer output PCB is used
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(b) (c)(a)

Figure 5.5. (a) Chip photograph, (b) Assembled module, and (c) Wire-bonded chip
of cryogenic LNA for MKID array.

and routed the DC bias underneath the output transmission line ground plane. Two

off-chip SMD aire-core inductors are selected for the input matching network.

A vertically wire-bondable silicon capacitor is used to complete the LC ladder

network. The module is designed in Inventor Professional software, and it is fabricated

using oxygen-free high thermal conductivity (OFHC) copper, which is gold plated

(type-3, 0.1 mil nickel, 0.03–0.05 mil gold). A standard female SMA connector is

used. EM simulations are carried-out to design the transition between the chip and

PCB transmission lines (CPW to microstrip transition type). The wire-bonded chip

is shown in Fig. 5.5(c). The distance between chip to bypass capacitors and PCBs is

minimized to prevent stability.

5.5 Servo Bias Board Design and Implementation
5.5.1 Servo Bias Board Design

SiGe HBT biasing is challenging due to the inherent exponential function of IC-VBE

curve. The sharpness of this curve is increased significantly at cryogenic temperatures

(Fig. 4.2), and consequently, sub-mV base bias voltage control is required. High-

resolution voltage sources can provide precise control for the base voltage. For this
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LNA, 4 voltage sources are required for each LNA (and 52 sources are required for

the 13 amplifier array). Moreover, wiring outside of the camera is more complicated

with using these sources. To minimize the biasing wiring (outside of the cryostat) of

13 LNAs in the system and prevent requiring so many high-resolution power supplies

(typically four supplies are required for a two stages SiGe HBT cryogenic LNA), a

servo bias board is designed and populated, capable of biasing up to 8 amplifiers.

Two of these servo-bias cards can thus bias the full 13-amplifier array.

The simplified design of the servo bias board for one stage bias is shown in Fig. 5.6.

A feedback loop is used to stabilize the collector current. The loop operates as fol-

lows. Collector current (IC) is measured and converted to a voltage by Rsense=10Ω.

This voltage is then amplified by a variable-gain instrumentation amplifier (IA1).

The amplified voltage (Vsense) is then compared with a reference voltage (VrefB). The

difference voltage of Vsense and VrefB is amplified by another instrumentational ampli-

fier (IA2), integrated, and applied to the base voltage. The collector current can be

written as:

IC =
VrefB

Av1Rsense

× 1

1 + RintCintS/Av1Av2gmRsense

, (5.4)

where Avi are voltage gains of the amplifiers, Rint, and Cint are integrator resistor and

capacitor, respectively, and gm is the HBT cryogenic transconductance. At steady-

state, it can be shown that the DC collector current can be approximated as:

IC ≈ VrefB

Av1Rsense

, (5.5)

As shown above, in the equation, collector current can be precisely controlled by VrefB .

Please note that the first-order system approximation is valid for DC current

analysis and does not capture the stability issue. Since the instrumentational ampli-

fiers have unity-gain bandwidth, there is a trade-off between maximum loop speed

and stability for implementing the servo bias loop idea. By increasing the gain of
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the instrumentational amplifiers, the loop speed increases, and resolution control

of DC current improves. However, it potentially causes higher loop gain and low-

frequency instability because of the limited gain-bandwidth of the instrumentational

amplifiers. Please note there are three poles in the open-loop transfer function. One

low-frequency pole is coming from the integrator and contributes -90◦ phase, and the

other two poles ( 30 kHz for gain of 10) are coming from instrumentational amplifiers.

Therefore, the phase margin is zero at 30 kHz, and the magnitude of the open-loop

gain should be lower than one before 30 kHz.

Since a high-speed biasing was not required (even below 100 Hz range would be

enough for our target), this trade-off did not limit the bias board design. More details

of the trade-off is shown in Appendix C.

Added noise of the servo bias to the LNA is another challenge and should be

minimized during the design. The main noise contributors are the instrumentational

amplifiers and the sensing resistor. There is a 10µF∥10 nF capacitor in each supply

node of the bias board. Also 127 nH ferrite bead is used in series with the supplies

bypass capacitors. A 1µF bypass capacitor is also placed on the DC PCB of the

LNA to minimize the added noise of the servo bias. This capacitor causes a lower

loop speed (and it helps to stability). However, as mentioned before, minimizing the

added noise was a more important factor than loop speed for the servo bias board.

5.5.2 Servo Bias Board Implementation

The detailed circuit design of the servo bias for one stage LNA is shown in Fig. 5.7.

Two low-noise and low-power tunable voltage regulators (LT3056) are used to mini-

mize the main power supply’s ripple. One of these regulators provides supply voltage

for amplifiers and op-amps inside the bias board. The second regulator provides

collector voltage for the LNAs.
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Figure 5.6. Design idea of the servo bias of the one stage LNA. Collector current
can be precisely controlled by the reference voltage in the servo loop.

Two gain-programmable, low-power, low-noise instrumentational amplifiers (LT1789-

1) are employed to control the collector current precisely with minimum added noise.

The reference voltage (VrefB), supply voltages of the instrumentational amplifiers/op-

amp (VDD), and the collector voltage are tunable via three potentiometers. A low-pass

filter structure including two parallel capacitors (10 n and 10µF) and a series ferrite

bead (127 nH) are placed on the output of the regulators and supply voltages of the

amplifiers and the op-amp to minimize added noise of servo bias to the LNA.

The circuit discussed above is assembled on a four-layer standard FR4 printed

circuit board to bias 8 LNAs. Layer 2 and three is used as the ground plane.

The populated board image is shown in Fig. 5.8. As shown, the bias board

channel is repeated 16 times to provide biasing for eight LNAs. Two of these boards

are enclosed in RF tight packages on two sides of the cryostat. A Micro-D 100-pin

connector is used for connecting between the LNAs and the bias boards.
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Figure 5.7. Servo bias circuit implementation for biasing one stage of cryogenic
LNA. The circuit is copied 16 times to bias up 8 LNAs.

To minimize ground loop issues, an independent ground wire is allocated for each

LNA base and collector bias. A 25-pin D-sub connector is used to monitor voltages

of some bases an collectors; the 7 V power supply for the bias board is also supplied

via this connector.

5.6 Experimental Results and Comparison to Simulations
In this section, cryogenic characterization of the LNA is reported. Since the lin-

earity of the LNA is essential for our specific application, both the small-signal/noise

and linearity performance of the circuit are characterized.

5.6.1 Small-signal Measurement Results

After assembly, the amplifier was mounted in a closed-cycle cryostat for character-

ization at a physical temperature of 16 K. These measurements were carried out in a

two-channel cryostat, with one channel used for scattering parameters measurements

and the second used for cold attenuator [36] based noise measurements. The amplifier

was biased at VC1=0.85 V, IC1=4.8 mA, VC2=0.85 V, and IC2=3 mA (PDC ≈ 6.6mW).

Cryogenic noise temperature and scattering parameters of the LNA are charac-

terized at a physical temperature of 16K, and the results are shown in Fig. 5.9. The
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Connector

LNAs 

Connector

Figure 5.8. Eight channels assembled bias board. Standard 4 layers FR4 board is
used. A 100-pins Miro-D connector is selected as cryogenic compatible connector.
A 25-pins D-sub connector is selected to monitor base and collector voltages and is
providing heater signals of the cryostat.

amplifier achieved 3.3 K average noise temperature, 30 dB average gain, and higher

than 7 and 20 dB input and output return loss. Moreover, the excellent agreement ob-

served between model and measurement confirm the accuracy of the cryogenic design

models. The measured input and output return losses differ some from simulation,

which may be explained by the difference in the reference plane, as the measurement

included long coaxial cables within the cryostat. Nonetheless, the measured input

and output return losses are believed to be sufficient for this application.

5.6.2 Linearity Performance

The TolTEC camera is comprised of more than 7718 pixels spread between the

125–170 GHz, 195–245 GHz, and 245–310 GHz bands. Since there are 13 readout

lines, each operating in the 0.5–1 GHz frequency range is used in the camera, the

number of detectors coupled to each readout line varies from 450 to 601, so the
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(a) (b)

(c) (d)

Figure 5.9. LNA cryogenic measurement results (solid blue lines) and comparison
with simulations (dashed black lines) while the amplifier is consuming 6.6 mW dc
power ((a) Gain (b) Noise temperature (c) S11 (d) S22). The amplifier was biased at
VC1=0.85 V, IC1=4.8 mA, VC2=0.85 V, and IC2=3 mA. The amplifier and the attenu-
ator temperatures were 16 and 15 K, respectively.
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Figure 5.10. Test setup used to characterize compression characteristics of the
LNA. For CW measurements, the arbitrary waveform generator was replaced by a
CW generator.

worst case is considered in setting the linearity requirements. Assuming -90 dBm

power of each tone (referenced to the plane of the detector coupling capacitor), this

corresponds to about -62 dBm average power at the input of the LNA. It is also

assumed a randomized phase for input tones to minimize peak to average power ratio.

Compression measurements were carried out using the test setup shown in Fig. 5.10,

with both CW and multi-tone stimuli. For the multi-tone measurement, a frequency

comb consisting of 560 random phase sinusoidal tones spanning the frequency range of

0.4–0.85 GHz is employed, as shown in Fig. 5.11. This frequency range was chosen to

align with the filters shown in Fig. 5.10. Results of the CW compression measurements

are compared to those of the multi-tone measurement in Fig. 5.12 for a bias point

of VCC1 =0.7 V, ICC1 =4.8 mA, VCC2 =0.5 V, and ICC2 =3 mA (PDC =4.9 mW). In

all cases, the input-referred 1 dB compression point was found to be greater than

-53 dBm. Based on these results, it appears that the amplifier should be able to

amplify the required spectrum without introducing significant distortion.
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Figure 5.11. Spectrum of multi-tone stimulus. The signal consists of 560 evenly
spaced tones spanning the frequency range of 0.4–0.85 GHz.

Figure 5.12. Measured compression characteristics for CW (Blue=0.4 GHz and
green=0.85 GHz) and multi-tone stimuli (Black). The upper x-axis scale corresponds
to the input power per-tone for the multi-tone (560 tones) stimulus, which is expected
to be -90 dBm in the TolTEC system.
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Figure 5.13. Simplified diagram of the bias board and wiring towards LNAs array
and sensory board. Two breakout boards are used to divide each LNA biasing signals.

5.7 LNAs Array Implementation in the MKID Readout Sys-

tem
As mentioned, two designed servo bias boards are mounted in two custom-built

RF tight packages and placed on two sides of the cryostat. A simplified diagram of

bias board wiring to the LNA array is shown in Fig. 5.13. Two custom-built standard

two-layers FR4 boards, called ”breakout boards,” are used within the cryostat to route

the bias lines from a single 100 pin micro-D connector to up to eight amplifiers via

a 9-pin nano-D interface. This breakout board is also used to distribute the signals

associated with four heaters. A versatile analog and digital I/O system on a PCI

Express board, is used to receive the readout signals from the readout board.
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Figure 5.14. First LNA array, including 7 LNAs, implemented in the camera.

Figure 5.15. Readout board for monitoring base and collector voltages of the LNAs.

Thirteen LNAs are used in the camera system. It is divided into two assemblies,

which include 7 and 6 LNAs, respectively. An image of the 7-LNA array is shown

in Fig. 5.14. A picture of the readout board is shown in Fig. 1.6. Two 25-pin D-sub

connectors are included to monitor the base and collector voltages of to a 64 element

switch matrix is included at room temperature to route these monitor points to the

digitizer system.
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CHAPTER 6

WIDEBAND SIGE HBT CRYOGENIC LNAS AS
MIXER-BASED SYSTEMS

Heterodyne detection is another application for cryogenic LNAs, which is the

target of this chapter. Two wideband cryogenic LNAs (as IF amplifiers) are designed

and implemented for HEB and SIS mixers. Wideband and low power LNA design

challenges and trade-offs, which are required for these readouts, are discussed in the

design section, and finally, experimental results and comparison with other state-of-

the-art cryogenic LNAs are reported. Some portions of this chapter is reported in

International Microwave Symposium [47].

6.1 SiGe HBT LNA Direct Integration with HEB Mixers
The scalability of THz heterodyne focal plane arrays (FPAs) for radio astronomy is

fundamentally limited by the power dissipation of the IF low-noise amplifiers (LNAs),

which must be tightly coupled to superconducting mixers and heatsunk to the 4 K

stage of a closed-cycle refrigeration system. Therefore, any reduction in the power

consumption of these cryogenically cooled amplifiers can be translated into more

pixels or a reduced heat load for the cryogenic cooler, which corresponds to a reduced

system power consumption.

While SIS mixers can operate with relatively high IF frequencies—allowing for the

use of octave bandwidth IF LNAs—these devices only work below the gap frequency

of the superconductor (proportional to critical temperature), which is typically about

1 THz. As such, heterodyne focal plane arrays operating well above 1 THz typically
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employ hot electron bolometer (HEB) mixers. Since the IF bandwidth of an HEB

mixer is limited to 3–5 GHz by electrothermal feedback [53, 76], an IF LNA with

frequency response extending as close as possible to dc is desired for this application.

This imposes additional challenges when trying to design for low power consumption

while also achieving a noise temperature below 5 K, as needed for maximizing sen-

sitivity. Here, the design and implementation of a wideband cryogenic SiGe LNA

optimized for integration into an HEB-based FPA is described.

6.1.1 LNA Design and Implementation

A two-stage amplifier is designed based on the Tower Semiconductor SBC18H5

technology, and cryogenic noise and small-signal models are created for simulations

with the procedure described in Chapter 3. To match the specifications associated

with an HEB IF amplifier, it is targeted a gain, bandwidth, and noise temperature of

30 dB, 0.1–3 GHz, and 5 K, respectively, all while maintaining a power consumption of

no more than 1 mW. The final circuit design appears in Fig. 6.1. Capacitively coupled

resistive feedback was employed to provide a broadband input match (35 MHz lower

cutoff frequency) while enabling separate biases for the base and collector of the

first stage. In comparison to a traditional self-biasing approach, capacitive coupling

enables a power reduction of up to six times (at cryogenic temperatures, typical values

of VBE are about 1 V, but VCE can be below 200 mV). The first-stage transistor sizing

was selected to give ROPT ≈ 50Ω near the upper frequency when the HBT was biased

at a collector current of 2 mA (JC = 0.41mA/µm2). Resistive loading with inductive

peaking was employed due to the broadband nature of the design. The second stage

features a similar design, but was optimized as a trade-off between gain flatness and

output match. The design requires off-chip capacitors for input and bypass, which can

be realized using off-the-shelf wire-bondable silicon capacitors. Since the lower band

cut off of the amplifier was specified to be 100 MHz, a >47 pF ac coupling capacitor
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Figure 6.1. Schematic design of wideband cryogenic LNA for HEB mixer readout.
Transistors total emitter areas for the first and second stages are 5.4 and 7.2µm2,
respectively.

Table 6.1. Model Parameters at a Physical Temperature of 7 K

Stage JC Device Size RB RE RC CCB CCS CBE gm τ β rbe
mA/µm2 µm2 Ω · µm2 Ω · µm2 Ω.µm2 fF/µm2 fF/µm2 fF/µm2 mS/µm2 ps - Ω · µm2

First 0.41 5.4 7 2.9 5.4 26.3 6 61 54.7 6.1 1.7e4 35e4
Second 0.13 7.2 5.9 2.9 5.4 26.3 6 50 25.3 3.2 9.1e3 47e4

was required; on-chip implementation of such a large capacitance is impractical due

to area constraints. Instead, a 1 nF off-chip input AC coupled capacitor is used.

Also, the input wire-bond is considered as a degree of freedom for noise optimization.

Cryogenic small-signal model parameters for the first and second stage transistor are

shown in Table 6.1.

A disadvantage of using resistive feedback for broadband impedance match is

the thermal noise contribution of the resistor. For the first stage, added noise is

TaRgen/Rf , where Ta is the ambient temperature, Rf is the feedback resistor, and

Rgen is the impedance seen looking back towards the generator from the node where

the feedback resistor connects to the input. With assuming 15 K ambient temper-

ature, the added noise will be 0.4 K. Second, the ac coupling capacitor limits the
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(a) (b)

(c)

Figure 6.2. (a) Assembled module, (b) Wire-bonded chip, and (c) Chip photograph.

low-frequency cutoff of the input-match, so a 2.4pF coupling capacitor was selected

to push this cut-off to well below the required 100 MHz.

The integrated circuit was fabricated in the Tower Semiconductor SBC18H5 pro-

cess. The small-signal and noise models and the SiGe HBT cryogenic performance of

the process were discussed in Section 1 of Chapter 3. The fabricated chip photograph

is shown in Fig. 6.2(c). The chip dimensions are 0.45 mm×1.4 mm and standard

100µm-patch GSG pads are used for RF I/Os. The amplifier was measured both

on-wafer (s-parameters) and in a coaxial fixture (gain and noise). The amplifier is

assembled inside a coaxial module (Fig. 6.2(b)). Two 8- mil Rogers 4003C RF PCBs

are designed to permit RF transitions into and out of the chip and also to accommo-

date the off-chip bypass capacitor, a standard FR4 PCB is used. The wire-bonded

chip chip, along with two 10 nF bondable bypass capacitors, is shown in Fig. 6.2(b).
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Figure 6.3. On-wafer room temperature measurement of chip and comparison with
simulations (PDC = 8mW).

6.1.2 Experimental Results

To verify the chip performance and Cadence models, on-wafer s-parameters mea-

surement were carried out at 300 K using a room temperature probe station. The mea-

surement results and comparison with Cadence simulations are shown in Fig. 6.3. For

these measurements, the amplifier was biased at a DC power consumption of 8 mW.

As shown, there is an excellent agreement between measurement and simulation.

After verifying room temperature operation, the amplifier was mounted within a

module for cryogenic characterization. The module was then installed in a cryostat

equipped for the cryogenic noise and gain measurements using the cold attenuator

method. This system is calibrated, and it is believed the accuracy is better than

±1 K. Measurement results acquired at a physical temperature of 15 K and power

consumption of 0.96 mW are compared to simulation in Fig. 6.4. The measured noise

temperature agrees quite well with simulation for frequencies below 2 GHz and then

begins to rise. Based on the simulations, it is believed this discrepancy is due to an

overestimation of the input bond wire inductance in the simulation and that the noise
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Figure 6.4. Measured and simulated gain and noise temperature at a physical
temperature of 15 K. These data were taken for a dc power consumption of 0.96 mW
(IC1 =2 mA, IC2 =0.8 mA, VC1 =0.4 V, and VC2 =0.2 V).

could be improved in the upper-frequency range by tweaking the length of this bond

wire.

On the other hand, the gain response demonstrated significantly more roll-off in

comparison to simulation in Cadence Microwave Office. As the same behavior was

seen when the module was measured at room temperature but saw better agreement

between the gain when measured on-wafer, it is believed that the discrepancy may be

due to incomplete modeling of the passive components for the cryogenic simulations

or related to packaging. Nonetheless, the performance is sufficient for the HEB IF am-

plifier application because, in the simulations, the bandwidth was over-designed. The

required specifications for the bandwidth was 0.1-3 GHz; however, in the cryogenic

simulations, 0.1-4 GHz was considered for that.

To ensure that the performance was not sensitive to VC1, the dependence of the

amplifier on the collector-side supply voltage is studied when biased for a constant

collector current. The results (Fig. 6.5) confirm that the noise performance of the

amplifier is insensitive to VC1 for collector-emitter voltages as low as 100 mV.
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Figure 6.5. Cryogenic amplifier performance as a function of first stage power
dissipation. As there is 85Ω of series resistance, VC1 is 170 mV higher than the
collector–emitter voltage.

6.1.3 Comparison and Conclusion

The noise temperature, power consumption, and bandwidth of the cryogenic LNAs

reported in the literature that can potentially be used for this application are shown

along with the results achieved by this amplifier in Fig. 6.6. As shown, InP HEMT

based LNAs (red plots) provide the lowest noise temperature, but dissipate relatively

high power. Moreover, InP LNAs are not very practical at lower than 1 GHz frequency

because of the inherent features (very high input impedance) of HEMT devices. Fur-

thermore, existing SiGe HBT LNAs (blue plots), which can be used at lower than

1 GHz frequency, consume more than 7 mW dc power while lower than 1 mW power

consumption for the target application is required. The black line is the measured

performance of the designed LNA. As shown, we achieved lower power and a wider

fractional bandwidth in comparison with other works.

6.2 General Purpose Wideband Cryogenic LNA
In this section design of a general purpose SiGe HBT cryogenic LNA is targeted.

The goal of the design was a fully integrated amplifier that is compatible with both
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Figure 6.6. Cryogenic LNAs specifications which potentially can be used for IF
LNA of HEB mixer (Black: This work, Red : InP HEMT, and Blue: SiGe HBT)
[15, 79, 81, 82, 23, 46].

HEB and Superconductor-Insulator-Superconductor (SIS) mixers based heterodyne

receivers [52, 40]. Therefore, the bandwidth specification for this LNA is 0.5-8 GHz.

Since using of a simple input matching network was desired (second-order), there is

a compromise between noise performance and bandwidth which will be discussed in

the design section below. Power consumption of the LNA should be as low as possible

to enable scalability of these receivers, as described in the previous section. A power

consumption lower than 2 mW was targeted in our cryogenic simulations. Typically,

27-30 dB gain is enough for both HEB and SIS mixer based receivers [62, 66, 39]. A

higher than 10 dB input and output return loss was aimed for this LNA.

6.2.1 Cryogenic LNA Design and Implementation

A SiGe-based cryogenic LNA IC was designed, implemented, and characterized.

28 dB gain, lower than 2 mW DC power consumption, and lower than 6 K noise

temperature was targeted for this LNA while the ambient temperature is 4 K. The

schematic of the LNA is shown in Fig. 6.7. A two-stage common-emitter with re-
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sistive load and without inductive degeneration provides wideband response for this

LNA.

A series of 80Ω resistor with 0.5 nH inductor in the collector of the first stage

HBT provides wideband gain. However, the voltage drop on the resistor causes

higher power consumption. To prevent that, a relatively small transistor size is used

for the first stage (Ae=3.6µm2), which helps to have lower dc current (and lower

drop voltage on the resistor) while current density is still at the optimum place for

the noise performance. The smaller size of the transistor causes higher optimum

noise impedance. This may not be ideal when the LNA is matched with 50Ω source

impedance. However, it provides lower sensitivity of the noise performance with the

source impedance. Please note the amplifier was designed for 100Ω noise optimum

impedance. That’s why noise performance is less sensitive to source impedance (50Ω

was inside a noise circle). Since the target of this LNA was general purpose applica-

tions, lower sensitivity to the source impedance is a desirable characteristic.

A second-order ladder input matching network is selected to achieve simultaneous

noise and power matches, while the first stage current density is chosen to minimize

added noise of the transistor. An off-chip DC-block capacitor and length of input

wirebond are used as the degree of freedom for noise performance tweaking after

fabrication. The same biasing circuit as HEB mixer LNA is selected for this LNA.

The chip is fabricated based on the Tower Semiconductor SBC18H5 process (is the

same as the previous LNA). The assembled chip inside the coaxial module is shown

in Fig. 6.8. Assembly components are the same as the HEB mixer LNA. However,

the input ac coupled capacitor is part of the matching network for this LNA.

6.2.2 Experimental Results

First, the on-wafer room temperature performance of the chip is verified by on-

wafer s-parameter measurements. The measurement results and comparison with
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Figure 6.7. Schematic design of wideband cryogenic LNA for SIS mixer readout.
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Figure 6.8. (a) Assembled module, (b) Wire-bonded chip and bypass capacitors.
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Figure 6.9. On-wafer room temperature measurement of chip and comparison with
simulations (PDC = 17mW).

Cadence simulations are shown in Fig. 6.9. The observed mismatch in gain and return

loss above 7 GHz may be due to the fact that we did not run parasitic extraction or

may be related to incomplete electromagnetic modeling. Since off-chip input ac-

coupled capacitor is part of input matching network, measured on-wafer input return

loss is low.

The assembled amplifier was next characterized inside the custom-built cryostat.

The measured input-referred noise temperature and gain are shown in Fig. 6.10.

Noise and gain are measured based on the cold-attenuator method with ±1 K noise

measurement accuracy. 28 dB average gain, and 6.5 K average noise temperature is

measured for 1–7 GHz frequency band while the cryostat temperature is 16 K and dc

power consumption is 1.5 mW.

6.3 Conclusion and Future Work
Two wideband cryogenic IC LNA are designed and measured based on BiCMOS

SBC18H5 technology. The first LNA was characterized as IF LNA for HEB mixer

heterodyne receivers. A feedback resistor topology with dc block capacitor provided
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Figure 6.10. Measured gain and noise temperature at a physical temperature of
16 K. These data were taken for a dc power consumption of 1.5 mW.

simultaneous wideband (0.1-3 GHz) and low-power (<1 mW) specifications which are

ideal for scalable heterodyne receivers. As a next step, an array of these LNAs should

be integrated with a HEB mixer and characterized inside the receiver system.

The second amplifier was targeted for general purpose mixer-based heterodyne

receivers. Smaller transistor size with resistive load provides wideband (0.5-8 GHz)

and low power (<1.5 mW) specifications are achieved with a compromise of noise

temperature performance (<8 K). Based on cryogenic simulations, it is believed noise

temperature results will be better with larger source impedance.
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CHAPTER 7

LOW POWER AND HIGH RESOLUTION CRYOGENIC
DAC DESIGN

Biasing of cryogenic HBT LNAs is challenging due to the inherent exponential

relation between collector current and the base voltage and the requirement of precise

control of DC current for most cryogenic applications. Moreover, most conventional

biasing methods, such as collector feedback resistor and resistor divider, consume

power that is not suitable for scalable applications. Added noise of biasing circuitry

is another essential factor that should be considered.

In this chapter, an integrated approach for biasing of SiGe HBT LNAs is proposed,

which improves their scalability. The approach is implemented in a bias-integrated

LNA, and also it is used for a programmable LNA, which will be described in the

next chapter.

First, a quick literature review is presented on the current methods of cryogenic

LNA biasing before proposing our approach. Then, the design of an on-chip digital

to analog converter (the core of the biasing method) and cryogenic considerations are

described. Finally, to verify the approach, it is implemented inside a tunable bias

integrated cryogenic LNA.

7.1 Cryogenic LNAs Biasing Approaches
At cryogenic temperatures, the sharpness of the IC versus VBE curve of a SiGe

HBT increases drastically, and the entire valid operating range (≪ 0.1mA/µm2 to

> 10mA/µm2) compresses to a VBE swing of less than 100 mV. As such, when biasing
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the base of a cryogenically-cooled SiGe HBT using a voltage source, which is the most

common approach to bias a cryogenic LNA, the supply resolution must be ≤ 500µV.

Previous experiments have employed external sourcemeters [65, 62]. This approach is

not scalable, even for a small array of LNAs. As mentioned in the MKID chapter, a

servo bias board was designed and implemented to bias up an eight LNAs array [46].

Using the bias board method, the requirement of 32 high-resolution external source

meters for 8 LNAs is removed, and just one unregulated power supply is sufficient.

However, for a more extensive LNA array (e.g., thousands) which might be required

for the next generation of quantum computers readout, the bias board approach

wiring complexity will be increased, and it is not a feasible approach. So, an on-chip

approach is more reliable for a larger LNA array.

The most common on-chip approach that is used in the literature is self-biasing

[23]. Two typical circuit implementations are shown in Fig. 7.1. Both of these ap-

proaches have two common problems. First, since VCC>VB, the minimum value of

the collector supply voltage is determined by the voltage required to bias the base

terminal. Since VBE ≈ 1V at cryogenic temperatures, VCC must be in the 1 V range as

well. This problem causes higher power consumption because of collector DC current.

It turns out that, one of the main advantages of SiGe HBT cryogenic LNA to

its counterpart, InP LNA, is low power consumption because of the capability of

operating with VCC at near the knee voltage. By using the self-bias approaches,

taking advantage of this feature is not possible.

In the next section, a low-power approach will be proposed that does not need

a high-resolution power supply by taking advantage of the CMOS integration of the

BiCMOS process.
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Figure 7.1. Self bias approaches of SiGe HBT cryogenic LNAs.

7.2 Programmable Base Voltage Biasing
The proposed approach for biasing of the SiGe BiCMOS LNA is shown in Fig. 7.2.

It is a tunable resistor divider followed by a low-pass filter (LPF) to minimize the noise

and increase the impedance seen from the resistor divider (Zin). Base DC current of

the transistor must not affect the resistor divider current. In other words, real part

of impedance seen from divider should be much higher than R1 in all programming

states (ℜ(Zin) ≫ R1). The current through the divider should be 10-100 X larger

than the base current. This does not make any problem at cryogenic temperature,

since β is significantly larger than room temperature. So, selection of a low value for

R1, which caused power consumption in the resistor divider, is not required.

The supply sensitivity should be considered for the proposed approach, the gm

sensitivity to the supply voltage (VDD) can be written as:

∂gm
∂VDD

≈ IC
n2V 2

T

× R1

R1 +R2

e
R1

R1+R2

VDD
nVT

−VBE
nVT , (7.1)

∆VDD ≈ ∆gm
gm

(7.2)

where, R1 and R2 are resistor divider resistors. For typical numbers of a cryogenic

HBT, it can be shown that 40µV RMS supply fluctuation leads to 1% RMS fluc-
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Figure 7.2. Idea of programmable base voltage biasing for SiGe BiCMOS LNA.

tuation in gm and these numbers can be achieved using an LDO with appropriate

filtering. Moreover, the added noise of the resistive feedback should be taken into

account because it potentially causes supply fluctuation. RMS noise equivalent volt-

age of 1 MΩ resistor at 20 K temperature is 33 nV/
√
Hz. A 20 kΩ series resistor and

20 pF parallel capacitor are used as an LPF structure (Fig.7.2) to eliminate added

noise of the resistive DAC.

To enable testing, the states of the resistive divider should cover the base voltage

biasing range for both cryogenic and room temperature operation. For a typical HBT,

this range is inside 0.8–1.1 V. Moreover, as mentioned in the previous section, the

resolution should be lower than ∼0.5 mV. A 0.6-1.2 V with 250 mV steps are targeted

in our design.

The circuit implementation of our approach is shown in Fig. 7.3. To cover 0.6 V

tuning range with 0.25 mV steps, 4 bits of coarse tuning range and 8 bits of fine-tuning

are used. The fine-tuning bits are implemented using an digital to analog converter,

described in the following section. The coarse tuning is realized using unit cells, each

consisting of three nMOS switches and a resistor as shown in the Fig. 7.3. The total

absolute value of the resistors (Rt) in the coarse tuning circuit dominates the power
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Figure 7.3. Circuit implementation of base voltage divider for the LNA. Four/eight
bits coarse/fine tuning bits are used for 0.6 V voltage covering range and 0.25 mV
voltage resolution.

consumption of the whole biasing circuit. However, as mentioned before, there is a

trade-off between power consumption and linearity of the proposed circuit because

the Rt should be lower than impedance seen from the base of the HBT device. A

41 kΩ as the resistor value for each coarse tuning bit is selected. The total resistor

of the divider, including 16 coarse tuning cells and 700 kΩ tail resistor, is 1.3 MΩ.

Therefor, the power consumption of the total biasing circuit (PDC = (VDD)
2/Rt) is

around 1.4µW which is negligible compare with the power consumption of a typical

cryogenic LNA.
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Figure 7.4. Cadence simulation results of base voltage tuning range. (a) Output
voltage range for 16 states of coarse tuning bits and (b) Output voltage range for 256
states of fine tuning bits while coarse bits state is ’1000’.

The room temperature simulation results of the programmable voltage divider are

shown in Fig. 7.4. In Fig. 7.4(a), the output voltage of the divider (base voltage of

transistor) is simulated while coarse tuning bits have swept. Four coarse tuning bits

provide 15 states for the output voltage, as shown in the figure. There is a significant

overlap voltage between each state as a margin to ensure the voltage divider covers

all the 0.6–1.2 V range. Also, the output voltage of different states of fine-tuning bits

(256 states of 8-bits DAC) are shown while coarse bit state is fixed to ’1000’, and

the results are shown in Fig. 7.4(b). The DAC loading for this simulation is an HBT

(with a 20 kΩ resistor in the base) at 300 K temperature.

7.3 Digital to Analog Converter Design
To implement the fine-tuning bits of the programmable voltage divider, an 8-

bit DAC is designed. The simplified schematic of the design is shown in Fig. 7.5.

This DAC also is used in the next chapter for programmable cryogenic LNA design.

Unsalicided polysilicon resistors are selected for use in the DAC (also is used for

the whole voltage divider) because of the low thermal coefficient of these resistors
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Figure 7.5. Eight bits low-power digital to analog converter.

compared other available resistors. However, this costs a bit larger area in the DAC

because of relatively low sheet resistance of these resistors. The final layout of the

whole programmable base voltage divider, including required digital programming

circuits (standard shift register and decoder), is shown in Fig. 7.6.

7.4 Biasing Integrated Cryogenic LNA
7.4.1 Biasing Integrated Cryogenic LNA Design and Implementation

Using the described biasing approach, a SiGe BiCMOS cryogenic LNA is designed

and implemented to verify the method. The LNA schematic design is shown in

Fig. 7.7. A three-stage common-emitter topology was selected to provide 40 dB gain

from 4-8 GHz. As shown, three base voltage dividers with RC LPF are used to bias

up the stages. Also, an on-chip serial programming interface is used to program the
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Figure 7.6. Programmable base voltage divider layout. The dimensions are
230×140µm2. The layout includes 8-bits DAC, 4 bits coarse tuning switch-resistors,
and a standard decoder.

DACs. The clock frequency of the programming bits can be reached up to 10 MHz.

A simple first-order matching network is designed for the first stage to provide power

matching while the first stage current density is selected to provide minimum noise

temperature at 8 GHz frequency.

Three resistors with almost the same values are placed in the collectors. Since

DC bias currents for all stages are 2 mA, the same collector voltage could be used for

all stages. Therefore, using an on-chip programmable voltage divider approach, two

unregulated power supplies are required for biasing the three stages of LNA. Please

note that this LNA has not been optimized for minimum power consumption and

optimum noise temperature, and it is just tried to verify the biasing approach and

the digital interface with that. The gain of the LNA can be controlled by programming

of DC bias currents.

The amplifier is fabricated based on the Tower Semiconductor SBC18H5 BiCMOS

process. The chip photograph and assembled LNA are shown in Fig. 7.8. The assem-

bly components are similar to what had been used for HEB and SIS mixers readout

LNA. The only significant difference is using two-sided 15-pin MDM connector be-
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Figure 7.7. The schematic design of SiGe BiCMOS LNA to verify the bias integra-
tion approach. A three-stage LNA with common emitter topology without inductor
degeneration. The chip includes a standard digital programming interface.

cause DC pads including digital interfaces and collector biases are on both sides of

the chip. A 10 nF silicon wire bondable capacitor (near the chip), 5Ω SMD series

resistor, and 10µF (thick near the DC connector) film SMD capacitor are used for

collector DC bypassing.

7.4.2 Biasing Integrated Cryogenic LNA Experimental Setup and Mea-

surement Results

The amplifier noise temperature and gain are characterized inside the custom-

built cryostat with the cold attenuator method, while the amplifier and attenuator

temperatures are 16.5 K and 19 K, respectively. The experimental setup is shown in

Fig. 7.9. A Raspberry pi board is used to program the chip. Since the minimum

available output voltage of the board was 3 V, a custom-built level shifter, PCB is

designed to convert the voltage to 1.8 V. A constant 1.8 V supply voltage was sufficient

to bias up three base stages. Two KE2401 supplies are used for the chip VDD and

collector bias voltages. Low-pass filters, including ferrite beads and bypass capacitors,

are placed on the DC PCB (inside the module) for every biasing signal.
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Figure 7.8. (a) Assembled chip inside a coaxial module. (b) wirebondeded chip
photograph and collector bypass capacitors.

During the measurement, it is found that a stable supply for the DACs provides

lower gain fluctuation of the LNA. As mentioned in the design part, gm is sensitive

to the supply changes, and this can be considered as a disadvantage of the resistive

DAC. It was possible to decrease the gain fluctuation by adding a Low-pass filter

structure on the module dc bias board (an RC structure, 100 kΩ and 50 nF). The

author believes this effect could also be alleviated by using an LDO.

The standard cold attenuator method and a spectrum analyzer are used to char-

acterize the LNA, as shown in the setup picture. 100 kHz clock frequency is used to

program the chip. The programming efficacy was validated via clock-out and data-out

signals.

Some samples of gain and noise temperature cryogenic measurement results are

shown in Fig. 7.10. Even though biasing currents of all stages could be programmed,

the first stage bias was kept constant to observe the LNA noise performance at the

optimum noise biasing current. Then, DC bias currents of the second and third stages

are programmed to verify the on-chip programmable biasing approach. First stage

DC current is 5 mA for all cases while the second/third stages DC currents are 2.3 mA,
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Figure 7.9. Cryogenic measurement setup for bias integrated cryogenic LNA.

2.5 mA, and 2.7 mA to achieve 33 dB, 35 dB, and 37 dB average gain, respectively (in

1.5-7.5 GHz). The noise temperature of the LNA remains constant (to 5 GHz) while

bias currents are changing, which verifies that different states in biasing programming

are not affecting the noise performance of the LNA.

The same biasing approach, DAC, and digital programming is used in the next

chapter to implement programmable cryogenic LNA biasing. Moreover, the described

DAC is used to provide required voltages in different parts of that LNA.

7.5 Conclusion
An on-chip scalable approach was proposed and verified to bias up a SiGe HBT

cryogenic LNA. The approach was based on a programmable resistor divider and

provided 0.6-1.2 V biasing range with 0.25 mV step for the base voltage. The number

of high resolution supply voltage requirement is alleviated by using this approach,

however, there are a couple of issues which should be considered.

First, an independent voltage supply for the collector is still required (even though

a high-resolution supply is not needed for collector biasing). Second, the proposed

approach is potentially sensitive to device parameter drift during the time. So, it is
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Figure 7.10. Cryogenic measurement results of the bias integrated LNA. Second
and third stages DC bias currents are swept to achieve different average gains.

required that the HBT be programmed precisely for each device and during the time.

A solution for this issue can be using digital feedback. It can be done by using an

Analog to Digital Converter (ADC) and sampling from collector current, comparing

with a reference voltage, and applying the difference to the base voltage via a digital

integrator and the DAC.
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CHAPTER 8

PROGRAMMABLE CRYOGENIC BICMOS LNA DESIGN
AND IMPLEMENTATION

In this chapter, by taking advantage of the CMOS digital circuitry, including the

previous chapter biasing approach, the first programmable cryogenic LNA is designed

and measured. The LNA design and part of the measurements is a collaboration

project with Zhenjie Zou.

8.1 Introduction
As mentioned in the motivation chapter, for a fault-tolerant quantum computer,

an order of 1M qubits and 100,000 LNAs are required in readout channels. Re-

producibility of the noise performance should be understood and optimized for this

large-scale array of LNAs because it is not practical to package and measure each

amplifier at cryogenic temperature. Having a cryogenic amplifier with the ability of

performance tuning can be considered a step to achieving the goal.

Furthermore, the cryogenic LNA should satisfy these readouts’ noise performance

and power consumption requirements. For example, for a Transmon qubit readout,

the required noise temperature for a 5 GHz signal is around 0.12 K [17]. This amount

of noise temperature can be achieved by a Josephson parametric amplifier. However,

the output saturation level of these types of amplifiers is limited (typically lower than

90 dBm). Since the signal levels are on the order of -120 dBm and 5–10 tones are

typically multiplexed on a single readout line, the gain of such a parametric amplifier

is limited to 15–20 dB [8]. So, the readout still needs another cryogenic LNA to provide
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the rest of the required gain, and the noise performance of this LNA is critical due

to the low amount of gain of the parametric amplifier. Typically a cryogenic LNA

with <2 K noise temperature and >30 dB gain is required at a physical temperature

of 4 K [16, 24]. Moreover, to scale up the number of qubits, the power consumption

of these LNAs should be as low as possible.

For the mentioned quantum computing applications, the first re-configurable cryo-

genic SiGe HBT based LNA by taking advantage of CMOS integration of BiCMOS

process is designed, implemented, and measured in different configurations. The tar-

get frequency band in wideband mode is 3-6 GHz. 4.3 K average noise temperature,

and 35 dB average gain are achieved at 15 K ambient temperature while the LNA con-

sumed 1.8 mW power. A digitally programmable RLC resonator-based can control

the LNA bandwidth and center frequency as a second-order filter response. Moreover,

the gain and biasing currents of the amplifier can be tuned and programmed by an

on-chip digital to analog converter precisely. The noise performance is maintained

with the appropriate choice of settings, and the power consumption is lower than

2.9 mW in all programming states.

Room temperature reconfigurable LNAs have previously been studied. For ex-

ample, an amplifier whose gain profile was controlled via a tunable transformer was

reported in [5]. Another frequency tunable LNA where the response was controlled

via transistor sizing was reported in [92]. Moreover, for multi-standard wireless sen-

sor applications to have an LNA with tunable frequency response to avoid wideband

LNA and reduce power consumption. Therefore, in [59], authors designed and im-

plemented a band-tunable CMOS LNA based on 45 nm CMOS SOI technology for

multi-standard wireless sensor applications. A programmable LC switch tank ap-

proach is used to achieve the tunable frequency response. Gain and bandwidth of

a distributed CMOS LNA are tuned in [98] by tuning the cascode transistor gate

biasing voltage. Also, a field programmable LNA using a tunable N-path notch filter
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is described in [99]. In this work, gain, noise figure, linearity, and power consumption

can be tuned by using a tunable N-path notch filter and biasing control of TIA.

8.2 Design Approach
Two second-order bandpass filter responses are cascaded to achieve a tunable fre-

quency response for the LNA. The bandwidth, center frequency, ripple, and absolute

value of the response can be tuned by independent control of the quality factors

(Q1 and Q2) and resonance frequencies (ω1 and ω2) of the filters. In principle, any

second-order bandpass Butterworth and Chebyshev responses can be realized by in-

dependently tuning these filters’ quality factor and resonance frequency. However, in

practice, the achievable range of Q and ω0 will limit the tunability.

The conceptual design of the proposed amplifier with a parallel RLC resonators is

shown in Fig. 8.1 (block diagram) and Fig. 8.2(a). It is a five-stage amplifier with two

tunable RLC resonators for frequency response control at stages two and four. The

first stage provides wideband gain, and is optimized for noise performance without

tunability to avoid any noise penalty because of the following stages’ tunability. Buffer

stages are incorporated after the tunable second-order-systems to minimize loading

effects. Considering only the dynamics of the tunable stages, the gain of the amplifier

is approximated:

Av ≈ gm1R1
gm2R2√

1 +Q2
2(

ω
ω2

− ω2

ω
)2

gm3R3√
1 +Q2

3(
ω
ω3

− ω3

ω
)2
, (8.1)

where gmi is the transconductance of the stages, Ri is the load resistor of each stage,

and Qi/ωi are the resonator quality factor and resonance frequency, respectively. It

is assumed that gmi of each stage can be tuned via programmable bias. Also, Qi and

ωi of the second and third stages can be tuned via programmable RLC resonators.
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Please note that neglecting of the buffer stages gain in the above equation is just

for simplification. A sample plotted voltage gain magnitude of each stage resonator

and total gain of the LNA is shown in Fig. 8.2(b) and (c). By tuning the resonator’s

resistor and capacitor values, each stage quality factor and resonance frequency can

be controlled, and, consequentially, the frequency response of the LNA [94]. Fig 8.3

shows example curves demonstrating example responses that can be obtained by

varying ω0 and Q of each stage. These plots are based on the equation mentioned

above, and both frequency and magnitude axis is normalized for simplicity.

While on the surface this approach seems straightforward, there are some partic-

ular challenges that must be considered for our cryogenic application. First, the noise

performance of the cryogenic LNA is sensitive to the interstage matching network

between the first and second stages, which, in combination with the available gain

of the first stage determines the second stage noise contribution. Since the optimum

noise impedance will change as the bias and tuning of the second stage are adjusted,

it is essential that the first stage have sufficient available gain to minimize the effect

of second stage noise. Second, to realize a narrowband response for the LNA, a high

resonator quality factor is require for the resonator. While the inductor quality factor

does increase by about 3X with cryogenic cooling [69], it is not enough; therefore, a

negative resistor cell to the resonator is added. The noise and impact on linearity of

the negative resistor should be considered and simulated for the noise and IP3 per-

formance. Third, since a very high absolute value of gain is required for a cryogenic

LNA (30–40 dB), the stability of the LNA should be considered during the design

and measurement. Particularly, the negative resistor structure can potentially cause

oscillation.

The frequency response tuning idea is implemented for the LNA by designing a

programmable RLC resonator, which will be described in the following sections.
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Figure 8.1. Block diagram of the proposed reconfigurable LNA.

(a)

(b) (c)

RFi

VC1
Buffer

Buffer
RFo

VC2

M1

M2

M3

VC3

L2 C2 R2

L3 C3 R3

Figure 8.2. (a) Simplified schematic of three stages tunable frequency response LNA,
(b) Magnitude of the voltage for second and third stages, and (c) Total frequency
response of the LNA.
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Figure 8.3. Normalized voltage gain of the two stages amplifier with tunable
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8.3 Programmable RLC Resonator Design
To implement the idea of tunable frequency response, a tunable RLC tank with

the ability to program center frequency and quality factor is required. Moreover,

the mentioned resonator should be able to perform at cryogenic temperature. The

schematic of the proposed resonator is shown in Fig. 8.4. The selected inductor

value is 1 nH and a five-bit capacitor bank is used coarse tuning of the resonator

center frequency. A six-bit resistor bank (MOSFETs in triode region) is used to

achieve wideband (low-Q) response and gain tuning. The values of the resistors and

capacitors are binarily weighted, with unit cells of 48 fF and 650Ω, respectively. A

DAC-biased varactors is included to permit fine tuning of the center frequency. The

minimum and maximum values of the varactor (at room temperature) are 118 and

316 fF, respectively.
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Figure 8.4. Tunable LC tank. The MOS varactor and negative conductance biases
are provided by on-chip DACs. The capacitor and resistor banks are binary weighted
with LSB values of 48 fF and 650Ω, respectively.

A negative admittance cell is included to boost the resonator quality factor beyond

the limit set by the passive components. The same biasing circuit described in the

previous chapter is used to bias the varactor and negative resistor cells. The details

and limitations of the design of each part is described in the following subsections.

8.3.1 Tuning Resistor and Capacitor Banks

Five MIM capacitors in series with MOSFET switches are used to provide coarse

tuning of resonator center frequency as shown in Fig. 8.5(a). There is a trade-off

between quality factor and tuning range (Cmax/Cmin), which should be considered for

transistor size selection. A larger switch provides lower ON resistance (higher quality

factor) with the cost of limited tuning range. Capacitor values are binarily weighted,

and minimum and maximum values of the capacitors are 48 and 771 fF, respectively.

Also, the minimum and maximum gate lengths of switches in series with capacitors

are 4 and 64µm, respectively.

The variable resistor is shown in Fig. 8.5(b) and consists of 6 binary-weighted

MOSFETs which are operated in the cutoff or triode regions, depending on the pro-

gramming state. The minimum and maximum size of the transistors are 1 and 32µm,

respectively.
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Figure 8.5. (a) 5-bits switch-capacitor tuning circuit. (b) 6-bits resistor bank tuning
circuit. Minimum transistor gate width for capacitor and resistor banks are 4 and
1µm, respectively. Lowest capacitor value is 48 fF.
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Figure 8.6. Adding series resistor in gate to decrease parasitic capacitors of MOS
switch. (a) Gate is directly connected to control voltage. (b) Gate is connected to
control voltage via a 20 kΩ series resistor.

A 20 kΩ series resistor is used in the gate of MOS switches to minimize gate-

drain and gate-source total parasitic capacitors in the ON-state. Without using the

resistor the total parasitic capacitor is ∼ cgs+cgd when the switch is ON (Fig. 8.6(a)).

However, with adding large enough resistor, the parasitic capacitor will be series and

the total is ∼ cgscgd/(cgs + cgd) (Fig. 8.6(b)).
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8.3.2 Varactors at Cryogenic Temperatures

A programmable MOSFET accumulation varactor is used for fine-tuning of the

amplifier’s center frequency. The on-wafer performance of the varactor test struc-

ture is characterized at cryogenic temperature using a cryogenic probe station. The

measured capacitance of the varactor as a function of the control voltage is plotted

in Fig. 8.7 for three different temperatures. The minimum achievable capacitance

decreases significantly with cryogenic cooling, and consequently Cmax/Cmin increases.

The decrease in Cmin with cooling may be related to substrate freezeout and, con-

sequentially, the associated reduction in the substrate contribution to the aggregate

capacitance of the varactor. Also, the voltage range over which the varactor is sensi-

tive is decreased and shifted to a higher value, which can be compensated by adjusting

the control voltage range.

The circuit implementation of the varactor in the resonator is shown in Fig. 8.8.

The same approach of resistive DAC used for base biasing is used to program the

control voltage. Also, a 200 kΩ resistor isolates the varactor from the programming

circuit and reduces added noise of the digital circuit. A 10 pF capacitor is used to

bypass the varactor control voltage.

8.3.3 Negative Resistor

A programmable negative resistor cell is used to provide a higher quality factor

for the narrowband response of the LNA. A cross-coupled structure is selected for

this purpose. While the topology is similar to a standard differential cross-coupled

negative resistance, it is operated in a single ended configuration because of the bypass

circuit and thus has a modified operational principle.

The effect of the bypass circuit on the Q-enhance cell is investigated. As shown

in Fig. 8.9(a), the admittance of the RLC resonator is a function of the tunable

RLC resonator admittance (y1), Q-enhance cell input transconductance, and bypass
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Figure 8.7. On-wafer measured total capacitor of MOS varactor test structure
regards to control voltage for different temperatures. The DAC is not included for
this measurement.

10p

200k
DAC

Figure 8.8. Circuit implementation of the programmable varactor used in the tun-
able RLC resonator.
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circuit admittance (y2). In Fig. 8.9(b), the circuit implementation is shown. The load

admittance can be calculated as:

yload = y1 −
y21

y1 + y2
(1− gmz1)

2, (8.2)

in which y1 is the RLC load admittance, y2 is the admittance of the bypass capacitor,

and gm is the transconductance of the transistor of the Q-enhance cell. With the

assumption of y2 ≫ y1 and gmz1 ≫ 1:

yload ≈ y1 − g2mz2, (8.3)

This can be thought of as a negative inductance in parallel with a negative resistance.

The equation implies that the operational mechanism gives both a reactive and a

resistive component and the reactive part leads to a frequency shift of the resonance

as a function of the negative resistor value. Based on the equation, the magnitude of

the resonator impedance regarding the gm is plotted based on some nominal values of

the resonator and bypass circuit in Fig. 8.10. As mentioned, the plot shows that the

negative resistor improves the resonator’s quality factor while the center frequency

shifts lower in frequency.

Given that we are introducing a negative resistance into the circuit, it is important

to consider the effect on stability. For the narrow-band response, the parallel negative

resistor of the structure can be approximated as:

Rp ≈ −(ωCs)
2Rs

g2m
. (8.4)

For stability, the value of the parallel resistor should be higher than the real part

of the load impedance. This limit defines the maximum gm of the Q-enhance cell

and consequently the narrowest bandwidth of the LNA. In other words, the Q goes
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Figure 8.9. (a) Simplified model of RLC tank including negative resistor. (b) Load
impedance calculation of RLC tank including negative resistor and bypass circuit. (c)
Equivalent load impedance.
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Figure 8.10. Effect negative resistor gm on magnitude of RLC resonator. (Rr=500Ω,
Cr=1 pF, Lr=1 nH, Rs=10Ω, Cs=20 pF, and gm=0–60 mS)

through infinity at the onset of instability. So in principle, one could operate with

near infinite Q. However, there are gain fluctuations which start up oscillation. The

stability was investigated by looking at k-∆ factors during the experimental results.

8.3.4 Experimental Results of Programmable Resonator

As a backup plan to debug the programmable LNA, four programmable RLC

resonators are fabricated based on the mentioned design to verify the resonator’s

performance at cryogenic temperature. The chip photograph and the corresponding
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schematic of one version is shown in Fig. 8.11. The inductor value is 1 nH in all

samples, and the varactor minimum and maximum capacitor values are 118 and

316 pF, respectively. The only difference between the samples is the value of the

coupling capacitors, which are 0, 13, 88, and 162 fF. In these test structures, the Q-

enhance cell could not be used because one side of the circuit is grounded; however,

the Q-enhance structure is still there to make sure the parasitic effect of that cell is

included in the measurement.

To verify the operation of the programmable resonator, one sample of the res-

onators is characterized at both room and cryogenic temperatures by a cryogenic

probe station. Here the measurement results of the version without coupling capac-

itor are reported. Some sample measurement results are shown in Fig. 8.12. The

input impedance of the resonator is measured while states of the resistors and ca-

pacitors are swept. As shown in Fig. 8.12, the quality factor of the RLC resonator

has increased with cryogenic cooling. Based on the measured states of the plot, the

highest Q for the resistor states at room and cryogenic temperatures are 1.8 and 4.1,

respectively. Also, the highest Q of the capacitor states are 2 and 3.1 for room and

cryogenic temperatures. Moreover, it is verified that the digital programming circuit

is working as expected, and the center frequency and bandwidth of the resonator

could be tuned by changing parallel capacitor and resistor values, respectively.

8.4 Amplifier Design, Implementation, and Experimental Setup
Based on the programmable RLC resonator and the biasing approach, A pro-

grammable BiCMOS integrated cryogenic LNA is designed and implemented with

the capability to tune its specifications digitally. The design and implementation of

the LNA, including some cryogenic simulation results, are described below.
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Figure 8.11. (a) Programmable RLC resonators test structure. (b) Correspond
schematic design.
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Figure 8.12. Sample on-wafer measurement results of input impedance magnitude
of the programmable RLC resonator (the version without coupling capacitor). (a)
Different states for the parallel resistor at room temperature. (b) Different states for
the parallel resistor at 7 K temperature. (c) Different states for the parallel capacitor
at room temperature. (d) Different states for the parallel capacitor at 7 K tempera-
ture.
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Figure 8.13. LNA schematic. The circuitry in the dashed boxes is further described
in Fig. 8.11. Transistor dimensions: Q1 : 3×0.09µm×10µm, Q2 : 1×0.09µm×10µm,
Q3 : 1× 0.09µm×10µm, Q4 : 1× 0.09µm×10µm, Q5 : 2× 0.09µm×10µm.

8.4.1 LNA Design

The LNA employs the five-stage architecture shown in Fig. 8.13 to enable the

simultaneous realization of low noise and a high degree of tunability over the 3–6 GHz

band. The first stage of the LNA (Q1) is a broadband circuit that was designed to set

the noise, the second and fourth stages (Q2 and Q4) are reconfigurable second-order

systems (SOSs), which can be used to program the frequency response, and the third

and fifth stages (Q3 and Q5) are broadband buffer amplifiers, used to isolate the two

programmable SOSs.

On-chip digital to analog converters (DACs) are used to generate the necessary

base-bias voltages. The Tower Semiconductor SBC18S5 process is targeted for this

design. Systematic design of the overall circuit was enabled using experimentally

extracted small-signal HBT noise models; this process was described previously in

Chapter 3. These models also are used in [45]. The cryogenic model parameters of

each stage HBT are summarized in Table8.1.

The input stage (Q1) is a broadband common-emitter design that is tuned to bal-

ance gain, noise, and input return loss. When biased at 2 mA (JC = 0.74mA/µm2),

the simulated available gain of this stage is > 13 dB over the entire operating fre-
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Table 8.1. Model Parameters at a Physical Temperature of 16 K. Bias current den-
sities are related to the wideband state of the LNA.

Stage JC Device Size RB RE RC CCB CCS CBE gm τ β rbe
mA/µm2 µm2 Ω · µm2 Ω · µm2 Ω.µm2 fF/µm2 fF/µm2 fF/µm2 mS/µm2 ps - Ω · µm2

First 0.74 2.7 7.1 2.9 5.4 26.3 6 59.2 104 5.7 3.3e4 37e4
Second 0.55 0.9 8.5 2.9 5.4 26.1 6 43.6 117 1.8 5.3e4 59e4
Third 0.77 0.9 8.1 2.9 5.4 26.1 6 46.5 155 2.4 6.2e4 53e4
Fourth 0.55 0.9 8.5 2.9 5.4 26.1 6 43.6 117 1.8 5.3e4 59e4
Fifth 0.72 1.8 7.5 2.9 5.4 26.2 6 53.2 121 4 4.1e4 43e4
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Figure 8.14. (a) Cryogenic simulation noise optimum impedance (blue) and con-
jugate of the input impedance (black) for 3-6 GHz frequency range. (b) LNA First
stage cryogenic available power gain of the LNA. Both of these simulations are when
LNA is in wideband state.
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Figure 8.15. Chip micrograph. The chip dimensions are 0.75 mm×2.8 mm.

quency range (see Fig. 8.14(b)), significantly reducing the impact of subsequent stages

on the overall noise. Furthermore, this stage does not have tuning capability to avoid

any potential effect of the programmable circuit on the LNA noise performance. The

cryogenic simulated optimum impedance for the power and noise at 3-6 GHz frequency

band is shown in Fig. 8.14(a).

The buffer stages, Q3 and Q5, were designed to present well-defined load impedances

to the SOSs. Emitter degenerated common-emitter stages were used for this purpose.

8.4.2 LNA Implementation and Experimental Setup

The chip is fabricated based on the Tower Semiconductor SBC18S5 BiCMOS

process. This process has seven layers metal stack and minimum 90 nm emitter width

for the HBT and 180 nm gate length for CMOS devices. The chip photograph is shown

in Fig. 8.15. Standard ground-signal-ground (GSG) bondpads are used for on-wafer

measurement and collector biasing pads are on the top side of the chip, and the digital

programming required bondpads are on the bottom side of the chip.

The amplifier is assembled inside a coaxial module for cryogenic noise performance

characterization. An image of the assembled module and the wire-bonded chip is

shown in Fig. 8.16(a) and (b), respectively. Two separated 10 mil thickness RO4003C

RF boards are used to transition between chip to SMA connectors, and a standard

FR4 board is used as a digital and biasing board. As shown, in Fig. 8.16(b), 10 nF

silicon wire bondable capacitors is placed in close proximity to the chip for stability.
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(a) (b)

Figure 8.16. (a) The amplifier was packaged within a module for characterization
at cryogenic temperatures. (b) Photograph showing the packaged IC. The RF signal
enters on the left and leaves on the right. 10 nF silicon capacitors are incorporated
in close proximity of the IC to optimize the grounding of the collector biases.

The measurement setup for cryogenic scattering parameters and noise charac-

terizations of the amplifier is shown in Fig. 8.17. The LNA are mounted inside a

two-channel custom-built 15 K cryostat. A Raspberry Pi and a level-shifter board

are implemented for chip programming and provide a 1.8 V voltage level, respec-

tively. Collector voltages and chip digital VDD are coming from high-resolution power

supplies.

The assembled module was characterized using a custom-built cryostat capable of

achieving a base temperature of 15 K. This system has a pair of channels configured

to measure LNA noise temperature and scatter parameters, respectively. The noise

measurement channel is calibrated to an accuracy that is believed to be better than

±1K.
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Figure 8.17. The cryogenic measurement setup is used for noise characterization
and scattering parameters. Five KE2401 are used in the measurement setup because
of DC current sensing requirements of the measurement. However, one supply should
be enough because 0.3 V is the common voltage for the collectors.

8.5 Measurement Results
The LNA was first measured in a broadband configuration. The cryogenic noise

temperature and gain measurement and comparison with simulation appear in Fig. 8.18.

An average gain and noise temperature of 36.1 dB and 4.3 K were observed from 3–

6 GHz while the chip dissipated 1.8 mW from 0.3 V collector supply voltage. Moreover,

an excellent agreement between cryogenic simulations and measurement is achieved.

Cryogenic input and output matching in wideband mode are shown in Fig. 8.19.

Greater than 5 dB input and output return losses were measured over 3-6 GHz fre-

quency band, and the average input and output return losses were better than 10.9

and 11.4 dB, respectively.

Next, the bandwidth control features of the IC is characterized by program-

ming the resistor bank and negative resistor values. Example results are shown in

Fig. 8.20(a) and (b). Is is found that it was feasible to reduce the bandwidth from

2.6 GHz to 0.3 GHz with little impact on the mid-band gain or noise and at a modest

cost in power consumption, which increased from 1.9 mW in the broadband mode of
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Figure 8.18. Measured (solid lines) and simulated (dotted lines) Gain and noise
temperature of the LNA at a physical temperature of 16 K when tuned for wideband
operation. In this configuration, the LNA drew 1.8 mW from a 0.3 V supply.
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Figure 8.20. (a) Gain and (b) noise simulation (dotted lines) and measurement
(solid lines) for the LNA at a physical temperature of 16 K when tuned for different
bandwidths. The center frequency for these measurements was set to 4.4 GHz. The
power consumed from the 0.3 V supply for the wide-bandwidth, medium-bandwidth,
and narrow-bandwidth settings was 1.9, 2.9, and 2.7 mW, respectively.

operation to 2.7 mW in the narrowband operating mode, with the additional power

associated with the activation of the negative conductances. In each case, the input

and output return losses averaged across the passband were found to be better than

11 and 11.8 dB, respectively. Also, the cryogenic simulations for each measured state

are shown in Fig. 8.20.

The center frequency control features of the integrated circuit is also evaluated by

programming the capacitor bank and varactors setting, and example simulation and

measurement results appear in Fig. 8.21(a) and (b). It is found that tuning the center

frequency from 4 GHz to 5.5 GHz had little impact on the noise or power consumption

of the IC.
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Figure 8.21. (a) and (b) Gain and noise simulation (dotted lines) and measurement
(solid lines) of the LNA at a physical temperature of 16 K when configured for different
center frequencies. When configured for center frequencies of 4, 4.8, and 5.5 GHz, the
chip drew 2.0, 2.2, and 1.7 mW from the 0.3 V supply, respectively.
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A similar center frequency control measurement is done while the bandwidth of the

LNA fixed to about 250 MHz, and the gain and noise results are shown in Fig. 8.22

(a) and (b). It is found that the entire desired bandwidth could be covered with

250 MHz center frequency steps without affecting the noise performance. Also, input

and output return loss and stability factors (k-∆) are measured for each narrowband

state to make sure the LNA is unconditionally stable. Also, the output spectrum of

the LNA is checked by a spectrum analyzer to ensure the LNA was not oscillating in

different settings.

Next, the average gain of the LNA is characterized with 3 dB steps. Some sam-

ples of the measurement results and the corresponding simulations are shown in

Fig. 8.23(a) and (b). The average gain for these measurements is 28, 31, and 34

dB without significant effect on the noise performance.

Ripple control of the frequency response is tested to verify of quality factor control

of the resonators without affecting the center frequency, and the measurement results

are shown in Fig. 8.24. The measured ripple for these plots are 0, 0.1, 1, 2, and 3 dB.

The return losses were found to be configuration-dependent. For the settings cor-

responding to Figs. 8.20 and 8.21 the worst-case input and output return losses across

each passband were in the range of 4.3–8.1 dB and 4.1–6.1 dB, respectively. Also, all

reported configurations, the measured input, and output return losses averaged across

each passband were better than 10.9 and 11.4 dB, respectively. The cryogenic mea-

surement results of the input and output matching are shown in Fig. 8.25.

The stability of the LNA was also characterized for each of the configurations

described above. In each case, it is found that the LNA was unconditionally stable.

It should be pointed out that it is found that the LNA could be made to oscillate

for large enough values of the negative conductance and avoided those values in

experiments.
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Figure 8.22. (a) and (b) Gain and noise measurements of the LNA at a physical
temperature of 16 K when configured for different center frequencies with around
250 MHz bandwidth.

As described in the previous chapter, gm of the HBT is sensitive to supply changes.

During the measurement, it is found that a stable supply for the DACs provides lower

gain fluctuation of the LNA. That is a disadvantage of the resistive DAC is that it is

very sensitive to noise on the bias line. It was possible to decrease the gain fluctuation

by adding a Low-pass filter structure (a series 100 kΩ resistor and a parallel 50 nF

capacitor) on the module dc bias board. The author believes this could also be solved

by using an LDO.

Finally, the compression characteristics of the IC as a function of frequency under

the various modes of operation is characterized. In all cases, it is found that the

output referred 1 dB compression point was greater than −30 dBm. This is sufficient

for use in quantum computing applications, where input signals are expected to be

in the range of −100 dBm.
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Figure 8.23. (a) and (b) Gain and noise simulation (dotted lines) and measurement
(solid lines) of the LNA at a physical temperature of 16 K when configured for different
absolute gain values.
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Figure 8.24. (a) and (b) Gain and noise measurements of the LNA at a physical
temperature of 16 K when configured for different ripples of 0, 0.1, 1, 2, and 3 dB.
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Figure 8.25. Measured S11 (black) and S22 (blue) at a physical temperature of
16 K when tuned for different bandwidths and center frequencies. Top row: The
center frequency for these measurements was set to 4.4 GHz. The power consumed
from the 0.3 V supply for the (a) narrow-bandwidth, (b) medium-bandwidth, and (c)
wide-bandwidth settings was 1.9, 2.9, and 2.7 mW, respectively. Bottom row: center
frequencies of (d) 4, (e) 4.8, and (f) 5.5 GHz, the chip drew 2.0, 2.2, and 1.7 mW from
the 0.3 V supply, respectively.
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Table 8.2. Comparison with state-of-the-art cryogenic LNAs.

Ref. Technology Frequency Gain Noise PDC Tunability(GHz) (dB) (K) (mW)
[1] InP-HEMT 4-8 39 2.3 7.7 NO
[95] SiGe-HBT 4-8 28 3.2 1 NO
[65] SiGe-HBT 4-8 26 8 0.6 NO
[22] InP-HEMT 4-8 23 3.2 0.3 NO

This SiGe-HBT 3-6 36 4.3 1.8 YES

The circuit is compared to state of the art in Table 8.2 for the case of wideband

operation (Fig. 8.18). It is competitive with the other results while offering digital

programmability.

8.6 Conclusion
The design, implementation, and characterization of a highly tunable cryogenic

LNA is presented. In addition, a programmable RLC resonator is proposed to re-

alize a frequency tunable cryogenic LNA. While the results shown here are pretty

promising, there are several areas in which further work is warranted. First, the

noise performance achieved and power consumed by this design is still higher than

the state-of-the-art for SiGe cryogenic LNAs, so the demonstration of reconfigurable

cryogenic LNAs which approach or exceed the state-of-the-art in these metrics is an

important goal. Secondly, the demonstrated circuit required a stable external supply

for the DACs, and a future design should include on-chip regulation for this task.
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CHAPTER 9

CONCLUSION AND SUGGESTIONS FOR FUTURE
WORK

9.1 Conclusion and Summary
SiGe HBT based cryogenic LNAs provide an excellent trade-off between power

consumption and noise performance, which is used to satisfy readout requirements for

different applications such as terahertz detection and quantum computing. To verify

that, in this dissertation, three state-of-the-art SiGe technologies are characterized

and modeled cryogenically, and several integrated circuit LNAs are designed and

measured.

The first LNA satisfies the readout requirement of MKID arrays as an incoherent

detector-based mm-wave length camera. Moreover, an array of 16 LNAs, including

a servo bias system, is implemented and deployed within the camera. Additionally,

two wideband and low-power integrated circuit LNAs are designed and measured,

targeting coherent detector applications. By achieving a promising compromise be-

tween power consumption, bandwidth, and noise temperature, it is verified that SiGe

HBT based LNA is also promising in wideband design, particularly for the <10 GHz

frequency range.

Biasing integration of cryogenic LNA is highly desired to improve the scalability

of these LNAs. By taking advantage of the CMOS integration capability of the SiGe

process, an on-chip base voltage biasing approach using a cryogenic DAC is described

and verified. All base voltages can be biased-up with an unregulated power supply

while a high-resolution power supply had been required before for each stage base

biasing of the LNA.
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Finally, the first re-configurable BiCMOS LNA, which it can be programmed

digitally for different specifications, is designed, implemented, and measured. The

LNA frequency response factors, including absolute value of gain, bandwidth, center

frequency, and ripple, can be tuned by digital CMOS circuitry. Also, the DC collector

current and base voltage bias of this LNA can be tuned and programmed at cryogenic

temperature with the mentioned approach. The amplifier can be programmed to

achieve the lowest noise temperature published for silicon-based integrated circuits.

The LNA tunability is based on a programmable RLC resonator which is cryogenically

characterized as an independent test structure.

9.2 Suggested Future Work
An on-wafer cryogenic noise measurement approach can be a great future work

to minimize the parasitic packaging effect on cryogenic noise characterization. Cur-

rently, the cold-attenuator method is the conventional approach for cryogenic noise

characterizations. On-wafer noise measurement requires a chip attenuator with a

precise cryogenic model. Heat loading of probes can be a challenge to find the exact

temperature of the attenuator to create the model. An on-chip temperature sensor

could be a possible solution that needs to be studied. Moreover, the attenuator and

LNA should be on the same wafer with minimum distance to minimize the wirebond

and pad parasitic effects.

Quantum computing readout requires a few photon limited noise performance for

the cryogenic LNA while the LNA consumes sub-milliwatt DC power. One future

work might be to develop an ultra-low-noise and low-power cryogenic LNA, which

is near to quantum limit noise performance. A noise-optimized SiGe process with

Germanium doping can be a potential solution to achieve the goal.

Scaling up the number of array elements in qubits and THz detector readout

requires thousands of LNAs that must be biased simultaneously. To achieve the
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minimum power consumption for each LNA, the collector voltage of different stages

needs to be biased up independently. Having an on-chip low-power circuitry approach

to bias up base and collector simultaneously is essential to optimize the power con-

sumption. Using an on-chip servo bias loop can be a suggested method. However,

low-frequency stability and added noise of the loop at cryogenic temperature need to

be studied to use this approach.

The shot noise correlation factor between base and collector shot noise sources is

neglected for the SiGe HBT small-signal model used in this dissertation. This approx-

imation can be valid for the frequencies below 10 GHz. However, this approximation

should be considered during modeling to have accurate cryogenic noise models for the

simulations, especially for above 10 GHz applications.

The nonlinear cryogenic model of SiGe HBT has not been studied intensely in

situ based on the author’s knowledge. However, these models are studied for MOS

devices at cryogenic temperature [42]. Furthermore, cryogenic linearity simulations

are helpful for specific applications like MKID readout when the intermodulation of

input probe tones can limit the readout performance, as mentioned in chapter 4 of

the dissertation.

The cryogenic characterization of the varactor is done, and it is found that both

effective voltage range and Cmax/Cmin are changed with cryo cooling. Study of

the varactor cryogenic behavior and model creation will be helpful for the next re-

configurable LNAs.

127



APPENDIX A

DE EMBEDDING TEST STRUCTURE PARASITIC

Different approaches are reported for de-embedding in the literature [57, 87, 51].

A method is selected by using Open, Short, and Pad-open test structures [89]. The

model which was used for test structures is shown in Fig.A.1. Yi and Yo are pads

parasitic capacitors (in parallel with a resistor at room temperature). Yf is a pad-

to-pad parasitic capacitor that can be negligible. Z1 and Z2 are mainly because of

transmission lines parasitic inductors (in series with a resistor in room temperature).

Y3 is a parasitic capacitor of HBT layout wiring. Z3 is because of ground loop back

parasitic. Finally, Y1 and Y2 is substrate parasitic capacitor because of layout wiring

of HBT. Please note that lumped component fitting was not used for the parasitic

elements, and each element is de-embedded as a 2-ports matrix.

Pad-open, short, and open are required to obtain the Y-matrix of the device under

test (DUT), as shown in Fig.A.2. Thus, it can be shown that YDUT can be calculated

as:

YDUT = [(Ymeas−Ypad)
−1−(Yshort−Ypad)

−1]−1− [(Yopen−Ypad)
−1−(Yshort−Ypad)

−1]−1,

(A.1)

where Ymeas is Y-matrix of the measured sample and YDUT is de-embedded Y-matrix

of the sample. The above formula modeling de-embedding was used.
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Figure A.1. Sample DUT model including parasitic components of test structure.
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Figure A.2. De embedding test structures model. (a) Pad-open (b) Short (c) Open.
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APPENDIX B

DE EMBEDDING OF DC RESISTANCE

As discussed in the modeling chapter, two small-signal model parameters of SiGe

HBT, re, rc, are obtained from open-collector measurement, a DC measurement.

Having precise values for these extractions is essential. Particularly, dropping the

voltage on re is affecting on gm, and consequently causes a gain mismatch in LNA’s

gain simulation. This is even more effective in high current density design. Moreover,

in common-emitter topology, the thermal noise of re can be referred to the input

without any division factor. That is why DC resistors of the measurement setup,

including RF cables, probes, and test structures were de-embedded .

These resistors can be measured and extracted through Z-matrix measurement of

the short test structure. DC model of short test structure is shown in Fig. B.1(a).

ZA, ZB, and ZC can be written as:

Z11 = ZA + ZC =
dV1

dI1
|I2=0, (B.1)

Z22 = ZB + ZC =
dV2

dI2
|I1=0, (B.2)

Z21 ≈ Z12 = ZC =
dV2

dI1
|I2=0, (B.3)

when the Z-matrix of the short test structure is calculated, Zij parameters can be

obtained from the above equations, and DC resistance can be de-embedded based on

Fig. B.1(b).
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APPENDIX C

SERVO BIAS BOARD STABILITY ANALYSIS AND
SIMULATIONS

The Equation 5.4 can be used to calculate collector current as a function of VrefB ,

and it shows by increasing the instrumentational amplifier gain, resolution control

and loop-speed can be increased simultaneously. However, since instrumentational

amplifiers have limited gain-bandwidth (it can be modeled as a single-pole amplifier),

the amplifiers’ limitations should be considered a design part. For example, for the

amplifier used as an instrumentational amplifier, the bandwidth for voltage gain of

10, 100, and 1000 are 30, 3, and 0.2 kHz, respectively. This limited gain-bandwidth

of the amplifiers affects on stability.

The gain of both instrumentational amplifiers is 10 in our servo loop. So, there

are two 30 kHz poles in our circuit which decreases the phase margin and potentially

causes oscillation. Please note the second pole of the integrator happens in a signifi-

cantly higher frequency than 30 kHz. So, the effect of that pole on the phase margin

can be neglected.

Starting phase of open-loop gain is -90◦ because of the integrator pole. Two poles

at 30 kHz (two instrumentational amplifiers with the gain of 10) cause another -90◦

phase at this frequency. Therefore, the total phase of the open-loop gain is -180◦, and

during the design, the magnitude of the open-loop gain should be lower than one in

30 kHz. This frequency is a limit for the loop-speed of the servo bias. In the design,

the loop gain is one at 2 kHz which tells the designed bias loop is stable with enough

margin.
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The open-loop phase margin formula in the loop can be approximated as:

P.M. ≈ 90◦ − 2 arctan
ωn

ωp

, (C.1)

where ωn is the gain-bandwidth of the loop, and ωp is pole locations of the instrumen-

tational amplifiers. The equation shows the trade-off of phase margin, loop speed,

pole locations of the instrumentational amplifiers.

We have used transient single-pulse simulations for examining the stability of the

servo bias loop. The results are shown in Fig. C.1. Collector current is plotted as

a function of time for different values of SiGe HBT gm. gm =0.4 S is chosen for

the simulations, which is the same value as the first stage of the LNA for cryogenic

simulations. This simulation is carried out by LTspice, and an ideal voltage-dependent

current source is used as the HBT model. Voltage gain of both instrumentational

amplifiers are 10 and Rsense=10Ω. As shown, the bias board is stable even with 3.3

times cryogenic gm.
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