10,790 research outputs found

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Smart home energy management

    Get PDF
    The new challenges on Information and Communication Technologies (ICT) in Automatic Home Systems (AHS) focus on the methods useful to monitor, control, and optimize the data management flow and the use of energy. An AHS is a residential dwelling, in some cases with a garden or an outdoor space, equipped with sensors and actuators to collect data and send controls according to the activities and expectations of the occupants/users. Home automation provides a centralized or distributed control of electrical appliances. Adding intelligence to the home environment, it would be possible to obtain, not only excellent levels of comfort, but also energy savings both inside and outside the dwelling, for instance using smart solutions for the management of the external lights and of the garden

    Detailed examination of a packet collision model for Bluetooth Low Energy advertising mode

    Get PDF
    The aim of this paper is to investigate the amount of energy that is required to successfully transmit information inside the Bluetooth Low Energy (BLE) advertising packets. There are applications that require more than one BLE node to simultaneously transmit data. The BLE protocol utilizes a specific communication method termed advertising mode to perform unidirectional broadcasts of data from the advertising devices. However, with an increased number of BLE devices advertising simultaneously, there will be inevitable packet collisions from the advertising devices. This results in a waste of energy, specifically in low-power applications where lower consumption is desirable to minimize the need for battery replacements. This paper examines a packet collision model for the BLE advertising mode with the results validated using experimental data. Our analysis shows that when the throughput of the BLE network starts to fall due to an increase in the number of packet collisions, the energy consumption of the BLE nodes increase exponentially with respect to the number of nodes

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Smart Home and Artificial Intelligence as Environment for the Implementation of New Technologies

    Get PDF
    The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits.The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits

    Autonomous learning for face recognition in the wild via ambient wireless cues

    Get PDF
    Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak. We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort
    • 

    corecore