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ABSTRACT
Facial recognition is a key enabling component for emerging In-
ternet of Things (IoT) services such as smart homes or responsive
offices. Through the use of deep neural networks, facial recognition
has achieved excellent performance. However, this is only possibly
when trained with hundreds of images of each user in different
viewing and lighting conditions. Clearly, this level of effort in enrol-
ment and labelling is impossible for wide-spread deployment and
adoption. Inspired by the fact that most people carry smart wire-
less devices with them, e.g. smartphones, we propose to use this
wireless identifier as a supervisory label. This allows us to curate a
dataset of facial images that are unique to a certain domain e.g. a set
of people in a particular office. This custom corpus can then be used
to finetune existing pre-trained models e.g. FaceNet. However, due
to the vagaries of wireless propagation in buildings, the supervisory
labels are noisy and weak.We propose a novel technique, AutoTune,
which learns and refines the association between a face and wire-
less identifier over time, by increasing the inter-cluster separation
and minimizing the intra-cluster distance. Through extensive ex-
periments with multiple users on two sites, we demonstrate the
ability of AutoTune to design an environment-specific, continually
evolving facial recognition system with entirely no user effort.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting; • Information systems → Information retrieval; • Com-
puting methodologies→ Lifelong machine learning.
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1 INTRODUCTION
Facial recognition and verification are key components of smart
spaces, e.g., offices and buildings for determining who is where.
Knowing this information allows a building management system
to tailor ambient conditions to particular users, perform automated
security (e.g., opening doors for the correct users without the need
for a swipe card), and customize smart services (e.g., coffee dispens-
ing). A vast amount of research over the past decades has gone
into designing tailored systems for facial recognition and with the
advent of deep learning, progress has accelerated. As an example of
a state-of-the-art face recognizer, FaceNet achieves extremely high
accuracies (e.g., 99.5%) on very challenging datasets through the
use of a low dimensional embedding, allowing similar faces to be
clustered through their Euclidean distance [14, 26]. However, when
directed transferred to operate in ‘in the wild’, subject to variable
lighting conditions, viewing angle and appearance changes, perfor-
mance of off-the-shelf pre-trained classifiers degrades significantly,
with accuracies around 15% not being uncommon. The solution
to this is to obtain a large, labelled corpus of data for a particular
environment, with hundreds of annotated images per user. Given
access to such a hypothetical dataset, it is then possible to fine-tune
the pre-trained classifier on out-domain data to adapt to the new
environment and achieve excellent performance.

However, the cost of labelling and updating the corpus (e.g. to
enrol new users) is prohibitive for most critical applications and
therefore, will naturally limit the use and uptake of facial recog-
nition as a ubiquitous technology in emerging Internet of Things
(IoT) applications. On the other side, people often, but not always,
carry smart devices (phones, fitness devices etc). Wang et al. [36]
advocated that although these devices do not provide fine-grained
enough positioning capability to act as a proxy for presence, they
can be used to indicate that a user might be present in an area
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with a co-located camera. In this work, we take a step forward and
further utilize device presence as weak supervision signals for the
purposes of fine-tuning a classifier. The goal now becomes how to
take an arbitrary, pre-trained recognition network and tune it from
a generic classifier to a highly specific classifier, optimized for a
certain environment and group of people. We note that the aim is
to make the network better and better at this specific goal, but it
would likely perform poorly if transferred directly to a different
environment. This is the antithesis of the conventional view of
generalized machine learning, but is ideally suited for the problem
of environment specific facial recognition, as opposed to generic
facial recognition.

The technical challenge is that there is not a 1:1mapping between
a face and a wireless identity, rather we need to solve the association
between a set of faces and a set of identities over many sessions or
occasions. To further complicate the problem, the sets are not pure
i.e. the set of faces can contain additional faces from people not of
interest (e.g. visitors). Equally well, due to the vagaries of wireless
transmission, the set of wireless identifiers will contain additional
identifiers e.g. from people in the next office. Furthermore, it is also
possible to have missing observations e.g. because a person was
not facing the camera or because someone left their phone at home.

In this work, we present AutoTune, a system which can be used
to gradually improve the performance of facial recognition sys-
tems in the wild, with zero user effort, tailoring them to the visual
specifics of a particular smart space. We demonstrate state-of-the-
art performance in real-world facial recognition through a number
of experiments and trials.

In particular, our contributions are:

• We observe and prove that wireless signals of users’ de-
vices provide valuable, albeit noisy, clues for face recogni-
tion. Namely, wireless signals can serve as a weak label. Such
weak labels can replace the human annotated face images in
the wild to save intensive effort.
• We create AutoTune, a novel pipeline to simultaneously label
face images in the wild and adapt the pre-trained deep neural
network to recognize the faces of users in new environments.
The key idea is to repeat the face-identity association and
network update in tandem. To cope with observation noise,
we propose a novel probabilistic framework in AutoTune and
design a new stochastic center loss to enhance the robustness
of network fine-tuning.
• We deployed AutoTune in two real-world environments and
experimental results demonstrate that AutoTune is able to
achieve > 0.85 F1 score of image labeling in both environ-
ments, outperforming the best competing approach by> 25%.
Compared to the best competing approach, using the fea-
tures extracted from the fine-tuned model and training a
classifier based on the cross-modality labeled images can
give a ∼ 19% performance gain for online face recognition.

The rest of this paper is organized as follows. §2 introduces the
background of this work. System overview is given in §3. We de-
scribe the AutoTune solution in §4 and §5. System implementation
details are given in §6. The proposed approach is evaluated and
compared with state of the art methods in §7. Finally, we discuss
and outlook future work in §8 and conclude in §9.

2 RELATEDWORK
Deep face recognition: Face recognition is arguably one of the
most active research areas in the past few years, with a vast corpus
of face verification and recognition work [23, 31, 40]. With the ad-
vent of deep learning, progress has accelerated significantly. Here
we briefly overview state-of-the art work in Deep Face Recognition
(DFR). Taigman et al. pioneered this research area and proposed
DeepFace [30]. It uses CNNs supervised by softmax loss, which
essentially solves a multi-class classification problem. When intro-
duced, DeepFace achieved the best performance on the Labeled
Face in the Wild (LFW) [9] benchmark. Since then, many DFR sys-
tems have been proposed. In a series of papers [27, 28] Sun et al.
extended on DeepFace incrementally and steadily increased the
recognition performance. A critical point in DFR happened in 2015,
when researchers from Google [26] used a massive dataset of 200
million face identities and 800 million image face pairs to train a
CNN called Facenet, which largely outperformed prior art on the
LFW benchmark when introduced. A point of difference is in their
use of a “triplet-based” loss [5], that guides the network to learn
both inter-class dispersion and inner-class compactness. Recently
proposed RTFace [36] not only achieves high recognition accuracy
but also operates at the full frame rates of videos. Although the
above methods have proven remarkably effective in face recogni-
tion, the training needs a vast amount of labeled images to train
the supervised DFR network. A large amount of labeled data is not
always achievable in a particular domain, and using a small amount
of training data will incur poor generalization ability in the wild.
Cross-modality Matching: Cross-modal matching has received
considerable attention in different research areas. Methods have
been developed to establish mappings from images [7, 11, 34] and
videos [33] to textual descriptions (e.g., captioning), developing
image representation from sounds [20, 21], recognizing speaker
identities from Google calendar information [17], and generating
visual models from text [41]. In cross-modality matching between
images and radio signals, however, work is very limited and all
dedicated to trajectory tracking of humans [1, 22, 32]. The field of
face recognition via wireless signals is an unexplored area.

3 AUTOTUNE OVERVIEW
3.1 System Model
We consider a face recognition problem withm people of interest
(POI) and each subject owns one WiFi-enabled device, e.g., a smart-
phone. We denote the identity set as Y = {yj |j = 1, 2, . . . ,m}. The
set of observed POI’s devices in a particular environment is denoted
byL = {lj |j = 1, 2, . . . ,m}, e.g., a set of MAC addresses. We assume
the mapping from device MAC addresses L to the user identity
I is known. A collection of face images X = {x j |j = 1, 2, . . . ,n}
is cropped from the surveillance videos in the same environment.
Note that, to mimic the real-world complexity, our collection in-
cludes the faces of both POI and some non-POI, e.g., subjects with
unknown device MAC addresses. We then assign face and device
observations to different subsets based on their belonging events
E = {ej |j = 1, 2, . . . ,h}. An event ej is the setting in which people
interact with each other in a specific part of the environment for
a given time interval. It is uniquely identified by three attributes:
effective timeslot, location, and participants. Fig. 1 demonstrates a
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Figure 1: An illustrative example of events and showing
their linked observations. An event is uniquely determined by
spatial-temporal attributes and its participants. An event is
also linked with two types of observations. Face observation
are images cropped from surveillance videos and device obser-
vation are sniffed MAC address of participants’ devices.
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Figure 2: Workflow of AutoTune. AutoTune consists of 5 steps i)
Heterogeneous Data Sensing ii) Cross-Modality Clustering iii)
Cluster Labeling iv) Visual Model Update v) User Attendance
Update. AutoTune sequentially repeats the above five steps un-
til the changes in the user attendance are negligible.

few examples of events. Lastly, we also have a deep face representa-
tion model fθ pre-trained on public datasets that contains no POI.
Such model is trained with metric losses, e.g., triplet loss so that
the learned features could bear a good property for clustering [26].

In this sense, the problem addressed by AutoTune is assigning
IDs to images from noisy observations of images and WiFi MAC
addresses, and using such learned ID-image associations to tune
the pre-trained deep face representation model automatically.

3.2 System Architecture
AutoTune is based on two key observations: i) although collected
by different modalities, both face images and device MAC addresses
are linked with the identities of users who attend certain events; and
ii) the tasks of model tuning and face-identity association should
not be dealt with separately, but rather progress in tandem. Based
on the above insights, AutoTune works as follows (see Fig 2):
• Heterogeneous Data Sensing. This module collects facial and
WiFi data (device attendance observations) through surveil-
lance cameras and WiFi sniffers1 in a target environment.
Given the face images and sniffed WiFi MAC addresses,
AutoTune first segments them into events based on the time
and location they were captured.
• Cross-modality Labeling. This module first clusters face im-
ages based on their appearance similarity computed by the
face representation model, and also taking into account in-
formation on device attendance in events. Each image cluster
should broadly correspond to a user, and the cluster’s images
are drawn from a set of events. We then assign each cluster
to the user whose device has been detected in as similar as
possible set of events.
• Model Updates. Once images are labeled with user identity
labels, this module then fine-tunes the pre-trained face rep-
resentation model. AutoTune further uses the cluster labels
to update our belief on which device (MAC address) has
participated in each event.

The sensing module is one-off and we will detail its implemen-
tation in §6.1. Labeling and model update modules are iteratively
repeated until the changes in the user attendance model become

1https://www.wireshark.org/

negligible. The tuned model derived in the last iteration is regarded
as the one best adapted to POI recognition in the new environment.

4 CROSS-MODALITY LABELING
In this section, we introduce the labeling module in AutoTune.
The challenge in this module is that collected facial images and
sniffed WiFi data are temporally unaligned. For example, detecting
a device WiFi address does not imply that the device owner will be
captured by the camera at the exact instant and vice versa. Such
mismatches in cross-modality data distinguish our problem from
prior sensor fusion problems, where both multiple sensors are
observing a temporal evolving system. In order to tackle the above
challenge, we leverage the diverse attendance patterns in events and
use a two-step procedure in isolated. Images X are firstly grouped
together into clusters across all sessions, and we then associate
clusters with device IDs (i.e., labels) L based on their similarity in
terms of event attendance.

4.1 Cross-modality Clustering
Heterogeneous Features. Given a pre-trained face representation
model fθ , an image xi can be translated to the feature vector zi . Un-
like conventional clustering that merely depends on the face feature
similarity, AutoTunemerges face images across events into a cluster
(potentially belonging to the same subject) by incorporating atten-
dance information as well. Recall that device attendance already
reveals the identities of subjects (in the form of MAC addresses)
in a particular event, and the captured images in the same event
may contain the faces of these subjects as well. Despite the noise
in observations, the overlapped subjects in different events can be
employed as a prior that guides the image clustering. For example,
if there are no shared MAC addresses sniffed in two events, then
it is very likely that the face images captured in these two events
should lie in different clusters. Formally, for an event ei , we denote
a device attendance vector as uk = (u1k ,u

2
k , . . . ,u

m
k ), where u jk = 1

if device lj is detected in event ek . In this way, we could construct a
heterogeneous feature z̃i = [zi , uk ] for an image xi collected in the
event ek . Note that, as all images captured in a same event have the
same attendance vector, this device attendance part are essentially
enforced on cross-event image comparison.

https://www.wireshark.org/
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Figure 3: Event vectors of an image cluster ci and device ID lj .
The kth element of the vector rkci is set to 1 only if it contains
images attachedwith the event ek . The event vector rlj of the
device ID lj is similarly developed. This insight leads to Eq. 1.

Face Image Similarity. Given an image xi captured in event ek
(i.e., z̃i = [zi , uk ]) and an image x j captured in event ep (i.e., z̃j =
[zj , up ]), the likelihood that two cross-event face images belong to
the same subject is conditioned on two factors: i) the similarity of
their feature representation between zi and zj ; and ii) the overlap
ratio between the attendance observations in their corresponding
events uk and up respectively. The resulted joint similarity is a log
likelihood loд(Pr(xi = x j )) defined as follows:

Pr(xi = x j ) ∝
exp (β ∗ |uk ⊗ up |
exp (β ∗ |uk ⊕ up |)

∗ exp (−D (zi , zj ))

loд(Pr(xi = x j )) ∝ β ∗ ( |uk ⊗ up | − |uk ⊕ up |)︸                         ︷︷                         ︸
attendance similarity

− D (zi , zj )︸    ︷︷    ︸
feature distance

Here ⊗ and ⊕ are element-wise AND and OR, and | · | here is the
L1-norm. z is the features transformed by the face representation
model and D is a distance measure between face features. β , analo-
gous to the regularization parameter in composite loss functions, is
a hyper-parameter that controls the contributions of the attendance
assistance and feature similarity. The above derivation is inspired
by the Jaccard coefficients, with the difference lying in the log
function. The rationale behind the term |uk ⊕ up | is that the more
different subjects attending events, the more uncertain that any two
images drawn across these events will point to the same subject. In
contrast, when the intersection |uk ⊗ up | is significant enough, the
chance that these two images point to the same subject will become
higher. This joint similarity can also be explained from a Bayesian
perspective. The attendance similarity of two events can serve as a
prior that two cross-event images belong to the same subject and
the feature similarity can be seen as the likelihood. Together they
determine the posterior probability that two cross-event images fall
into the same cluster. Based on the above joint similarity, images
across events are grouped into clusters C = {ci |i = 1, 2, . . . ,д}. We
will soon discuss how to determine the number of clusters д based
on the complete set of MAC addresses L in the next section.

4.2 Cluster Labeling
Fine-grained IDAssociation. After clustering, an image cluster is
linked with multiple events that are associated with its member im-
ages. Naturally, we introduce an event vector rci = (r1ci , r

2
ci , . . . , r

h
ci )

for for an image cluster ci , where h is the total number of events.
rkci is set to 1 only if ci contains images from event ek . Fig. 3 shows
an example of how an event vector is developed. Similarly, for a

device ID lj , its corresponding event vector rlj = (r1lj
, r2lj
, . . . , rhlj

)

can be determined by inspecting its occurrences in all WiFi sniffing
observations. rklj is set to 1 only if the device ID (MAC address) lj is
detected in the event ek . The intuition behind ID association is that
a device and a face image cluster of the same subject should share
the most consistent attendance pattern in events, reflected by the
similarity of their event vectors. Based on this intuition, AutoTune
assigns clusters with device IDs based on the matching level of their
event vectors. Formally, a matching problem of bipartite graph can
be formulated as follows:

LA =
∑
i j

ai j (rci − rlj )
2

∑
1≤j≤m

ai j = 1, ∀i ∈ {1, . . . ,д}
(1)

where the solution of the binary variable ai j assigns a device ID to
a cluster. We note that whenm < д, AutoTune adds dummy nodes
to create the complete bipartite graph. Then the complete bipartite
graph problem can be solved by the Hungarian algorithm [10].
Probabilistic Labeling via Soft Voting. We now obtain the asso-
ciation between face images and device IDs. However, in practice,
the number of clusters д can vary due to the captured face images
outside the POI, e.g., face images of short-term visitors. The choice
of д has a significant impact on the performance of clustering [6]
which could further affect the following fine-tuning performance.
To cope with this issue, AutoTune sets the number of clusters д
greater than the number of POIm. With a larger number of clusters,
although there are some unused clusters of non-POI after cluster-
ing, the association step will sieve them and only choose the most
consistentm clusters with the event logs ofm device IDs. Lastly,
for every image, its assigned ID is finalized by decision voting on
the individual association results computed with different д, which
will be soon introduced in the next paragraph. Typically, a majority
voting procedure would give a hard ID label for an image and use
these <Image, ID> pairs as training data to update the face rep-
resentation model. However, due to the noise in device presence
observations and errors in clustering, there will be mis-labeling in
the training data that may confuse the model update. To account for
the uncertainty of ID assignment, we adopt soft labels for voting.
Then instead of voting for the most likely ID yi for an image xi ,
we introduce a probability vector yi = (yi,1,yi,2, . . . ,yi,m ). Specif-
ically, every image is associated with all POI and its associated soft
label is derived by the votes for the subjects divided by the total
number of votes. In this way, the soft label of each image is a valid
probability distribution that sums up to 1. For instance, yi, j = 0.4
means that there are 40% associations assigning the ID j to the
image i . Moreover, the soft labeled data < xi , yi > is compatible
with the computation of cross-entropy.
Number of Clusters. We are now in a position to describe how
to select the number of clusters д. We observed that, with a proper
clustering algorithm (i.e., agglomerative clustering in our choice),
non-POI’s images will form separate small clusters but they will not
be chosen in our follow-up association step. This is because that the
number of devices IDm is always less than the number of clusters
(д ∈ [2 ∗m, 5 ∗m]), and only those images clusters with the most
consistent event attendances are associated. The small clusters of
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Figure 4: An example of visual model update (§5.1) in AutoTune with a six-subject subset. Note that the pre-trained model in
Fig. 4a has a narrow convex hull (black lines), clusters are dispersed and there is mis-classification (see false_3 in Fig. 4a) as the
pre-trained features are not discriminative enough to differentiate unseen subjects in a new environments. Over time, clusters
become more compact and move further away from each other, leading to purer clustering results.

outlier images often have scatted attendance vector and will be
ignored in association. Therefore, soft voting with varying number
of clusters can reinforce the core images of POI by giving large
probability and assigns non-POI’s images with small probability.

5 MODEL UPDATES
We are now in a position to introduce themodel update in AutoTune.
At every iteration, AutoTune updates the last-iteration face repre-
sentation model f τθ to f τ+1θ , by taking the labeled images as inputs.
To correct the device observation errors, AutoTune leverages these
label images to update device attendance vector to uτ for all events.

5.1 Visual Model Update
Discriminative Face Representation Learning. Face represen-
tation learning optimizes a representation loss LR to enforce the
learnt features as discriminative as possible. Strong discrimination
bears two properties: inter-class dispersion and intra-class compact-
ness. Inter-class dispersion pushes face images of different subjects
away from one another and the intra-class compactness pulls the
face images of the same subject together. Both of the properties
are critical to face recognition. At iteration τ , given the current
labels yτi for the ith face image xi and the transformed features
zτi = f τθ (xi ), the representation loss LR is determined by a compo-
sition of softmax loss and center loss:

LR = Lsof tmax + Lcenter

=
∑
i
−loд(

e
W T
yτi

zτi +byτi∑m
j=1 e

W T
lj
zτi +blj

)

︸                             ︷︷                             ︸
softmax loss

+
∑
i

λ

2
| |zτi − oyτi | |

2

︸                 ︷︷                 ︸
center loss

(2)

whereW and b are the weights and bias parameters in the last fully
connected layer of the pre-trainedmodel. oyτi denotes a centroid fea-
ture vectors by averaging all feature vectors with the same identity
label yi . The center loss Lcenter explicitly enhances the intra-class
compactness while the inter-class dispersion is implicitly strength-
ened by the softmax loss Lsof tmax [37]. λ is a hyper-parameter
that balances the above sub-losses.
Stochastic Center Loss The center loss Lcenter in Eq. 2 is shown
to be helpful to enhance the intra-class compactness [37]. However,

we cannot directly adopt it for fine-tuning as computing the centers
requires explicit labels (see Eq. 2) of images, while the association
steps above only provide probabilistic ones through soft labels. To
solve this, we propose a new loss called stochastic center loss Lstoc
to replace the center loss. Similar to the idea of fuzzy sets [38], we
allow each face image to belong to more than one subject. The
membership grades indicate the degree to which an image belongs
to each subject and can be directly retrieved from the soft labels
and the stochastic center oτk for the k-th identity is given as:

oτk =

∑n
i z

τ
i ∗ y

τ
i,k∑n

i y
τ
i,k

(3)

This gives the stochastic center loss as follows:

Lstoc =
∑
i

∑
k

yτi,k ∗ ||z
τ
i − o

τ
k | |

2 (4)

We leave the softmax lossLsof tmax the same as in Eq. 2, because
the soft labels are compatible with the computation of cross-entropy.
The new representation loss to minimize is:

LR = Lsof tmax + Lstoc (5)

AutoTune updates the model parameters θτ to θτ+1 based on the
gradients of ∇θLR , which are calculated via back prorogation of
errors. Compared with the dataset used for pre-training, which is
usually in the order of millions [4], the data used for fine-tuning
is much smaller (several thousands). The mis-match between the
small training data and the complex model architecture could result
in overfitting. To prevent overfitting, we use the dropout mecha-
nism in training, which is widely adopted to avoid overfitting [13].
Meanwhile, as observed in [8, 25], the soft label itself can play the
role of a regularizer, and make the trained model robust to noise
and reduce overfitting. Fig. 4 illustrates the effect of model update.

5.2 User Attendance Update
The device presence observations byWiFi sniffing are noisy because
the WiFi signal of a device is opportunistic and people do not
carry/use theirs devices all the time. Based on the results of the
cluster labelling step introduced in §4.2, we have the opportunity to
update our belief on which users attended each event. The update



ALGORITHM 1: AutoTune
Input: pre-trained model f 1θ , images X, POI’s device IDs L, threshold ξ
Output: adapted model f ∗θ , corrected attendance observations I ∗, soft

image labels Y ∗
Initialize: Given sniffed L in all events E, compute attendance vector u0
τ = 1
while

√
1
h
∑h
k=1 | |u

(τ )
k − u(τ−1)k | |2 > ξ do

Zτ = f τθ (X) ▷ feature transformation
for д ← 2 ∗m to 5 ∗m do
Cτ ← cross_modality_clustering(Zτ , uτ , g) ▷ §4.1;
Aτд ← cluster_labeling(Cτ , rτc , rτl ) ▷ §4.2;

end
Yτ ← soft_voting(Aτ ) ▷ §4.2;
oτ ← stochastic_center(Yτ , Zτ ) ▷ §5.1;
f τ+1θ ← visual_model_update(X, Yτ , oτ , f τθ ) ▷ §5.1 ;
uτ+1 ← user_attendance_update(Yτ , uτ ) ▷ §5.2 ;
τ ← τ + 1

end

mechanism is as follows: Each image is associated with a user
probability vector, whose elements denote the probability that the
image correspondences to a particular user. By averaging the user
probability vectors of all images that have been drawn from the
same event ek , and normalizing the result, we can estimate the
user attendance of this event. The elements of the resulting user
attendance vector ûτk denote the probabilities of different users
attending event ek .

We can now use ûτk as a correction to update our previous wifi
attendance vector uτk as follows:

uτ+1k = uτk − γ · (u
τ
k − û

τ
k ) (6)

where γ is a pre-defined parameter that controls the ID update rate.
In principle, a large update rate will speed up the convergence rate,
at the risk of missing the optima. AutoTune sequentially repeats
the above steps of clustering, labelling and model updates, until the
changes ξ in the user attendance model are negligible (≤ 0.01 in
our case). Algorithm. 1 summarizes the workflow.

6 IMPLEMENTATION
In this section, we introduce the implementation details of AutoTune
(code available at https://github.com/Wayfear/Autotune).

6.1 Heterogeneous Data Sensing
Face Extraction. This module consists of a front-end remote cam-
era and a back-end computation server 2. Specifically, the remote
cameras in our experiment are diverse and include GoPro Hero 43,
Mi Smart Camera4 and Raspberry Pi Camera5). We modified these
cameras so that they are able to communicate and transfer data
to the back-end through a wireless network. To avoid capturing
excess data without people in it, we consider a motion-triggered
mechnism with a circular buffer. It works by continuously taking
low-resolution images, and comparing them to one another for
2The study has received ethical approval R50950
3https://shop.gopro.com/cameras
4https://www.mi.com/us/mj-panorama-camera/
5https://www.raspberrypi.org/products/camera-module-v2/

changes caused by something moving in the camera’s field of view.
When a change is detected, the camera takes a higher-resolution
video for 5 seconds and reverts to low resolution capturing. All
the collected videos are sent to the backend at every midnight. On
the backend, a cascaded convolutional network based face detec-
tion module [39] is used to drop videos with no face in them. The
cropped faces from the remaining videos are supplied to AutoTune.
WiFi Sniffing. This module is realized on a WiFi-enabled laptop
running Ubuntu 14.04. Our sniffer uses Aircrack-ng 6 and tshark 7

to opportunistically capture the WiFi packets in the vicinity. The
captured packet has unencrypted information such as transmis-
sion time, source MAC address and the Received Signal Strengths
(RSS). As AutoTune aims to label face images for POI, our WiFi
sniffer only records the packets containing MAC addresses of POI’s
and discards them otherwise, so as to not harvest addresses from
people who have not given consent. A channel hop mechanism
is used in the sniffing module to cope with cases where the POI’s
device(s) may connect to different WiFi networks, namely, on dif-
ferent wireless channels. The channel hop mechanism forces the
sniffing channel to change by every second and monitor the active
channels periodically (1 second) in the environment. The RSS value
in the packet implies how far away the sniffed device is from the
sniffer [18, 19]. By putting the sniffer near the camera, we can use
a threshold to filter out those devices with low RSS values, e.g., less
than -55 dBm in this work, as they are empirically unlikely to be
within the camera’s field of view.
Event Segmentation. Depending on the context, the duration of
events can be variable. However, for simplicity we use fix-duration
events in this work. Specifically, we split a day into 12 intervals,
each of which is 2 hours long. We then discard those events that
have neither face images nor sniffed MAC addresses of POI.

6.2 Face Recognition Model
The face recogonition model used in AutoTune is the state-of-the-
art FaceNet [26].
Pre-training. FaceNet adopts the Inception-ResNet-v1 [29] as its
backbone and its weights are pre-trained on the VGGFace2 dataset
[4]. This dataset contains 3.31million images of 9131 subjects, with
an average of 362.6 images for each subject. Images are downloaded
from Google Image Search and have large variations in pose, age,
illumination, ethnicity and profession. Pre-training is supervised by
the triplet loss [5] and the training protocols, e.g, parameter settings,
can be found in [26]. We found that the learnt face representation
by FaceNet is generalizable and it is able to achieve an accuracy
of 99.65% on the LFW face verification task 8. Note that, FaceNet
[26] not only learns a powerful recognition model but gives a very
discriminative feature representation that can be used for clustering.
Fine-tuning by AutoTune. The fine-tuning process has been ex-
plained in §5.1, and here we provide some key implementation
detials. After each round of label association (see §4.2), the labeled
data is split into a training set and validation set, with a ratio of
8 : 2 respectively. The pre-trained FaceNet is then fine-tuned on
the training set, and the model that achieves the best performance

6https://www.aircrack-ng.org/
7https://www.wireshark.org/docs/man-pages/tshark.html
8http://vis-www.cs.umass.edu/lfw/

https://github.com/Wayfear/Autotune
https://shop.gopro.com/cameras
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http://vis-www.cs.umass.edu/lfw/


on the validation set is saved. Note that the fine-tuning process
in AutoTune does not involve the test set. The online testing is
performed on a held-out set that is collected on different days. To
enhance the generalization ability, we use dropout training for reg-
ularization [35]. The dropout ratio is set to 0.2. We set the batch
size to 50 and one fine-tuning takes 100 epochs.

6.3 System Configuration
Face Detection. As discussed in §6.1, we use a cascaded convo-
lution network to detect faces in videos. It is cascaded by three
sub-networks, a proposal network, a refine network and an out-
put network. Each of them can output bounding boxes of potential
faces and the corresponding detection probabilities, i.e., confidences.
Face detection with small confidence will be discarded early in the
process and not sent to the next sub-network. In this work, the
confidence threshold is set to 0.7, 0.7 and 0.9 for three sub-networks
respectively. Following the original setting in [39], we set the mini-
mal face size in detection to 40 × 40 pixels.
Setup of Face Clustering. In §4.1, we use a clustering algorithm
to merge the images across events. Specifically, the clustering al-
gorithm used in AutoTune is agglomerative clustering [2], which
is a method that recursively merges the pair of clusters that min-
imally increases a given linkage distance. The similarity metric
adopted here is Euclidean distance. A linkage criterion determines
which distance to use between sets of data points. In AutoTune, this
linkage criterion is set to the average distances of all sample pairs
from two sets. As introduced in Sec. 4.2, the number of clusters д
is determined by the number of POIm. We vary д from 2 ∗m to
5 ∗m and proceed soft voting, to account for the extra clusters of
non-POI’s face images and ambiguous/outlier images of POI.

7 EVALUATION
In this section, we evaluate the AutoTune extensively on datasets
collected from both real-world experiments and simulation. We
deployed two testbeds, one in the UK and the other in China, and
collected datasets as described in the previous section. The simula-
tion dataset is developed based on a public face datasets.

7.1 Evaluation Protocols
CompetingApproaches.We compare the performance of AutoTune
with the 3 competing approaches:
• Template Matching (TM) [3] employs a template match-
ing method to assign ID labels to clusters of face images.
This is the most straightforward method that is used when
one or more profile photos of POI are available, e.g., crawled
from their personal homepage or Facebook.
• One-off Association (OA) [16] uses one-off associations
to directly label the image clusters without fine-tuning of
the face representation model itself.
• Deterministic AutoTune (D-AutoTune) is the determinis-
tic version of AutoTune. In D-AutoTune, the association and
update steps are the same as in AutoTune, but it adopts hard
labels rather than soft labels and uses the simple center loss
instead of the proposed stochastic center loss (see §5.1).

Evaluation Metrics. AutoTune contains two main components,
offline label assignment and online inference. For the offline label

assignment, we evaluate its performance with the followingmetrics:
TP, TN, FP, FN are true positive, true negative, false positive and
false negative respectively. Each metric captures different aspects
of classification [24]. Online face recognition has two kinds of
tests, face identification and verification. We follow [14, 15] to use
CumulativeMatch Characteristic (CMC) for the evaluation of online
face identification.

7.2 Offline Cross-modality Face Labeling
AutoTune automatically labels images captured in the wild by ex-
ploiting their correlations with the device presences. The quality
of image labeling is crucial for the follow-up face recognition in
the online stage. In this section, we investigate the image labeling
performance of AutoTune.

7.2.1 Data Collection. We deployed AutoTune at the testbeds in
two countries, with different challenging aspects.
UK Site: This first dataset is collected in a commercial building in
the UK. We deploy the heterogeneous sensing front-ends, including
surveillance cameras and WiFi sniffers, on a floor with three differ-
ent types of rooms: office, meeting room and kitchen. 24 long-term
occupants work inside can freely transit across these rooms. These
occupants are naturally chosen as people of interest (POI). For the
office, face images are captured with a surveillance camera that
faces the entrance. The presence logs of occupants’ WiFi MAC ad-
dresses are collected by a sniffer that is situated in the center of the
room for the same time period. Besides the POI’s faces, these images
also contain the faces of 11 short-terms visitors who came to this
floor during the experiments. We put different cameras in different
rooms to examine the performance of AutoTune under camera het-
erogeneity. To further examine the resilience of AutoTune, we put
cameras in adversarial positions. In kitchen, we deploy cameras
with bad views near entrance so that they can only capture sub-
jects above 1.7m. While in the meeting room with two entrances,
only the primary entrance is equipped with cameras. Therefore in
both rooms cameras constantly mis-capture face images of subjects.
Tab. 1 summarizes this data collection.
CHN Site: We collect another dataset in a common room of a
university in China. There are no long-term occupants in this site
and all undergraduates can enter. Of the 37 people that appeared
during the three week period, 12 subjects are selected as the POI,
and their WiFi MAC address presence is continuously recorded
by the sniffer. Other settings remain the same as the UK site. The
challenge in this dataset lies in that the captured face images, both
for POI and non-POI, are all of Asian people, while the initial face
representation model is trained primarily on Caucasians. Details of
the CHN dataset are given in Tab. 1. Observation noises are very
common in this dataset.

7.2.2 Overall Labeling Performance. We start our evaluation with
one room only and compare our results with baselines. Fig. 5 shows
the performance of label assignment, i.e., matching an identifier to
a face image. For the office dataset, AutoTune outperforms the best
competing approach (OA), by 0.13 in F1 score and 7% in accuracy.
The advantage of AutoTune is more obvious in the CommonRoom
experiment where it beats the best competing approach (OA) by
0.34 in F1 score and 10% in accuracy. As the only method that



Table 1: Key Metrics of Collected Dataset Sets.

Site
NO. of
Rooms

NO. of
POI

NO. of
non-POI

NO. of
Images

NO. of
Events

Event
Duration

Average
subjects/event

Camera(s)
in rooms

Experiment
Note

UK 3 24 11 15, 286 83 3h 9.14
Office: GoPro Hero 4
Kitchen: Pi Cam & Mi Cam
Meeting: Pi Cam & Mi Cam

GoPro: 1080p, 90FPS
PiCam: 720p, 90FPS
MiCam: 720p, 15FPS

CHN 1 12 25 7, 495 102 2h 3.36 CommonRM: Gopro Hero 4 All Faces are from Asian

precision recall f1 score accuracy0.0

0.5

1.0

Pe
rfo

rm
an

ce

TM
OA

D-AutoTune
AutoTune

AutoTune w. SC
AutoTune w. GMM

(a) Office, UK

precision recall f1 score accuracy0.0

0.5

1.0

Pe
rfo

rm
an

ce

TM
OA

D-AutoTune
AutoTune

AutoTune w. SC
AutoTune w. GMM

(b) CommonRoom, CHN

Figure 5: Overall Labeling Performance.
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Figure 6: Performance of Scalability.
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Figure 7: Impact of Number of Days.

uses the website images (one-shot learning) to label images rather
than the device ID information, TM struggles in both experiments
and is 9-fold worse than AutoTune. We observe that the website
face images are dramatically different from the captured images in
real-world, due to different shooting conditions and image quality.
These results imply that, although the device observations via WiFi
sniffing are noisy, when the amount of the them is enough, they
are more informative than the web-crawled face images.

Additionally, we note that adopting soft labels (see §4.2) can
further improve the labeling performance. In terms of F1 score, the
full-suite AutoTune is around 15% and 22% better than D-AutoTune
in the two experiments respectively. Similar improvements are
witnessed in terms of the accuracy. The reason of the larger per-
formance gap in the CommonRoom dataset is that there are more
images of non-POI being captured in this experiment. In addition,
the pre-trained FaceNet model does not generalize very well to
Asian faces, which are the primary ethnicity in the CommonRoom.

Lastly, we found that the choice of algorithm for cross-event
clustering affects the final label-association accuracy. The best per-
formance is achieved with the default agglomerative clustering
algorithm on both datasets. The second-best spectral clustering
(SC) is slightly inferior to agglomerative clustering in the office
dataset, though the gap between them gets large in the Common-
Room dataset. The Gaussian Mixture Model (GMM) is inferior to
the other two clustering algorithms. This is because GMM is best
suited to Mahalanobis-distance based clustering whereas the dis-
tance space defined in Eq. 4.1 is a non-flat space due to the intro-
duced attendance information. Hence, its resultant clusters are very
impure and give poor association performance.

7.2.3 Performance vs. Scalability. We further examine AutoTune
with multiple rooms under different adversarial conditions. To-
gether with the UK office data, we evaluate AutoTune when events
are collected in three different locations and via heterogeneous
cameras. In particular, a kitchen and a meeting room are included
and each of them has two lower-fidelity cameras (Mi Home Camera
and Raspberry Pi Camera). The setup of multi-location experiments
is given in Tab. 1. As described in §7.2.1, there are many face mis-
detections in the kitchen and meeting room due to the adversarial
camera setups. Nevertheless, as shown in Fig. 6, AutoTune only
suffers little performance drop (≤ 0.03) when erroneous camera
observations are mixed with the single-office data. In terms of F1
score, which is the most important metric, AutoTune can achieve
comparable level with the office experiment, regardless of which
camera is added. Moreover, AutoTune still maintains its good per-
formance even in the most adversarial case, where both errors are
mixed in (three-room experiment). The main reason is that by us-
ing more data, though noisy, extra validation constraints are also
utilized by AutoTune and make itself robust to observation errors.

7.2.4 Performance vs. Lifespan. AutoTune exploits co-located de-
vice and face presence in different events to establish the cross-
modality correlations. In this section, we investigate the impact of
the collection span on the performance of labeling. Longer collec-
tion days give more events. We investigate its impact by feeding
AutoTune with data collected in different number of days, and com-
pare them with all days on two datasets respectively. Fig. 7 shows
that AutoTune performs better with increasing number of days on
both datasets. The gap of F1 score between the case with all days
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Figure 8: Impact of ID update rate β (introduced in §5.2). It
can be seen that a high update rate causes the network to
converge rapidly to potentially incorrect assignments.
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Figure 9: Online Identification Performance

(10 days) and case with the least amount of days (2 days) can be
as large as > 0.32 on both datasets. As discussed in §4.2, the ID
association needs sufficiently diverse events to create discrimina-
tive enough event vectors. Otherwise, there will be faces or devices
with the same event vectors that hinders AutoTune’s ability to dis-
ambiguate their mutual association. However, we also observe that
when we collect more than 8 days, the performance improvement
of AutoTune becomes marginal.

7.2.5 Impact of ID update rate β . This section investigates the im-
pact of ID update rate β introduced in §5.2. The ID update uses the
fine-tuned face recognition model to update the device ID observa-
tions. A large ID update rate forces the device ID observations to
quickly become consistent with the deep face model predictions.
However, a large update rate also runs the risk of missing the op-
tima. We vary the update rate β from 0.05 to 0.20 at a step length of
0.05. Fig. 8a demonstrates that AutoTune achieves the best perfor-
mance on the UK dataset when the update rate is set to 0.05. The
performance declines by 10% when the rate rises to 0.2. This is be-
cause the updated ID observations quickly become the same as the
model predictions and the model predictions are not quite correct
yet. When it comes to CHN dataset (see Fig. 8b), similar trend of
F1 score change can be seen. Although overall, the convergence
becomes faster when the update increases, we observe that there is
a fluctuation point at the update rate of 0.15, where AutoTune takes
7 iterations to converge. By inspecting the optimization process,
we found that, under this parameter setting, AutoTune oscillated
because the large update step makes it jump around in the vicinity
of the optima but it is unable to approach it furthermore. In practice,
we suggest users of AutoTune to select their update rate from a
relatively safe region between 0.05 to 0.1.

7.3 Online Face Identification

7.3.1 Setup. After the cross-modality label association, an image
database of POI is developed and an online face recognition system
can be trained based on it. As in [26], we use the face representation
model to extract face features and then use a classifier, say linear
SVM in this work, to recognize faces. Particularly, as AutoTune and
D-AutoTune are able to update the face representation model in
their labeling process, the feature extractor for them are the updated
model by themselves. For competing approaches that do not have
an evolving model updates, we use the original Facenet model (in
§6.2) as to extract face features and train the same classifier on
the developed image-identity database by themselves. Without any
overlapping with the images used for labeling, the test sets are
collected in different days. In total, the test set contains 5, 580 face
images collected in the UK and 2, 840 face images collected in China.

7.3.2 Performance. Fig. 9 compares the face identification results
of both AutoTune and the competing approaches. Face identifica-
tion is a multi-class classification task and aims to find an unknown
person in a dataset of POI. As we can see, by using the face database
developed by AutoTune, the identification accuracy quickly satu-
rates and is able to have no errors within three guesses (rank-3) on
both datasets. For the UK dataset where there are 20 POI, the rank-1
accuracy of AutoTune can be as high as 95.8% and outperforms
the best competing approach (OA) by 12.5%. The advantage of
AutoTune is more significant on the CHN dataset, and it surpasses
the best competing approach OA by ∼ 19% (98.0% vs 79.1%). In addi-
tion, although D-AutoTune’s performance is inferior to AutoTune,
it is still more accurate than competing approaches, especially on
the UK dataset. We note that these results are consistent with face
labeling results in §7.2.2. Overall, face identification by AutoTune
are highly accurate, considering that AutoTune is only supervised
by the weak and noisy device presence information.

7.4 Sensitivity Analysis
To further study the performance of AutoTune under different
noise conditions, we also conduct extensive sensitivity analysis via
simulation, considering three types of noise that are common in
real-world settings:
False-alarm Faces is the case that the number of detected faces of
POI is greater than the number of distinct sniffed MAC addresses.
False-alarm Devices is the case that the number of detected faces
of POI is smaller than the number of distinct sniffed MAC addresses.
Non-POI Disturbance is the case that there are detected faces that
belong to a non-POI, whose MAC address are not in our database
i.e. they should be discarded as an outlier.

7.4.1 Data Synthesis. Although a number of public databases of
face images are available, unfortunately, none of them come with
device presence observations, i.e., sniffed MAC addresses. As an
alternative, we develop a synthetic dataset on top of the widely
used PIE face database9. In total 40 subjects are randomly selected,
in which 30 of them are POI and the rest are mixed in to make the
dataset realistic. We then assign to these “events” noisy identity
observations to simulate device presence information. Based on
different types of noise, different synthetic datasets are generated
on which AutoTune is examined. On average, each subject in our

9http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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Figure 10: Results on simulation data showing the impact of sources of noise

simulation has 168 images after data augmentation [12]. As there
is no actual device presence, we simulate this by first randomly
placing the face images into different “events”, in which multiple
subjects “attend”. As the number of images of subjects might be
skewed in events, we adopt the F1 score as the metric to evaluate
the AutoTune’s performance.

7.4.2 False-alarm Faces. WiFi sniffing is an effective approach to
detect the presence of users’ mobile devices, however, such detec-
tion is not guaranteed to perfectly match the user’s presence. For
instance, a device could be forgotten at home, be out of battery or
simply the WiFi function might be turned off. In the simulation,
we vary the error rate of such false alarm faces from 0.1 to 0.5.
Error rate at 0.1 means that on average, 10% of the detected faces
in each event are false detections. Fig. 10a shows the F1 score and
convergence iterations of AutoTune under different levels of such
noises. As we can see AutoTune tolerates false-alarm faces well and
is able to keep the F1 score above 0.83 when the false alarm rate is
below 0.4, though it degrades to 0.67 when the rate rises up to 0.5.
However, we found such case, i.e., on average half of WiFi MAC ad-
dresses are missed in all meetings, is rare in the real-world. Finally,
we found that false-alarm faces do not affect the convergence and
AutoTune quickly converges within 4 iterations in all the cases.

7.4.3 False-alarm Devices. Though surveillance cameras are be-
coming increasingly ubiquitous, there are cases where the subjects
are not captured by the cameras e.g. duto occlusions. This becomes
an instance of device false alarm, if her device MAC address is still
sniffed. We vary the rate of such false alarm devices from 0.1 to 0.5,
where 0.1 means that on average, 10% of the detected devices in
each event are false detections. Fig. 10b shows that although the
F1 score of AutoTune decreases, it degrades slowly and stops at
0.84 after the false-alarm rate becomes 0.5. As the injected noise
becomes stronger, AutoTune needs more iterations to converge.
However, the largest convergence iteration is still below 7 (rate at
0.4). Overall, AutoTune is very robust to such type of noises.

7.4.4 Non-POI Disturbance. Non-POI disturbance happens when
subjects without registered MAC addresses are captured by the
camera. We found such noise dominates all the three types of errors.
We vary the number of non-POI from 2 to 10 and the probability of
each non-POI’s presence in an event is set to 0.1. Fig. 10c shows
that AutoTune does not suffer much from mild disturbance (2 non-
POI), and the F1 score drops slowly to 0.87 with larger disturbance
(4 non-POI). In addition in all cases AutoTune quickly converges
within 5 iterations.

8 DISCUSSION AND FUTUREWORK
This section discusses some important issues related to AutoTune.
Overheads: Compared with conventional face recognition meth-
ods, AutoTune incurs overheads due to FaceNet fine-tuning. In our
experiment, fine-tuning is realized on one NVIDIA K80 GPU. One
fine-tuning action takes around 1.2 hours and 0.5 hours for the UK
dataset and CHN dataset respectively. As we discusses in §7.2, Au-
toTune is able to converge within 5 iterations for most of the time,
depending on the hyper-parameter setting. Therefore, fine-tuning
overheads can be controlled in 7 hours for the UK dataset and 2.5
hours for the CHN dataset. Compared to the FaceNet pre-training
that takes days and requires more GPUs, the fine-tuning costs of
AutoTune is much cheaper. In future work, we will look into an
online version of AutoTune, which can incrementally fine-tune the
network on the fly when the data is streaming in.
Privacy: In practice, AutoTune requires face images and device
ID of users to operate, which may have certain impacts on user
privacy. For example, a user could be identified without explicit
consent in a new environment, if the owner has the access to the
face image of this user. In this work, we do not explicitly study
the attack model in this context, we note that potential privacy
concerns are worth exploring in future work.

9 CONCLUSION
In this work, we described AutoTune, a novel pipeline to simul-
taneously label face images in the wild and adapt a pre-trained
deep neural network to recognize the faces of users in new envi-
ronments. A key insight that motivates it is that enrolment effort
of face labelling is unnecessary if a building owner has access to
a wireless identifier, e.g., through a smart-phone’s MAC address.
By learning and refining the noisy and weak association between
a user’s smart-phone and facial images, AutoTune can fine-tune
a deep neural network to tailor it to the environment, users, and
conditions of a particular camera or set of cameras. Particularly,
a novel soft-association technique is proposed to limit the impact
of erroneous decisions taken early on in the training process from
corrupting the clusters.Extensive experiment results demonstrate
the ability of AutoTune to design an environment-specific, continu-
ally evolving facial recognition system with entirely no user effort
even if the face and WiFi observations are very noisy.
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