342 research outputs found

    Robust Lossless Data Hiding by Feature-Based Bit Embedding Algorithm

    Get PDF

    A dual adaptive watermarking scheme in contourlet domain for DICOM images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, medical imaging equipments produce digital form of medical images. In a modern health care environment, new systems such as PACS (picture archiving and communication systems), use the digital form of medical image too. The digital form of medical images has lots of advantages over its analog form such as ease in storage and transmission. Medical images in digital form must be stored in a secured environment to preserve patient privacy. It is also important to detect modifications on the image. These objectives are obtained by watermarking in medical image.</p> <p>Methods</p> <p>In this paper, we present a dual and oblivious (blind) watermarking scheme in the contourlet domain. Because of importance of ROI (region of interest) in interpretation by medical doctors rather than RONI (region of non-interest), we propose an adaptive dual watermarking scheme with different embedding strength in ROI and RONI. We embed watermark bits in singular value vectors of the embedded blocks within lowpass subband in contourlet domain.</p> <p>Results</p> <p>The values of PSNR (peak signal-to-noise ratio) and SSIM (structural similarity measure) index of ROI for proposed DICOM (digital imaging and communications in medicine) images in this paper are respectively larger than 64 and 0.997. These values confirm that our algorithm has good transparency. Because of different embedding strength, BER (bit error rate) values of signature watermark are less than BER values of caption watermark. Our results show that watermarked images in contourlet domain have greater robustness against attacks than wavelet domain. In addition, the qualitative analysis of our method shows it has good invisibility.</p> <p>Conclusions</p> <p>The proposed contourlet-based watermarking algorithm in this paper uses an automatically selection for ROI and embeds the watermark in the singular values of contourlet subbands that makes the algorithm more efficient, and robust against noise attacks than other transform domains. The embedded watermark bits can be extracted without the original image, the proposed method has high PSNR and SSIM, and the watermarked image has high transparency and can still conform to the DICOM format.</p

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Assessment of perceptual distortion boundary through applying reversible watermarking to brain MR images

    Get PDF
    The digital medical workflow faces many circumstances in which the images can be manipulated during viewing, extracting and exchanging. Reversible and imperceptible watermarking approaches have the potential to enhance trust within the medical imaging pipeline through ensuring the authenticity and integrity of the images to confirm that the changes can be detected and tracked. This study concentrates on the imperceptibility issue. Unlike reversibility, for which an objective assessment can be easily made, imperceptibility is a factor of human cognition that needs to be evaluated within the human context. By defining a perceptual boundary of detecting the modification, this study enables the formation of objective guidelines for the method of data encoding and level of image/pixel modification that translates to a specific watermark magnitude. This study implements a relative Visual Grading Analysis (VGA) evaluation of 117 brain MR images (8 original and 109 watermarked), modified by varying techniques and magnitude of image/pixel modification to determine where this perceptual boundary exists and relate the point at which change becomes noticeable to the objective measures of the image fidelity evaluation. The outcomes of the visual assessment were linked to the images Peak Signal to Noise Ratio (PSNR) values, thereby identifying the visual degradation threshold. The results suggest that, for watermarking applications, if a watermark is applied to the 512x512 pixel (16 bpp grayscale) images used in the study, a subsequent assessment of PSNR=82dB or greater would mean that there would be no reason to suspect that the watermark would be visually detectable. Keywords: Medical imaging; DICOM; Reversible Watermarking; Imperceptibility; Image Quality; Visual Grading Analysis

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Digital watermarking in medical images

    Get PDF
    This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Reversible and imperceptible watermarking approach for ensuring the integrity and authenticity of brain MR images

    Get PDF
    The digital medical workflow has many circumstances in which the image data can be manipulated both within the secured Hospital Information Systems (HIS) and outside, as images are viewed, extracted and exchanged. This potentially grows ethical and legal concerns regarding modifying images details that are crucial in medical examinations. Digital watermarking is recognised as a robust technique for enhancing trust within medical imaging by detecting alterations applied to medical images. Despite its efficiency, digital watermarking has not been widely used in medical imaging. Existing watermarking approaches often suffer from validation of their appropriateness to medical domains. Particularly, several research gaps have been identified: (i) essential requirements for the watermarking of medical images are not well defined; (ii) no standard approach can be found in the literature to evaluate the imperceptibility of watermarked images; and (iii) no study has been conducted before to test digital watermarking in a medical imaging workflow. This research aims to investigate digital watermarking to designing, analysing and applying it to medical images to confirm manipulations can be detected and tracked. In addressing these gaps, a number of original contributions have been presented. A new reversible and imperceptible watermarking approach is presented to detect manipulations of brain Magnetic Resonance (MR) images based on Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realise a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by encoding the data into smooth regions (blocks that have least differences between their pixels values) inside the Region of Interest (ROI) part of medical images and also through the elimination of the large location map (location of pixels used for encoding the data) required at extraction to retrieve the encoded data. This compares favourably to outcomes reported under current state-of-art techniques in terms of visual image quality of watermarked images. This was also evaluated through conducting a novel visual assessment based on relative Visual Grading Analysis (relative VGA) to define a perceptual threshold in which modifications become noticeable to radiographers. The proposed approach is then integrated into medical systems to verify its validity and applicability in a real application scenario of medical imaging where medical images are generated, exchanged and archived. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible and reversible watermarking approach, that may establish increased trust in the digital medical imaging workflow
    corecore