30 research outputs found

    Rate scalable image compression in the wavelet domain

    Get PDF
    This thesis explores image compression in the wavelet transform domain. This the- sis considers progressive compression based on bit plane coding. The rst part of the thesis investigates the scalar quantisation technique for multidimensional images such as colour and multispectral image. Embedded coders such as SPIHT and SPECK are known to be very simple and e cient algorithms for compression in the wavelet do- main. However, these algorithms require the use of lists to keep track of partitioning processes, and such lists involve high memory requirement during the encoding process. A listless approach has been proposed for multispectral image compression in order to reduce the working memory required. The earlier listless coders are extended into three dimensional coder so that redundancy in the spectral domain can be exploited. Listless implementation requires a xed memory of 4 bits per pixel to represent the state of each transformed coe cient. The state is updated during coding based on test of sig- ni cance. Spectral redundancies are exploited to improve the performance of the coder by modifying its scanning rules and the initial marker/state. For colour images, this is done by conducting a joint the signi cant test for the chrominance planes. In this way, the similarities between the chrominance planes can be exploited during the cod- ing process. Fixed memory listless methods that exploit spectral redundancies enable e cient coding while maintaining rate scalability and progressive transmission. The second part of the thesis addresses image compression using directional filters in the wavelet domain. A directional lter is expected to improve the retention of edge and curve information during compression. Current implementations of hybrid wavelet and directional (HWD) lters improve the contour representation of compressed images, but su er from the pseudo-Gibbs phenomenon in the smooth regions of the images. A di erent approach to directional lters in the wavelet transforms is proposed to remove such artifacts while maintaining the ability to preserve contours and texture. Imple- mentation with grayscale images shows improvements in terms of distortion rates and the structural similarity, especially in images with contours. The proposed transform manages to preserve the directional capability without pseudo-Gibbs artifacts and at the same time reduces the complexity of wavelet transform with directional lter. Fur-ther investigation to colour images shows the transform able to preserve texture and curve.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    RGB Medical Video Compression Using Geometric Wavelet

    Get PDF
    The video compression is used in a wide of applications from medical domain especially in telemedicine. Compared to the classical transforms, wavelet transform has significantly better performance in horizontal, vertical and diagonal directions. Therefore, this transform introduces high discontinuities in complex geometrics. However, to detect complex geometrics is one key challenge for the high efficient compression. In order to capture anisotropic regularity along various curves a new efficient and precise transform termed by bandelet basis, based on DWT, quadtree decomposition and optical flow is proposed in this paper. To encode significant coefficients we use efficient coder SPIHT. The experimental results show that the proposed algorithm DBT-SPIHT for low bit rate (0.3Mbps) is able to reduce up to 37.19% and 28.20% of the complex geometrics detection compared to the DWT-SPIHT and DCuT-SPIHT algorithm

    Reliable and Efficient coding Technique for Compression of Medical Images based on Region of Interest using Directional Filter Banks

    Get PDF
    Medical images carry huge and vital information. It is necessary to compress the medical images without losing its vital-ness. The proposed algorithm presents a new coding technique based on  image compression using contourlet transform used in different modalities of medical imaging. Recent reports on natural image compression have shown superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. As far as medical images are concerned the diagnosis part (ROI) is of much important compared to other regions. Therefore those portions are segmented from the whole image using  fuzzy C-means(FCM) clustering technique. Contourlet transform is then applied to ROI portion which performs Laplacian Pyramid(LP) and Directional Filter Banks. The region of less significance are compressed using Discrete Wavelet Transform and finally modified embedded zerotree wavelet algorithm is applied which uses six symbols instead of four symbols used in Shapiro’s EZW to the resultant image which shows better PSNR and high compression ratio.Â

    MP3D: Highly Scalable Video Coding Scheme Based on Matching Pursuit

    Get PDF
    This paper describes a novel video coding scheme based on a three-dimensional Matching Pursuit algorithm. In addition to good compression performance at low bit rate, the proposed coder allows for flexible spatial, temporal and rate scalability thanks to its progressive coding structure. The Matching Pursuit algorithm generates a sparse decomposition of a video sequence in a series of spatio-temporal atoms, taken from an overcomplete dictionary of three-dimensional basis functions. The dictionary is generated by shifting, scaling and rotating two different mother atoms in order to cover the whole frequency cube. An embedded stream is then produced from the series of atoms. They are first distributed into sets through the set-partitioned position map algorithm (SPPM) to form the index-map, inspired from bit plane encoding. Scalar quantization is then applied to the coefficients which are finally arithmetic coded. A complete MP3D codec has been implemented, and performances are shown to favorably compare to other scalable coders like MPEG-4 FGS and SPIHT-3D. In addition, the MP3D streams offer an incomparable flexibility for multiresolution streaming or adaptive decoding

    On Aliasing Effects in the Contourlet Filter Bank

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    NEW VIDEO COMPRESSION USING MSPIHT3D

    Get PDF
    ABSTRACTIn this paper, we propose a new approach to video compression based on the principle of Set Partitioning In Hierarchical Treealgorithm (SPIHT). Our approach, the modified SPIHT3D (MSPIHT3D), distributes entropy differently than SPIHT3D andalso optimizes the coding. This approach can produce results that are a significant improvement on the Peak Signal-to-NoiseRatio (PSNR) and compression ratio obtained by SPIHT3D algorithm, without affecting the computing time.KEYWORDS: video compression,, MSPIHT3D, arithmetic Coding, PSNR, Compression ratio

    Sparse image approximation with application to flexible image coding

    Get PDF
    Natural images are often modeled through piecewise-smooth regions. Region edges, which correspond to the contours of the objects, become, in this model, the main information of the signal. Contours have the property of being smooth functions along the direction of the edge, and irregularities on the perpendicular direction. Modeling edges with the minimum possible number of terms is of key importance for numerous applications, such as image coding, segmentation or denoising. Standard separable basis fail to provide sparse enough representation of contours, due to the fact that this kind of basis do not see the regularity of edges. In order to be able to detect this regularity, a new method based on (possibly redundant) sets of basis functions able to capture the geometry of images is needed. This thesis presents, in a first stage, a study about the features that basis functions should have in order to provide sparse representations of a piecewise-smooth image. This study emphasizes the need for edge-adapted basis functions, capable to accurately capture local orientation and anisotropic scaling of image structures. The need of different anisotropy degrees and orientations in the basis function set leads to the use of redundant dictionaries. However, redundant dictionaries have the inconvenience of giving no unique sparse image decompositions, and from all the possible decompositions of a signal in a redundant dictionary, just the sparsest is needed. There are several algorithms that allow to find sparse decompositions over redundant dictionaries, but most of these algorithms do not always guarantee that the optimal approximation has been recovered. To cope with this problem, a mathematical study about the properties of sparse approximations is performed. From this, a test to check whether a given sparse approximation is the sparsest is provided. The second part of this thesis presents a novel image approximation scheme, based on the use of a redundant dictionary. This scheme allows to have a good approximation of an image with a number of terms much smaller than the dimension of the signal. This novel approximation scheme is based on a dictionary formed by a combination of anisotropically refined and rotated wavelet-like mother functions and Gaussians. An efficient Full Search Matching Pursuit algorithm to perform the image decomposition in such a dictionary is designed. Finally, a geometric image coding scheme based on the image approximated over the anisotropic and rotated dictionary of basis functions is designed. The coding performances of this dictionary are studied. Coefficient quantization appears to be of crucial importance in the design of a Matching Pursuit based coding scheme. Thus, a quantization scheme for the MP coefficients has been designed, based on the theoretical energy upper bound of the MP algorithm and the empirical observations of the coefficient distribution and evolution. Thanks to this quantization, our image coder provides low to medium bit-rate image approximations, while it allows for on the fly resolution switching and several other affine image transformations to be performed directly in the transformed domain

    State of the art in 2D content representation and compression

    Get PDF
    Livrable D1.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.1 du projet

    Development of Some Efficient Lossless and Lossy Hybrid Image Compression Schemes

    Get PDF
    Digital imaging generates a large amount of data which needs to be compressed, without loss of relevant information, to economize storage space and allow speedy data transfer. Though both storage and transmission medium capacities have been continuously increasing over the last two decades, they dont match the present requirement. Many lossless and lossy image compression schemes exist for compression of images in space domain and transform domain. Employing more than one traditional image compression algorithms results in hybrid image compression techniques. Based on the existing schemes, novel hybrid image compression schemes are developed in this doctoral research work, to compress the images effectually maintaining the quality

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201
    corecore