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Pascal Frossard, Prof. Rémi Gribonval , Dr. Sylvain Sardy and Prof. Pierre Vandergheynst. Thank

you for you careful reading of the report, your pertinent comments and your interesting questions.

Bien sure, je voudrais remercier mon directeur de thése, Prof. Pierre Vandergheynst. Merci,
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(sobretot al clan Ferrando i companyia!), que han fet que m’enyorés menys. Merci aux amis de la
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Abstract

Natural images are often modeled through piecewise-smooth regions. Region edges, which corre-

spond to the contours of the objects, become, in this model, the main information of the signal.

Contours have the property of being smooth functions along the direction of the edge, and irregu-

larities on the perpendicular direction. Modeling edges with the minimum possible number of terms

is of key importance for numerous applications, such as image coding, segmentation or denoising.

Standard separable basis fail to provide sparse enough representation of contours, due to the fact

that this kind of basis do not see the regularity of edges. In order to be able to detect this regularity,

a new method based on (possibly redundant) sets of basis functions able to capture the geometry

of images is needed.

This thesis presents, in a first stage, a study about the features that basis functions should have

in order to provide sparse representations of a piecewise-smooth image. This study emphasizes the

need for edge-adapted basis functions, capable to accurately capture local orientation and anisotrop-

ic scaling of image structures. The need of different anisotropy degrees and orientations in the basis

function set leads to the use of redundant dictionaries. However, redundant dictionaries have the

inconvenience of giving no unique sparse image decompositions, and from all the possible decompo-

sitions of a signal in a redundant dictionary, just the sparsest is needed. There are several algorithms

that allow to find sparse decompositions over redundant dictionaries, but most of these algorithms

do not always guarantee that the optimal approximation has been recovered. To cope with this

problem, a mathematical study about the properties of sparse approximations is performed. From

this, a test to check whether a given sparse approximation is the sparsest is provided.

The second part of this thesis presents a novel image approximation scheme, based on the use

of a redundant dictionary. This scheme allows to have a good approximation of an image with a

number of terms much smaller than the dimension of the signal. This novel approximation scheme

is based on a dictionary formed by a combination of anisotropically refined and rotated wavelet-like

mother functions and Gaussians. An efficient Full Search Matching Pursuit algorithm to perform

the image decomposition in such a dictionary is designed.

Finally, a geometric image coding scheme based on the image approximated over the anisotropic

and rotated dictionary of basis functions is designed. The coding performances of this dictionary are

studied. Coefficient quantization appears to be of crucial importance in the design of a Matching

Pursuit based coding scheme. Thus, a quantization scheme for the MP coefficients has been designed,

based on the theoretical energy upper bound of the MP algorithm and the empirical observations

of the coefficient distribution and evolution. Thanks to this quantization, our image coder provides

low to medium bit-rate image approximations, while it allows for on the fly resolution switching and

several other affine image transformations to be performed directly in the transformed domain.

ix



x Abstract



Version abrégée

Les images naturelles sont souvent modélisées par des régions lisses par morceaux. Dans ce modèle,

les bords de ces régions, correspondants aux contours des objets, constituent l’information principale

du signal. Ces contours possèdent la propriété d’être des fonctions lisses le long de la direction des

bords et irrégulières dans la direction orthogonale. La modélisation des bords avec un nombre

minimal de termes est d’une importance capitale pour de nombreuses applications, telles que le

codage d’image, la segmentation ou le débruitage. Les bases séparables standards ne peuvent pas

fournir des représentations assez parcimonieuses des contours, dû au fait que ce type de base ne

“voit” pas la régularité des bords. Par conséquent, une nouvelle méthode, basée sur les ensembles

redondants de fonctions de base, est nécessaire pour capturer la géométrie des images.

Cette thèse présente, dans une première étape, une étude sur les caractéristiques que les fonctions

de base devraient posséder pour fournir des représentations parcimonieuses d’une image lisse par

morceaux. Cette étude souligne le besoin de fonctions de base adaptées aux bords qui soient capables

de capturer précisément l’orientation locale et la dilatation anisotrope des structures de l’image. Des

orientations et des degrés d’anisotropie différents dans un ensemble de fonctions de base conduisent à

l’utilisation de dictionnaires redondants. Cependant, l’inconvénient des dictionnaires redondants est

de fournir des décompositions d’image non uniques, alors que, de toutes les décompositions possibles

d’un signal dans un dictionnaire redondant, seul la plus parcimonieuse est nécessaire. Plusieurs algo-

rithmes permettent de trouver des décompositions parcimonieuses sur des dictionnaires redondants,

mais la plupart de ces algorithmes ne garantissent pas de trouver l’approximation optimale. Afin

de résoudre ce problème, nous avons mené une étude sur les propriétés des approximations parci-

monieuses. Cette étude établit un test pour vérifier si une approximation parcimonieuse donnée est

la plus parcimonieux possible.

La seconde partie de cette thèse présente un nouveau schéma d’approximation d’image, basé

sur l’utilisation d’un dictionnaire redondant. Ce schéma permet d’avoir une bonne approximation

d’une image avec un nombre de termes beaucoup plus petit que la dimension du signal. Ce nouveau

schéma d’approximation est basé sur un dictionnaire formé par la combinaison de Gaussiennes et

de fonctions mères, similaires à des ondelettes anisotropement dilatées et tournées. Nous avons

défini un algorithme “Matching Pursuit” (MP) efficace de recherche complète de pour accomplir la

décomposition d’image dans un tel dictionnaire.

Finalement, nous construisons un schéma de codage géométrique d’images basé sur l’image ap-

proximée dans le dictionnaire anisotrope et tourné de fonctions de base. Nous présentons également

une étude détaillée sur le codage des indices de fonctions de base dans l’approximation d’image

parcimonieuse. Dans cette étude, la quantification des coefficients apparâıt être d’une importance

cruciale dans la conception d’un schéma de codage basé sur MP. Par conséquent, nous avons étudié

un schéma de quantification des coefficients de MP, basé sur la borne supérieure théorique d’énergie

de l’algorithme et les observations empiriques de la distribution et de l’évolution des coefficients.
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Grâce à cette quantification, notre codeur d’image produit des approximations d’image à bas et

moyens débits, compétitifs avec l’état de l’art, tout en permettant de changer de résolution en un

clin d’oeil et d’exécuter plusieurs autres transformations géométriques directement dans le domaine

transformé.



Resum

Les imatges naturals es modelen, sovint, com a regions regulars per parts. Els ĺımits d’aquestes

regions, que corresponen al contorns dels objectes, esdevenen, en aquest model, la part del senyal

que aporta més informació. Modelar aquesta informació amb el mı́nim nombre de termes possible

pot ser útil per a un gran nombre d’aplicacions, com codificació d’imatges, segmentació o eliminació

de soroll.

Aquesta tesi efectua, en un primer estadi, un estudi de les caracteŕıstiques que han de tenir

les funcions base per poder representar de manera esparsa el model d’imatge regular per parts.

Aquest estudi posa en relleu el fet que per tal d’obtenir representacions més esparses (amb el mı́nim

nombre de termes possible) cal que les funcions base siguin arbitràriament anisotròpiques i puguin

orientar-se en qualsevol direcció. El fet de tenir funcions base amb rotacions i anisotropia dóna

representacions més esparses. La utilització de diccionaris redundants, peró, té un inconvenient:

un senyal no té una única representació possible. Come que només la representació que té un

nombre més petit de termes la que ens interessa, i els algorismes que existeixen per a representació

o aproximació de senyals en diccionaris altament redundants no sempre garanteixen haver trobat

aquesta solució, aquesta tesi efectua un estudi sobre l’optimalitat d’una determinada aproximació

(o sigui, que aquesta representació és la que dóna, per a un cert nombre de termes, la solució amb

el mı́nim error). D’aquest estudi ha sorgit, com a resultat principal, un test que permet comprovar

si l’aproximació d’un senyal en un diccionari redundant és l’òptima (aquella que té menys error

d’aproximació per al nombre de termes utilitzat).

La segona part de la tesi presenta un nou esquema per aproximar imatges, basat en l’ús d’un

diccionari redundant. Aquest esquema permet tenir una bona aproximació d’una imatge amb un

nombre de termes molt més petit que la dimensió de la imatge. Aquest nou métode d’aproximació

d’imatges es basa en l’ús d’un diccionari redundant, format per onetes (wavelets) amb anisotropia i

rotació i Gaussianes. En aquesta segona part s’hi explica la implementació de l’Algorisme Ggolafre

amb Cerca Exhaustiva (Full Search Matching Pursuit) per efectuar decomposicions de les imatges

en aquest diccionari. Aquest algorisme golafre amb cerca exhaustiva s’executa en un temps relati-

vament rápid (comparat amb l’algorisme golafre estàndard) perquè aprofita certes caracteŕıstiques

del diccionari, com la seva localització espacio-freqüencial.

Per acabar, en aquesta tesi es presenta el disseny d’un esquema de codificació d’imatges a partir

de les aproximacions obtingudes amb el diccionari redundant dissenyat a partir de la transformació

anisotròpica i la rotació d’una funció base mare. Per dissenyar aquest codificador, s’ha efectuat un

estudi detallat de com cal codificar els ı́ndex de les funcions base que intervenen en l’aproximació

obtinguda en el diccionari redundant amb l’Algorisme Golafre. S’ha observat que un dels punts

crucials per a poder codificar imatges amb la decomposició obtinguda amb l’algorisme golafre és

la quantificació dels coeficients de les funcions base. Això ha portat a estudiar un esquema de

quantificació dels coeficients obtinguts amb l’Algorisme Golafre, basat en el ĺımit superior teòric de

xiii
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l’energia d’aquest coeficients i les observacions emṕıriques de la seva distribució i evolució. Gràcies

a aquest esquema de quantifcació, s’ha creat un codificador d’imatges que funciona per a baixa

i mitjana taxa de bits i que permet canvis de la resolució de la imatge i altres transformacions

geomètriques en el domini transformat.
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Chapter 1

Introduction

1.1 Motivation

In this multimedia society, images are more and more everywere. Images are very complex signals,

with specific characteristics. The efficient approximation of natural images is a very complex task,

and needs to be analyzed carefully. Dealing directly with natural signals is not straightforward,

due to their complexity. In order to simplify this task, these signals are often modeled as a sum of

simpler pieces, easier to manipulate:

s =

M−1∑

m=0

cmgγm
, (1.1)

where s is the signal to approximate with at most M basis functions (with M often smaller than

N , the dimension of the signal). cm is the weight of the function gγm
in this approximation and the

set of gγm|m=0...M−1
are the simple pieces used to represent this signal.

Physics provides numerous examples of such decompositions, mainly for wave propagation. The

first example of such a signal simplification was the use of Fourier series for heat propagation.

However, Fourier decompositions provide infinite series, and in order to be able to practically deal

with the data, these series have to be truncated. Thus, instead of a perfect representation, the

manipulated data is an approximation of the real world data.

In many applications, an approximation of a signal such as the one presented in Eq. (1.1) is

needed, in order to have less terms to work with. There are several ways to achieve this approxi-

mation. One way can be to project the signal onto a fixed subspace of the dictionary (the set of

basis functions). Doing this may not be optimal, because one can loose important information. For

example, imagine that the signal is a sum of waveforms of different frequencies, and that you have a

very high coefficient at frequency ωh, which represents the main component of this signal. The set of

basis functions used to represent this signal is the Fourier basis. Imagine now that the fixed subspace

1
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(a) 2D separable basis (b) non-separable basis

Figure 1.1: Wavelet versus edge adaptive scheme: Illustration of the fact that wavelets fail to

detect the regularity of contours, while a set of basis functions that includes anisotropy and rotation

would detect it.

where the signal is projected is the first M frequency components of the signal, [ω0, . . . , ωM−1]:

ŝ =

M−1∑

m=0

cmgωm
with cm = 〈s,gωγm

〉, (1.2)

where ŝ is the M term approximation of s (with M smaller than N the dimension of the signal).

If ωh > ωM−1, this component, which corresponds to the main component of the signal, is not

detected. Thus, because of the fact of having a fixed sub-space choice, important information is lost

in the simplified representation. This problem (the missing of important information in the final

approximation) can be solved by performing an adaptive signal representation: instead of choosing

the first M frequency components, the M basis functions that capture a maximum of energy from

s can be selected. If the signal is a pure sum of waves, the projection of the signal onto the Fourier

basis with selection of the M functions with most energetic coefficients gives a good approximation

of s. But if the signal is no more a sum of infinite waves, but contains some spikes (for example, the

signal is a piano concert, where the waves are created and disappear, and some spikes are present due

to the impact of the hammer on the cords), the approximation of the M highest Fourier coefficients

will no longer give a good signal approximation: all the transient information is lost.

Thus, being able to approximately represent a signal implies two main steps: the selection of the

good set of basis functions to use in order to capture a maximum of energy with a small number of

terms and the selection of the terms in this basis function set that better approximate the signal.

For 1D signals, wavelets are known to be able to sparsely represent signals that have both

spikes and smooth zones (piecewise smooth signals) [28]. For 2D signals, however, wavelets lose

part of their good approximation properties, due to the fact that they fail to detect the regularity

of contours [16, 47, 51], as graphically shown in Figure 1.1 and stated in Chapter 3. The scope

of this thesis is to efficiently represent images, which are 2D signals, that are often modeled as

having smooth regions with smooth boundaries. As already said, standard separable basis fail to

detect the smoothness of contours, and thus, do not provide sparse enough image approximations.

Other schemes, such as frame methods, provide image approximations with a smaller number of

terms than separable bases. Nevertheless, if the basis functions are not adaptive to edges, they
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from natural images
12x12 patches

sparse code
Search for

Figure 1.2: Basis functions obtained with Olshausen and Field’s method [139] from images of size

12 × 12. The basis functions have been obtained by learning a sparse code from a set of natural

images patches.

do not provide as good approximation scheme as adaptive edge approximations. Thus, the use

of redundant sets of basis functions (called redundant dictionaries) formed by non-separable basis

seems necessary, in order to give sparse image representations (see Chapter 3). This fact is evidenced

in the observation of nature, and concretely, of the Human Visual System. Concretely, the learning

of a set of basis functions that allows to sparsely represent natural images leads to anisotropic and

rotated basis space-frequency functions, which are very similar to the visual cortex characteristic

functions [138, 139]. Figure 1.2 shows the sparse basis functions learned from 12×12 natural images

patches. It shows that anisotropy and directional structure of the basis functions appear, when

one tries to learn the best set of basis functions to sparsely represent natural images. The main

problem in the use of redundant dictionaries comes from a practical point of view: how can the

image decompositions be computed, if frame methods cannot be used?

The fact of being able to sparsely represent an image is useful for many different image applica-

tions. Sparse image representations seem, of course, a useful tool for image coding at low bit-rates,

as they provide a small error with a reduced number of basis functions. But low bit-rate image cod-

ing is not the only field that can profit from sparse flexible image representations or approximations.

Sparse image representations are very useful for image denoising [50, 110, 178]. Being able to ensure

that the set of basis functions used can capture the most important parts of the visual signal with

a small number of coefficients allows to consider estimated coefficients smaller than a threshold as

noise, and drop them without loosing significant amounts of visual information.

Another desirable feature in order to have efficient image representation, which can be learnt both

from the Human Visual System and the study of simplified image models, is the inclusion of geometry

in the construction of the basis functions. This allows not only to have sparser image representations,

but also to perform several interesting geometric operations directly in the transformed domain.

In addition, redundant dictionaries have proved to be useful in other applications, such as mul-

timodal speaker detection [129] or video approximation [40].

The use of geometric based dictionaries leads to easier geometric image manipulations, which can

help to construct super-resolution images or to implement new experimental segmentation techniques

[126].

With the growing number of visual applications, especially over wireless networks, adaptive
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low to medium bit-rate image coding becomes more and more necessary [149, 153]. In addition,

as the number and the variability of end-user terminals grow, the image representation coding

scheme should be able not only to efficiently approximate the image with few bits, but to be able

to reconstruct images with different sizes and different rates, in order to adapt to the network

conditions or to the end-user terminal conditions. An image coding scheme that allows for geometric

transformations is a good solution to this new need.

Moreover, the amount of digital images that is produced and stored is growing in an exponential

way. Storage capacity and network bandwidth are also impressively growing, thus, storage and

transmission of the data is not the main problem nowadays. The main challenge nowadays is

dealing and interacting with such huge amounts of data, which is growing and becoming more and

more complex. In this situation, the use of smart coding and image representation techniques, that

allow for fast browsing, recognition and indexing is required. Redundant dictionaries may provide

a solution to this problem, by facilitating the inclusion of indexing or parametric information in the

basis function themselves. This is, however, still an open problem.

1.2 Main contributions of the thesis

This thesis performs, in a first stage, a study about the features that basis functions should have in

order to provide sparse representations of a piecewise-smooth image. This study emphasizes that,

in order to have sparse image approximations, there is a need for edge adaptive basis functions,

with geometrical structure. These basis functions need to have rotation, in order to capture local

orientation of edges, and arbitrary anisotropy, in order to capture anisotropic image structures such

as edges. Combining orientation and arbitrary anisotropy naturally leads to redundant dictionaries,

as no known orthogonal basis can be created with all these features.

Signal decompositions over redundant dictionaries are not unique, and in most cases, just the

sparsest solution (or a solution close enough to the optimal) is desired. In order to check in which

cases a given image approximation in a redundant dictionary is the optimal one (the one that has

the smallest residual for a given sparsity), a mathematical study about sparse approximations in the

presence of noise has been performed. Putting together these conditions, an algorithm independent

sparsity test is provided. This test is not only algorithm independent but it is also tighter than

previous sparsity tests.

Once the basis functions properties needed to sparsely represent an image are understood, and a

test that allows to check if the obtained solution is the sparsest, an algorithm to provide sparse image

approximations has to be designed. Literature provides several algorithms capable, in some cases,

of finding the sparsest approximation of a signal in a redundant dictionary. From all the existing

algorithms, Matching Pursuit was chosen, due to the fact that it is an iterative algorithm (and thus,

it is easier to deal with huge amounts of data) and that it has proved to be able, under certain

conditions, to provide sparse signal approximations. Another main contribution of this thesis is the

design of a dictionary that sparsely approximates images, and the Full Search Matching Pursuit

algorithm that allows to find an image approximation in this dictionary.

Finally, this thesis provides a full flexible image coder. The core of this coder is the geometric

image decomposition based on Matching Pursuit. A detailed study of the coding of the basis function

indices is provided. This study has revealed that, to achieve good compression rates with the MP

expansion over a geometric dictionary, there is a need for a good quantization of the Matching

Pursuit coefficients. An enhanced a posteriori quantization scheme for MP expansions has been

designed and implemented. This coding scheme is based on the theoretical study of the coefficient

energy upper-bound and the empirical observations of the coefficient distribution and evolution
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through the Matching Pursuit iteration number. A flexible image coder means an image coder that

allows to perform operations in the transformed domain that are not straight-forward for every

image approximation technique.

To summarize, the main contributions of this thesis can be concentrated in four main points:

• The use of redundant and parametric dictionaries for image approximation is proposed, with

a study the properties of such dictionaries.

• The sparse approximation problem is studied, both at the theoretical and at the algorithmic

level. At the theoretical level, the conditions under which the sparsest signal approximation

is obtained are stated. At the algorithmic level, a MP algorithm for creating image approxi-

mations and its multichannel version are implemented.

• The design of a flexible image coder based on the previous findings is presented. This im-

age coder is suitable for low to medium bit-rates, and it gives both rate scalability and the

possibility of performing on the fly geometrical transformations in the coded domain.

• The extension of the previous coder for color images, profiting from the redundancy among

different color channels.

1.3 Thesis outline

This thesis is organized as follows:

Chapter 2 presents three main topics that bring to a better understanding of the nature of

images: the Human Visual System image representation at its different layers, different models that

have been created in order to have efficient image representation, and different techniques that try

to capture the nature of images. This chapter shows that the Human Visual System (HVS) has

a complex image representation, adapted to the main needs of this system in order to process the

information. It emphasizes that HVS tries to perform a sparse image representation, in order to have

less data to process and be able to quickly analyze the environment. This same chapter presents

then several image models that have been or are being used by the scientific community in order to

be able to design appropriate image representations. It states that, from an image representation

point of view, the main assumption that is made on images is that they have smooth contours and

that they can be represented as a finite sum of basis functions. Finally, this chapter presents several

image representation or approximation techniques that try to represent images as a finite sum of

basis functions that capture the regularity of contours.

Chapter 3 performs a theoretical study in order to understand the basis functions properties

that allow to represent an image with a minimum number of terms. This chapter shows that

the fact of adding anisotropy and rotations in the basis functions support helps improving the

approximation properties of the basis functions in use. A quantitative measure of the improvement

in sparsity that anisotropic and rotated basis functions bring is given. The same chapter also studies

whether these anisotropic and rotated basis functions have good compression properties, compared

to the classical quadtree structures. It shows that adding anisotropy and rotation does not only

improve the sparsity of the approximation but, if a smart coding scheme is used, can also give better

Rate-Distortion behaviors. Of course, the fact of using anisotropic (with an arbitrary anisotropy

rate) and rotated basis functions means that redundant dictionaries have to be used. The use of

redundant dictionaries requires specific algorithms, able to solve this complex problem. Chapter 4

explores the techniques that exist in order to recover the sparsest (or something close to the sparsest)

approximation or representation of a given signal in a redundant dictionary. Several algorithms are
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presented, together with their capability and their limitations, for recovering the sparsest signal

approximation

Chapter 5 presents a new sparsity test in order to check whether the sparsest approximation

for a given signal in a given dictionary has been recovered. This test, contrarily to existing ones, is

independent on the algorithm that has been used in order to recover this approximation. It has been

shown to be tighter than existing tests, but still, it becomes difficult to use for highly redundant

dictionaries.

Chapter 6 introduces a sparse image approximation algorithm through a dictionary of anisotrop-

ic and rotated basis functions. This chapter introduces the dictionary of basis functions. A full search

Matching Pursuit (MP) algorithm is presented in order to find the solution of the image approxi-

mation using such a dictionary. This full search algorithm uses specific dictionary features to speed

up the search. The MP-based image approximation scheme is presented both for gray-scale and for

color images.

Chapter 7 shows an image compression scheme that uses image decompositions obtained in

Chapter 6. This chapter presents a full image coder that improves a posteriori quantization of

Matching Pursuit coefficients by a novel enhanced reconstruction method. The best strategy for

image compression through MP-based image approximations, together with the main problems that

are found when performing image coding through this kind of approximations, are discussed in this

chapter.

Finally, concluding remarks and a discussion about the possible future research directions to

follow are given in Chapter 8.



Chapter 2

Image Models and Geometry

2.1 Introduction

This chapter is dedicated to a discussion of image models as the basis any image representation

technique. The importance of geometry for being able to efficiently capturing important image

informations is stated. This geometry is efficiently captured in the Humans Visual System (HVS).

A brief description on how the HVS is given, and a discussion on which HVS features can be used

as source of inspiration for designing an image representation model and technique is performed.

The chapter is structured as follows: First of all, a description of the HVS is given in Section 2.3.

The HVS has been used for a long time as inspiration for modeling and representing images is given,

thus, a brief review of how HVS analyzes images is useful. Section 2.4 gives a description of the most

typical image model types. These models have been used to design several image representation

techniques. Geometry in image representations will be discussed in Section 2.5, with an extension

to consider non-geometrical image parts, such as textures. The Harmonic Analysis representation

of an image will be presented in Section 2.6. Section 2.7 will present some image representation

techniques that try to perform sparser image representations, by taking into account image features

given by the models described in Section 2.4.

2.2 Motivation

An image is a very complex structure, often formed by a textured background with luminance

changes and objects that overlap and occlude. Every object in the image is defined by its contours,

shape, texture, smoother or sharper edges, etc. An image representation technique cannot take

into account all the characteristics of images. These are much too complex objects to be able to

optimize an image representation technique for all their different characteristics. Images need thus

to be simplified through a model, which will be the basis for optimizing a given image processing

operation (representation, coding, analysis, segmentation, etc.). The model will have to take into

account the most relevant information of the image, while dropping its secondary features. A certain

image characteristic will be considered secondary if it brings less information than other features, or

7
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if the information that it provides is not relevant to the final goal or to the application. The model

will have to be adapted to the application, and a careful choice of the most appropriate features has

to be done.

When dealing with low bit-rate coding, for example, the first features that are necessary, nor-

mally, are the shape and mean luminance of objects, in order to be able to distinguish them. Shape

is given by edges, so edge representation will be the primary goal. Textures become a secondary

part of the image, because their contribution to recognition of an object is normally lower than what

contours give. Textures, in addition, can be seen as a “messy” mix of edges, thus a technique that

is optimal for edge representation will also be able to represent them, even though probably not in

an optimal way. The image model that will be used in this thesis, therefore, will be mainly focused

on edges, even though textures will not be completely forgotten.

2.3 How does the Human Visual System see Images?

In [124] a very simple, but also really appropriate, definition of vision is given: “Vision is the process

of discovering from images what is present in the world, and where it is”. This is the user point of

view reference. However, when dealing with signal processing, vision can be described as a process

as well [123]: “Vision is a process that produces from images of the external world a description

that is useful to the viewer and not cluttered with irrelevant information”. Describing vision as a

process somehow defines what is done and why, and what has to be known, in order to find out the

constraints and the rules that drive vision. In addition, it has a deeper consequence. In order to

process something, there are two main things that have to be done: a representation of the data

and an algorithm. There is normally a wide choice of representations for a given processing, and

the choice of the processing algorithm will strongly depend on the particular representation that

is employed. On the other hand, the choice of a given representation will make easier or more

difficult the algorithm implementation for a given application. Of course, even for a given fixed

representation, there will be several possible algorithms for carrying out the same process.

The HVS, which is the system in charge of vision, is a very complicated system. It has to

perform several steps before achieving vision: first a data representation, which represents the data

in an appropriate way in order to be able to correctly process it; and then a data processing, that

will give the final information about the position, shape, color and even the identity or class of

the objects or the scene it is observing. The HVS can be described with a block diagram with a

first block that comprises the receptors, which perform a first processing of the data to transmit

it to the brain (representation part), and a second block that performs the processing of the basic

information (which may eventually drop useless information) and a third block for the interpretation

of the information. Of course, this is the most basic scheme of the HVS, every block has several

sub-blocks inside. Figure 2.1 shows a basic schema of the HVS. To achieve vision, the HVS must

represent and process the received information. The representation has to be done in such a way

that it helps the processing, and the processing will as well help the representation process.

The early stages of the HVS are very interesting for Image Processing, because in these first stages

the representation of the data in a format that is useful for the further processing is computed. Some

processing is also done in these stages. Several questions about the representation and the processing

of the information arise. Some of these questions can be also very useful for Image Processing, in

order to better understand the properties of images and how they can be represented in an efficient

and flexible way. Some of these question are:

1. Has the interpretation of the information any influence on the processing of it?
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(a) Human Visual System schema

V4 Coherence

V4 Asynchrony

V4 Synchrony

V2

Ganglion Cells

V1

Image plane

(b) Human Visual System layers

Figure 2.1: Human Visual System structure (a) shows the path the information follows, from

the reception to the brain, in the HVS (Figure taken from [146]). (b) gives a schematic vision of the

different layers of the HVS used for still image reception and processing, and a simplified version of

the information transmission and processing.

2. And on the reception?

3. If there is a feed back, how much information is given in this feed back?

4. Which are the reception functions?

5. Are the reception functions optimal for image representation?

6. After the reception, the data has to be transmitted to the brain through the optical nerve. Is

any coding of this data performed to send it through the optical nerve?

The answer to all these questions is not straightforward. Some of the HVS characteristics are

very well studied and very well known, other are still under study. A very interesting source of

information about the last advances on understanding the HVS can be found in [103]. In this

section, a brief description of the different steps of information representation and processing in the

HVS will be presented, with a special focus on the primary stages. Finally, some conclusions on

what can be learnt from it, and how this information can be used, will be given.

2.3.1 Signal reception

The reception of the signal takes place in the retina of the eye. Figure 2.2 shows the path light

follows until it reaches the receptors in the retina. Light goes through the pupil, then through the

lens and hits the retina, where there are the receptors. The pupil controls the amount of light that

hits the retina by narrowing or widening, and the lens focuses the light so that the image that hits

the retina is clear. On retina lie the receptors of the light, that transform it in electrical signals

which are sent through the optical nerve to the brain (see Figure 2.1).
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(a) Human Eye schema (b) Human Retina scheme

Figure 2.2: Information reception in the Human Visual System. Images are received in

the Human eye (a), by projecting the light receiving trough the pupil to the retina, where there are

different kinds of receptors (b).(Images taken from [102])

There are two kind of receptors in the retina, the cones and the rods. Rods are photoreceptors

that contain the visual pigment, and are sensitive to blue-green light, with a peak sensitivity around

500 nm. As rods are only of one kind, they do not see colors, but they are highly sensitive pho-

toreceptors and used for night vision (that is why in poor light conditions, we lose the capability

of seeing colors). Cones are less sensitive, and they are used in daylight conditions. There are

three kinds of cones: the long-wave cone (red light receptor), the middle-wave (green light) and the

short wave (blue light). Cones are the basis of color perception in our visual system. Astonishingly,

receptors are not in the front part of the retina, but in the back: light has to cross all the retina in

order to reach the receptors (see Figure 2.2(b)). This is due to some physiological reasons, that are

outside the scope of this dissertation.

Another difference among rods and cones, apart from the sensitivity, is the capability of detect-

ing changes. Rods usually respond to relatively slow changes, while cones can detect rapid light

fluctuations. The receptive field of both rods and cones is very narrow (they see just the spot of

light that reaches them). The image is thus, for its reception, sampled, even though neighboring

samples overlap.

The distribution of cones and rods in the retina is not homogeneous. Cones are mainly concen-

trated in the center part of the fovea (central part of the retina), while rods are more peripheral.

This is the reason why peripheral vision does not allow us to clearly distinguish the color of an

object.

Because of the presence of the optical nerve, there is a region in the retina that has no receptors.

As the ganglion cells are in the front part of the retina, they have to cross the receptors layer in order

to reach the brain. The point where all the nerves concentrate and cross the receptors layer has,

thus, a hole without receptors. This causes a blind spot (an area that the human eye cannot see).

This blind spot is normally compensated by eye movement, even though there exist some visual

experiments that show how the blind spot has an effect over the observed image (see Figure 2.3,

taken from [169]). This blind spot cannot be exploited for visual friendly image approximation, due

to the fact that it will depend on the observer’s distance, and that, as already stated, eye movement

normally cancels this effect.

Once retina receptors have perceived a signal, they transmit this information to retina ganglion
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Figure 2.3: The blind spot. This little experiment shows empirically the existence of the blind

spot. Close your left eye and stare at the cross mark in the diagram with your right eye. Off to the

right you should be able to see the spot. Don’t LOOK at it; just notice that it is there off to the

right (if its not, move farther away). Now slowly move toward the page. Keep looking at the cross

mark while you move. At a particular distance (probably around 30cm), the spot will disappear (it

will reappear again if you move even closer). The spot disappears because it falls on the optic nerve

head, the hole in the photoreceptor sheet. (Image and caption have been taken from [169].)

cells, that will, consequently, transmit it to the brain through the optical nerve.

2.3.2 Information coding and transmission in the retina

Now that the reception of the visual information has been described, the question is how this

information is processed in order to be sent to the Lateral Geniculate Nucleus, that will in its turn

send it to the V1 cells, in the brain’s primary visual cortex.

The human retina is a very complex mechanism, and it is not so easy to figure out how the

information is processed before sending it to the brain. If the receptors are RGB, plus a sort of

luminance (the rods), the way this information is sent is not so evident. Figure 2.2(b) is a schematic

representation of the human retina with the different cells and the connections among them. Rods

and cones (light receptors) transform light stimuli they can detect in electrical stimuli, and transmit

it to the ganglion cells, that in their turn transmit all the information to the brain through the

optical nerve. The way from the receptors to the ganglion cells goes through the bipolar cells.

The horizontal cells and the amacrine cells also play a role in the stimuli processing before their

transmission to the brain.

If the retina did not process the received visual information before sending it to the brain, the

image would probably be blurred. It is already in the retina that some processing is performed in

order for us to be able to define precise edges in images and focus on fine details. This processing is
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not yet fully understood, but some parts of it seem to be clear. The first processing actually starts

on the horizontal cells of the retina. While the receptive field (”area in which stimulation leads to

response of a particular sensory neuron” [113]. ) of rods and cones is very limited, horizontal cells

receive stimuli from several neighboring cones, and their receptive field is large. Single bipolar cells

receive light from a handful of cones, and have a medium-size receptive field.

Single bipolar cells (which have an OFF or ON light response) would carry a fairly blurry response

to their ganglion cells if horizontal cells did not add an opponent signal that is spatially constrictive,

giving the bipolar cell a center surround organization. This means that the bipolar center signal

is either ON or OFF, while the horizontal cells add a surround that is exactly the contrary (OFF

or ON). For the retina cells, ON means detecting light areas on dark backgrounds, and OFF, the

contrary.

From horizontal cells, the information is passed to ganglion cells. There are two types of ganglion

cells in the human retina: ON-center and OFF-center. ON-center ganglion cells are activated when

a spot of light falls in the center of their receptive fields, whereas OFF-center fire in response to

light falling on their peripheral field. Ganglion cells have receptive fields shaped as a Mexican-

hat. Ganglion cells in the fovea have much narrower receptive fields, due to the fact that they carry

information from a single cone, but they carry in addition a color message regarding the type of cone

(red or green) it comes from (see Figure 2.4). The receptive fields of two neighboring ganglion cells

usually overlap, probably to increase reliability of the reception. Figure 2.4(c) shows this overlap.

Blue cones do not transmit the information in the same way as red and green cones do, they

transmit it through a special blue cone bipolar cell to a different type of ganglion cell, which can

carry both a blue ON and a yellow OFF response.

Ganglion cells transmit all the information that they receive to the brain through the optical

nerve. This information is transmitted under the form of spikes. The meaning of these spikes is

not really known yet, being the retina a complex mechanism that has still a lot to be studied (such

as a previously unknown ganglion cell type that appears to behave as a giant photoreceptor itself,

without needing input from rods or cones). The optical nerve then sends these spikes to the Lateral

Geniculate Nucleus, where further visual processing is performed.

2.3.3 The Lateral Geniculate Nucleus

Optic nerve fibers from the eyes terminate at two bodies in the thalamus (a structure in the middle

of the brain [92]) called the Lateral Geniculate Nuclei (LGN). The left LGN receives information

about the Right Visual field, and the right LGN about the left visual field. LGN cells impulsional

response has the same shape as retina ganglion cells response. Right lateral geniculate nucleus

sends projections of the information received from the retina ganglion cells through the optical

nerve directly to the Primary Visual Cortex. LGN receives also a strong feedback from the Primary

Visual Cortex. The function of the LGN in the HVS is still unknown, so it is difficult to know which

format has the information that the V1 cells receive. It is supposed that the function of the Lateral

Geniculate Nucleus is to somehow control the amount and kind of visual information that will pass

to the Visual Cortex.

2.3.4 Visual Cortex V1

The Primary Visual Cortex, also known as V1, striate cortex or area 17, is one of the parts of the

brain that has been better studied. V1 cells receive the signal from the Lateral Geniculate Nuclei.

It is not yet clear which format this information has, due to the fact that there are still some gaps

in the knowledge about how the retina codes the information before sending it to the optical nerve,
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(a) Ganglion cells outside the fovea (b) Fovea ganglion cells

+ +

−
−

(c) Receptive field overlap

Figure 2.4: (a) Retina ganglion cells response, and its connections to bipolar cells for fovea and

(b) for the rest non-foveal ganglion cells. (c) shows the overlap that can occur between neighboring

ganglion cells, specially for those that are not in the fovea. (Images (a) and (b) taken from [102])

and there is almost nothing known about the function of the LGN. But one can know the response

of V1 cells to a certain light stimulus, and numerous studies have given an answer to this question.

It has been proved already since a long time now that the primary visual cortex cells are sensitive

to bars of light of various orientations and sizes [96].

Primary visual cortex cells can be divided in two categories: simple cells and complex cells.

Simple cells give a response when they see a bar that is oriented according to their angle. V1 cells

receptive field seems to contain a central subregion that exerts an excitatory influence on the cell’s

response, and lateral subregions that exert an inhibitory influence. The most effective stimulus for
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(a) V1 simple cells (b) V1 complex cells

Figure 2.5: V1 cells response to several stimuli. Figure 2.5(a) shows the simple cells field and

Figure 2.5(b) shows the complex cells field. The white stripe represents the stimulus received by

the cell. The cell receptive field is represented in red when the stimulus excites the cell, and in blue

when the cell does not respond to the stimulus.

this particular receptive field is one that puts a lot of light in the excitatory region, and only a little

in the inhibitory region. The light must be bar-shaped, and have the right orientation, position and

size in order to best excite these cells. Figure 2.5(a) gives an example of one stimulus that excites

a simple cell, and of some stimuli that do not.

Complex cells are the most numerous in V1. Similarly to simple cells, they respond only to

appropriately oriented stimuli, but the stimuli need not to be in a precise position. This kind of

cells respond to any stimulus that falls inside the receptive field of the cell. Another difference of

complex cells from simple cells is that the former normally respond to moving stimuli. Most of these

complex cells respond only to stimuli moving in one direction, and do not give any response when

the stimulus is moving in the opposite direction. Figure 2.5(b) shows several examples of stimuli

and their effect on complex cells.

Simple cells respond to a stimulus that fall in a concrete part of its receptive field, independently

on whether it is a moving stimulus or a static one, while complex cells respond mainly to moving

stimuli. For static images, thus, is the simple cells response that is of interest. It is supposed that

V1 simple cells perform a sparse coding of the received data [138, 139]. Applying the properties of

this sparseness and trying to estimate which is the shape of the basis functions used gives interesting

results for the basis functions shape (see Figure 2.6). As can be seen, these functions look quite

similar to the theoretical response that was expected (with different orientations and sizes, and

responding mainly to stimuli falling in the center of the impulsional response). This kind of basis

functions will be thus studied for their use on sparse image representations.

It is supposed that the primary visual cortex has only a very basic color vision. Most of the

responses of the V1 cells are color independent, however there are few cells in V1 have some basic

color dependent responses.

The primary visual cortex is the part of the HVS that provides conscious vision. Removal of

the primary visual cortex causes a loss of this conscious vision, but individuals that have not the

primary visual cortex still react subconsciously to changes in light intensity, to movement in the

visual scene, and even to some gross patterns of vision.

2.3.5 Visual Cortex V2

V2 is the next layer after V1. The information coded in V1 is somehow transmitted to V2. V2

is divided in four regions, that together provide a complete map of the visual world. Apparently,
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Figure 2.6: Basis functions obtained with Olshausen and Field’s method [139] from images of size

12x12.

information mapping on V2 is the mirror image of the V1 map. Functionally, V2 has many properties

in common with V1. Both zones are indeed tuned to orientation and spatial frequency. In addition,

it seems that V2 is also tuned to color, in a more complex manner than V1 cells.

Recent research has shown that V2 cells are tuned not only to the orientation of contours, but

also to the orientation of illusory contours [12]. It seems also that V2 cells are tuned for moderately

complex patterns (textures), and, in contrast to V1 cells that respond only to one orientation,

they may be excited by multiple orientations at different subregions within a single receptive field.

However, there are still a lot of questions to answer about V2 cells.

2.3.6 V3 and above

V3 cells transmission function is not yet well known. Most of the V3 cells are selective on orientation,

and many of them seem to be tuned to motion and to depth. Few of them are sensitive to color.

V3 cells receive stimuli from V2 cells, and send it to V4 cells, even though some interconnections of

V3 cells with other visual areas exist.

V4 cells seem to have a role in color analysis (many of the cells are color selective). Cells in V4,

though, have also complex spatial and orientation tuning, suggesting that the area is also important

for spatial vision. The role V4 cells play in the process of vision is still under study.

The Middle Temporal area (also called V5) receives connections from V1 and from V2, and links

these connections with the LGN. Most cells in MT (Middle Temporal) are tuned to motion, and the

area can be divided into direction and axis of motion columns. It seems that MT is linked with the

analysis of motion, but the fact that it receives connections from V2 (where few cells are sensitive
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(a) How many faces do you see? (b) Straight or wavy lines?

Figure 2.7: Some artistic images that profit from the HVS strong and weak points to create

interesting visual effects. (a) takes profit from the ability of the HVS to detect faces to hide faces in

the whole picture (some of them really evil). (b) exploits some of the lacks in information processing

of the HVS to make the observer thing that the picture has wavy lines, when in fact all the lines

are perfectly straight. Both figures are taken from [1], where there are many other examples of this

kind of visual effects.

to motion) is somehow puzzling.

2.3.7 Recognition of objects and masking effects

Even though there are other layers in the HVS pathway,it is difficult to talk about the process in

the brain, because it is still unknown. But even though the visual process is unknown, there are

some psychovisual effects that are well known, thanks to some psychovisual experiments. Some of

these effects will be presented here, for the sake of curiosity.

There are a lot of effects in the HVS that cannot happen before a certain recognition of the

objects is performed. One clear example is the ability to recognize faces. In addition to the fact

of recognizing the orientation, the motion and the color of a visual stimulus, it seems that the

HVS has a sort of pattern recognition, that causes several effects, such as interpolation. There are

many different images that profit from this ability of the HVS to create artistic hidden designs. An

example of this is given in Figure 2.7(a).

The most usual masking effects of the HVS include these two facts: the surrounding color of an

object affects the object perceived color and, at high frequencies, the contrast perception is weaker

(contrast masking effect). There are other effects, such as the Weber law, which shows that the
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(a) Bumps or holes? (b) Where is the dog?

Figure 2.8: More optical illusions from [1]. (a) shows the effect shadows have on the perception of

the third dimension. This figure is interpreted by the eye as two raws of bumps and two of dimples

(generally, shadows on the bottom of the spot make the observer interpret it as a bump, and shadows

on the top make it be seen as a dimple). But careful! The third row is not exactly what it seems...

This shows that the Human Brain considers the world as being regular, and that an irregularity is

only perceived when the scene is watched more attentively. (b) shows an example of the capability

of interpolation and interpretation the HVS has. Even though the dog is not perfectly drawn, it is

just a set of spots, a Human observer interprets the scene and perfectly sees the dog.

Human eye sensitivity to luminance is dependent on the surrounding luminance. There are three

basic kinds of masking effects: spatial masking (a stimulus cannot be detected due to the presence

of another stimulus nearby), temporal masking, which is not pertinent for still image, and pattern

adaption (adjusting the sensitivity of the HVS in response to the prevalent stimulation patterns).

All these maskings can be very useful for video coding, but for still image coding, as the observer

can change its viewing distance and position, they are more difficult to use.

Other interesting visual behavior is the perception of depth and of the third dimension in some

flat images. The perception of depth is strongly affected by the presence of shadows. The HVS

usually associates a shadowed part with the lower part of an object (mainly due to the fact that

the main natural source light, the sun, is always on the top of the objects). One example of this is

given in Figure 2.8(a). Of course, there are many other examples of “lies” of the HVS. These false

interpretations come basically from the evolution the HVS has followed. HVS has evolved so that

it can interpret and detect any danger in the real world as fast as possible (survival of the fittest).

When the situation differs from the most common natural environments, this evolution is cheating

us and causing our brain to wrongly interpret some scenes. The interested reader can look at [11, 98]

to read more about these psychovisual effects.

In spite of these errors, the HVS is capable of interpolating, segmenting and recognizing structures

in images with an incredible ability. The typical example of face recognition (Figure 2.7(a)) clearly

shows it. But the ability of the human eye to perceive objects that have contours ill-defined is really

impressive (probably, if one could not perceive the silhouette of a predator in the middle of the

grass died, so only humans that could interpolate, segment and recognized poorly defined objects

survived). Figure 2.8(b) is a good example of this impressive capability.



18 Chapter 2. Image Models and Geometry

2.3.8 Why psychovisual effects are so difficult to take into account?

As can be seen from the previous section, there are a lot of different psychovisual effects, from

more or less sensitivity to colors and contrast according to the frequency or the surrounding color

and pattern of the observed object. One could think that all these psychovisual effects could be

used to improve image approximation techniques, so that the approximation error is not visible for

the Human observer. There are indeed several studies that take profit from some of the features

of the HVS information processing [131, 207, 208], but the truth is that most of the effects are

too complex to be included in image processing techniques. There are several reasons for it: some

of the effects depend on the Human observer, or on the distance between the observer and the

image. Other effects are caused by complex interaction between different image components (such

as the surrounding color plus a frequency component), and thus are very difficult to be detected by

computers. In addition, image sampling complicates the detection of some visual effects, due to the

loss of straightness in some contours.

It has to be noticed, too, that the fact of being able to take advantage of some of the HVS

characteristics will strongly depend on the application. If the final objective of a given image is just

to recognize the object that this image contains, there will probably be no problem on simplifying

the aspect of the object. Natural images and pictures, though, are normally meant for different uses,

depending on the final observer. One observer will have a detailed look at one object, while the other

will just see the general aspect of a landscape. Because of this, it is difficult to use simplifications

according to the surroundings or to the sensitivity to a given process, because depending on the final

user distance, on whether the observer has a detailed look to one object or just a look to the whole

image, the psychovisual effects that will appear will differ. In addition, some of the psychovisual

effects are observer dependent (if the observer has trained the eye to look at a certain type of images,

it will be easier for him to see a concrete detail). Psychovisual effects will be thus not taken into

account here toward image simplification and approximation.

2.3.9 What can be imitated and to what point?

Resuming, the only parts of the HVS that are (partially) known are the retina and the V1 cells. Is

this enough to get some inspiration for processing images? Well, it can be. It is clear that the HVS

needs to represent the information such that it can easily be retrieved. To have an easy retrieval of

information, there is the need of sending as few elements as possible. If sending too many elements,

the brain might get lost into details, and not be able to process the important stimulus fast enough.

So, it seems that a sparse representation of the images is needed, in order to be able to deduce

the position, depth, and shape of the objects. As sparse decompositions are of interest for image

processing purposes, and as the decomposition the HVS might be useful for detecting shapes and

objects, it seems that an image representation system that mimics the first stages of the HVS can

be very useful. Now, how can one imitate something that is not still well known? Even though

it is true that there are a lot of gaps in the information, it is also true that there is a lot that is

quite well known. So, we may not be able to exactly imitate the information processing that the

HVS does, but it is also true that the raw information (in our case, the pixels of the images) is

already different from the raw information retina receptors capture. As a consequence, what will

be done, is not an exact imitation of the HVS information processing, but something that leads to

an image representations similar to V1 cells output. Fortunately, this output is (quite) well known,

even though some recent works show that less is known about V1 cells that it was expected [140].

To summarize, it would be desirable to have an image representation that is sensitive to edges,

no matter what their orientation is, and that it is able to respond to different stimuli of different
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size. This means that the representation should be able to capture the geometry of the edges. In

addition, the representation should be sparse [138], in order to minimize the information to process

or to send. Several techniques have tried to obtain representations that are sparse and that capture

the regularity of edges. Some of these techniques will be explained in Section 2.7.

2.4 Image models

Every image representation technique is optimized according to a given model: Fourier decompo-

sition [13] is optimized for invariant Harmonic signals, wavelets [28] for point-wise singularities,

curvelets [16] are optimal for C2 edges, edgelets [46] for piecewise linear discontinuities, etc. Every

technique optimally represents signals that follow its “inspiration” model. The more accurate the

model is with respect to the signal to represent, the better the technique will perform. The model,

thus, becomes a very important part of the representation task. Ideally, one should have a simple

model (something that is mathematically treatable), but as close as possible to a real image. A com-

promise has to be found, between an accurate model and an image model that is practical enough

to be able to work with. In this section, a model of the image based on the local geometry and on

Harmonic Analysis, and inspired by what is known about the HVS will be stated.

There are three typical ways of understanding an image: as a set of objects with certain interac-

tions among them (Object Based Model), as a superposition of basis functions (Harmonic Analysis

Model) and as a superposition of geometrical features (Geometrical Model). The three mentioned

models are not exclusive. One of the three or a combination of them can be used, depending on

the needs. For example, one could think of describing objects as a set of geometrical features or

basis functions and then of using these objects to describe the scene. MPEG-4 [101], in its object

based approach, is an example of this: it tries to combine object based representation and Harmonic

Analysis [101, 142, 150].

The Object Based Model (OBM) is the way people often describe a scene. The Geometrical

Model (GM) is often used in computer graphics, where one has the description of all the edges

in a scene, their spatial position and orientation, so that occlusion can easily be described. This

geometrical model is very useful for image synthesis, but it becomes difficult to use for representation

purposes, because it needs an a priori knowledge about the contours, the object position, etc., that

is normally not available in image representation.

When seeing an image as a set of objects that have certain interactions among them (OBM), a

deep understanding of the scene is needed. This understanding implies an extremely complicated

object segmentation and recognition. The OBM is the final model of the HVS, once all the psy-

chophysical steps have been performed, and it implies a big storage of complex information. To

illustrate it with a practical case, see Figure 2.9(a). Figure 2.9(a) represents an image with occlu-

sions, image that can be very simply described by the objects that it contains. By saying that there

is a brick wall holding a bike (placed in the center-left part of the picture), a tree growing behind

the wall (placed behind the wall and just on the right of the rear wheal of the bike) and the sun

slightly hidden behind the top-left part of the tree, the image is already quite precisely described.

With this description, more or less everybody would reconstruct a similar image. This apparent-

ly simple description implies, though, a lot of very complicated steps. First of all, the image has

to be segmented into objects that make sense (such as tree, wall, sun). These objects have been

previously represented with some basis functions or some geometrical features. The simple object

representation has then been compared to a “generic object type”, in order to be recognized and

assigned to its concept (brown below and green above thing is a tree, for example). The objects

need to be recognized even if they suffer from occlusions (such as the sun, that should be a perfect
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(a) Original image (b) Edge image

Figure 2.9: Example of image with occlusions. The bicycle is occluding a part of the brick wall

which is occluding the tree, which in its turn, is occluding the sun.

circle, but, as it is slightly hidden behind the tree, it has a different shape). This implies a lot of

a priori knowledge (the concept of brick, wall, tree, sun, etc.), which is very difficult to have in

a simple machine (or even in a very sophisticated computer). In order to be able to perform this

object recognition, first of all a huge database of “eigenobjects” has to be stored. This database

has then to be browsed, and the good object has to be chosen. As the simple example presented

here shows, the Object-based approach is not practical for image representation, and will not be of

further discussion in this dissertation.

As recognizing and describing the objects of a scene is a too complex task, the image model that

will be used in this thesis to represent an image will be more related to the basis layer of the HVS,

that processes visual information before object recognition. These first steps of the HVS (HVS) are

supposed to represent signals as a superposition of terms, using certain basis functions [123], which

is in fact, the Harmonic Analysis approach. Geometry, though, is not completely forgotten, as the

basis functions respond to certain geometric stimuli.

The Geometrical Model considers an image as a pure superposition of geometric shapes. This can

be very useful for synthetic images, but it is not so straightforward to do with natural images. A bird,

for example, has already a lot of geometric shapes in it (oval head, triangular beak, parallelepiped

legs, etc.). Computer graphics often use this geometrical image representation, since the position

where the objects and the contours will be placed is known. For natural image representation,

though, it is not easy to represent images in this purely geometrical form, because the contours of

the objects are often difficult to define exactly, and natural world is not as regular as we would

like. In addition, as images are sampled versions of a continuous world, it is sometimes difficult

to detect that a given set of points forms in fact a straight line (see Figure 2.10(a)). In order

to have an efficient image representation, there is the need of a representation algorithm that is

capable of optimally representing contours of objects (where most of the information of images is),

independently from their size, position, angle or sharpness. A second step in this representation
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(a) Sampled line (b) HVS interpolation

Figure 2.10: HVS versus machine perception of contours, lines and objects. (a) Example

of the sampling of a straight line. The human eye easily perceives a straight line, even if it has some

discontinuities. (b) Example of interpolation performed by the HVS. In spite of the occlusions, our

brain is capable of seeing the B (thus, of interpolating edges where discontinuities are present).

process is to add textures and colors.

2.5 Introducing geometry in image representation

Considering geometrical features in image representation techniques is normally done by considering

edge position, length, angle and, in some cases, curvature (thus, by considering just local geometry).

The basis functions will not be able to recognize and represent geometrical forms, but just the

position, length and orientation of edges, which define these geometrical forms. An image then is

fully described as composed by two basic parts: the edges and the rest (which will include smooth

parts and textures).

The separation of textures and edges in an image is not strict, and, depending on the scale,

different edge-texture images can be observed from the same figure. For example, Figure 2.9(b)

shows an edge representation of Figure 2.9(a), but one could think of putting the bricks (that in

this edge representation have been considered as texture) as edges as well. It can thus be seen

that even such an easy task of determining what are the edges of an image has no unique solution,

and will depend on the scale and on the subjective opinion of the person that is doing it. An

added complication to edge detection, when dealing with sampled digital images is that edges are

not necessarily continuous, due to sampling (see Figure 2.10(a)). In addition, computers perceive

images as a collection of pixels that have no relation to one another. It is easy for computers to detect

a vertical or horizontal straight line (they follow a matrix line or column), but it is already more

difficult to detect a diagonal line. Human eye is capable of detecting edges or straight lines in an

image even if these are occluded or discontinuous (Figure 2.10(b) and [192]), but this operation can

become very complex when dealing with rectangular sampled lattices. Other problems in detecting

edges are due to the fact that they are not always sharp. Sometimes an edge is not a sharp change,

but a smooth change that takes several pixels. Again, human eye easily recognizes the edge as

the border of an object, but a computer can have problems at detecting it. Numerous techniques
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exist, nowadays, for edge detection [10, 18, 114, 122, 125, 133], but it is preferable that an image

representation technique does not depend on the ability of detecting edges.

Suppose now that edges are perfectly defined discontinuities, piecewise continuous. A geometrical

representation of the edges has to be done. The easiest way to do this geometrical description is

to consider edges as lines with a given angle, length and position. If there is a circle or an ellipse,

as curvature becomes one more parameter to cope with, it will be split in small little edges which

will be piecewise linear, and which will again have a given angle, position and length. Still, an edge

model has to be defined. Typically, edges, for representation performance analysis are considered

to be C2 curves, or piecewise polynomial functions (or even piecewise linear) [42, 110, 155]. Some

image and edge descriptions will be reviewed in this section, descriptions that can be used to perform

a theoretical study of edge/image approximation properties of a given set of basis functions.

2.5.1 Horizon Model

The Horizon Model (HM) is the simplest image model. It considers images as purely edges. Edges,

in this model, are defined by a continuous curve that separates two surfaces. The HM was first

introduced as model of Boundary Fragments [107]. Since, it has been renamed Horizon Model [46]

and used in numerous studies [42, 46, 64].

The HM supposes there is a function H(x), called the horizon, defined on the interval [0, 1]. The

image s(x, y) is then of the form

s(x, y) = 1{y≥H(x)}, 0 ≤ x, y ≤ 1. (2.1)

This equation models a black and white image with an horizon, such that the image will be white

above the horizon and black below. Several conditions can be imposed to the function H(x), de-

pending on the characteristics considered for the edge functions. Normally, the horizon is considered

to be regular, and of finite length. Extra regularity can be imposed to the Horizon Function H(x)

by imposing it to hold Lipschitz regularity conditions [118] or simple derivability measures.

This HM is a very simple model, that does not match with real world images at all, because it

handles only black and white images (Figure 2.11(a)). One could make the model more sophisticated

by imposing different gray levels instead of black and white. The horizon would then separate smooth

image regions (Figure 2.11(b)). An even more sophisticated model would be to replace the smooth

regions by polynomially defined regions, that are separated by the Horizon function (Figure 2.11(c)).

Even though it cannot fully describe natural images, the HM is appropriate for studying the

edge approximation properties of a given technique. This model is widely used for rate-distortion

studies, or for studying the optimality of a given set of basis functions for edge representation. This

HM will be used as well in Chapter 3 for studying the approximation properties of anisotropic and

rotated basis functions.

2.5.2 Statistical model

There are two ways of modeling images statistically: considering images as a random variable

[173, 177], or as a sum of basis functions which have certain statistical relation among them [203].

Considering an image as an observation of a random variable is useful for studying statistical image

features, but it is difficult to perform an image representation directly with this model. The features

obtained by the study of images as a random variable can be, nevertheless, used to improve other

image representation techniques, by taking profit of the higher frequency of apparition of certain

classes of events.
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(a) Horizon Model (b) Grayscale (c) Polynomial

Figure 2.11: The Horizon model and some of its variations.

Considering images as random variables which have a certain probability distribution function

is a usual way of modeling images [93, 173]. This model is supported by the experiments that show

that HVS response may be adapted to efficiently represent signals with natural image statistics

[168, 174, 175, 201, 202]. It is clear that there are events in images that are more likely to happen

than others. Studying the event apparition allows, not only to be able to define the space of probable

signals in the natural image set of functions, but to understand other factors, such as how the visual

system of different species has been adapted to the needs and kind of signals that it receives.

Considering the images as a pure random signal gives very interesting new ways of understanding

some events. Representation techniques, though, cannot represent the signals directly as random

variables, but can profit from the knowledge of the probability distribution of the events to code

these more efficiently, using other techniques such as Harmonic Analysis for their representation.

Some examples of methods profiting from natural image statistics for improving Harmonic Image

representation are given in [14, 23, 154, 203], where the probability distribution of contours is used

to code more efficiently the wavelet decomposition result. In [23, 154], geometrical events in images

are modeled in the wavelet domain through Hidden Markov trees.

2.5.3 Other models

There are many other models of contours and of images. Probably the most popular one is to

consider an image as a finite (or infinite) sum of functions, the so-called Harmonic Analysis model.

This model will be presented in Section 2.6, where an image is considered as a sum of functions

belonging to a dictionary. A dictionary is defined as a set of basis functions that at least expand

the whole space [118]. An example of dictionary is an orthonormal basis. Other examples are a

union of bases, or any set of functions that form a frame. This model is often combined with some

geometrical models in order to study the optimality of the basis functions in use, or to find the

characteristics the basis functions must have in order to efficiently represent the signal.

There are several other models for images, such as the fractal one, e.g. [22, 148, 163], which

considers images as fractal curves. Apart from [148], that claims it can achieve lossless image

compression, most of the fractal methods do not pretend to achieve lossless image representation,

but a sparse image approximation instead. Fractals methods have been combined with wavelets as

well [193].
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2.5.4 Some remarks

As can be seen, there are several approaches for modeling an image. It has to be noticed, however,

that one approach does not exclude the others. Indeed, for efficient lossless image compression, it

is needed to combine the statistical model and the Harmonic Analysis model, so that any statical

properties of the decomposition results are cleverly used for reducing the rate budget. In non-

linear image approximation schemes, taking into consideration image statistics in the decomposition

domain becomes less evident, even though these statistics can be cleverly used to design the set

of basis functions to decompose the signal, for example. There is no model that can solve all the

problems, one has to be able to properly choose the most appropriate image model and representation

for a given application.

2.6 Representation through Harmonic Analysis

2.6.1 From Fourier to Wavelets

Mathematically, it is easier to deal with a sum of terms than with object description and object

occlusions. Occlusions of objects could be dealt with logical operations, but the tools that exist for

working with it are much less developed than the algebra and the function analysis used for standard

representations. Harmonic Analysis considers images (and signals in general) as a finite (or infinite,

in some cases) sum of basis functions gγm

s =

M−1∑

m=0

cmgγm
, (2.2)

where s, vector of dimension N , is a discrete signal and gγm
, m = 0 . . .M−1 are the basis functions.

Often every term weight cn depends on the scalar product of its associated basis function with the

signal to represent. In some cases the weight is not exactly the scalar product (for example, for a

frame it is the scalar product of the signal with the dual basis function instead of the signal with

the basis function [52]).

Examples of such a representation are the Fourier decomposition [13], the Cosine Transform [3]

or the wavelet decomposition [118]. In the discrete domain, all of them represent images as a finite

sum of terms. This kind of decompositions are straightforward to obtain when working with an

orthonormal basis. In such a case, s will be represented as the sum of M elements (being M = N

the dimension of the space the signal is living in). In case M needs to be smaller than N (to have a

sparse approximation of the signal), when dealing with an orthonormal basis, the only thing that has

to be done is to keep the first M biggest coefficients in order to obtain the best approximation with

this number of terms (it will be the set of coefficients that will provide the smallest decomposition

error). Things get more tricky when dealing with non-orthonormal bases. This case will be explored

in more detail later.

After Fourier Transform and all its relatives (Local Fourier Transform [118], Cosine Transform

[118], etc.), wavelets were introduced [28]. Wavelets are also a representation of the image with

a finite sum of terms, but wavelet basis functions give information about scale and position (and

some information about the orientation as well, but quite limited for bi-orthogonal critically sampled

wavelets [118]) instead of only giving information about frequency as for the Fourier Transform and

its relatives (or frequency and position, when dealing with Local Fourier Transform).

Wavelets work optimally in mono-dimensional case (1D) [28]. However, when extending them

to higher dimensions through tensorial product, they lose their optimality, due to the fact that they

do not see the regularity of contours [20]. A simple example of this is given in Figure 2.12(a), where
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(a) Isotropic wavelets (b) Anisotropic and rotated bases

Figure 2.12: Edge decomposition with different kinds of basis functions. This example

shows that when using Isotropic basis functions (a), the number of functions needed to represent a

curve with a certain error is higher than when using anisotropic and rotated basis functions (b).

it can be seen that the fact of using isotropic basis functions causes a big concentration of functions

along the edge. If the functions had been anisotropic and with rotations, the number of terms needed

to approximate the edge with a certain error would have been much smaller (see Figure 2.12(b)).

Several techniques have been studied in order to detect and exploit the regularity of contours. A

brief overview of some of these techniques can be found in Section 2.7. Some of the techniques are

partly inspired by the HVS, explained in Section 2.3

Existing tensor product based image representation tools are not yet optimal, because they fail

to detect the smoothness of contours [16, 46, 64, 197]. In this scope, new non-linear techniques are

being investigated, which would permit to optimally describe and represent natural and artificial

images. Existing orthogonal separable bases are well adapted to mono-dimensional signal coding, but

when dealing with higher dimensional signals, these bases fail to detect the smoothness of contours.

With non-linear non-separable bases, this problem could be solved. This brought the interest for

several other image representations, such as the redundant representations. In this thesis, the use

of redundant representations with geometrically adapted functions for sparse image approximation

will be studied.

2.6.2 Redundant representations

Redundant representations do not deal any more with bases, but with arbitrary dictionaries of

functions. A dictionary of functions D is a set of functions that at least expand the whole space.

For example, an orthogonal base is a dictionary, but the union of two orthogonal bases is a dictionary

as well.

The use of dictionaries is basically meant for overcomplete sets of functions. A dictionary can be

formed by any set of functions, and even different function families can live in the same dictionary.

In such a case, normally we speak about a dictionary formed by different subdictionaries. The

dictionary will have to be adapted to the application. If what is needed is the possibility to sparsely

represent an image, geometrical properties can be added to the basis functions. On the contrary,

if what is needed is the security that the sparsest solution (the solution with less non-zero terms)

has been found, it may be more interesting to use dictionaries with a limited redundancy [188].
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For sparse image representation applications, the dictionary basis functions must have some very

specific features. The HVS is a good source of inspiration for these basis function features.

The term redundant representation implies a signal representation on an overcomplete set of

functions. This set of functions can be a frame [118] or simply a set of functions that expands the

whole space .

2.7 Some geometrical oriented representation techniques

Several image representation techniques have been proposed that try to get inspiration from several

features of the HVS in order to use geometrical information in images. The fact that edges are

piecewise smooth functions is used in the design of the basis functions, in order to overcome the non-

optimality of wavelets for signals of dimension bigger than one. Some of the most representative ones

are discussed in this section. All the techniques presented here have something in common: they use a

quadtree decomposition of the image (even curvelets, that look less similar to the quadtree structure,

were first implemented through a quadtree-like method). This is done for computational reasons, but

it is important to discuss whether the fact of using a quadtree causes these techniques to lose some

approximation capabilities. The only technique that somehow manages to break the limitations of

the quadtree structure is that proposed in [42], where an intelligent pruning of the quadtree partitions

is performed. All the discussed techniques, however, allow to exploit the regularity of contours more

efficiently than wavelets. Therefore, they have better approximation rates than wavelets with respect

to the number of terms needed for the representation. Paradoxically, when applied to image coding,

the performances of these techniques stay similar than the ones of wavelets, due to the great entropy

coding of wavelet coefficients in JPEG2000 [2, 180].

2.7.1 Curvelets

While the localized Fourier Transform is a space-frequency representation and wavelets perform a

scale-space representation of a signal, curvelets do a kind of phase-space representation. Curvelets

were first presented in [16]. Later, [17] shows a more efficient curvelet computation, as well as some

applications to edge-preserving image reconstruction.

A curvelet is nothing else than a localized ridgelet transform [15, 68], with an anisotropic a/a2

pyramidal scheme. A ridgelet is a function that is smooth away of a discontinuity along a line.

Ridgelets have infinite support, and similarly to the Fourier Transform, that has infinite spatial

support and that has the windowed version, Curvelets are the spatially localized version of the

ridgelet transform. The curvelet spatial localization is done in a very concrete way: by having

an anisotropic support (outside this support the function will have zero value in the frequency

domain), with anisotropy a/a2. This support is defined in the frequency domain, and can take

several orientations.

Now, let Ψa,θ,b be a ridgelet [15]:

Ψa,θ,b (x1, x2) = a−
1
2ψ

(−x1 sin θ + x2 cos θ − b

a

)
, (2.3)

where ψ is a ridgelet function. And let define a ridgelet [15] coefficient as

Rs (a, θ, b) =

∫
Rs(t, θ)a−

1
2ψ

(
t− b

a

)
dt, (2.4)

where Rs is the Radon transform [32] defined by:

Rs(t, θ) =

∫
s (x, y) δ (−x sin θ + y cos θ − t) dxdy. (2.5)
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2

2j/2

j

Figure 2.13: Curvelets: frequency domain division. Curvelets divide the frequency domain

both in angle and in frequency rings. The number of divisions that increases with the frequency.

Analyzing the previous equations, one can see that the ridgelet transform is the application of a

1D wavelet transform to the slices of the Radon transform for every given angular variable θ. In

R
2, ridgelets are constant along ridge lines x1 cos θ + x2 sin θ = constant and they are wavelets

with a scale a along the orthogonal direction. In the frequency domain, such ridgelets functions are

localized in the coronna |ω| ∈ [2a, 2a+1] and around the angle θ. In brief, performing the Ridgelet

Transform in a finite support Fourier Window with dilation a/a2 gives you have a curvelet.

In the frequency domain, a curvelet can be defined as:

ϕ̂j,l,k (ξ) = Wj,0

(
Rθj,l

ξ
)
ej,0,k

(
Rθj,l

ξ
)
, (2.6)

where Wj,0

(
Rθj,l

ξ
)

is the two dimensional window that divides the Fourier Plane in concentric

frequency pseudo-cones with support Dj,l, and ej,0,k

(
Rθj,l

ξ
)

is a local Fourier basis on L2(Dj,l).

This is equivalent to filtering and then applying the windowed ridgelet transform to each band-pass

image.

Curvelets are quite easy to implement in the discrete domain [178] through the à trous algorithm,

as described in Algorithm 1.

Even though curvelets have a very good error decay with respect to the number of terms, they

have not yet shown good compression properties, probably due to the fact that redundancy among

adjacent coefficients has not been yet properly exploited.

2.7.2 Contourlets

Contourlets [43, 44] could be considered as digitally designed curvelets. Contourlets use, as curvelets,

a parabolic scaling (the support has size a in the radial axis and a2 in the perpendicular axis).

Figure 2.14(a) shows the frequency domain division of contourlets.

Contourlets are attractive for image representation due to their good implementation features.

First of all, they are defined via iterated filter banks, thus, they can be computed through fast

algorithms, and profit from tree structures, similarly to wavelets. Another nice characteristic of

contourlets is that they are defined on rectangular grids, thus all the phenomena that a rectangular
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Algorithm 2.1: Curvelet algorithm

apply the à trous algorithm with J scales1

set B1=Bmin2

for j − 1, . . . , J do3

partition the subband wj with a block size Bj and apply the digital ridgelet transform to4

each block

if j module 2 = 1 then5

Bj+1 = 2Bj6

else7

Bj+1 = Bj8

end9

end10

(a) Contourlets (b) Contourlet Packets

Figure 2.14: Contourlets and Contourlet Packets Frequency domain division. Con-

tourlets perform a parabolic scaling of the frequency domain, while contourlet packets perform an

adaptive division, dependent on the signal to code (image taken from [41]).

sampling introduces to images are already taken into account in the basis function characteristics.

Contourlets have quite a good flexibility for image representation due to the fact that, for different

directions, one can use different contourlet kernel functions (defined via filter banks). Finally, it is

possible to implement compactly supported contourlet functions using FIR filters.

Contourlets have, similarly to wavelets, a tree structure. If this tree structure is used for coding

purposes, the rate-distortion decay obtained is quite fast:

D(R) ≈ (logR)
3
R−2. (2.7)

Similarly to curvelets, contourlets impose the parabolic scaling. This may imply some losses of

decay rate for a given type of signals. This is solved in Contourlet Packets [45], an adaptive scheme

to select the “best” tree for directional decomposition which has been used for some authors to

perform an image coding scheme [57]. Contourlet packets are formed by directional multiresolution
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(a) Original image (b) Wedgelet approximation

Figure 2.15: Wedgelet representation of a cartoon image. Figure 2.15(a) shows the original

image and Figure 2.15(b) is its wedgelet approximation, with a zoom in one leaf to show a wedgelet

description in the quadtree leaf (image taken from [6]).

elements with different shapes (aspect ratios) which do not necessarily satisfy this parabolic relation,

as can be seen in Figure 2.14(b). Contourlet packets try to find a compromise between complexity

of the decomposition and optimization in Rate-Distortion terms. Several variations of contourlets

exist, such as the CRISP-contourlets (critically sampled contourlets) [115].

2.7.3 Wedgelets

Wedgelets take into account the regularity of contours by approximating them by piecewise linear

segments [46]. A short description of wedgelets can be found at [33]. Wedgelets perform basically

a quadtree of the image, but instead of taking as stopping criteria the fact that there is no contour

inside the leaf, they take as stopping criteria that the leaf is uniform or that the representation error

by approximating the contour in the leaf by a piecewise linear function is small enough. Figure 2.15

shows a wedgelet representation of a cartoon image.

The main characteristics of wedgelets is that they have a quadtree structure, thus, the deeper in

the tree, the finer the curve approximation. To decompose an image with wedgelets, first a quadtree

decomposition of the image is performed. Once this done, the wedgelet quadtree is pruned to

approximate (adaptively) the local geometry. The leaves are then decorated with (r, θ) parameters,

that will represent the angle of the wedgelet and the distance it has from the center of the image.

This (r, θ) orientation is chosen from a finite dictionary, obtained by toroidal sampling.

Wedgelets are oriented towards image coding, thus all their division and pruning criteria are Rate-

Distortion based. The first wedgelet pruning scheme considered, in its Rate-Distortion measure,

leaves to be independent. So, the Rate-Distortion function of wedgelets was defined as:

D + λR ≈ min
W

‖f − f̂W ‖2
2 + λ[#leaves]. (2.8)

As every leaf is independent of the neighboring leaves, the total distortion can be computed as the

addition of single leaves distortions:

‖f − f̂W ‖2
2 =

∑

leaves i

∫

Wi

(f −Wi)
2 =

∑

leaves i

Di. (2.9)
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This strategy only finds an optimal solution if the parameters are really independent among

leaves, which is the case for distortion, but not for the rate. Generally, contours are smooth functions,

and thus the angle of adjacent leaves does not vary drastically, and the variations among scales are

also small. So, a better strategy would be to include in the rate-distortion equation the real rate

needed to code the leaves, instead of the number of leaves. Of course, this increases the complexity

of the coding, thus a compromise has to be found.

In spite of the fact that the cost of leaves is reduced if they are not coded independently and

the correlation among adjacent leaves in a geometrical perspective is taken into account, for the

computation of the cost this fact is not taken into account. The cost is also considered independent,

so just the number of leaves will be taken into account in the Rate-Distortion optimization for

performing the pruning of the quadtree, not the number of bits needed to code the leaves and the

(r, θ) parameters of the wedgelet. This is done through a Multiscale Geometry Model, a coarse-

to-fine prediction. This model will give higher probability to the model where the wedgelets draw

continuous smooth curves, and very low probabilities to the model where the wedgelets draw chaotic

structures. This is done through a joint wedgelet Markov Probability Model P (W ), and the new

rate-distortion equation for wedgelets will thus be:

D + λR = min
W

‖f − f̂W ‖2
2 + λ[− log (P (W ))]. (2.10)

This gives better Rate-Distortion results than the first scheme, due to the fact that the probabil-

ities better represent the Rate than the number of leaves. The wedgelet quadtree is again performed

through dynamic programming, which gives a quite efficient computation.

To code images with edges and textures, Romberg, Wakin and Baraniuk [155] propose a dictio-

nary formed by wavelets and wedgelets. Then wedgelets are used to code image parts which are

formed basically by geometric objects, while image parts that consist in textures are coded with

wavelets. In order to optimize the coding one cannot perform first the wedgelet approximation,

subtract it to the original image and then perform a wavelet encoding of the residual, due to the

fact that there are ridge artifacts that appear, and those are just as hard to code as edges. The

strategy the authors follow then is the use of wedgeprints [206]. Wedgeprints are just the wavelet

representation of a wedgelet, and can be followed through the different levels of a wavelet tree,

following the same idea as footprints [51].

2.7.4 Footprints/Edgeprints

Footprints are agroupations of wavelet coefficients along 1D discontinuities. The exact definition of

a footprint for a piecewise smooth image is [51]:

Definition 2.1 Given a piecewise constant signal s with only one discontinuity at position k, the

footprint f
(0)
k is the scale-space vector obtained by gathering together all the wavelet coefficients in

the cone of influence of k and then imposing ‖f (0)
k ‖ = 1.

In other words, for piecewise smooth images, a footprint is nothing else than the normalized set of

non-zero (Haar) wavelet coefficients coming from a step function. Figure 2.16 shows a footprint in

the time domain, and its non-zero wavelet coefficients.

Footprints can be designed for other kinds of signals than piecewise smooth functions. More

interesting than piecewise smooth functions is piecewise polynomial functions. The idea is the

same: take the wavelet coefficients that represent the discontinuity, group them, and use this group

of wavelet coefficients as a basis function.

Footprints can be built from different kinds of wavelets: they can be built from a wavelet

basis or from a wavelet frame [51]. The set of basis functions resulting from building footprints
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Figure 2.16: Footprint. Time domain (top) and wavelet domain (bottom) representation of the

footprint f
(0)
k with N = 128 and k = 41 (taken from [51]). Except for the case J = log2N (N

being a power of 2), a footprint does look like a pure step edge, since it does not include the scaling

coefficients (image taken from [51]).

of piecewise polynomial signals is a redundant dictionary (an overcomplete set of basis functions),

both if footprints have been built from a wavelet basis or from a wavelet frame. Footprints built

from a wavelet frame, though, have the property of being shift invariant, while those built from a

wavelet basis are not.

As footprints are not an orthonormal basis, but a redundant dictionary, an algorithm has to

be found to be able to use them for signal representation. There are two proposed algorithms to

expand a signal onto a footprint based dictionary: Matching Pursuit or Adaptive depth footprint

pursuit [51].

Footprints are a good dictionary of basis functions for 1D signals, not for 2D. Edgeprints [50]

extent footprints to 2D as follows:

1. Use footprints on each line and on each column of the image to detect singularities. Any

singularity is characterized by N + 1 footprint coefficients.

2. Chain the footprint coefficients to form curves. The chaining of coefficients of the same order

gives an edgeprint. Each curve generates N + 1 edgeprints.

3. Treat each edgeprint as a 1D signal and compress it using footprints

4. Compress the information related to the geometry of the curve using a sort of vertex-based

shape coding [167].

Wedgeprints are inspired by footprints, but taking 2D signals instead of 1D ones. Wedgeprints

are basically wedgelets that have been represented in the wavelet domain (see Section 2.7.3 and

[155, 204, 205, 206]).

2.7.5 Bandelets

Bandelets try to exploit the fact that wavelets are optimal for 1D piecewise smooth function represen-

tation [109]. The basic idea of bandelets is that if wavelets can be aligned to the edge discontinuity,

then, by putting the oscillatory part of the wavelet perpendicular to the edge, the minimize number

of basis functions that have a value different from zero is minimized.

Bandelets basically align wavelets along discontinuities, similarly to contourlets [43, 44, 45].

Bandelets start by performing a quadtree partition of the image, but taking as homogeneity criteria
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that in a given region, the gradient of the image has approximately a linear trajectory. This criterion

can be slightly modified to have quadratic trajectories, or to have piecewise linear trajectories in a

given region, but the idea remains the same. Once the partitions have been obtained, the intuitive

idea of what bandelets do is to warp what is inside the region according to the gradient flow in order

to have an horizontal or a vertical discontinuity only, and to code this discontinuity with the Warped

Wavelet Transform [110], so that all the wavelets used have the oscillating part perpendicular to the

discontinuity, and the non-oscillating part parallel to it. With this processing, the fact of using a

lot of basis functions to refine a contour is avoided.

2.7.6 Some remarks

It is hard to say which technique performs better or which one is more adapted to the HVS, but there

is one thing that has to be noticed. All the techniques use very similar approaches. Almost all of

them keep using the quadtree decomposition, and once they have reached a certain level of division,

they try to improve it by using the geometry in the small squares they have created. Bandelets do

it with the gradient, wedgelets by approximating edges with piecewise-linear functions, etc. The

only techniques that do not use the quadtree decomposition are curvelets and wedgelets, where the

partitions are no more square, but with an anisotropy a/a2. Similarly to the other techniques, it

uses regular divisions anyway.

Intuitively, a technique that does not use regular divisions, but that has a real anisotropy and

rotation of the basis functions would have, for a low number of terms, a better approximation rate.

In this thesis, this statement will be studied and verified.

2.8 Conclusions

Introducing geometry in image representation seems to be the best way to improve the representation

performances, but it is not an easy task. The HVS, that is theoretically well adapted to process

visual information, takes into account the geometrical features of images to represent and process

the visual information.

This chapter has shown several image models, which try to take into account the main features

of natural images. It has been seen that most of these models are naturally influenced by the way

the Human Visual System perceives images. In the same chapter, several techniques that try to

represent images in a more efficient way than standard separable bases have been introduced. It

has been pointed out that one of the reasons why so many different image representation techniques

appear is due to the fact that standard separable bases fail to sparsely represent natural images,

due to the fact that they fail to detect the regularity of contours. Intuitively, one may achieve

sparser image representations if, instead of using isotropic functions, anisotropic and rotated basis

functions, able of taking profit of the regularity of contours, were used. Nevertheless, in order to fully

understand if it is worth doing the effort of using a dictionary formed by anisotropic and rotated

basis functions, a study of the gain that these new degrees of freedom bring has to be done. Indeed,

using a non-orthogonal basis with anisotropic and rotated functions means that the decomposition

of an image with these functions cannot be performed with standard techniques, and thus different

algorithms are needed.
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3.1 Introduction

This chapter performs a study of the gain of using anisotropic and rotated basis functions. Once

this gain has been quantified, the Rate-Distortion (R-D) decay of this type of functions is studied as

well, to see if a more efficient image coder can be implemented with this kind of basis functions. This

is done through a very simplified image model: the Horizon Model (see Section 2.5.1). Textures are

not taken into account for this study, which focuses on edges. Thanks to the horizon model and the

simplification of the problem, it is possible to better understand the behavior of different types of

basis functions in order to sparsely approximate an edge. In addition, some Rate-Distortion studies

are presented, in order to check if the use of these dictionaries can give improved R-D results. This

chapter does not pretend to give the final solution to image representation, but to perform another

step towards the understanding of the behavior of edges in several image representation strategies.

By directly introducing anisotropy and rotation in the basic quadtree structure, a toy model for

an adaptive non-linear image representation tool is obtained. In order to better understand the

improvement are due to anisotropy, and what improvements are given by rotation, two different

schemes are presented: one that analyzes the effect of using anisotropic basis functions without

rotation, and one that studies the use of anisotropic and rotated basis functions. Thanks to this, it

can be seen that anisotropy makes the first derivative of the edge function appear in the R-D expres-

sion. Furthermore, when rotation is also included in the scheme, R-D is affected by the curvature

of the edge, showing that the rate needed to represent a given contour is directly proportional to its

geometrical complexity, which is coherent with the empirical and previous theoretical results. The

different comparisons are done through different quadtree schemes: the classical quadtree [67], an

optimized quadtree that includes refinement [42], both already in the literature, two new schemes

that include anisotropy (the anisotropic quadtree and the anisotropic quadtree with refinement) and

two new schemes that include anisotropy and rotation: the anisotropic quadtree with rotation and

the anisotropic quadtree with rotation and refinement.

33



34 Chapter 3. Towards geometric image representations

This chapter is structured as follows: Section 3.2 presents the details of the simplified image

model in use for this study. With this model, the performance of every scheme is analyzed. Sections

3.3 to 3.8 analyze the performances of six different schemes: isotropic quadtree, optimized isotropic

quadtree (isotropic quadtree with refinement), anisotropic quadtree, anisotropic quadtree with re-

finement, anisotorpic quadtree with rotation and anisotropic quadtree with rotation and refinement.

Section 3.9 gives some empirical rate-distortion results for the different quadtree schemes, showing

that the theoretical bounds are coherent with what is observed in practice. Finally, Section 3.10

draws some conclusions.

3.2 Image model in use

In order to be able to theoretically study the behavior of basis functions with anisotropic and

rotated support, and to compare it to other types of basis functions, a simplified image model

is needed. Indeed, it is much too hard to theoretically estimate the number of terms needed to

represent an image without performing a simplification of the problem. In this chapter, in order to

mathematically study the behavior of the different types of basis functions, the image is modeled

through the Horizon Model for piecewise smooth images (see Section 2.5.1).

Thus, the image s(x, y) is considered to be defined on the interval [0, 1] and to take the form:

s(x, y) = 1{y≥h(x)}, 0 ≤ x, y ≤ 1, (3.1)

where h(x) is the Horizon function, and is defined in the interval [0, 1] as well. In order to be able

to perform all the needed computations, some assumptions are made for h(x): h(x)∈Cp is p-times

continuously differentiable and has finite length inside the unit square.

A way to represent this black and white image is through a quadtree decomposition, which is

in fact a toy model for wavelets. [42, 172] already demonstrated that the R-D of the quadtree

decomposition of this model decays as R−1, and that the number of terms increases as 2J , with

J the number of decomposition levels. To improve these results, [42] proposed a refined quadtree

scheme, introduced in Section 3.4 in order to compare its behavior with the anisotropic and rotated

basis functions.

3.3 Quadtree

The standard quadtree is a very well known representation technique [42, 67, 172]. This model is

presented here just because it is a toy model for wavelets. Just as reminder, the quadtree works as

follows: Check whether a given partition contains an edge or a smooth region. If there is a smooth

region, code the color of this smooth region (black or white) and stop dividing. If there is an edge

inside, dyadically divide the x and the y axis of this partition, giving four smaller partitions. The

same procedure is then performed with the smaller wished partitions. The quadtree stops when the

smaller partition resolution has been achieved, or if only smooth parts are found (see Figure 3.1(a)

for an example of quadtree decomposition).

This very simple algorithm is a toy model for wavelets: wavelets too, when they “see” an irreg-

ularity, keep on dividing (have non-zero coefficients at higher resolution), while they stop dividing

when the surface is homogeneous enough (has more regularity than the number of zero moments of

the wavelet) [28, 118].
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(a) Isotropic Quadtree (b) Anisotropic Quadtree

Figure 3.1: Isotropic and Anisotropic quadtree. (a) Example of the behavior of the isotropic

quadtree, or standard quadtree, when trying to approximate an edge. (b) Example of the behavior

of the anisotropic quadtree when trying to approximate an edge.

3.3.1 Number of terms in the decomposition

For the quadtree with refinement, the number of terms that are considered to play a role in the

decomposition is approximately the same as for the quadtree without refinement. In fact, the

number of non-zero coefficients is approximately the same, but the non-zero coefficients bring more

information, and it will be seen that, for the same resolution, the final distortion is smaller in the

refined quadtree than in the standard one. Of course, when a Rate-Distortion study is performed,

the fact that the non-zero coefficients of this kind of quadtree bring more information implies that

more bits are needed to code them. These additional bits are, anyway, useful, due to the significant

decrease in distortion they bring.

In brief, for the optimal quadtree, one has to count NJ ∼ 2J non-zero coefficients when J levels

are used as well.

3.3.2 Distortion of the decomposition

The final maximum distortion of the isotropic quadtree corresponds to the area of the non-zero

components at the last resolution. The area of a partition at the last resolution (and so the distortion

that one coefficient gives) is D1 = 2−2J , if J levels of refinement are performed. The total distortion

will correspond to the sum of the distortions of all the non-zero components. Thus, for the isotropic

quadtree, the total distortion is:

D = D1 ·Ne ∼ 2−2J · 2J ∼ 2−J . (3.2)
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3.3.3 Rate-Distortion behavior

he Rate-Distortion behavior of the isotropic quadtree is already well known [42, 160, 161]. The

quadtree has a rate that increases with the quadtree depth as:

R = 2 ·Na + J · 2J , (3.3)

where Na is the number of all nodes and J · 2J is the bits needed for the edge regions. Edge nodes

need J bits (for the corresponding J quantization levels) and all the nodes need two supplementary

bits to indicate if a given node is a flat white region, a flat black region, an intermediate node (a

node that must still be divided) or an edge node (a node that has reached the smallest resolution

and that has the edge inside). The dominant term is finally the rate needed to code the edge nodes,

and so, the rate as a function of the depth levels in the quadtree can be written as follows:

R ∼ J · 2J . (3.4)

Writing J as a function of the Rate and substituting it in the expression of the distortion (Eq. (3.2)),

one gets a Rate-Distortion behavior of [42]:

D(R) ∼ logR

R
. (3.5)

Notice that the R-D behavior of the quadtree does not depend on the regularity of the edge.

3.4 Optimized quadtree

The Optimized Quadtree [42] decomposition is similar to the Quadtree algorithm, but the stopping

criteria is not “there is an edge inside”, but “there is an edge inside that is not linear”. Once the

edge inside the partition is a linear segment (or very close to a linear segment), it stops dividing,

and codes the refinement : where the edge crosses the quadtree partition.

Recently, a more evolved version of this quadtree has been proposed [172]. This optimized

quadtree, once the quadtree decomposition has been achieved, joins the consecutive partitions that

are similar enough (that have an edge that crosses the neighbor partitions at the same point and

with the same slope or that are flat and with the same color). This is another very interesting way

of having anisotropic partitions, but will not be analyzed here, because it is not a toy model for a

concrete image representation scheme.

3.4.1 Number of terms in the decomposition

For the quadtree with refinement, the number of terms that are considered to play a role in the

decomposition is approximately the same as for the quadtree without refinement. In fact, the

number of non-zero coefficients is approximately the same, but the non-zero coefficients bring more

information, and it will be seen that, for the same resolution, the final distortion is smaller in the

refined quadtree than in the standard one. Of course, when a Rate-Distortion study is performed,

the fact that the non-zero coefficients of this kind of quadtree bring more information implies that

more bits are needed to code them. These additional bits are, anyway, useful, due to the significant

decrease in distortion they bring.

In brief, for the optimal quadtree, one has to count NJ ∼ 2J non-zero coefficients when J levels

are used as well.
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3.4.2 Distortion

When using refinement, the distortion for a given number of terms is smaller, of course. If there are

J quadtree levels, and L refinement levels (2L refinement segments inside a quadtree partition), the

distortion for one coefficient will no longer be 2−J × 2−J , but 2−J ×
(
2−J2−L

)
, so for one coefficient

the distortion is D1 = 2−2J2−L. The final distortion when L levels of refinement and J quadtree

depths are used is then [42] :

D = D1 ·Ne ∼ 2−2J2−L · 2J = 2−J2−L (3.6)

In fact, adding this refinement is equivalent to introducing, in a limited way, some anisotropy

and rotation. It can be seen that, as expected, adding refinement in the quadtree causes that, for

the same number of coefficients, the distortion is smaller. [42] demonstrated that this reduction in

distortion implies an improvement in R-D performance as well.

3.4.3 Rate-Distortion behavior

The rate estimation of the optimal quadtree based compression is performed similarly to the rate

estimation of the normal quadtree, but taking into account the L refinement bits that are needed.

The total rate of this kind of quadtree can be written as [42]:

R = 2 ·Na + 2L · 2J ∼ L · 2J . (3.7)

Taking the expression of the distortion (Eq. (3.6)), and, without loss of generality, considering that

L = J to simplify it, one gets that the Rate-Distortion behavior of the optimal quadtree is:

D(R) ∼ logR

R2
, (3.8)

which is an improvement with respect to the normal quadtree. Once more, the expression is inde-

pendent on the regularity of the curve. This expression is approximately the characteristic wedgelet

R-D [46, 204, 205], which use a very similar representation scheme.

3.5 Anisotropic quadtree

In the anisotropic quadtree [63, 64], the x axis keeps on being dyadically divided, similarly to the

standard quadtree technique, but the y axis partition depends on the position of the edge. The size

of the partition height is always chosen so that the superior and inferior horizontal limits of the

partition are located as close as possible to the edge but without crossing it. Once a first partition

has been built following this scheme, the dyadic rectangle containing the edge will be divided in two

along the x axis. The partitions are refined and further divided, until the desired accuracy is reached

(i.e. until either the height or the width of the rectangle has size 2−J , with J the maximum number

of refinements allowed). Figure 3.1(b) shows an example of an anisotropic quadtree decomposition

of a contour.

3.5.1 Number of terms in the decomposition

As can be seen in Figure 3.1(b), the number of edge partitions that are found in the anisotropic

quadtree is exactly the number of rectangles that have achieved the last resolution.

The iterative anisotropic quadtree algorithm is going to stop when the height or the width of the

rectangle achieves the minimum resolution allowed. The width of the rectangle is always divided
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dyadically, except in the case where the height of the rectangle has already achieved the minimum

resolution. The height of the rectangle depends on the slope of the edge that is inside. If the edge

inside the present partition is a straight line with slope one (a line with a 45◦ angle), the partition

will be a perfect square. If the slope of the line is smaller than one, the partition will be wider than

higher. On the contrary, if the slope is bigger than one, the partition will be higher than wider.

With this, one can see that the slope of the curve that is being represented influences the height of

the partition, and thus the number of divisions that participate in the representation of a curve. A

curve that is almost flat is represented with few partitions, while a curve that is very steep needs

more divisions to achieve the smaller resolution.

The slope of a curve is computed through the first derivative of the curve. To get an upper-bound

of the number of coefficients that participate in a decomposition, one has to consider the worst case,

and so, to take the maximum value of the first derivative of the curve that is being analyzed inside

each partition. An even worse upper bound is the maximum of the derivative of the function h(x)

in the interval [0, 1]. The height of a partition will then be smaller or equal to its width times the

maximum of the first derivative. So, for resolution j, the height of a partition satisfies:

⌈
2−j · |h′(x)|

2−J

⌉
≤ 2J−jd|h′(x)|e. (3.9)

Thus, the quadtree will perform at most

Jstop = J + dlog2 |h′max(x)|e (3.10)

iterations. There are two cases to be considered: h′(x) < 1 and h′(x) ≥ 1. If h′(x) < 1, the above

stopping criterion is reached before the maximum quadtree depth allowed J . On the contrary, if

|h′max(x)| > 1, it means that J + dlog2 |h′max(x)|e > J , thus, the quadtree stops at J . With this, one

can deduce that the number of edge partitions in the anisotropic quadtree is:

NeJ
≤ min

{
2J+dlog2 |h′

max|e, 2J
}
. (3.11)

Notice that the case h′max(x) = 0 is very special, because it means that with only one iteration,

the minimum resolution has been achieved. The above expression is then non valid, and simply

NeJ
= 1.

3.5.2 Distortion

The distortion of the anisotropic quadtree is not very different than the distortion of the isotropic

quadtree because, at the lowest resolution, the total area of the partitions that have an edge inside is

almost the approximately same for both schemes. The fact of having possibly larger end partitions

is compensated by the fact of having less partitions, at the last resolution. The distortion of one

coefficient in the anisotropic quadtree without refinement can be upper-bounded by the area of the

partition. Two cases have to be distinguished: Jstop = J or Jstop ≤ J + dlog2 |h′max(x)|e. For the

first case, the distortion of one coefficient is:

D1 ≤ 2−J · 2−J+dlog2 |h′
max(x)|e, (3.12)

where 2−J is the width and 2−J+dlog2 |h′
max(x)|e, the height. As the number of nonzero terms for this

case is 2J , the final distortion is:

D ≤ 2−J+dlog2 |h′
max(x)|e ∼ 2−J . (3.13)
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For the second case, the distortion of one coefficient is also:

D1 ≤ 2−J · 2−J+dlog2 |h′
max(x)|e, (3.14)

but in this case, the width is 2−J−dlog2 |h′
max(x)|e and the height is 2−J . The number of nonzero

coefficients for this second case is 2J+dlog2 |h′
max(x)|e, so the final distortion turns to be:

D ≤ 2−J . (3.15)

With this, it can be seen that, in terms of sparsity, introducing anisotropy without rotation is not

really worth: the reduction of the number of terms is not significant, and the distortion remains

approximately the same. Thus, if anisotropy is introduced, it has to come together with rotation in

the basis functions support.

3.5.3 Rate-Distortion

The number of bits needed to code an anisotropic quadtree can be expressed as:

R ≤
Jstop∑

j=0

2j · 2 ·Nbitsj
, (3.16)

where Nbitsj
counts the number of bits needed to code the height and the position of the partition,

and equals

Nbitsj
= J − j + dlog2 |h′(x)|e. (3.17)

The sum in Eq. (3.16) is a finite arithmetic sum, and its solution is:

R ≤ 2Jstop · 2 [J + dlog2 |h′(x) e − Jstop + 1] − 4J − 4dlog2 |h′(x)|e − 4 (3.18)

∼ 2Jstop · 2 [J − Jstopd+ log2 |h′(x) e + 1] . (3.19)

As it has been done to compute the distortion and the number of terms, two cases have to be

distinguished: Jstop = J and Jstop = J + dlog2 |h′(x)|e. In both cases, though, the asymptotic

behavior of the rate with the quadtree depth is:

R ∼ 2J . (3.20)

In order to see the evolution of the distortion with the rate, it will be necessary to find J(R), and

to substitute it in the expression of the distortion. It is easy to see that J ∼ logR, and thus, the

final distortion turns out to be:

D(R) =

{
2dlog2 |h′(x)|eR−1 jstop=J

R−1 jstop=J+dlog2 |h′(x)|e
(3.21)

3.6 Anisotropic quadtree with refinement

The anisotropic quadtree with refinement starts with the same procedure as the isotropic quadtree

with refinement. Once the partitions have been generated, and the last resolution have been achieved,

it codes the position of the edge at the border of the rectangles and approximates it as a straight

line.
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3.6.1 Number of terms

Similarly to the isotropic quadtree with refinement, the anisotropic quadtree with refinement uses

the same number of terms as the anisotropic quadtree. The only thing that changes with respect

to the anisotropic quadtree without refinement is the information that every term brings, and thus

the final distortion.

3.6.2 Distortion

Again, the distortion of the anisotropic quadtree with refinement and the distortion of the isotrop-

ic quadtree with refinement are equivalent. For one coefficient, the distortion of the anisotropic

quadtree with refinement is defined as:

D1 =

∫ x+

x−

h(x) − r(x)dx, (3.22)

being x− the lower bound in the x axis of the partition under analysis, x+ the upper bound, h(x)

the edge function and r(x) the straight line used to approximate h(x). The total distortion is then

the sum of the distortion of all the partitions in the finest resolution. In the above integral, r(x)

takes the following expression:

r(x) = Q[h(x−)] +
Q[h(x+)] −Q[h(x−)]

x+ − x−
(x− x−) , (3.23)

where Q[h(x)] is the quantization of h(x) with L refinement levels and L quadtree depths, and can

thus be written as Q[h(x)] = h(x)±2−J−L. Substituting in Eq. (3.22) h(x) by its third order Taylor

expansion in the interval middle point xc = x++x−

2 :

h(x) = h(xc) + h′(xc)(x− xc) +
h′′(xc)

2
(x− xc)

2 +O((x− xc)
3) (3.24)

and taking into account that x+ − x− = 2−Jstop , one obtains the distortion for one coefficient:

D1 =
−h′′(xc)

12
· 2−3Jstop ± 2−J−L · 2−Jstop · 2 +O

(
2−4j

)
(3.25)

As the final distortion of the anisotropic quadtree with refinement is the sum of the distortions of

all the partitions at the finest resolution, it becomes:

D ∼ 2−J2−L +
h′′(x)2−2Jstop

12
, (3.26)

where the quadtree is performed with a deep J and L levels of refinement inside the smallest size

partitions. Taking J = L, one finds that the final distortion is:

D ∼ 2−2J (3.27)

It can be seen that the distortion for the anisotropic quadtree with refinement is similar to the

isotropic quadtree with refinement, and the number of coefficients is similar as well.

3.6.3 Rate-Distortion

Let J be the number of bits used for quantizing. If Naj
is the number of all the rectangles at

iteration j and Ne the number of edge-rectangles (rectangles that have an edge inside), the number

of all nodes Na and of edge nodes Ne is:

Naj
∼ 2j , (3.28)
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Ne ≤ 2J+dlog2 h′
maxe, (3.29)

where J is the maximum number of decomposition levels allowed. As next iteration rectangle is

inside the previous iteration one, the number of bits needed to code the size of each rectangle

decreases with the iteration number as:

Nbits ≤ J − (j − 1) + dlog2 h
′
maxe. (3.30)

Taking into account the bits needed to code the rectangle sort (black, white, edge or intermediate)

and its size and position, the total bit-rate needed to code the anisotropic quadtree is given by:

R = (2 +Nbits)Na + 2L ·Ne, (3.31)

where L is the number of bits used to code the position where the edge crosses the dyadic rectangle.

The first term counts the bits needed to describe the partition position, and if the partition is black,

white, intermediate or edge, and the second term represents the bits needed to code the edge position

in the finest partition. Merging Eqs. (3.28), (3.29) and (3.30) with Eq. (3.31), one obtains:

R ≤
J+dlog2 h′

maxe∑

j=0

[(2 + J − (j − 1) + dlog2 h
′
maxe)2j ] + 2L · 2J+dlog2 h′

maxe. (3.32)

By developing the sums as arithmetic series, the previous equation turns to:

R ≤ (2 + J + dlog2 h
′e)(2J+dlog2 h′e+1 − 1) (3.33)

−[2J+1+dlog2 h′e(J + dlog2 h
′e − 1) + 2] + 2J+1+dlog2 h′eL. (3.34)

Simplifying, Eq. (3.33) gives:

R ≤ 2(3 + L)2J+dlog2 h′e − J − log2 h
′ − 4, (3.35)

and so:

R ≤ 2(L+ 3)2J + dlog2 h
′e. (3.36)

When considering L=J and high bit-rate the previous equation turns to:

R ∼ J · 2J+dlog2 h′e. (3.37)

This result is equivalent to the quadtree result, but with a term 2dlog2 h′e which comes from the fact

of using irregular h axis division. Taking the distortion given by Eq. (3.27), and considering again

that L = J , one obtains:

D(R, f) ≤ C2−2J . (3.38)

And from the previous expression and Eq. (3.37):

D ∼ 22dlog2 h′e log2
2R

R2
. (3.39)

In the above expression, it can be seen that the rate-distortion of the irregular quadtree is similar to

the one of the regular quadtree but with a factor 22dlog2 h′e that comes from the use of anisotropy.

The use of rectangles when dividing gives already a factor 2dlog2 h′e and the coding of the position

where the edge crosses the border of the rectangle gives the other term 2dlog2 h′e.
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Figure 3.2: Anisotropic quadtree with rotation. (a) shows how the decomposition at one

resolution level behaves, and (b) shows the final decomposition results when using 4 decomposition

levels.

3.7 Anisotropic quadtree with rotation

Looking at Figure 3.1(b), one clearly sees that introducing anisotropy slightly reduces the number

of “boxes” in a decomposition, but not impressively. Intuitively, the next step is to use not only

rectangular, but rectangular and rotated boxes. The implementation of such a scheme looks difficult,

but it can be achieved by a very simple procedure:

Taking the curve in the unit interval [0, 1]2, one has to join the two extreme points with a line

that represents the curve average slope. The end points of the line have to fall on a quantization

point (see Figure 3.2(a)). This line will then be moved up and down, to form the upper limit and

the lower limit of the partition in such a way that the edge never goes out of the partition, but

that the partition limits are as close to the edge as the quantization resolution allows, forming a

parallelogram that contains the edge.

The second resolution is obtained by splitting the x axis dyadically, and performing the same

procedure inside every one of the new partitions. Following this scheme strictly, the next partition

may not be completely nested to the previous one, but there will be either the upper corner or the

lower corner of both the left and the right sides of the next partition that will be inside the previous

one. One can slightly change the scheme by forcing to have nested partitions. This is done simply

by slightly adjusting the slope of the next partition so that it does not fall outside the previous one.

Forcing nested partitions does not change the number of terms or distortion evolution.

Similarly to the anisotropic quadtree algorithm, the y axis partition will basically depend on the

edge, while the x axis partition depends on the iteration number. Fig. 3.2(b) represents this edge

analysis.

3.7.1 Number of terms

Similarly to the anisotropic quadtree, the anisotropic and rotated quadtree is going to stop when

the height H of the parallelogram (see Figure 3.2(a)) achieves the smallest resolution, which is 2−J
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if J refinement levels are allowed.

To be able to count the number of terms in the decomposition, the edge function inside every box

will be approximated by its second order Taylor expansion at the central point. The first partition

is the whole unit interval.

Defining x− as the lowest point in the x axis which is inside the interval to analyze and x+ as

the highest one, the coordinates of the two extreme points of the curve quantized on a dyadic grid

will be (x−,Q[h(x−)]) and (x+, Q[h(x+)]). The line which joins these two points is:

r(x) = Q[h(x−)] +
Q[h(x+)] −Q[h(x−)]

x+ − x−
(x− x−), (3.40)

where Q[·] stands for uniform quantization. The parallelogram cannot cross the edge, therefore its

superior and inferior distances to the line are, respectively:

d+ = max

{
0, sup

x∈Xj

(h(x) − r(x))

}
≥ 0, (3.41)

and

d− = max

{
0, sup

x∈Xj

(r(x) − h(x))

}
≥ 0, (3.42)

where Xj is the set of points in the x axis that belong to the partition under analysis. Then the

height of the parallelogram confining the edge in partition j will be:

Hj = Q [d+ + d−] . (3.43)

And the number of terms can be found by counting all the rectangles that achieve a height H = 2−J

all over the quadtree depths. Knowing the expression of the height of the parallelogram at iteration

j, one can compute the number of refinements necessary to achieve Hj = 2−J and thus find the

number of edge partitions. Three cases have to be considered: d+ and d− are both greater than

zero, one of them is equal to zero, and finally d+ = d− = 0.

Case d+ > 0 and d− > 0

To compute the height of one partition, one has to compute the point where the distance between

the edge and the line r(x) is maximum above (maximum positive distance) and below (maximum

negative distance). Taking xd+
as the point in the x axis where r(x) − h(x) is maximum, and

approximating the curve by its second order Taylor expansion in the central point of the interval

being analyzed, we get:

d+ = h(xd+
) − r(xd+

) =

= h
(

x++x−

2

)
+ h′

(
x++x−

2

)(
xd+

− x++x−

2

)
+ 1

2h
′′
(

x++x−

2

)(
xd+

− x++x−

2

)2

−h(x−) − h(x+)−h(x−)
x+−x−

(
xd+

− x−
)

+O

((
xd+

− x++x−

2

)3
)
,

(3.44)

where r(x) has been substituted by its expression taking into account the quantization errors of
2−J

2 , as J refinement steps are allowed:

r(x) = h(x−) ± 2−J

2
+
h(x+) − h(x−) ± 2−J

x+ − x−
(x− x−). (3.45)



44 Chapter 3. Towards geometric image representations

Taking Eq. (3.44) and substituting h(x−) and h(x+) by its Taylor expansion in the interval’s middle

point, gives:

d+ =
[
h′
(

x++x−

2

)
− h(x+)−h(x−)

x+−x−

] (
xd+

−x−
)
± 2−J

(
xd+−x−

x+−x−

)

+ 1
2h

′′
(

x++x−

2

)[(
xd+

− x++x−

2

)2

−
(

x+−x−

2

)2
]

± 2−J

2 +O

((
xd+

− x++x−

2

)3
)

+O

((
x−−x+

2

)3
)
,

(3.46)

It is possible to show that [156, 157]:
∣∣∣∣h

′
(
x+ + x−

2

)
− h(x+) − h(x−)

x+ − x−

∣∣∣∣ ≤ 2−2j (3.47)

and so [
h′
(
x+ + x−

2

)
− h(x+) − h(x−)

x+ − x−

](
xd+

− x−
)
∼ O

(
2−3j

)
. (3.48)

It is also easy to see that:
∣∣∣∣∣

(
xd+

− x+ + x−
2

)2

−
(
x+ − x−

2

)2
∣∣∣∣∣ ≤ 2−2(j+1), (3.49)

which brings the following bound for the 3rd term in Eq. (3.46):

1

2
h′′
(
x+ + x−

2

)[(
xd+

− x+ + x−
2

)2

−
(
x+ − x−

2

)2
]
≤ 1

2

∣∣∣∣h
′′
(
x+ + x−

2

)∣∣∣∣ 2
−2(j+1). (3.50)

This expression is related to the second derivative of the edge computed in the middle point of each

interval at each iteration. From now on, to simplify the notation, it will be referred to as Kk
j , where

k refers to the label of the box and j to the iteration:

Kk
j =

∣∣∣∣h
′′
((

k +
1

2

)
2−j

)∣∣∣∣ , (3.51)

with 0 ≤ k ≤ 2j − 1. Since the curvature of a function is h′′(x)

(1+h′2)
3
2
, K can be considered as its

approximation. As the edge is considered to be a C2 curve, the set of Kk
j is bounded:

β = max
0≤k≤2J−1

∣∣∣∣h
′′
((

k +
1

2

)
2−J

)∣∣∣∣ <∞. (3.52)

From equation (3.46) it follows that at iteration j and in box k the asymptotic behavior of d+ is

given by:

d+ ∼ 1

2
Kk

j 2−J−log2 β +
3

2
2−J . (3.53)

In fact the other terms are O(2−3j) (one order of magnitude smaller), so they can be neglected when

computing the asymptotic behavior. Finally d− can be found with exactly the same method and

has an identical behavior.

The iterative algorithm is going to stop when the requested resolution is reached, i.e., when

Hj = 2−J . Substituting in Eq. (3.43), the number of iterations needed to reach this parallelogram

height can be obtained as a function of the resolution and of the maximum curvature of the edge:

Jstop = max

{
0,

1

2
(J + log2 β + 1)

}
. (3.54)

Thus, for this case, the number of non-zero terms that play a role in the decomposition is, at most,

of 2Jstop :

Nj ≤ max
{

1, 2
1
2 (J+dlog2 βe+1)

}
∼ 2

J
2 . (3.55)
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Case d+ > 0, d− = 0 or vice versa

This case turns out to have approximately the same number of terms than the previous one. Only

some constants differ, but the general behavior is the same, so again:

Nj ≤ max
{

1, 2
1
2 (J+dlog2 βe+1)

}
∼ 2

J
2 . (3.56)

Case d− = d+ = 0

This case is very favorable to our coding scheme, because it means that with just one iteration the

minimum distortion requirement is reached. If d+ = d− = 0, the parallelogram height will be:

H = 2−J , (3.57)

thus the number of non-zero coefficients turns to be one:

NJ = 1. (3.58)

3.7.2 Distortion

The computation of the distortion in the anisotropic quadtree with rotation must, again, consider

different cases, depending on the values of d+ and d−, described in Eqs. (3.41) and (3.42).

Case d+ > 0 and d− > 0

As in the other schemes, the final distortion of the anisotropic quadtree with rotation is the distortion

at the finest resolution (j = Jstop). Taking the values obtained in the previous section, one can easily

see that it takes the following form:

D =

2Jstop−1∑

k=0

(d+ + d−) 2−Jstop =

2Jstop−1∑

k=0

(
Kk

Jstop
+ 3
)

2−3Jstop (3.59)

= 2−2Jstop




2Jstop−1∑

k=0

Kk
Jstop

2−Jstop +

2Jstop−1∑

k=0

3 · 2−Jstop


,

where the one term distortion (d+ + d−) 2−Jstop (corresponding the area of one parallelogram) has

been summed all over the terms that play a role in the decomposition to obtain the total one. In

the right-hand side of equation (3.59), the second sum gives a constant, while the first, as Kk
Jstop

is

related with the maximum value of the second derivative of the curve. When Jstop → ∞, this term

converges to the Riemann integral of the second derivative of the curve:

lim
j→∞

2Jstop−1∑

k=0

Kk
Jstop

· 2−Jstop =

∫ 1

0

|h′′(x)| dx. (3.60)

This can be seen as an approximation of the total variation TV of the edge (Riemann integral of the

curvature), with the only difference of having a sum of Kk
j instead of the integral of the curvature.

Calling it T̃V the final expression for the distortion becomes:

D ∼
(
T̃V + 3

)
· 2−2Jstop ∼

(
T̃V + 3

)
· 2−J−log2 β . (3.61)

Remember that β corresponds to a measure of the maximum curvature, thus, the distortion of this

scheme will be highly dependent on the geometry of the curve. Similarly to what happens with the

number of non-zero terms, the more complex the curve, the bigger the distortion.
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Case d+ > 0, d− = 0 or vice versa

This case turns to have the same distortion as the previous one. The evolution of the distortion

with the refinement does not change. Some constants differ, but the general behavior is the same.

Case d− = d+ = 0

The computation of the distortion for this case is very easy, as only one parallelogram with height

2−J and width 1 is present here. The final distortion is thus:

D ≤ 2−J (3.62)

3.7.3 Rate-Distortion

As it has been done for the study of the distortion and the number of terms in the decomposition,

the study of the anisotropic quadtree with rotation requires three different cases:

Case d+ > 0 and d− > 0

Each rotated box is coded by means of Hj and a left and a right vertex, so at the first iteration J

bits are needed to code H0 and 2J bits for the position of the two vertices, which makes 3J bits. At

iteration j, as at least two of the vertices of the following parallelogram will be inside the previous

one, the number of bits needed to code one vertex of the box k depends on Hj−1 as follows:

Nk
bits V = log2

Hk′

j−1

2−J
= J − 2(j − 2) +

⌈
log2

(
Kk

j−1

)⌉
, (3.63)

where k′ is the index for the boxes of the previous iteration. As the number of bits needed to code

all the boxes at iteration j is given by the bits for the two vertices and the height multiplied by the

number of parallelograms, the total rate will be:

R =

Jstop∑

j=0

(2Nbits V +Nbits H) × 2j , (3.64)

where Nbits H is the number of bits needed to code the height of each box, which is the same as

Nbits V. So the final rate turns out to be:

R = 3J+2+

Jstop∑

j=1

2j−1∑

k=0

((
J−2(j−1)+dlog2K

k
j−1e

)
·3+2

)
≤

≤ 3J+2 +

Jstop∑

j=1

2j−1∑

k=0

((J−2(j−1)+dlog2 βe)·3+2)=

= 3J+2 +

Jstop∑

j=1

((J−2(j−1) + dlog2 βe)·3+2)·2j .

(3.65)

This is an arithmetico-geometrical progression, whose sum is [83]:

R ≤ 28 · 2 1
2 (J+dlog2 βe) − 3J − 26 − 6dlog2 βe. (3.66)

Finally, for J large enough, the dominant term is the first one, thus:

R ∼ 2
1
2 (J+dlog2 βe). (3.67)
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Combining this equation with (3.61) we obtain the asymptotic Rate-Distortion behavior:

D(R) ∼
(
T̃V + 3

)
· 2−2 log R (3.68)

and so:

D(R) ∼
(
T̃V + 3

)
·R−2. (3.69)

Case d+ > 0, d− = 0 or vice versa

This case turns out to have the same distortion rate as the previous one, because the evolution of

the distortion with the refinement does not change. Only some constants differ, but the general

behavior is the same.

Case d− = d+ = 0

This case is very favorable to our coding scheme, because with just one iteration the minimum

distortion requirement is reached. As there is only one box, the rate is just the cost in bits to code

the two vertices and the box’s height:

R = 3J. (3.70)

This makes a Rate-Distortion behavior of:

D(R) = 2−
R
3 , (3.71)

which is the optimal parametric rate, and is coherent with the results obtained in [42].

3.8 Anisotropic quadtree with rotation and refinement

The anisotropic quadtree with rotation and refinement uses the same division process as the anisotrop-

ic quadtree with rotation, but with an extra step: Once the smallest resolution has been achieved, it

codes where the edge crosses the parallelogram left and right borders, in order to give a continuous

edge line.

3.8.1 Number of terms

As in the case of the isotropic quadtree with refinement, the number of non-zero terms of the

anisotropic quadtree with refinement is the same than the number of the non-zero terms of the

anisotropic quadtree without refinement, because the number of partitions does not change, just the

information every coefficient gives is different.

3.8.2 Distortion

As in the previous cases, the fact of adding the refinement in the scheme reduces the distortion of

the final decomposition. Being L the number of levels of refinement allowed in a quadtree partition,

the final distortion in this kind of schemes is as follows.

Case d+ > 0 and d− > 0

Following the same procedure, the distortion found for the case d+ > 0 and d− > 0 is:

D = T̃V · 2−2J + 3 · 2−J−L, (3.72)

where J is, as usual, the depth of the quadtree and L is the depth of the refinement in the finest

quadtree decomposition level.
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Case d+ > 0, d− = 0 or vice versa

As usual, this case has just some minor changes with respect to the previous one, so it will not be

recomputed here. The final distortion becomes:

D = T̃V · 2−2J + 3 · 2−J−L, (3.73)

where J is the depth of the quadtree and L is the depth of the refinement in the last quadtree

decomposition level.

Case d− = d+ = 0

The distortion for this case, obtained with the same procedure as in the other cases, is:

D ≤ 2−J−L (3.74)

3.8.3 Rate-Distortion

This section studies what the effect of the refinement in the Rate-Distortion behavior of the anisotrop-

ic quadtree with rotation. As usual, three cases are distinguished:

Case d+ > 0 and d− > 0

The anisotropic quadtree with refinement has a rate composed of two terms: the first term is the

number of bits needed to code the position and the size of the parallelograms at every iteration

(which is exactly the same as in Eq. (3.64)) plus the refinement bits.

The number of bits spent to refine depends on the finest resolution rectangle height. As the

width of the last resolution parallelograms is known (2−Jstop), it is easy to compute the number of

refinements inside when refining every 2−J as:

#ref =
2−Jstop

2−J
+ 1 = 2

1
2 (J−log2 β) + 1 (3.75)

So, the final rate will be:

R =

Jstop∑

j=0

(2Nbits edge +Nbits H) × 2j +
(
L · (2 1

2 (J−log2 β) + 1)
)
× 2Jstop , (3.76)

which, when evaluating the sum and substituting Jstop by its value (Eq. 3.54) becomes:

R = 2
1
2 (J+log2 β) + L · 2J . (3.77)

The final Distortion-Rate expression can be deduced from equations (3.72) and (3.77), and is

again obtained considering L = J :

D(R) ∼ T̃V · logR

R2
. (3.78)

As in the previous case, the distortion decreases as R−2 and directly depends on the curvature of

the edge.

Case d+ > 0, d− = 0 or vice versa

This case has the same distortion rate as the previous one, because the evolution of the distortion

with the refinement does not change. Only some constant values differ, but the general behavior is

the same.
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Figure 3.3: Comparison among JPEG2000, isotropic quadtree with refinement and anisotropic

quadtree with rotation for an image of 1024 × 1024 pixels.

Case d− = d+ = 0

This case is very favorable to our coding scheme, because it means that with just one iteration the

minimum distortion requirement is reached. If d+ = d− = 0, the parallelogram width will be:

(d+ + d−) = 2−J−L, (3.79)

and the rate will be just the bits needed to code the two vertices and the parallelogram width:

R = 3J + L. (3.80)

This, when J=L, makes a Rate-Distortion behavior of:

D(R) = 2−
R
2 , (3.81)

which is coherent with the results obtained in [42].

3.9 Practical results

Some comparisons among the anisotropic quadtree with rotation, the isotropic quadtree with re-

finement and wavelets (JPEG2000 [2]) are presented in Figure 3.3. These results show that the

anisotropic quadtree with rotation gives better approximations than any other method. The fact

that the slope for the anisotropic quadtree with or without refinement is almost the same in the

graph is probably because at such low bit-rates the log factor has no influence. The JPEG2000 is

far away to the right of the graph (it gives worse approximation), but this is due to the fact that it

is adapted to natural images and not to black and white ones.

Fig. 3.4 represents the rate distortion decay of four different curves with increasing Total Vari-

ation. It shows that the practical results are coherent with the theoretical behavior: the lower the

TV, the better the R-D. From left to right, the graph represents the rate-distortion of: a straight

line (TV=0), a parabola with TV=0.51, a cubic curve with TV=0.75 and a parabola with TV=0.89.
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Figure 3.4: Comparison of the bit-rate of different curves with different Total Variation.

3.10 Conclusions

This chapter has performed a toy model for the study of the benefits of introducing rotation and

anisotropy in the basis functions, in order to see if it is worth the effort of working with redundant

dictionaries. Through a toy Horizon model image, a study about the number of basis functions need-

ed to achieve a certain resolution level has been performed. This study has shown that introducing

anisotropy and rotation in the basis functions allows to approximate a signal with fewer terms. A

Rate-Distortion study has been performed as well, for this toy model, to see if there is a benefit in

terms of Rate-Distortion in performing a coding scheme with redundant dictionaries that include

anisotropy and rotation. The main conclusions of this study are summarized in Table 3.10. It has

been seen that anisotropy and rotation not only allow to approximate a signal with fewer terms, but

that the Rate-Distortion curve behaves better as well. Thus, it is worth studying the implementa-

tion of an image coder that uses redundant dictionaries with anisotropic and rotated functions. It

is also interesting to notice that the addition of the refinement step in the anisotropic quadtree with

rotation does not improve the Rate-Distortion behavior. This comes from the fact that, contrarily

to the other schemes presented in this chapter, the anisotropic quadtree with rotation already fol-

lows the slope of the contour in its partitions. Refining this, thus, slightly improves the distortion,

but not a lot. While in the isotropic quadtree and in the anisotropic quadtree, adding refinement

implies adding a sort of rotation, in the anisotropic quadtree with rotation, this last parameter is

not needed, due to the fact that this rotation is already taken into account in the construction of the

partitions. The main improvement that refinement brings is that it allows to keep the continuity of

the edge function.
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Scheme Number of terms Distortion Rate R-D (L = J)

Isotropic

Quadtree
∼ 2J 2−J J · 2J log R

R

Optimized

Quadtree
∼ 2J 2−J−L L · 2J log R

R2

Anisotropic

Quadtree
≤ 2J 2−J 2J R−1

Anisotropic

Quadtree with

Refinement

≤ 2J 2−J−L L · 2J+dlog2 h′e 22dlog2 h′e log R
R2

Anisotropic

Quadtree with

Rotation

≤ 2
J
2 2−J 2

1
2 (J+dlog2 βe) (T̃V+3)

R2

Anisotropic

Quadtree with

Rotation and

Refinement

≤ 2
J
2 2−J−L 2

1
2 (J+dlog2 βe) + L · 2J T̃V · log R

R2

Table 3.1: Comparison of the performance of different quadtree schemes in number of terms,

distortion, rate and rate-distortion, for J quadtree decomposition levels and, if it proceeds, L levels

of refinement.
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Chapter 4

Sparse signal representations

The previous chapters have shown that arbitrary anisotropy and rotation in the basis functions

helps getting sparser approximations. But the set of basis functions containing anisotropy and

rotations forms a redundant dictionary. Working with a redundant set of basis functions has the

inconvenient of having a non-unique signal approximation. We would like to recover, from all the

possible approximations, the sparsest one. Finding the sparsest signal approximation in a redundant

set of basis functions is NP-hard, and thus some techniques have to be used that allow to solve this

problem. But these techniques do not always guarantee to be able find the optimal solution. This

chapter reviews some of these techniques, and discusses their performances.

This chapter is structured as follows: Section 4.1 introduces the problem of sparse image repre-

sentations. Section 4.2 gives some useful definitions to better understand the notations. Section 4.3

briefly introduces some of the most common algorithms for dealing with redundant dictionaries.

Section 4.4 gives some conclusions about the properties of dictionaries that ensure recoverability of

sparse signal approximations and dictionaries that are capable of sparsely approximating and image.

Finally, Section 4.5 gives some conclusions about these dictionaries and their usefulness for sparse

signal representation.

4.1 Introduction

Since the growing interest for sparse signal representations, redundant dictionaries have been more

and more studied. Indeed, several authors have been trying to find which cases ensure that a given

algorithm finds the sparsest possible solution in a fixed redundant dictionary. This implies two main

issues: the redundancy of the dictionary of functions and the algorithm used to compute the sparse

approximation.

In order to better understand what sparsity means, a proper definition about sparse representa-

tion should be given. The sparsest possible representation of a signal s in an overcomplete dictionary

D with synthesis matrix Φ is the sequence of coefficients c that solves the optimization problem:

min
c

‖c‖0 subject to s = Φc, (4.1)

53



54 Chapter 4. Sparse signal representations

where ‖ · ‖0 is the `o pseudo-norm (that counts the non-zero temrms). When dealing with sparse

approximations, the above minimization problem transforms to:

min
c

‖e‖2 subject to s = Φc+ e and ‖c‖0 ≤ m, (4.2)

or, if what is fixed is not the number of terms but the maximum error allowed:

min
c

‖c‖0 subject to s = Φc+ e and ‖e‖2 ≤ ε, (4.3)

where ε ≥ 0. One may want to use a combination of the last two problems, in order to have a

compromise between the error decay and the increasing number of terms:

min
c

{
‖s − Φc‖2

2 + τ2‖c‖0

}
. (4.4)

The sparse optimization problem defined in Eq. (4.4) is a non-convex discrete optimization problem,

and thus cannot determine a global extrema with standard optimization algorithms. There are

several different techniques that try to solve this optimization problem. Some of them, such as Basis

Pursuit (BP) [21], try to transform this non-convex algorithm into a convex problem, and solve it

by linear programming. Other techniques, such as Matching Pursuit (MP) [119] or Orthonormal

Matching Pursuit (OMP) [143], try to solve it term by term, instead of solving the global problem.

The most common algorithms that are used for sparse image representation and/or approximation

will be explained in the next section.

Sparse approximation has been studied for a long time. Temlyakov [185] locates the first example

in an article published at the beginning of the twentieth century [165]. Even though in the 1950s

there were some investigations about subset selection in regression, reviewed in [128], it is not until

the end of the twentieth century that a systematic study of them-term representation with respect to

orthonormal bases and redundant systems was started [76, 87, 88, 89, 108, 117, 117, 132]. The study

of the sparsest approximation is even more complex than the study of sparsest signal representation,

and it is also quite recently that it has been studied in depth [34, 77, 86, 90, 110, 185, 188, 189, 190,

191].

There are several questions to answer when looking for a sparse signal representation. First of

all, the set of basis functions used is able to perform this sparse representation has to be found. In

order to be able to perform a sparse representation of a signal, the considered set of basis functions

has to be able to represent this signal with a number of terms that is smaller than the dimension

of the signal. This is a very hard condition, and it was demonstrated that the probability of

finding a natural signal that can be sparsely represented [188] forms a set of Lebesgue measure

zero in C
d. Nevertheless, there are situations where a signal can be designed with this exact sparse

representation (such as in some communication problems), and thus, these results can be directly

applied. However, the problem to focus for natural images is not to find a dictionary that can

exactly represent a signal in a sparse way, but to find a dictionary that can efficiently approximate

a signal with a small number of terms. As seen in the previous chapter, such a dictionary forms a

redundant set of basis functions.

4.2 Some definitions

Before starting the description of different algorithms to recover sparse signal representation/approximation,

it is worth giving some definitions. Let

D = {gγ : γ ∈ Γ} (4.5)



4.3. Sparse signal representation with redundant dictionaries 55

be a redundant dictionary of basis functions, with Γ the set of basis function indices that generate

the dictionary.Φ is the synthesis matrix of the dictionary (the matrix that maps coefficient vectors

to signals). A signal s will then be represented as:

s = Φc+ e, (4.6)

where c is the vector of coefficients and e is the representation error, which will be zero when dealing

with exact representations. Let

µ := max
k 6=l

γk,γl∈Γ

|〈gγk
,gγl

〉| (4.7)

be the coherence of the dictionary. The coherence µ, for a dictionary of normalized atoms, is always

0 ≤ µ < 1. The coherence is a measure of the maximum similarity of two basis functions in the

dictionary: the smaller the coherence, the more different is one basis function of the dictionary

from another. Notice that having µ near to one does not mean that all the basis functions of the

dictionary are similar among them, it just means that there are two basis functions in the dictionary

that are similar. To have a better measure of the coherence of a dictionary, it is more appropriate

to use the cumulative coherence or Babel function [188, 189, 191]:

µ1(m,D) := max
card(Λ)≤m

max
ω/∈Λ

∑

λ∈Λ

|〈gγλ
,gγω

〉| . (4.8)

Finally, M will be the number of terms used in the sparse representation.

4.3 Sparse signal representation with redundant dictionaries

Redundant dictionaries do not provide a unique signal representation, and finding the sparsest

solution is not an easy task since performing a full search is an NP-hard problem [29, 134]. In this

section, a brief explanation about the most common techniques used to solve this problem, with

special focus on Matching Pursuit (which will be used throughout this thesis) and Basis Pursuit

(which has brought interesting theoretical results during the last years) will be introduced. All

the techniques presented here have one common point: they try to find a solution to the NP-hard

problem of finding the sparsest signal approximation.

4.3.1 Basis Pursuit and Basis Pursuit Denoising

Basis Pursuit (BP) tries to solve the non-convex `0 minimization problem of Eq. (4.1) by solving

instead the `1 norm convex problem [21]:

min
c

‖c‖1 subject to s = Φc. (4.9)

But once again, this method is not applicable for real world signals, because the probability of having

an exact sparse representation forms a set of Lebesgue measure zero in C
d [188]. To overcome this

problem inherent to BP, Basis Pursuit DeNosing (BPDN) is introduced [21]. Basis Pursuit denoising

is a method that tries to solve the non-convex optimization problem of Eq. (4.4) by transforming it

to a convex problem that uses the `1 norm instead of the `0 [194]:

min
c

{
1

2
‖s − Φc‖2

2 + λ‖c‖1

}
. (4.10)

Generally speaking, Basis Pursuit is more a paradigm to solve the sparse signal representation

problem than an algorithm. Several algorithms can be used to find the solution to the optimization
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problem defined in Eq. (4.10). The advantage of Basis Pursuit is that one can control, with the λ

parameter in Eq. (4.10), how much energy must the residual loose when adding a new coefficient. The

disadvantage of BP is that one cannot directly control the number of terms that the minimization

procedure will give. Modifying the λ parameter will certainly increase or decrease the `1 norm,

but not necessarily the number of terms. It can happen that the number of terms stays constant,

and that only the magnitude of the decomposition coefficient changes. On the contrary, it can also

happen that with a little change in λ, the number of terms suddenly increases or decreases.

4.3.2 Greedy algorithms

Greedy algorithms were first introduced for solving statistical problems [70, 71]. They were used

to deal with high dimensional data, when the observations of the random variable were sparse [70].

The theoretical background of greedy algorithms was first studied in [35], even though [99] had

already performed a study of the convergence of greedy algorithms. Greedy algorithms iteratively

construct an approximant by selecting the element of the dictionary that best matches the signal

at each iteration. The pure greedy algorithm is known as Matching Pursuit [119], but there are

variations of the Greedy algorithm, such as the Weak Greedy algorithm [182] with its variations

[183, 186], or the Vector greedy algorithms [116].

Greedy algorithms offer constructive procedures for computing highly non-linear N -term ap-

proximations. Although the mathematical analysis of their approximation properties is difficult,

due to their nonlinear nature, interesting results have been emerging (see for example [79]). The

choice of a particular algorithm generally consists in trading off complexity and optimality, or more

generally efficiency. The new image compression scheme presented in Chapter 6 proposes to use

Matching Pursuit as a suboptimal algorithm to obtain a sparse signal expansion, yet an efficient

way to produce a progressive low bit-rate image representation with a controlled complexity. Match-

ing Pursuit, as already stressed before, iteratively chooses the best matching terms in a dictionary.

Despite its possible numerical complexity, MP is very easy to implement. Moreover, since there is

almost no constraint on the dictionary itself, MP clearly stands as a natural candidate to implement

an efficient coding scheme based on anisotropic refinement, and such a construction is detailed in

the next section.

Matching Pursuit

Let s be a signal to represent in a given dictionary D with synthesis matrix Φ. Assuming that all

atoms in D have unit norm, let the algorithm be initialized by setting R0s = s. The signal is first

decomposed as

R0s = 〈gγ0
,R0s〉gγ0

+ R1s , (4.11)

with gγ0
the function in the dictionary that minimizes the energy of the residual (equivalent to

maximize the scalar product between the signal to represent and the basis functions gγ0
):

gγ0
s.t. |〈R0s,gγ0

〉| = sup
γ∈Γ

|〈R0s,gγ〉|, (4.12)

Γ being the set of indices of the basis functions in the dictionary. Clearly gγ0
is orthogonal to R1s

and thus:

‖R0s‖2
2 = |〈gγ0

,R0s〉|2 + ‖R1s‖2 . (4.13)

At the next step, the same procedure is applied to R1s, which yields to

R1s = 〈gγ1
,R1s〉gγ1

+ R2s , (4.14)



4.3. Sparse signal representation with redundant dictionaries 57

where gγ1
maximizes |〈gγ ,R

1s〉|. IteratingM times this procedure, the following signal approximant

is obtained:

s =

M−1∑

m=0

〈gγm
,Rms〉gγm

+ RMs , (4.15)

where the norm of the residual (approximation error) satisfies

‖RMs‖2 = ‖s‖2 −
M−1∑

m=0

|〈gγm
,Rms〉|2 , (4.16)

with m the iteration number in which the basis function gγm
has been chosen.

In [99] it was proved that Matching Pursuit converges and even converges exponentially in the

strong topology in finite dimension (see [119] for a proof). Unfortunately, this is not true in the

general case of infinite dimension, even though this property holds for particular dictionaries [198].

However, DeVore and Temlyakov [35] constructed a dictionary for which even a good signal, i.e., a

sum of two dictionary elements, has a very bad rate of approximation. In this case a very sparse

representation of the signal exists, but the algorithm dramatically fails to recover it! Notice though,

as already stated before, that this does in no way rule out the existence of particular classes of

efficient dictionaries. Section 4.4.3 gives an overview about under which conditions Matching Pursuit

is capable of finding the sparsest approximation. Matching Pursuit does not generally achieve an

exact representation with a finite number of terms. However, this can be solved by using Orthogonal

Matching Pursuit, that recursively orthogonalizes the set of selected atoms.

Orthogonal Matching Pursuit

A clear drawback of the pure greedy algorithm is that the expansion of s on the linear span of the

selected atoms is not the best possible one, since it is not an orthogonal projection. Orthogonal

Matching Pursuit (OMP) [30, 143] solves this problem by recursively orthogonalizing the set of

selected atoms using a Gram-Schmidt procedure [5]. The best M -term approximation on the set of

selected atoms is thus computed and the algorithm can be shown to converge in a finite number of

steps, but at the expense of a much bigger computational complexity.

The selection procedure of OMP is similar to MP:

Rms = 〈gγm
,Rms〉gγm

+ Rm+1s . (4.17)

Once the basis function has been chosen, the Gram-Schmidt algorithm orthogonalizes gγm
with

respect to
{
gγp

}
0≤p<m

and defines:

um = gγm
−

m−1∑

p=0

〈gγm
,up〉

‖up‖1
up. (4.18)

The residue Rms is then projected on um instead of gγm
:

Rms =
〈Rms,um〉
‖um‖2

um + Rm+1s. (4.19)

The M term representation of s is then given by:

s =

M−1∑

m=0

〈Rms,um〉
‖um‖2

um + RMs, (4.20)
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where M < S, with S the dimension of the signal space of s. If M = S, then

s =

M−1∑

m=0

〈Rms,um〉
‖um‖2

um. (4.21)

Thus, convergence is obtained with a finite number of iterations (for signal with finite dimension).

It is possible to expand s over the original dictionary vectors, and just change the magnitude of

the projection coefficients through a change of basis. This can be done by inverting the triangular

Gram-Schmidt relations in Eq. (4.18) to expand um in
{
gγp

}
0≤p<m

:

um =

m∑

p=0

b[p,m]gγp
. (4.22)

The M term approximation of the signal s can then be written as:

sM =

M−1∑

p=0

a[γp]gγp
, (4.23)

with

a[γp] =

M−1∑

m=p

b[p,m]
〈Rms,gγm

〉
‖um‖2

. (4.24)

This is often done, when using OMP decompositions, in order to avoid performing the Gram-Schmidt

orthogonalization of the basis functions both in the decomposition and in the reconstruction process.

The interested reader can find optimized versions of Orthogonal Matching Pursuit in [78, 152].

4.3.3 Weak Greedy algorithms

Even though greedy algorithms transform, for finite dictionaries, an NP-hard problem into a problem

that has Polynomial complexity, it is still computationally hard to perform all the necessary scalar

products when the dictionary of basis functions is large. This has motivated the study of Weak

Greedy algorithms [35, 182]. Weak Greedy algorithms do not need to find the dictionary function

that has the biggest projection. The atom selection rule is modified, allowing to choose a slightly

suboptimal candidate:

gγm
s.t. |〈Rms,gγm

〉| > tm sup
g∈D

|〈Rms,gγopt
〉| , tm 6 1 . (4.25)

Apart from the selection criteria, Weak Greedy algorithms work exactly as Matching Pursuit: they

select the basis functions iteratively, from the approximation residual.

It was demonstrated in [184] that Weak Greedy algorithms are also able, when certain conditions

hold, to converge to the optimal solution [184], even though the conditions under which this kind

of algorithms converge to the optimal solution are more strict, and, thus, more difficult to be held.

Weak Greedy algorithms are useful for problems that are too complex to solve even with the Greedy

algorithm.

4.3.4 Other existing algorithms

There are other algorithms that try to perform sparse signal representations, even though some of

them perform this kind of representations “unconsciously”. Most of them are not designed for a

generic application, but focused on a concrete one. Some examples of these algorithms are:
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FOCUSS (FOcal Underdetermined System Solver) [80] and its improved versions [130]. FOCUSS

is a nonparametric algorithm for finding localized energy solutions from limited data. The

FOCUSS algorithm consists of two parts: The first part finds a low resolution estimate of

the sparse signal. The second part prunes this solution, using a generalized Affine Scaling

Transformation (AST) to a sparse signal representation. The AST scales the entries of the

current solution by those of the solutions of previous iterations. It finds the solution at each

iteration by minimizing the `2 norm of the transformed variable. In some cases it is used to

find a smaller dictionary that sparsely represents a signal [108].

Bayesian approach [187, 209], which tries to learn the sparse approximation of a signal in a

Bayesian way from a probabilistic perspective.

Nonlinear programming methods [9], such as interior point method [170] or block coordinate

relaxation [162]. These methods converge to the solution of BP.

Method of Frames [27], where sparsity is not defined as having a low number of terms, but as

being localized in time and frequency.

Best Orthogonal Basis [24], where, from a predefined library of modulated waveforms, which in-

clude orthogonal wavelet-packets and localized trigonometric functions, builds an orthonormal

basis relative to which the given signal or collection of signals has the lowest information cost.

The cost function can be the `0 norm if one wants to achieve sparsity, or an entropy measure,

if the resulting library is intended to be used for compression.

Approximation using coherence [79] is an interesting approach to achieve sparse signal approx-

imation, but it can only be used for low coherence dictionaries.

Apart from the mentioned algorithms, a wide variety of algorithms that try to recover a sparse

solution exist. Some of them, such as [134] try to merge two algorithms, in order to improve their

behavior.

4.4 Recoverability of sparse signal approximations

All the algorithms presented in the previous section do not guarantee to find the sparsest solution

defined in Eq. (4.2). As it is impossible to know in advance whether a given algorithm will give

the sparsest possible approximation, several authors have studied their properties of approximation.

In this section, the conditions under which three of the presented algorithms (BP, BPD and MP)

achieve sparse signal approximation or representation will be presented. It will be seen that one

of the main conditions to make sure that an algorithm finds the sparsest solution will be to have

a dictionary with low coherence. Nevertheless, it has to be pointed out that, if the conditions

of recoverability of the solution are not held, it does not necessarily mean that the algorithm is

incapable of finding the sparsest solution. It just means that one cannot be sure that this is the

solution that has been recovered.

4.4.1 Basis Pursuit

Basis Pursuit (BP) is an algorithm intended for exact sparse signal representation [47]. It considers

that it is possible to represent a signal s as:

s = Φc, (4.26)
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and it tries to find the sequence x of coefficients that has the minimum `1 norm (see Eq. (4.9)). BP

has proved to be able to recover a signal formed by the union of two orthogonal bases (spikes and

sinusoids) if this signal has an exact representation sparse enough. Sparse enough means:

Mt +Mω <

√
N

2
, (4.27)

where Mt is the number of spikes in the signal, Mω is the number of non-zero sinusoid coefficients,

and N is the dimension of the signal space. This is a very concrete case, and it does not ensure that

BP is capable of finding the sparsest representation when using a more general dictionary. In [49],

Donoho and Huo extend the result to any union of two bases. They proved that if the solution is

very sparse in a dictionary formed by the union of two orthogonal bases, thus, if

M <
1

µ
, (4.28)

then, the solution is unique. BP can recover this unique solution for any union of two bases if:

M <
1

2

(
1 + µ−1

)
, (4.29)

so, if the number of terms involved in this representation is inversely proportional to the coherence

between the two bases. This condition was demonstrated to be sufficient and necessary [60], and

improved [55, 56] to:

M <

√
2 − 0.5

µ
. (4.30)

In spite of the importance of these results, which show that BP can, in some cases, recover an

exact sparse representation of a signal, the above results are only valid for dictionaries formed by

the union of two orthogonal bases. [47] extends the results of uniqueness of sparse representations

and recoverability with the `1 minimization, to general dictionaries. [88] is also an extension, but

with special care to the case where the dictionary is formed by the union of L orthogonal bases.

[76] proved that BP will always recover the good solution if the limit given in Eq. (4.29) is held.

The generalization of sparse representations to any sparsity measure f (see Appendix A) is very

interesting as well. In [87, 89], they generalized the uniqueness and coincidence of a maximally

sparse solution for the `0 and `1 norm to a set of norms that are in between (such as `p, with

0 < p < 1).

Basis Pursuit is able to recover an exact sparse decomposition. For real world signals, exact

sparse representations are not possible, we have to deal with sparse approximations. BP cannot

deal with sparse approximations, but Basis Pursuit Denoising (BPD) can.

4.4.2 Basis Pursuit Denosing

To study sparse approximations, one usually considers a signal that has an M -exact sparse rep-

resentation, but with some additive noise (see Eq. (4.6)). Under these circumstances, Fuchs [77]

demonstrated the following theorem:

Theorem 4.1 Let s = Φc + e with ‖e‖2 ≤ ε and M = ‖x‖0 ≤ β
µ with β ≤ 1

2 . Then, if one solves

Eq. (4.10) with

λ >

(
1 +

β

1 + µ− 2β

)
ε (4.31)
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the support of the optimum c1(h) that solves Eq. (4.9) is either identical or contained in the support

of x. And if one solves Eq. (4.9) with

λ =

(
1 +

β

1 + µ− 2β

)
ε (4.32)

and if

min
i

|ci| >
(

1 +
1

1 + µ− 2β

)
ε, (4.33)

with min
i

|ci| the smallest absolute value nonzero component of c, then:

support c = support c1, (4.34)

sign c = sign c1. (4.35)

This theorem basically means that if the difference between the energy of the residual and the

minimum coefficient in the decomposition is big enough, the good set of basis functions has been

found. Similar results were obtained by Tropp in [189].

4.4.3 Matching Pursuit and Orthogonal Matching Pursuit

Greedy algorithms have been widely used for a large number of applications, such as classifica-

tion [147], stochastic signal processing [53], coding [135], etc. Matching Pursuit and Orthogonal

Matching Pursuit were used even before there was any theoretical proof that could provide the

sparsest solution, just because they guarantee that the energy of the error always decreases. In

the last years, there has been a great interest in proving the convergence and the sparsest approx-

imation properties of greedy algorithms, and several authors have presented studies on this issue

[36, 79, 91, 104, 105, 106, 188] and some of its variations [111, 112, 116]. This section will try to

summarize the capability of recovering the sparsest approximation with MP and OMP, and to give

an overview of the approximation properties of Greedy algorithms.

The first convergence results for MP and OMP were only valid for dictionaries with a certain

structure, as in[198, 199], where Villemoes demonstrated that MP converged exponentially when

using a Walsh atom dictionary. Temlyakov et al. also studied the convergence of Greedy algorithms

in Banach spaces with certain smoothness assumptions and in the trigonometric system [36, 105,

106, 183] and even for general spaces [104]. These works ensure that the greedy algorithms solution

converges or that the difference of the optimal solution and the real one has bounded energy, but they

do not guarantee that Greedy algorithms are able to recover the sparsest signal approximation. The

fact that some Greedy algorithms are able to recover the sparsest signal approximation is pointed

out in [188, 191], with the following theorem concerning Orthogonal Matching Pursuit:

Theorem 4.2 For any signal s, Orthogonal Matching Pursuit can calculate an approximant aK

that consists of 0 ≤ K ≤ M atoms from the optimal M -term approximant aOPT and that satisfies

the error bound:

‖s − aK‖2
2 ≤

[
1 +

M (1 − µ1(M))

(1 − 2µ1(m))
2

]
‖s − aOPT ‖2

2. (4.36)

This result is generalized for MP in [91], where it is proved that if the signal atoms are incoherent

enough with the rest of the dictionary, MP always recovers the good expansion:

Theorem 4.3 Let D be a dictionary in a finite or infinite dimensional Hilbert space and I an index

set such that the Stability condition (SC) is met:

η(I) := sup
k/∈I

‖(ΦI)
−1gγk

‖1 < 1, (4.37)
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with (·)−1 the pseudo-inversion. Then, for any s =
∑

k∈I

ckgγk
∈ span(gγk

, k ∈ I), MP:

1. picks up only “correct” atoms at each step (∀n s.t. kn ∈ I).

2. if I is a finite set, then the residual rm converges exponentially to zero.

The previous theorem, when dealing with incoherent enough dictionaries, is even more explicit, and

says how many atoms can be picked and the degree of convergence of approximation of MP:

Theorem 4.4 Let D be a dictionary in a finite or infinite dimensional Hilbert space and µ its coher-

ence. For any finite set I of size card(I) = m <
(1+ 1

µ )
2 and any s =

∑
k−inI ckgγk

∈ span(gγk
, k ∈ I):

1. MP picks up only “correct” atoms at each step (∀n, kn ∈ I)

2. converges exponentially

‖sn − s‖2 ≤
((

1 +
1

µ

)
(1 + µ)

)n

‖s‖2 (4.38)

Theorem 4.4 is important for two reasons: it limits the energy of the error and it tells how much

terms a sparse signal can have in order to be recoverable through MP. Obviously, using MP one

will not recover the exact value of the coefficients, which would be recovered when using OMP, but

these can be easily recovered if one is sure to have recovered the good expansion of atoms.

4.5 Conclusions

There are several conclusions that can be drawn from this chapter. The first is the capability of

recovering, in some cases, the sparsest signal approximation. All the theorems presented in this

chapter concerning this capability reach the same conclusions: one can recover a sparse approxima-

tion or representation if the coherence of the dictionary in use is low enough. The contradictory

point on this is that, in many cases, the dictionaries that do have a sparse signal approximation are

highly coherent dictionaries. Thus, we can state the following conjecture:

Conjecture 4.1 (Uncertainty principle of sparse approximations) There is a trade-off in

sparse approximations of natural signals between the capacity of finding the sparsest approxima-

tion and the capacity of the dictionary to sparsely approximate the signal. The more capacity a

dictionary has of sparsely approximating a signal, the more difficult it will be to recover this sparse

approximation through a Polynomial complexity algorithm.

For natural signals, it may be better to take an algorithm that guarantees that the error will

converge to zero even if the sparsest approximation has not been found. However, it can be useful

that this algorithm is able to recover this sparsest approximation if some conditions hold. Matching

Pursuit and Orthogonal Matching Pursuit have theses properties.

In addition, choosing a Greedy algorithm to try to find a sparse signal representation has the

advantage of controlling directly the number of terms to be used, due to its iterative nature. Basis

Pursuit and most of the other existing algorithms for sparse signal approximation do not allow to

directly choose the number of terms, but have a trade-off between the approximation error and the

number of terms.

Finally, from a numeric point of view, Matching Pursuit is an algorithm that is easy to implement

and to use for different types of dictionaries of functions, and is less computationally hard that

Orthogonal Matching Pursuit, even if it has slower approximation rate. As images are big data

structures, the computational complexity of OMP or BP (even for their optimized implementations)

limit somehow the usability of these algorithms for image representation. For all this, the algorithm

that has been chosen in this thesis to try to find sparse image approximations is Matching Pursuit.
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An algorithm independent sparsity

measure

5.1 Introduction

In the previous chapter, a review about the state of the art on sparse representations and approx-

imations has been presented. The capability of a given algorithm to find the sparsest representa-

tion/approximation of a signal given a dictionary has been analyzed, trying to summarize the work of

several authors working on this subject. It has been pointed out, as well, that most of the conditions

that exist for verifying whether a representation is sparse or not are algorithm dependent or/and

need data that is difficult to have, because it depends on the optimal sparse representation (such as

the optimal number of terms, or the energy of the error, or the value of the smallest coefficient that

belongs to the sparsest approximation).

This chapter∗, based on [84, 85], presents a new sparsity test. This test allows to check whether

a given sparse approximation is the sparsest possible or not. The main novelties of the test are:

• It is algorithm independent: the algorithm which has been used to obtain the signal approxi-

mation is no more a limitative factor for knowing the sparsity of the solution.

• It does not need any data from the optimal solution: all the data that are needed to perform

the test depend on the solution that is being analyzed, the dictionary and the signal.

• It is, in most cases, tighter than previously existing tests.

This chapter is organized as follows: Section 5.2 presents the main differences between the work

presented here and the work presented by other authors, and sets the goals and utilities of the test.

Section 5.3 states the sparse approximation problem and introduces the main concepts and results.

The meaning of the results, together with a discussion about the connections between sparse models,

∗Work partly performed while the author of this thesis was in IRISA, Rennes, France, in collaboration with

R. Gribonval.
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sparse optimization problems and sparse approximation algorithms are discussed in this section. At

the end of the section, some explicit examples to illustrate how one can use these results to build

a numerical test of optimality of a sparse approximation are presented. The rest of the chapter is

devoted to the proof of the results. In Section 5.4 some useful definitions and properties which are

at the core of the proofs of the results are given. Section 5.5 contains the proofs for the case of the

canonical basis in an `p space. Section 5.6 generalizes the previously introduced work, providing

some abstract results for arbitrary dictionaries and general sub-additive distortion measures. At the

end of this section, some examples show how these abstract results can be used to recover results

from [48]. The main results with incoherent dictionaries in Hilbert spaces are proved in Section 5.7,

where their sharpness is also discussed. Finally, Section 5.8 gives some conclusions.

5.2 Some remarks about the optimality test

As already mentioned in the previous chapter, recovering a sparse approximation of a signal is of

great interest in many applications, such as coding [110], source separation [213] or denoising [178].

Chapter 4 presented several algorithms (Matching Pursuit [119, 143], Basis Pursuit [21], FOCUSS

[80], etc.) that try to sparsely decompose a signal in a dictionary. It has been seen that it is generally

difficult to prove whether a computed solution is the sparsest approximation we could obtain given a

certain sparsity measure (which can be the number of terms or `0 “norm”, the `1 norm, or any other

metric that may lie “in between” [87], related, for example, to the bit-rate needed to represent the

coefficients). It would be interesting to have a tool for checking whether a certain solution is optimal

or not. This tool should be algorithm independent, and should not depend on any data that can

only be known if the optimal solution, or the number of terms that form the sparse representation

are known. It should just say whether, for the computed number of terms, the solution found is the

sparsest (the one that gives, for this number of terms, the smallest error) or not.

In this chapter, a general tool for checking that the solution computed by some algorithm is nearly

optimal is provided. A solution will be considered to be optimal when no significantly different sparse

linear expansion from the dictionary can provide both a smaller approximation error and a better

sparsity. A positive test results basically implies that:

• For the number of terms of the computed solution, the sparsest solution is unique

• The decomposition found is the sparsest (or is very close to the sparsest) for this number of

terms

The test quite naturally consists in checking that the residual (the difference between the signal

and its sparse approximation) is “small enough” given the sparsity of the approximant and the

magnitude of its smallest non-zero coefficient. When the test is satisfied, the computed solution is

so close to the optimally sparse approximation –in the sense of the `0 norm– that there is an easy

way to explicitly compute the latter.

The results presented here have several implications. They can be interpreted from two different

levels of signification: from a numerical optimization point of view and from a modeling point of

view.

From a numerical optimization point of view, when the test is satisfied, one knows for sure that

the algorithm used to decompose the analyzed signal indeed solved a NP-hard problem. Since any

reasonable person would use a polynomial time algorithm, this might seem contradictory at first

sight (if NP 6= P), but it is not: the algorithm solved a particular instance of the NP-hard problem,

but it will fail on at least one other instance of the problem.
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From a modeling point of view, it is often reasonable to assume that most signals in a class

of interest (audio signals, natural images, etc.) belong to a “good set” of instances where the

NP-hard problem can be solved in polynomial time. This, which may seem to be an audacious

data model, may be true if the data and the dictionary have certain features. Indeed, as a by-

product of our results, if the analyzed signal can be modeled as the superposition of a “sufficiently

sparse” component and a “sufficiently small” noise, then the “sufficiently sparse” component is close

to the solutions of both an (a priori NP-hard) `0-sparse approximation problem and a (convex)

`1-sparse approximation problem. Thus, the three of them (the noise, the `0-sparse approximation

and the `1 sparse approximation) can therefore be estimated in polynomial time by solving a convex

optimization problem, as already proved by Donoho, Elad and Temlyakov [48], Tropp [189] and

Fuchs [77], in their works on the topic of recoverability of sparse approximations and overcomplete

representations. However, emphasis is put here on testing the near optimality of a computed sparse

approximation, rather than predicting the recovery of an ideal sparse model with additive noise.

Several other features distinguish this work from previous ones:

• previous results on recovery of sparse expansions in the noisy setting [48, 77, 91, 188, 189] make

assumptions on the ideal sparse approximation which do not seem easy to check in practice.

The test presented here can be easily implemented in practice, since it only depends on the

observed sparse approximation to determine its optimality. When the test is satisfied, the

ideal sparse approximation (best M -term approximation) can easily be recovered, because the

found solution and the optimal have the same support.

• the test is independent of the particular algorithm used to get the sparse approximation:

there is no need to make a new proof or find new optimality conditions when one introduces

a new algorithm. Emphasis is indeed on the optimality of a decomposition rather than on the

optimality of an algorithm, as in the work of Wohlberg [211].

• in the case where the error is measured with the mean square error (MSE) and the dictionary

is incoherent, our test is close to being sharp (see Sections 5.7.4-5.7.5). Moreover, the test

is satisfied in some cases where the residual seems “too large” for the previous contributions

[48, 77, 91, 188, 189] to provide conclusive results. Indeed, one of the key contributions of this

work is a new measure of the “size” of a residual which is less pessimistic than the worst-case

measures based on the energy or the maximum correlation with the incoherent dictionary.

• besides the MSE, it is possible to deal with non-quadratic distortion measures, so one could

imagine to insert visual criteria if one is dealing with images, or auditive criteria if one is

dealing with sounds, or any other that is criteria more appropriate to the data or to the target

application.

• not only the `0 and `1 sparsity measures are considered, but also all the `τ sparsity measures∗

‖ · ‖τ
τ , 0 ≤ τ ≤ 1, as well as a much larger class of “admissible” measures, as discussed in

Section 5.3.

5.3 Main concepts and results

As in previous chapters, consider D a dictionary of normalized atoms {gγk
}, living in a finite or

infinite dimensional real or complex vector space H (which may be a Hilbert space or more generally

∗Throughout this thesis, both ‖c‖0

0
and ‖c‖0 denote the `0 “norm”, which counts the number of nonzero coefficients

in c.
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a Banach space). Using various sparse approximation methods (Matching Pursuits [119, 143], Basis

Pursuit [21], FOCUSS [80], etc.) one can decompose a signal s ∈ H as

s =
∑

k

ckgγk
+ e (5.1)

where the sequence c = (ck) is “sparse” and the residual e is “small”. Throughout this chapter,

Eq. (5.1) will be written s = Φc + e, where Φ corresponds to the synthesis operator which maps

representation coefficients to signals for the dictionary D. Thus, the representation coefficients c and

the signal s will be considered as column vectors, and the dictionary D as a matrix Φ of size D×N

(with N ≥ D), where D is the dimension of the signal space, and N is the number of elements in

the dictionary. As in the previous chapters, bold characters denote signals (vectors in the space H),

and plain characters denote coefficient sequences.

Optimality of approximation Eq. (5.1) will be evaluated through two parameters: its goodness

(how close is the approximated signal to the real one) and its sparsity. The goodness of approxima-

tion Eq. (5.1) can be measured by some distortion measure d(e) (such as a norm on H) which only

depends on the residual e. The sparsity of this representation c can be measured by an `τ norm

(0 ≤ τ ≤ 1) or more generally by an f -norm

‖c‖f :=
∑

k

f(|ck|), (5.2)

where f : [0,∞) → [0,∞) is non-decreasing, not identically zero, and f(0) = 0. The smaller

‖c‖f , the sparser the representation c. The most popular sparsity measures are the `τ pseudo-norms

‖·‖τ
τ = ‖·‖fτ

where fτ (t) := tτ for 0 ≤ τ ≤ 1 (with the convention 00 := 0 and t0 = 1, t > 0) but one

can imagine many other more exotic sparsity measures, such as the ones presented in Appendix A.1.

Of particular interest will be the class S of sub-additive sparsity measures which, in addition to

the above properties, satisfy

f(t+ u) ≤ f(t) + f(u) for all t, u ≥ 0,

and the class M of admissible sparsity measures where

t 7→ f(t)

t
is non-increasing.

It is easy to check that M ⊂ S, (see [87] and Appendix A.1). One can define a partial order [87] on S
by letting f � g if, and only if, there is some h ∈ M such that f = h◦g (S is stable by composition,

see Appendix A.1). With respect to this partial order, the `0 and `1 “norms” are respectively the

smallest and the largest admissible sparsity measures, in that f0 � f � f1 for each f ∈ M (where

f0 will be the `0 norm and f1, the `1).

Since different sparse approximation algorithms may optimize different sparsity criteria (`1 norm

for Basis Pursuits, various `τ norms for FOCUSS, etc.), rely on various distortion measures, make a

different compromise between sparsity and distortion, or even simply use a heuristic approach such

as the greedy approach of Matching Pursuits, it is a priori hard to predict how solutions computed

through different algorithms are related to one another. Our main theorems provide a simple test to

check a posteriori if a computed decomposition s = Φc+ e is nearly optimal, in the sense that c is

close to any representation c′ which is both sparser and leads to a smaller distortion (basically, they

imply that c and c′, have the same support for all the components that are bigger than a threshold).
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5.3.1 Main theorems in a Hilbert space

To state the theorems, few notations have to be introduced first. Let H be a Hilbert space equipped

with the norm ‖s‖2
H = 〈s, s〉 where 〈·, ·〉 denotes the inner product. For each integer K w,denote

σ2
min,K(D) := inf

‖δ‖0
0≤K

‖Φδ‖2
H

‖δ‖2
2

≤ 1 (5.3)

and consider the norm (not to be confused with the `K norm ‖ · ‖K)

|e|K :=

√ ∑

k∈IK(e)

|〈e,gk〉|2, (5.4)

where IK(e) indexes the K largest inner products |〈e,gk〉|. |e|K is a measure of the correlation of

the dictionary basis functions and the residual. This measure depends on the number of terms of

the decomposition, on the residual and, even though it is not explicit in the notation, it is easy to

see that it also depends on the dictionary D. Since the dictionary is generally fixed, notations will

often be simplified by omitting D in some quantities that depend on it. In infinite dimension, | · |K
is generally not equivalent to the native norm ‖ · ‖H. However, for any integer K, it can easily be

proved, by applying the norm definition, that

sup
k

|〈e,gγk
〉| = |e|1 ≤ |e|K ≤

√
K · |e|1 ≤

√
K · ‖e‖H, (5.5)

so the norms | · |K for different K are equivalent. The previous definitions very naturally lead to the

following result:

Theorem 5.1 Let c, such that s = Φc + e, be a sparse approximation of a signal s, which may

have been computed with any algorithm. Let M := ‖c‖0
0 and let c′ be any other representation. If

‖s − Φc′‖H ≤ ‖s − Φc‖H and ‖c′‖0
0 ≤ ‖c‖0

0, then

‖c′ − c‖∞ ≤ |e|1 + |e|2M

σ2
min,2M

(5.6)

‖c′ − c‖2 ≤ 2 · |e|2M

σ2
min,2M

(5.7)

‖Φc′ − Φc‖H ≤ 2 · |e|2M√
σ2

min,2M

(5.8)

This theorem gives a criteria of optimality of a sparse signal approximation. Generally, the bound (5.8)

is better than the “worst case” one ‖Φc′ − Φc‖H = ‖(s − Φc′) − (s − Φc)‖H ≤ 2‖e‖H. This point

will be further commented in Section 5.6.

The second theorem presented here is the generalization of the first one. It is stronger, since it

is valid for any admissible sparsity measure. A few additional definitions are needed to present the

second theorem.

Let ΦI : `2(I) → H denote the synthesis matrix associated to the subdictionary {gk, k ∈ I}
and Φ+

I = (Φ?
IΦI)

−1Φ?
I be its Moore-Penrose pseudo-inverse, where (·)? denotes the adjoint (or

in matrix terminology the complex conjugate transpose), that is to say Φ?e := (〈e,gγk
〉)k. Then,

much inspired by the Exact Recovery Coefficient introduced in [189], consider

λM (Φ) := 1 −
√
M · sup

card(I)≤M

sup
k/∈I

‖Φ+
I gγk

‖2. (5.9)

Then, the generalization for any sparsity measure of Theorem 5.1 is as follows:
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Theorem 5.2 Let c, such that s = Φc+e, be a sparse approximation of a signal s, which may have

been computed with any algorithm. Let M := ‖x‖0
0 and assume that λM (Φ) > 0. Let c′ be any other

representation: if ‖s − Φc′‖H ≤ ‖s − Φc‖H and if there exists some admissible sparsity measure f

such that ‖c′‖f ≤ ‖c‖f , then

‖c′ − c‖∞ ≤ 2

λ2
M

· |e|1 + |e|M
σ2

min,M

(5.10)

‖c′ − c‖2 ≤ 4 ·
√

1 +M · |e|M
σ2

min,M · λ2
M

(5.11)

‖Φc′ − Φc‖H ≤ 4 · |e|M√
σ2

min,M · λ2
M

(5.12)

Note that, in Eqs. (5.10)-(5.12), 2M has been replaced with M in the subscripts for |e|(·) and σ2
min,(·)

compared to Eqs. (5.6)-(5.8). The proof of the two previous theorems is not straightforward, and

will be done through the following sections of this chapter.

Corollary 5.1 (Test of `0 optimality) Under the hypotheses and notations of Theorem 5.1, as-

sume that

|e|1 + |e|2M <
σ2

min,2M

2
· min
{k:|ck|6=0}

|ck|. (5.13)

If c′ satisfies ‖s − Φc′‖H ≤ ‖s − Φc‖H and ‖c′‖0
0 ≤ ‖c‖0

0, then c′ and c have the same “support”:

sup(c′) := {k : |c′k| 6= 0} = {k : |ck| 6= 0} = sup(c)

and the same sign: sign(ck) = sign(c′k), for all k.

Proof This corollary is very easy to prove. Combining Eq. (5.6) of Theorem 5.1 and Eq. (5.13), one

gets:

2‖c′ − c‖∞ < min
{k:|ck|6=0}

|ck|, (5.14)

which, as ‖c′‖0
0 ≤ ‖c‖0

0, it is only possible if c and c′ have the same support and the same sign. �

Corollary 5.2 (Test of strong optimality) Under the hypotheses and notations of Theorem 5.2,

assume that

|e|1 + |e|M <
σ2

min,M · λ2
M

4
· min
{k:|ck|6=0}

|ck|. (5.15)

If c′ satisfies ‖s−Φc′‖H ≤ ‖s−Φc′‖H and if there exists some admissible sparsity measure f such

that ‖c′‖f ≤ ‖c‖f , then c′ and c have essentially the same support:

{k : |c′k| > θ} = support(c), with θ :=
1

2
min

{k:|ck|6=0}
|ck|.

Moreover for k ∈ support(c) we have sign(ck) = sign(c′k).

The proof for Corollary 5.2 is done similarly to the one of Corollary 5.1, but using Eq. (5.10) of

Theorem 5.2 instead of Eq. (5.6) of Theorem 5.1.

Corollary 5.3 (Solution of the NP-hard problem) If c and e satisfy either the test (5.13) or

the test (5.15), then the best M -term approximation ΦcM to s = Φc + e is exactly the orthogonal

projection of s onto span{gγk
, k ∈ support(c)}.
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This corollary is straightforward: once the set of atoms that form the optimal solution is known,

it is obvious that the orthogonal projection of s onto this set of atoms will be the one that will

minimize the error.

It is worth remarking that the tests proposed in Corollaries 5.1-5.2 are reminiscent of some results

of Tropp [189, Correlation Condition Lemma, Theorem 5.2], but with supk |〈e,gγk
〉| = |e|1 replaced

with |e|1 + |e|K for K ∈ {M, 2M}.

5.3.2 What do these results mean?

Chapter 2 presented several image models, and several algorithms that try to represent an image

as a sum of basis functions with certain features that take into account some features of the model,

such as the presence of regular functions that are edges. Chapter 4 presented several algorithms

that consider the signal model to be just a sparse sum of terms plus a noise, and that try to solve

this problem. It is maybe worth to stop a while here and further discuss about what a model, an

algorithm and a problem are, and how do the results presented here relate to these three terms. So,

what is a model, a problem and an algorithm?

• A model is a description of how a signal could have been generated, typically with a prob-

abilistic prior in the Bayesian point of view or with parameters. For images, several models

have been introduced in Chapter 2, that consider images as a superposition of objects with

occlusions, or of geometrical features, or simply as a sum of basis functions. The two first

image models are often used to give probabilistic prior to the third.

• A problem is an optimization problem, independently of how hard it is, what algorithm can

solve it, etc. A problem can correspond to a model if, for example, it is the maximum likelihood

(ML) or maximum a posteriori (MAP) estimation of model parameters, but it can also be

difficult to make a model that fits a given problem.

• An algorithm is a function that takes an input and computes an output, a computer program,

independently of which problem it can solve. It is just a tool that may, in some cases, solve a

given problem according to a certain model.

Now, how can the results of this chapter give connections among models, problems an algorithms?

Imagine that some algorithm has decomposed a signal s as s = Φc+ e, where the number of terms

that play a role in this decomposition M := ‖c‖0
0 is small enough (λM > 0 and λ2

Mσ2
min,M > 0). If

this is the case, and if the test gives a positive result (the residual is small enough compared to the

value of the coefficients that have been found in c, then the computed coefficients c are ‘not too far”

from the solutions of each of the (generally non-convex) optimization problems

min
c′

‖c′‖f subject to ‖s − Φc′‖H ≤ ε (5.16)

with ε := ‖s − Φc‖H = ‖e‖H. Therefore:

• for the input signal s, the problems (5.16) for different sparsity measures f (thus, different

models) have solutions close to one another;

• on the input signal s, the algorithm which produced the decomposition s = Φc + e nearly

solved each of these problems.

Corollary 5.3 shows that if the residual is small enough, one can actually directly “jump” from the

computed coefficients c to the solution c0 of the NP-hard best M -term approximation problem

min
c′

‖s − Φc′‖H subject to‖c′‖0
0 ≤M.
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So, the results say that a given algorithm was able to solve an instance of a problem, that corresponds

to several models. It has to be said, though, that it is only for this specific instance, and that the

algorithm could fail for another instance.

Now, assume that an observed signal s follows the sparse model s = Φc + e where (with high

probability) ‖c‖0
0 ≤ M and ‖e‖H = ε. One can consider the problem of estimating the coefficients

c or the signal Φc, which is a classical denoising problem. Theorem 5.2 shows that (with high

probability)

• one can robustly estimate c by solving any of the sparse approximation problems (5.16);

• in particular, one can robustly estimate c by solving the convex `1-minimization problem

min
c′

‖c′‖1 subject to ‖s − Φc′‖H ≤ ε (5.17)

which can be done using any Quadratic Programming algorithm.

Solving the problem (5.16) is equivalent to solving the Lagrangian problem

min
c′

‖s − Φc′‖2
H + α‖c′‖f (5.18)

for an appropriate Lagrange multiplier 1
α > 0. Thus, the solution of (5.17) is also the Maximum

A Posteriori (MAP) estimate of c under a Laplacian model on c and a Gaussian model on e and

we conclude that replacing the original sparse model with a Laplacian+Gaussian model does not

significantly change the value of the estimate, yet it simplifies a lot its computation.

In practice, just as in [48, 189] a crucial practical problem is to estimate the noise level ε, which

is unknown, or equivalently to tune the Lagrange multiplier used in the Quadratic Programming

algorithm that solves (5.18). Further work is needed to investigate what can be said about the

accuracy of the estimate when the exact noise level is unknown. Nevertheless, with the results

presented here, and if the dictionary in use is incoherent enough so that λ2
Mσ2

min,M > 0, one can

find a solution with Eq. (5.18) for a big α. If the result found has a positive sparsity result in the

test presented, here, α can be slightly decreased, and so on until the results are no more positive.

Then, the maximum number of terms for which sparsity is present with probability one will have

been found.

5.3.3 Explicit tests of optimality in a Hilbert space

To apply these tests in practice, explicit (lower) estimates of the numbers λM (Φ) and σ2
min,K(Φ),

which –so far– may seem fairly abstract are needed. Indeed, these parameters are, again, NP-hard

to compute, thus, some approximation is needed. For M sufficiently small, such estimates can

be obtained using the Babel function µ1(M,Φ) (which is also quite computationally complex, but

which bound can be more easily estimated [188]), already defined in the previous chapter and in

[188, 189, 191], but reminded here

µ1(M,D) := sup
card(I)≤M

sup
k/∈I

∑

i∈I

|〈gk,gi〉| , (5.19)

as well as the 2-Babel function which we define as

µ2(M,D) := sup
card(I)≤M

sup
k/∈I

√∑

i∈I

|〈gk,gi〉|2. (5.20)
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Proposition 5.1 Let D be a normalized dictionary in a Hilbert space H. If µ1(2M − 1) < 1 then

σ2
min,2M ≥ 1 − µ1(2M − 1) > 0 (5.21)

If
√
Mµ2(M) + µ1(M − 1) < 1 then λM > 0 and

σ2
min,M · λ2

M ≥

(
1 −

√
Mµ2(M) − µ1(M − 1)

)2

1 − µ1(M − 1)
(5.22)

Proof: In order to keep the flow of the explanations, the proof of Proposition 5.1 is postponed to

Section 5.7.3. �

The test can be done by applying the limit for σ2
min,M ·λ2

M , given by Eq. (5.22), to Corollary 5.2.

It has to be taken into account that if the test is positive, you are sure you have the sparsest solution.

On the other hand, you may have a negative test and still have the sparsest solution. The test is,

nevertheless, sharper than similar tests presented in previous works, and it has the advantage that

it is algorithm independent.

5.3.4 Examples

Orthonormal basis

When D is an orthonormal basis, we have µ1(M) = 0 and µ2(M) = 0 for all M , hence the test of

`0 optimality takes the simple form

|e|1 + |e|2M < min
{k:|ck|6=0}

|ck|
2

which turns out to be sharp (see Section 5.5). The test of strong optimality becomes

|e|1 + |e|M < min
{k:|ck|6=0}

|ck|
4

and it it also sharp up to a constant factor (see Sections 5.7.4-5.7.5).

Union of incoherent orthonormal bases

When D is a union of two or more maximally incoherent orthonormal bases in C
N , such as the Dirac

basis, the Fourier basis

gk[n] = e
2πkn

N
i, 0 ≤ k ≤ N − 1 (5.23)

and the Chirp basis

gk[n] = e
πkn2

N
i, 0 ≤ k ≤ N − 1, (5.24)

µ1(M) = M√
N

and µ2(M) =
√

M
N . It follows that, for

M ≤ (1 +
√

N
3 )

2
, (5.25)

σ2
min,2M ≥ 2

3 and σ2
min,M · λ2

M ≥ 4
9 , so the conclusions of Corollary 5.1 (resp. Corollary 5.2) hold if

|e|1 + |e|2M < min
{k:|ck|6=0}

|ck|
3

or

|e|1 + |e|M < min
{k:|ck|6=0}

|ck|
9
,
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respectively.

More generally, since in this case µ1(2M − 1) =
√
Mµ2(M) + µ1(M − 1) = (2M−1)√

N
, one can

apply the tests whenever M < (1+
√

N)
2 . As M gets closer to 1+

√
N

2 , the bound on the allowed size

of the residual decreases and the tests becomes more restrictive. For three maximally incoherent

orthonormal bases in dimension N = 1024 and M ≤ 16 < 33
2 , both tests can be applied to guar-

antee the optimality of a sparse approximation. In comparison, without such a test, one would

have to compare the quality of the observed approximation with that of
(

M
3N

)
− 1 other M -term

approximations.

A numerical example

A numerical example to illustrate how the test can be applied in practice may be helpful for the

reader to fully understand it. To mimic “musical notes” and transients” of audio signal, consider a

dictionary Φ = [C,E,G,B, I25], which is the union of an orthonormal basis of deltas with a set of 5

(normalized) sinusoids, that is to say IN is the identity matrix of dimension N and C, E, G, B are

unit vectors proportional to the sinusoids

sin

(
2π · freq · n

2048

)
, n = 1 . . . 25. (5.26)

with respective frequencies freq = 261, 330, 392 and 494. These frequencies correspond to the fun-

damental frequency of the notes C, E, G, B sampled at 2048Hz (this is obviously an unrealistic

sampling frequency for audio signals but the example is rather a toy for illustration here). For

this dictionary, it is easy to compute the first values of the Babel functions. In particular, we can

compute µ1(1) ≈ 0.2831 and µ2(2) ≈ 0.3998 and using Eq. (5.22) we obtain that σ2
min,2 ·λ2

2 > 0.2113.

Given a signal of 25 samples s (which we generated as a superimposition of the ’note’ C, with

coefficient 15 and the ’note’ E, with coefficient 10, together with some additive Gaussian white

noise), we can use various sparse approximation algorithms to decompose it in the dictionary Φ.

We performed M = 2 steps of Orthogonal Matching Pursuit (OMP) and found that s = Φc + e,

with

c ≈ [15.0080, 10.0276, 0, . . . , 0]T (5.27)

Using the correlations of the residual e with the atoms of the dictionary (which were already

computed as a natural by-product of the two steps of OMP) we computed |e|1 ≈ 0.0936 and

|e|M = |e|2 ≈ 0.1311. Thus, we were able to check that

|e|1 + |e|M ≈ 0.2247 <
0.2213 · 10.0276

4

which ensures that the strong optimality test is satisfied. Thus, we are sure that the two atoms

found by OMP are exactly the two atoms of the best 2 term approximation to the signal. After an

additional iteration of OMP, we obtained an M = 3 term approximation to the signal, and it turned

out that the new residual and the coefficients no longer satisfied the test (because the smallest

coefficient in c was of the same order as the noise level). Thus, we were no longer sure that the three

term expansion provided by three iterations of OMP was “optimal” and we stopped the iterations.

However, in order to use this in more realistic examples, such as building a good stopping criterion

for Matching Pursuit, it has to be taken into account that the fact that the four term test is negative

it can mean two things: or that three is the maximum number that have to be taken into account

in the sparse approximation or that the four term sparse approximation is not unique (but this last

does not exclude the fact that the fifth term sparse approximation can give positive test results).
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Some remarks about the test

It has to be noticed that the breakdown point of the test does not only depend on the number of

terms and the coherence of the dictionary in use. Imagine a signal that has an sparse representation

on an orthonormal basis as follows:

[A,B,B,C,D,E, 0, 0, 0, 0, 0, 0, 0] ,

with |A| > |B| > |C| > |D| > |E|. Imagine now that a two term decomposition has been done:

[A,B, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

For this solution, the test would be negative, and the reason for this is that the above solution, even

though is the sparsest, is not unique. But now, if the three term decomposition is wished, and the

solution found is:

[A,B,B, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,

if the values of the residual are small enough, the test would be positive for three terms. It is thus

not possible to show the breakpoint of the test with respect to the number of coefficients and the

redundancy of a given dictionary, given that this breakpoint is strongly signal dependent.

5.4 Core elements of the proofs

Now that the main results how they can be used have been explained, it is worth to introduce some

technical definitions and lemmas which are at the core of the proof of our theorems. This section is

stated in the most general setting, and how some quantities can be estimated in specific cases will

be left for later.

Let c, with s = Φc + e, be a sparse approximation of a signal s. Let M := ‖c‖0
0 and assume

that, for a fixed f , c′ satisfies d(s − Φc′) ≤ d(s − Φc) and ‖c′‖f ≤ ‖c‖f . Letting δ := c′ − c,

δ ∈ Dd(e,Φ) ∩ Ef (CM ) with

Dd(e,Φ) :=
{
δ : d(e − Φδ) ≤ d(e)

}
(5.28)

Ef (C) :=
⋃

z∈C

{
δ : ‖z + δ‖f ≤ ‖z‖f

}
(5.29)

and CM := {c : ‖c‖0
0 ≤ M}. Dd(e,Φ) is then the set of δ that, when applied to the dictionary

synthesis matrix Φ and subtracted to the residual of a sparse decomposition, reduce the distortion

of this decomposition, and Ef (C) the set of δ that increase the sparsity of a sequence. Thus, for

0 < q <∞:

‖c′ − c‖q ≤ sup
δ∈Dd(e,Φ)∩Ef (CM )

‖δ‖q, (5.30)

and

d(Φc′ − Φc) ≤ sup
δ∈Dd(e,Φ)∩Ef (CM )

d(Φδ). (5.31)

In the following we will simply denote D(e) since Φ and d(·) are generally fixed. The results of this

paper follow from upper estimates of the suprema in Eqs. (5.30)-(5.31), using the following lemma:
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Lemma 5.1 If f is a sub-additive sparsity measure then

Ef (CM ) =



δ :

∑

k∈IM (δ)

f(|δk|) ≥
‖δ‖f

2



 (5.32)

where IM (δ) is the set of the M largest components of |δk|.

To keep the flow of the argument, the proof of this Lemma is postponed to Appendix A.2. By [87,

Lemma 7], for any admissible sparsity measure h ∈ M, any sequence z = (zk) and any integer M ,

it holds that ∑

k∈IM (z)

h(|zk|)

‖z‖h
≤

∑

k∈IM (z)

|zk|

‖z‖1
. (5.33)

Thus, whenever f � g, Ef (CM ) ⊂ Eg(CM ) holds, and it follows that

sup
δ∈D(e)∩Ef (CM )

‖δ‖q ≤ sup
δ∈D(e)∩Eg(CM )

‖δ‖q (5.34)

sup
δ∈D(e)∩Ef (CM )

d(Φδ) ≤ sup
δ∈D(e)∩Eg(CM )

d(Φδ). (5.35)

Since f0 � f � f1 for every admissible sparsity measure f , we will only estimate the suprema in

Eqs. (5.30)-(5.31) for f = f0 and f = f1.

5.5 Estimates in the canonical basis

Estimating the right hand side suprema in Eq. (5.34) (for q = ∞ and q = 2) and Eq. (5.35) with d(·)
the Hilbertian norm immediately yields Theorem 5.1 and Theorem 5.2. Since these estimates are a

bit technical,it is easier to postpone them for a while and to begin with an estimate for the simple

case where D is the canonical basis in an `p sequence space. This estimate is both illustrative and

technically useful, since it provides the basic tools to obtain the more general estimates for arbitrary

dictionaries in Hilbert spaces.

Lemma 5.2 Consider Φ = B the canonical basis in `p, 0 < p ≤ ∞, d(·) = ‖ · ‖p and let K ≥ 1.

When 0 < p <∞ we have for any b = (bk) ∈ `p:

sup
‖δ‖0

0≤K
d(b−Bδ)≤d(b)

‖δ‖∞ = sup
k

|bk| +


 ∑

k∈IK(b)

|ek|p



1/p

(5.36)

where IK(b) indexes the K largest components |bk|. Similarly when p = ∞ we have

sup
‖δ‖0

0≤K
d(b−Bδ)≤d(b)

‖δ‖∞ = 2 · sup
k

|bk| . (5.37)

Notice that in the above Lemma, and in all this section, b denotes both a signal and a sequence of

coefficients, hence according to our convention it could be written either in bold or in plain letters.

The choice of the plain notation seemed more natural, because when the lemma will be used later

on, b will be rather considered as a sequence.
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Since δ ∈ Ef0
(CM ) if, and only if, ‖δ‖0

0 ≤ 2M∗, the Lemma 5.2 provides the exact value of

sup
δ∈D(e)∩Ef0

(CM )

‖δ‖∞ (5.38)

by letting K = 2M in Eqs. (5.36)-(5.37). For p = 2, if bk = 〈e,gk〉 for some dictionary Φ and some

residual e in a Hilbert space, it is not difficult to check that the value is exactly |e|1 + |e|2M (see

Eq. (5.4)).

Proof of Lemma 5.2. We begin with the case 0 < p < ∞. Let δ with ‖δ‖0
0 ≤ K and consider

I = support(δ). If ‖b−Bδ‖p ≤ ‖b‖p we have
∑

k∈I |bk − δk|p ≤∑k∈I |bk|
p
. Thus, for any j ∈ I, we

have

|bj − δj | ≤
(
∑

k∈I

|bk|p
)1/p

which implies

|δj | ≤ |bj | +
(
∑

k∈I

|bk|p
)1/p

≤ sup
k

|bk| +


 ∑

k∈IK(b)

|bk|p



1/p

. (5.39)

So, the left hand side in Eq. (5.36) is no larger than the right hand side. To get the converse

inequality let I = IK(b) and j ∈ I with |bj | = supk |bk|, let δk := 0, k /∈ I, δk := bk, k ∈ I, k 6= j,

and

δj := sign(bj) ·


|bj | +

(
∑

k∈I

|bk|p
)1/p


 .

Obviously ‖δ‖0
0 ≤ K, ‖b−Bδ‖p ≤ ‖b‖p and ‖δ‖∞ is no smaller than the right hand side in Eq. (5.36).

The case p = ∞ is even easier: if ‖b− Bδ‖∞ ≤ ‖b‖∞ then

‖δ‖∞ = ‖b− Bδ − b‖∞ ≤ ‖b− Bδ‖∞ + ‖b‖∞ ≤ 2‖b‖∞,

thus the left hand side in Eq. (5.37) is no larger than the right hand side. To get the converse

inequality, assume for the sake of simplicity that there is an index l such that |bl| = ‖b‖∞. Letting

δl = −2bl and δk = 0, k 6= l we get a sequence δ = (δk) which satisfies ‖b − Bδ‖∞ = ‖b‖∞ and

‖δ‖0
0 = 1 ≤ K. The same argument can be adapted to the case where the `∞ norm is not attained.

�

5.6 Sub-additive distortion measures

When D is not the canonical basis or d(·) is not an `p norm, it is difficult to get exact estimates.

Exact estimates are here substituted by “worst case” upper estimates for sub-additive distortion

measure, i.e. when for any u and v we have d(u + v) ≤ d(u) + d(v). This worst case estimates

sill summarize the residual with its distortion, instead of using the full knowledge about it. No

structure of the residual or the dictionary will be taken into account. Thus, the estimates will

tell what happens with the “worst” residual which yields the same distortion. For the quadratic

distortion measure, this approach will recover known results [48, 77, 189] on the identification of

sparse approximations, since these were obtained using a worst case approach. However, we will see

in the Section 5.7 how to prove Theorems 5.1-5.2 which provide much more precise bounds than the

worst case ones.

∗If ‖δ‖0

0
> 2M , then it is impossible to have ‖z + δ‖f ≤ ‖z‖f
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Lemma 5.3 Let d(·) be a sub-additive distortion measure. Then

sup
δ∈D(e)

d(Φδ) ≤ 2 · d(e). (5.40)

Proof. By definition, for any δ ∈ D(e), d(e − Φδ) ≤ d(e). Applying the sub-additivity of d(·), one

gets

d(Φδ) = d(e − (e − Φδ)) ≤ d(e) + d(e − Φδ) ≤ 2 · d(e).

�

Building upon this result, general (but somewhat abstract) upper estimates of the suprema in (5.30)

are obtained. Denoting

Aq(C, ε) := sup
z∈C

d(Φz)≤ε

‖z‖q, ε ≥ 0, (5.41)

Lemma 5.3 can be rewritten as:

sup
δ∈D(e)∩Ef (CM )

‖δ‖q ≤ Aq (Ef (CM ), 2 · d(e)) . (5.42)

This theoretically allows to express results similar to Theorem 5.1-5.2 for general sub-additive dis-

tortion measures. However, Aq((Ef (CM ), ε) are evidently not straightforward to compute. Even

though estimating them for specific distortion measures (such as those designed to model auditive or

visual distortion criteria) would be quite interesting, it is beyond the scope of this work. Instead,a

more restricted case where more can be said will be introduced. If d(·) is not only sub-additive but

it is indeed a norm, then d(λu) = |λ| · d(u) for any λ and u, hence

Aq(Ef (CM ), ε) = ε ·Aq(Ef (CM ), 1) =: ε ·Aq(Ef (CM ))

and it is possible to get an analogue to Theorem 5.1 and Corollary 5.1.

Theorem 5.3 Let d(·) be a norm. Let c, such that s = Φc + e, be a sparse approximation of a

signal s, which may have been computed with any algorithm. Let M := ‖c‖0
0 and let c′ be any other

representation. If d(s − Φc′) ≤ d(e) and ‖c′‖0 ≤ ‖c‖0, then

d(Φc′ − Φc) ≤ 2 · d(e) (5.43)

and for any 0 < q ≤ ∞
‖c′ − c‖q ≤ 2 ·Aq(Ef0

(CM )) · d(e). (5.44)

Corollary 5.4 (Test of `0 optimality) Under the hypotheses and notations of Theorem 5.3, as-

sume that

d(e) <
min{k:|ck|6=0} |ck|

4 ·A∞(Ef0
(CM )))

. (5.45)

If c′ satisfies d(s − Φc′) ≤ d(s − Φc) and ‖c′‖0
0 ≤ ‖c‖0

0, then c′ and c have the same support and

sign.

This corollary is proved from Theorem 5.3 just as Corollary 5.1 is proved from Theorem 5.1. We let

the reader express what would be the analogue of Theorem 5.2 and Corollaries 5.2-5.3. Even with

d(·) a norm, computing Aq(Ef (CM )) (or more realistically estimating it from above) seems difficult.

The estimation with two particular norms of interest, the quadratic distortion and the maximum

correlation with the dictionary vectors, will be introduced through two illustrative examples.
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Example 5.1 When d(·) = ‖ · ‖H with H a Hilbert space, the reader can easily check that for q ≥ 2

one obtains

Aq(Ef0
(CM )) ≤ sup

‖δ‖0
0≤2M

‖Φδ‖H≤1

‖δ‖2 =
1√

σ2
min,2M (Φ)

.

Combining the results obtained so far with Proposition 5.1,[48, Theorem 2.1] is recovered: if s has

a representation s = Φc+ e with M := ‖c‖0
0 <

1
2

(
1 + 1

µ1(1)

)
, and ‖e‖H = ε, then the solution c0 of

the optimization problem

min
c′

‖c′‖0
0 subject to ‖s − Φc′‖H ≤ ε (5.46)

satisfies

‖c0 − c‖2
2 ≤ 4ε2

1 − µ1(2M − 1)
≤ 4ε2

1 − µ1(1) · (2M − 1)
(5.47)

Notice that, compared to Theorem 5.1, ‖c0 − c‖2 is upper estimated by ‖e‖H instead of 2 · |e|2M . It

will be seen in Sections 5.7.4-5.7.5 that the estimate presented here can give a much smaller bound

than the worst case estimate. A similar analysis with an estimate of Aq(Ef1
(CM )) would recover a

result similar to [48, Theorem 3.1].

Example 5.2 In a Hilbert space H, when d(·) = supk |〈·,gk〉| = ‖Φ? · ‖∞, for 2 ≤ q ≤ ∞,

Aq(Ef0
(CM )) can be upper-bounded by:

Aq(Ef0
(CM )) ≤ sup

‖δ‖0
0≤2M

d(Φδ)≤1

‖δ‖2 ≤
√

2M

σ2
min,2M (Φ)

which is sharp for q = 2 when

mathcalD is a basis. The estimate is proved as follows: for any δ with ‖δ‖0
0 ≤ 2M , one obtains

σ2
min,2M · ‖δ‖2

2 ≤ ‖Φδ‖2
H = 〈δ,Φ?Φδ〉 ≤ ‖δ‖1 · d(Φδ),

hence

‖δ‖2 ≤ d(Φδ)

σ2
min,2M

· ‖δ‖1

‖δ‖2
≤ d(Φδ)

σ2
min,2M

·
√

2M.

As a result, if s has a representation s = Φc+e with M := ‖c‖0
0 <

1
2

(
1 + 1

µ1(1)

)
, and sup

k
|〈e,gk〉| = ε,

then the solution c0 of the optimization problem

min
c′

‖c′‖0
0 subject to sup

k
|〈s − Φc′,gk〉| ≤ ε (5.48)

satisfies

‖c0 − c‖2
2 ≤ 8Mε2

1 − µ1(2M − 1)
. (5.49)

5.7 Proof of the main results

When the distortion d(·) is the MSE, the worst case analysis carried out with general sub-additive

measures can be drastically improved. The key observation is that

δ ∈ D(e) ⇐⇒ |〈Φ?e, δ〉| ≥ ‖Φδ‖2
H

2
. (5.50)

Thanks to this, some problems can be recasted to a `2 sparse approximation problem in the canonical

basis, for which we can use the results of Section 5.5. As a result, the obtained bounds will be close

to sharp, as discussed below in Sections 5.7.4-5.7.5.
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5.7.1 Proof of Theorem 5.1.

In all the following, it is assumed that δ ∈ D(e)∩Ef0
(CM ), that is to say ‖δ‖0

0 ≤ 2M and |〈Φ?e, δ〉| ≥
‖Φδ‖2

H/2. Denoting δ′ = σ2
min,2M (Φ) · δ, we have δ′ ∈ Ef0

(CM ). The procedure to follow will be to

check that

‖b− Bδ′‖2 ≤ ‖b‖2 with B the canonical basis in `2 and

b the restriction of Φ?e to the finite support of δ′, which is of size at most 2M . Thus, Lemma 5.2

for p = 2 and K = 2M will give exactly that

σ2
min,2M (Φ) · ‖δ‖∞ = ‖δ′‖∞ ≤ |e|1 + |e|2M

which will bring to the first inequality (5.6).

Indeed, using the assumptions on δ and the definition of σ2
min,2M (Φ), one obtains:

|〈b, δ′〉|
‖δ′‖2

2

=
|〈b, δ〉|

σ2
min,2M (Φ) · ‖δ‖2

2

=
|〈Φ?e, δ〉|
‖Φδ‖2

H
· ‖Φδ‖2

H
σ2

min,2M (Φ) · ‖δ‖2
2

≥ 1

2
.

It follows that ‖b−Bδ′‖2 ≤ ‖b‖2 as claimed. To get the second inequality (5.7), simply notice that

‖δ‖2
2 ≤ 2 · |〈b, δ〉|

σ2
min,2M (Φ)

≤ 2 · |e|2M · ‖δ‖2

σ2
min,2M (Φ)

,

where the above expression is obtained using the Cauchy-Schwarz inequality and the fact that

‖b‖2 = |e|2M . To get the third inequality (5.8) we observe that

‖Φδ‖2
H ≤ 2 · |〈Φ?e, δ〉| ≤ 2 · |e|2M · ‖δ‖2 ≤ 4 · |e|22M

σ2
min,2M (Φ)

where (5.7) has been used for achieving the right hand side inequality.

5.7.2 Proof of Theorem 5.2.

In all the following, it is assumed that δ ∈ D(e) ∩ Ef1
(CM ). Let (|〈e,gkm

〉|)m≥1 and (|δlm |)m≥1 be

decreasing rearrangements of (|〈e,gk〉|)k and (|δk|)k. Let c := σ2
min,M (Φ) ·λ2

M (Φ), and δ′ = (δ′m) by

δ′m = c · |δlm | for 1 ≤ m ≤M and δ′m = 0 for m > M . Similarly, let b = (bm) with bm = 2 · |〈e,gkm
〉|

for 1 ≤ m ≤M and bm = 0 for m > M .

Since ‖δ′‖0
0 ≤M and |〈Φ?e,δ〉|

‖Φδ‖2
2

≥ 1
2 , if it is possible to prove that

|〈b, δ′〉|
‖δ′‖2

2

≥ |〈Φ?e, δ〉|
‖Φδ‖2

H
(5.51)

then ‖b− Bδ′‖2 ≤ ‖b‖2 will be obtained, and Lemma 5.2 with p = 2 for K = M will exactly give

c · ‖δ‖∞ = ‖δ′‖∞ ≤ 2 · (|e|1 + |e|M )

which will bring to inequality (5.10).

(5.51) is proved by getting an upper bound on the numerator and a lower bound on the denom-
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inator of the right hand side. For the numerator, the upper-bound is obtained as follows:

|〈Φ?e, δ〉| ≤
M∑

m=1

|〈e,gkm
〉| · |δlm | +

∑

m≥M+1

|〈e,gkm
〉| · |δlm |

≤
M∑

m=1

|〈e,gkm
〉| · |δlm | +

∣∣〈e,gkM+1

〉∣∣ ·
∑

m≥M+1

|δlm |

≤
M∑

m=1

|〈e,gkm
〉| · |δlm | +

∣∣〈e,gkM+1

〉∣∣ ·
M∑

m=1

|δlm |

=

M∑

m=1

(
|〈e,gkm

〉| +
∣∣〈e,gkM+1

〉∣∣) · |δlm |

≤ |〈b, δ′/c〉| (5.52)

Now, it only remains to estimate the lower-bound for the denominator. Let I = IM (δ) and consider

δI the sequence with zeros everywhere except on I where it coincides with δ. Since ΦIΦ
+
I is an

orthonormal projector and I is of cardinal M ,it follows that

‖Φδ‖2
H ≥ ‖ΦIΦ

+
I Φδ‖2

H = ‖ΦIz‖2
H ≥ σ2

min,M (Φ) · ‖z‖2
2 (5.53)

with z := Φ+
I Φδ = δI +

∑
k/∈I δk · Φ+

I gk. So,

‖z‖2 ≥ ‖δI‖2 −
∑

k/∈I

|δk| · sup
k/∈I

‖Φ+
I gk‖2

≥ ‖δI‖2 − ‖δI‖1 · sup
k/∈I

‖Φ+
I gk‖2

≥ ‖δI‖2 −
√
M‖δI‖2 · sup

k/∈I

‖Φ+
I gk‖2

≥ λM (Φ) · ‖δI‖2

where the fact that δ ∈ Ef1
(CM ) is used in order to get the second inequality. If λM (Φ) > 0, then

‖Φδ‖2
H ≥ σ2

min,M (Φ) · λ2
M (Φ) · ‖δI‖2

2 =
‖δ′‖2

2

c
. (5.54)

The desired inequality is obtained by combining (5.52) and (5.54)

|〈Φ?e, δ〉|
‖Φδ‖2

H
≤ |〈b, δ′/c〉|

‖δ′‖2
2/c

=
|〈b, δ′〉|
‖δ′‖2

2

The third inequality (5.12) is obtained by writing

‖Φδ‖2
H ≤ 2 · |〈Φ?e, δ〉|

≤ 2 ·
∣∣∣∣
〈
b,
δ′

c

〉∣∣∣∣
≤ 4 · |e|M · ‖δI‖2

≤ 4 · |e|M · ‖Φδ‖H√
c

To get the second inequality (5.11), noticing that (5.54) and (5.12) yield

‖δI‖2
2 ≤ ‖Φδ‖2

H
c

≤ 4 · |e|M · ‖δI‖2

c
,
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which brings to ‖δI‖2 ≤ 4 · |e|M/c, and using the fact that

‖δ‖2
2 = ‖δI‖2

2 +
∑

k/∈I

|δk|2 ≤ ‖δI‖2
2 +

(
∑

k/∈I

|δk|
)2

≤ ‖δI‖2
2 + ‖δI‖2

1 ≤ (1 +M) · ‖δI‖2
2.

the inequality is achieved. �

Notice that in the proof, instead of

bm = 2 · |〈e,gkm
〉| , (5.55)

this sharper estimate could have been used instead:

b′m =

(
|〈e,gkm

〉| +
∣∣〈e,gkM+1

〉∣∣)

2
. (5.56)

This would have lead to slightly sharper estimates, however they would have been more cumbersome

to express and, as discussed below in Sections 5.7.4-5.7.5, the simplified estimate with bm = 2 ·
|〈e,gkm

〉| is almost sharp.

5.7.3 Proof of Proposition 5.1

Proposition 5.1 immediately follows from the lemmas below.

Lemma 5.4 Let Φ be a normalized dictionary in a Hilbert space H. Then, for every integer K

σ2
min,K(Φ) ≥ 1 − µ1(K − 1,Φ). (5.57)

The proof is based on Geršgorin Disk Theorem and can be found in [189].

Lemma 5.5 Let Φ be a normalized dictionary in a Hilbert space H. Then

λM (Φ) ≥ 1 −
√
M · µ2(M,Φ)

1 − µ1(M − 1,Φ)
. (5.58)

Proof. For any index set I with card(I) ≤M :

|‖(Φ?
IΦI)

−1‖|2,2 ≤ 1

σ2
min,M (Φ)

≤ 1

1 − µ1(M − 1)
.

Since Φ+
I = (Φ?

IΦI)
−1Φ?

I and, for k /∈ I,

‖Φ?
Igk‖2 =

√∑

i∈I

|〈gk,gi〉|2 ≤ µ2(M),

which brings to

‖Φ+
I gk‖2 = ‖(Φ?

IΦI)
−1Φ?

Igk‖2 ≤ µ2(M)

1 − µ1(M − 1)
.

And the final result is achieved by using the definition of λM (Φ) (see Eq. (5.9)). �
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5.7.4 Sharpness of Theorem 5.1

When D is an orthonormal basis, the estimate (5.6) in Theorem 5.1 is sharp since σ2
min,2M = 1

and we have an exact estimate given by Lemma 5.2. Similarly, one can check the sharpness of the

estimates (5.7)-(5.8). For a general D, a slight modification of the proof of Theorem 5.1 leads to

sup
δ∈D(e)∩Ef0

(CM )

‖δ‖∞ ≥ |e|1 + |e|2M

σ2
max,2M

(5.59)

with

σ2
max,K(Φ) := sup

‖δ‖0
0≤K

‖Φδ‖2
H

‖δ‖2
2

≤ 1 + µ1(K − 1).

Thus, if µ1(2M − 1) is small enough, the estimate (5.6) is almost sharp in the sense that it cannot

be significantly improved.

5.7.5 Sharpness of Theorem 5.2

Since

sup
δ∈D(e)∩Ef0

(CM )

‖δ‖∞ ≤ sup
δ∈D(e)∩Ef1

(CM )

‖δ‖∞,

the (almost) sharpness of the results in Theorem 5.2 is a consequence of that of Theorem 5.1:

combining Eq. (5.59) with the estimate (5.10), one obtains

|e|1 + |e|2M

σ2
max,2M

≤ sup
δ∈D(e)∩Ef1

(CM )

‖δ‖∞ ≤ 2 · (|e|1 + |e|M )

σ2
min,M · λ2

M

.

When µ1(2M − 1) is small enough, the upper bounds become approximately |e|1 + |e|2M and

2 · (|e|1 + |e|M ) which differ at most by a factor two since |e|2M ≤ |e|22M ≤ 2|e|2M .

5.8 Conclusions

Chapter 4 introduced several algorithms to obtain sparse approximations of a signal, and its ca-

pability to recover this sparse approximation. The natural evolution is to have a tool that allows

to check whether a given sparse approximation (computed using any algorithm) is nearly optimal.

This chapter has presented such a tool. Having a nearly optimal sparse approximation means that

no other significantly different representation can, at the same time, be sparser and provide a better

approximation for this input signal. The test is easy to implement, and it does not depend on the

algorithm used to find the sparse signal approximation, neither does it rely on any prior knowledge

of the ideal sparse approximation. In addition, the test can be used for several sparsity measures,

and some extended results allow the use of non-quadratic distortion measures, which would allow

to use it for more complex problems such as Bayesian estimation and signal denoising, with a fairly

large class or sparse priors and random noise.

The results presented here could, maybe, be adapted to obtain optimality results on the opti-

mality of simultaneous sparse approximation of several signals, so that they can be applied to blind

source separation (or denoising, which, finally, is a blind source separation problem as well). The

fact of being able to use several sparsity measures allows to use these results for the case where there

is an a priori knowledge about the basis function distribution, such as the work presented in [39].

Finally, it has to be said that, even though this test is tighter than existing tests, still, the fact of

using very redundant dictionaries and natural signals in most of the sparse approximation problems,

causes that the test would give a negative result after a certain small number of decomposition terms.
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Nevertheless, these results give hope toward being able to perform sparse signal approximations that

approach the optimal solution.



Chapter 6

Image approximation with

Matching Pursuit

From all the techniques that allow to perform a signal approximation through a redundant dictio-

nary, one has to choose the most appropriate for the data and the dictionary in use. Chapter 4

has enumerated some of these techniques, and presented in which situations one can be sure that

a given technique has been able to find the sparsest possible approximation in a certain redundant

dictionary. Among all these, Matching Pursuit (MP) seems the most appropriate for image approx-

imation, due to several reasons: it guarantees that the residual energy decreases sufficiently fast

when a coefficient is added, it allows a big flexibility in the dictionary of basis functions in use, and

it is easy to implement. In addition, as it is an iterative method, it is less complex that other meth-

ods, such as BP, when having huge amounts of data, as it is the case with images and redundant

dictionaries. Finally, MP can easily be parallelized. This chapter presents the implementation of an

image approximation scheme through a dictionary formed by anisotropic and rotated basis functions

through a MP algorithm. Several variations of this scheme are introduced here.

This chapter is structured as follows: Section 6.1 introduces the image model in use. Section 6.2

presents the kind of basis functions that are present in the dictionary in use, and the reasons of their

choice. Section 6.3 presents a sub-optimal MP algorithm [65, 66], that uses a genetic algorithm to

find the basis function at every iteration. Section 6.4 explains how a full search MP that is reasonably

quick can be implemented [62], and compares some image decomposition results obtained with the

genetic algorithm and with the FS-MP. Section 6.5 explains some tricks to optimize this FS-MP,

specially in terms of memory usage. Section 6.6 discusses the flexibility of the presented MP image

approximation scheme, and the problem of having a different scheme for the low-pass frequency band

and the rest of the image. To overcome these limitations, Section 6.7 introduces a new dictionary of

basis functions that gives a full image approximation with MP, without having to perform different

coding schemes for the low and high frequencies. Section 6.8 introduces a weighted MP algorithm,

that instead of taking energy as criteria for choosing the basis functions at every iteration, takes

a weighted energy criteria. The weight can depend on several factors, and is based in an a priori

knowledge that one may have of the image. In this case, the algorithm uses a dictionary formed by

83
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three different subdictionaries, one for smooth regions, one for edge regions and one for textured

regions. A previous image segmentation between smooth, edge and textured regions is then used

as helping criteria for MP to place a function from the subdictionary of textures in the textured

region, for example. The MP algorithms presented in Section 6.3, Section 6.4 and Section 6.8 are for

gray-scale images. Section 6.9 explains how the MP algorithm can be used for color images, keeping

the sparsity of the representation and profiting from the correlation among channels. Finally, some

conclusions are given in Section 6.10.

6.1 Image Model

In order to efficiently represent a signal, there is a need to know some features of this signal and

to make some assumptions. The main assumption that it is done with images is that they can

be represented (or at least approximated with a residual that decreases when the number of terms

increases) as a finite sum of M basis functions, with M smaller than the dimensionality of the signal

(sparse representation, Section 2.6):

s =

M−1∑

m=0

cmgγm
. (6.1)

In order to have efficient representations, basis functions have to be adapted to the specific

features of natural images, i.e. to contours. These are assumed to be continuous smooth functions,

as done by several authors [42, 46, 64, 107]. It has been seen in Chapter 3 that variable segment

length, a variable rotation and translation of the basis functions are necessary to have sparse image

approximations. In addition, it is logical to think that an image is dilation, translation and rotation

invariant, because in natural images, objects and contours can appear in any orientation or size or

position. The dictionary of basis functions has to be designed according to all these image qualities.

This implies that the dictionary has to be composed by a set of anisotropic scaling, rotation and

translation of the mother basis function. In addition, the basis functions are supposed to be dilation,

rotation and translation invariant, so that they match our model.

6.2 Dictionary of basis functions

6.2.1 Generating functions

The dictionary used in the scope of this thesis is built by varying the parameters of a basis function,

in such a way that it generates an overcomplete set of functions spanning the input image space.

The choice of the generating function, g, is driven by the idea of efficiently approximating contour-

like singularities in 2-D. To achieve this goal, the atom is a smooth low resolution function in the

direction of the contour, and behaves like a wavelet in the orthogonal (singular) direction. In other

words, the dictionary is composed of atoms that are built on Gaussian functions along one direction,

and on second derivative of Gaussian functions in the orthogonal direction:

g(x, y) =
2√
3π

(4 x2 − 2)e−(x2+y2) , (6.2)

where [x, y] is the vector of discrete image coordinates, and ||g|| = 1. The choice of the Gaussian

envelope is motivated by the optimal joint spatial and frequency localization of this kernel. The

second derivative occurring in the oscillatory component is a trade-off between the number of van-

ishing moments used to filter out smooth polynomial parts and ringing-like artifacts that may occur

after strong quantization. It is also motivated by the presence of second derivative-like filtering in

the early stages of the human visual system (see Chapter 2 and [124, 138, 139]).
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6.2.2 Anisotropy and orientation

Anisotropic refinement and orientation is obtained by applying meaningful geometric transforma-

tions to the generating functions of unit L2 norm, g, described here-above. These transformations

can be represented by a family of unitary operators U(γ), and the dictionary is thus expressed as:

D = {U(γ)g, γ ∈ Γ} , (6.3)

for a given set of indexes Γ. Basically this set must contain three types of operations:

• Translations b, to move the atom all over the image.

• Rotations θ, to locally orient the atom along contours.

• Anisotropic scaling a = (ax, ay), to adapt to contour smoothness.

A possible action of U(γ) on the generating atom g is thus given by:

U(γ)g = U(b, θ)D(ax, ay)g (6.4)

where U is a representation of the Euclidean group,

U(b, θ)g(p) = g (r−θ(p − b)) , (6.5)

rθ is a rotation matrix, and D acts as an anisotropic dilation operator:

D(ax, ay)g(p) =
1

√
axay

g

(
x

ax
,
y

ay

)
. (6.6)

It is easy to prove that such a dictionary is overcomplete using the fact that, under the restrictive

condition ax = ay, one gets 2-D continuous wavelets as defined in [4]. It is also worth stressing that,

avoiding rotations, the parameter space is a group studied by Bernier and Taylor [8]. The advantage

of such a parametrization is that the full dictionary is invariant under translation, rotation, and

isotropic scaling (i.e. ax = ay), as desired in the specifications defined in Section 6.1.

6.2.3 Dictionary

Since the structured dictionary is built by applying geometric transformations to a generating mother

function g, the atoms are therefore indexed by a string γ composed of five parameters: translation

b = [bx, by], anisotropic scaling a = [ax, ay] (with ax ≤ ay in order to have functions elongated on

the direction of the contour) and rotation θ. Any atom in this dictionary can finally be expressed

in the following form:

gγ(x, y) =
2√
3π

(4 gx
2 − 2) exp(−(gx

2 + gy
2)) , (6.7)

with

gx =
cos(θ) (x− bx) + sin(θ) (y − by)

ax
, (6.8)

and

gy =
cos(θ) (y − by) − sin(θ) (x− bx)

ay
. (6.9)

For practical implementations, all parameters in the dictionary must be discretized. For the

Anisotropic Refinement (AR) Atoms sub-dictionary, the translation parameters can take any positive

integer value smaller than the image dimensions (thus, the minimum translation allowed is of one
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(a) Spatial domain (b) Frequency domain

Figure 6.1: An example of one atom of the dictionary in the spatial domain and in the frequency

domain.

pixel). The rotation parameter varies by increments of π
18 , to ensure the over-completeness of the

dictionary. If one wishes more approximation properties, or if the image under analysis is big,

this parameter can change, or can even be designed as non-uniform, giving more angles at high

frequencies and less angles at low frequencies. The scaling parameters are uniformly distributed on

a logarithmic scale from one up to an eighth of the size of the image, with a resolution of one third of

octave. The maximum scale has been chosen so that at least 90% of the atom energy lies within the

signal space when it is centered in the image. Experimentally, it has been found that this scale and

rotation discretization choice represents a good compromise between the size of the dictionary, and

the efficiency of the representation. One can choose a finer resolution for scale and rotation, getting

generally more accuracy in the initial approximations. There is however a price to pay in terms of

atom coding and search complexity. Finally, to further constrain the dictionary size, the atoms are

always smaller along the second derivative of the Gaussian function than along the Gaussian itself,

thus maximizing the similarity of the dictionary elements with edges in images. An example of a

dictionary atom can be seen in Figure 6.1.

6.2.4 Benefits of anisotropy

The benefits of anisotropy have been theoretically introduced in Chapter 3. Anisotropy and rotation

represent the core of the design of this dictionary, and hence clearly differentiate it from the pre-

viously proposed image approximation schemes. To show the gain of using anisotropic refinement,

the Anisotropic Refinement atoms dictionary has been compared to four different dictionaries, in

terms of the quality of the MP expansion. The first dictionary uses the real part of oriented Gabor

atoms generated by translation (~b), rotation (θ) and isotropic scaling (a) of a modulated Gaussian

function , similarly to the one used in [7]:

U
(
a, θ,~b

)
g(~x) =

1

a
g
(
a−1r−θ(~x−~b)

)
, (6.10)

with

g(~x) = ei ~ω0·~xe−‖~x‖2/2 . (6.11)

The next dictionary is an affine Weyl-Heisenberg dictionary built by translation, dilation and mod-

ulation of the Gabor generating atom of Eq. (6.11), as presented in [26]:

U
(
a, ~ω,~b

)
g(~x) =

1

a
ei~ω·(~x−~b)g

(
a−1(~x−~b)

)
, (6.12)
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Figure 6.2: Comparison of the approximation properties of different dictionaries of functions: or-

thogonal Haar wavelet basis, bi-orthogonal Daubechies wavelet basis, non-oriented Gabor functions,

oriented Gabor functions and oriented and anisotropically refined atoms.

where, again, only the real part is used. The other two dictionaries are simply built on orthogonal

wavelet bases. Figure 6.2 shows the reconstructed PSNR as a function of the number of iterations in

the MP expansion using different types of dictionaries. In this figure, the comparison is performed

with respect to the number of terms in the expansion, in order to emphasize the approximation

properties. Clearly, over-completeness and anisotropic refinement allow to outperform the other

dictionaries, in terms of approximation rate, which corresponds to the results presented in [42, 64].

As expected, the orthogonal bases offer the lowest approximation rates due to the fact that these

kinds of bases cannot deal with the smoothness of edges. We can thus deduce that redundancy in a

carefully designed dictionary provides sparser signal representations. This comparison shows, as well,

that the use of rotation is also of interest since the oriented Gabor dictionary gives better results

than the modulated one. It is worth noticing that rotation and anisotropic scaling are true 2-D

transformations: the use of non-separable dictionaries is clearly beneficial to efficiently approximate

2-D objects. Separable transforms, although they may enable faster implementations, are unable to

cope with the geometry of edges.

6.2.5 Representation of the low frequencies of the image

The atoms described in this section are zero-mean, and thus, cannot represent the low frequencies of

the image. In a first step, this low frequencies are simply subtracted to the image, and represented

independently, just as a downsampled version of the original image, after filtering it with a Gaussian-

like filter (the Gaussian filter is approximated by a third order spline).

6.3 GA based MP: a Weak MP implementation

The straight-forward computation of all scalar products required by FS-MP is a computationally

hard problem. In order to reduce the computation time, some clever optimization strategy may

be taken. Due to the non-linearity and non-convexity of the problem, standard minimization algo-
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rithms, such as steepest descent, do not perform well: they are most likely to fall in one of the many

local minima of the problem. One way of implementing a quicker computation of a global solution

is through the use of Genetic Algorithms (GA) [31]. The use of a Genetic Algorithm to compute

sup
γn∈Γ

|〈Rns,gγn
〉|, (6.13)

where Γ is the set of functions in the dictionary, causes the algorithm to find, instead of the optimal

solution, a suboptimal one:

|〈Rns,gγn
〉| ≥ α sup

γoptn
∈Γ

|〈Rns,gγoptn
〉| with 0 < α ≤ 1, (6.14)

where gγoptn
represents the optimal one term approximation of Rns, and gγn

is the chosen instead.

α represents the suboptimality of the solution (how far is the found solution from the optimal

one). The implementation of the Greedy algorithm with this suboptimality criteria is called a Weak

Greedy Algorithm or Weak MP. Weak Greedy algorithms (see [182] and Chapter 4) have been widely

studied [182, 184], and they are proved to converge, even though with slower convergence rate than

MP or pure Greedy algorithms.

The implementation of Weak MP through a Genetic Algorithm seems appropriate, because

Genetic Algorithms can converge no matter the number of local minima in the problem. The

disadvantage of this kind of algorithms is that the convergence degree is statistical. One can never

know how close to the optimal solution is the one retrieved. However, greedy algorithms have

been demonstrated to converge, even if the solution chosen at every iteration is not the optimal

[182, 184], with a statistical optimality degree. Hence, the use of a Genetic Algorithm will not cause

the algorithm to diverge, but it will just slow down the convergence.

The use of Genetic Algorithm (GA) in the framework of MP for image approximations was

proposed in [61, 65, 66, 72]. The GA takes the parameters of the atoms (translation b = [bx, by],

scaling a = [ax, ay] and rotation θ) as genes. Each group of five parameters γ (or five genes

γ = [bx, by, ax, ay, θ]) that define an atom is an individual. The group of Nind atoms being evaluated

in a certain moment, or the group of Nind individuals alive in a certain moment [γ1, γ2, . . . , γNind]

is a population. The individuals of a population will have descendants through crossover (mixing

of two genes), mutations (random variation of the genes) and survival of the fittest (keeping the

fittest individual of a given generation unchanged in the following generation), which will form the

new generation of the population. Normally the algorithm will go on until a certain number Ng

of generations is achieved or until the minimal error has been reached. In addition, to avoid local

minima, a flush of the individuals in a generation (elimination of the individuals) and a regeneration

of the population with new genes is performed if a too stable population is achieved. In such a

case, only the fittest is kept, and the rest of the individuals of the next generation are randomly

initialized∗. A diagram of how this algorithm works is depicted in Figure 6.3. The reader interested

in a more detailed description of this Genetic Algorithm can check [61, 65].

The computational complexity of the GA directly depends on the number of individuals in the

population and on the number of generations allowed. The number of scalar products to compute in

order to obtain an MP coefficient through the GA is at most Nind ·Ng−Ng +1. From one generation

to the other, some individuals can be kept without change due to the randomness of mutations and

crossovers. In effect, the computation of the winner is done only once, because then it passes from

one generation to the other. If no constrain is given to the dictionary (so, dictionary atoms are not

∗A sort of Deluge, where no Noah arch was built, and just one strong individual survived. As it was too sad, being

alone, God created some company for him...
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Figure 6.3: Genetic Algorithm block diagram

necessarily bounded, and its size is taken equal to the image size), performing a scalar product will

imply N products and sums. The final computational complexity of the GA is given by:

O (N ·Nind ·Ng) , (6.15)

where N is the dimension of the signal to represent, Nind is the number of individuals in a gen-

eration and Ng is the number of generations allowed. When compared to the “Brute Force” Full

Search MP (FS-MP) implementation (see Section 6.4.1), this complexity is lower if a small enough

number of individuals and generations is taken. Nevertheless, GA introduces a loss of approximation

fidelity which is difficult to quantize due to the randomness of the method, and the gain in terms of

computational complexity does not always compensate the loss of quality.

6.4 Full Search MP

Sub-optimal algorithms to find the MP coefficient at iteration m can advantageously reduce com-

putational complexity, but there is a price to be paid in terms of accuracy of the solution. This can

affect negatively the performance of the application that uses the generated signal expansion. In
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fact, errors committed during function selection require further projections in order to be corrected,

turning into a decrease of the coefficients decay and, consequently, a reduction of the approximation

Sparsity. This can be avoided with the Full Search MP (FS-MP).

For applications where sparsity and accuracy play a critical role, there is a determinate interest

in the availability of feasible FS-MP approaches. In this way, the best possible MP expansion may

be achieved avoiding heuristic or uncontrolled imprecisions during the function selection procedure.

This section presents the “Brute Force” MP algorithm, and states that it is too computationally

hard to be used. Then, it introduces some properties of the dictionary that allow to implement a

smart version of the FS-MP Algorithm. It compares the approximation results of the FS-MP with

the GA-MP, together with the computational complexity and the memory usage of the different MP

implementations.

6.4.1 “Brute Force” Full Search MP

According to the MP algorithm principle (see Chapter 4 Section 4.3.2), every iteration needs to

compute

sup
γm∈Γ

|〈Rms,gγn
〉|, (6.16)

where gγ is the dictionary function and Rms is the residual at iteration m. Thus, it is necessary to

browse through all the functions that conform the given dictionary and perform all scalar products

between dictionary atoms and the signal. Hence, the complexity of a FS-MP iteration directly de-

pends on the size of the dictionary times the complexity of a single scalar product. In a general case,

and without any constraint on the dictionary, the scalar product can be considered to involve all the

pixels of the image (non-separable atoms with no compact support). Considering the contribution

of the number of functions in the dictionary and the image size, a FS-MP algorithm performs

O (NF ·N) (6.17)

operations in order to compute all the scalar products, where N = Sizex · Sizey is the dimension of

the image and NF the number of dictionary functions.

The choice of atoms in MP expansions looks forward to find the best spatio-frequential approxi-

mation at the best localization within the image to be represented. This implies that the atoms have

to be placed at every pixel of the image, as discussed in Section 6.2, in order to take into account all

the possible displacements of a certain basis function. This very dense atom translation causes that

most of the basis functions in the dictionary are just displaced version of a model, with which they

share the frequential properties. The number of basis functions in a dictionary can thus be written

as:

NF = MF · Sizex · Sizey = MF ·N, (6.18)

where MF is the number of model functions. Using the above equation in Eq. (6.17), the complexity

of a FS-MP with a dictionary that allows all the integer translations (such as the one used in the

scope of this thesis becomes) is:

O
(
MF ·N2

)
, (6.19)

which gives a complexity that grows quadratically with the signal dimension. The above equation

does not take into account, in the estimation of the FS-MP complexity, the cost of generating the

basis functions that compose the dictionary, since they are just generated once and kept in memory.

Nevertheless, in some cases, when the dictionary is generated from an analytic function, such as

Eq. (6.2), the programming of the algorithm may be done computing at every step the concerned

atom. Then, the complexity of the function generation has to be taken into account to have a
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proper estimation of the final complexity of the algorithm. The cost of computing a general atom

of the image dimensions is a priori related with the size of the image. Assuming ∆ the number of

operations needed to compute an atom pixel, the complexity of the MP algorithm for one iteration

becomes O
(
MF ·N2

)
+ O(∆N), which, if ∆ << N , becomes O

(
MF ·N2

)
. Nevertheless, in some

cases, the supposition that ∆ << N cannot be done. This is the case of Eq. (6.2), where there is an

exponential to compute. Anyway, the complexity of the algorithm, even when ∆ −→ N , remains

O
(
MF ·N2

)
. If the dictionary atoms have to be computed at every iteration, some tricks ca be

done to reduce the added complexity this computation implies: The most computationally heavy

parts of the analytical atom expression can be kept in look-up tables, which, in case they are defined

in a sufficiently dense set of pre-computed values, give a good enough approximation. For example,

the exp() in Eq. (6.2) could be kept in a look-up table, and in case a value that is not in this table

is needed, it can be computed through linear interpolation, taking the nearest neighbors that exist

in the table.

A solution to save the computational complexity of computing the basis functions at every

iteration is to store all the functions that form the dictionary in memory. In such a case, no

extra calculations are needed for the MP search, apart from the scalar products and the memory

transfers. This is equivalent to disposing of a numerically defined dictionary. It has to be taken

into account, though, that the complexity problem of computing all the atoms is completely turned

into a memory problem in terms of size and bandwidth. In a general framework with no constraints

on the dictionary, saving all the dictionary functions in memory would require O (NF ·N) memory

words, which can absolutely be impractical for a very dense dictionary.

Coming back to the dictionary presented in Section 6.2, the fact of having O(N) functions per

each of the MF frequency models represents O
(
MF ·N2

)
in terms of memory requirements. Thus,

it becomes absolutely impracticable to keep all the dictionary in memory. On the other hand, the

dictionary functions that are not truncated are translation invariant and it is only necessary to store

a single numerical centered version for each one of the MF models. A simple convolution solves

then all the scalar products for each one of the frequency models at all the possible integer value

translations. Next section gives the detail of this convolution, explaining the special case of boundary

functions. Functions near the border are truncated, and this case has to be treated separately.

6.4.2 Spatial invariance in scalar product computation and boundary

renormalization

As already said in previous section, at iteration n, the FS-MP has to perform the following operation:

〈Rms,gγm
〉 = sup

γ∈Γ
〈Rms,gγ〉 . (6.20)

Considering the translation invariance of each frequency model, one can write 〈Rms,gγ〉 as:

〈Rms,gγ〉 = 〈Rms,gγdx,dy
MF

〉 =
∑

τ

∑

λ

Rms(τ, λ)gγMF
(τ − dx, λ− dy), (6.21)

where γMF
∈ ΓMF

and ΓMF
is the sub-set of different frequency models in Γ. ΓMF

is the set of

all the possible different shapes that the functions of the dictionary may have independently of the

spatial position. In (6.21), γdx,dy
MF

indexes all the different functions included in Γ: every possible

translation (dx and dy) for all the different frequency models contained in ΓMF
. The, if the signal

has an infinite support, by multiplying the Fourier transform of the functions in ΓMF
by the Fourier

transform of the image to represent and performing the inverse Fourier Transform, one get the

scalar product of the functions analyzed for all the possible translation dx and dy. The fact of being
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able to compute the scalar product of a signal through the convolution is only true if the signal

domain is infinite. A common problem to be addressed in image processing is the finite nature of

the signal. Images are defined on a finite domain. If this is not taken into account, then sparsity in

representations may decrease. An example is the representation of an image through the classical

wavelet transform. When no considerations are taken on the boundaries (simple zero padding),

there will be a large amount of highly valued wavelet coefficients on the image border. Several

solutions have been studied to avoid having these non-zero coefficients due to the image boundaries.

The most common solutions are periodization of the signal, mirror folding or the use of specific

boundary wavelets [118]. Nevertheless, this kind of solutions are not necessarily the best ones, when

dealing with redundant dictionaries, and the problem requires a more detailed analysis.

An image I(x, y) defined in a domain [x ∈ [0,Sizex), y ∈ [0,Sizey)] can be considered as the

windowed version of a infinite 2-D signal Iinf:

I(x, y) = Π

(
x− Sizex/2

Sizex
,
y − Sizey/2

Sizey

)
Iinf (x, y) , (6.22)

where Π (x, y) is a squared 2-D window defined as non-zero for x, y ∈ [0, 1].

When dealing with a redundant dictionary that tries to capture the regularity of contours, the

possible use of periodic extensions of the image would definitely have a negative impact in the

number of functions needed to represent the boundary: artificial structures would be introduced,

with discontinuities that would cause a concentration of non-zero coefficients in the boundaries of

the image. Mirroring would be a better choice and the energy spreading on the coefficients would

be significantly lessen, but would anyway introduce artificial structures such as bending of oriented

features (e.g. edges) on the image boundary.

A more elegant solution than trying to transform a finite signal to an infinite one is to consider

into the dictionary an additional variant of the functions used to decompose the signal, which

take these boundaries into account. The proposed supplementary functions substitute any function

that goes outside the boundary of the image, and are nothing else than the windowed version of

our anisotropically refined functions. The only constraint that these truncated or windowed basis

functions have is that they must still have a unitary norm. This can be done by weighting with a

normalization factor the displaced versions that cross the image borders, such that they continue to

have norm one. In this way, coefficient expansions continue to have the same properties defined for

MP signal decomposition on unitary dictionaries. The contribution of this new class of elementary

functions is the ability to catch regular structures of the signal (in the same way as the windowed

ones) that suddenly terminate at the image boundary without adding any extra coefficient due

to the image border. The scalar product computation can then still be performed through the

convolution of the centered and non-truncated basis function with the image to represent, with just

a normalization factor in the positions where the basis function being analyzed is truncated. The

scalar product generation can thus be reformulated as:

〈RmI,gγ〉 = 〈RmI,gγdx,dy
MF

〉 =

∑
τ

∑
λ RmI(τ, λ)

gγMF
(τ − dx, λ− dy)∥∥∥∥gγMF

(τ − dx, λ− dy) · Π
(
τ − dx− Sizex/2

Sizex
,
λ− dy − Sizey/2

Sizey

)∥∥∥∥
2

·

Π

(
τ − dx− Sizex/2

Sizex
,
λ− dy − Sizey/2

Sizey

)
=
∑

τ

∑

λ

Rms(τ, λ) · g̃γMF
(τ − dx, λ− dy),

(6.23)

where g̃γ represents the new dictionary of functions, which still is space invariant except for a
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weighting factor that depends on the spatial location.

The fact that the scalar product is scale invariant apart from a normalization factor implies

that its calculation can be divided into two steeps. First, the common part of all functions of the

same kind (same non bounded spatio-frequential properties but not same position) is used in the

convolution. Afterward, each obtained coefficient is weighted by the normalization factor of its

projecting function, which takes into account its intersection with the boundary. The computation

of the normalization factors implies an additional increase of complexity. In a general dictionary,

this complexity depends on the total number of functions of the dictionary and the size of the signal.

Considering the general situation where all dictionary functions may intersect with the boundary

independently of its position, it turns out that NF normalization factors are needed and

O
(
MF ·N2

)
(6.24)

operations can be needed to compute them. This normalizing factors are used at every iteration

of the MP algorithm, and do not depend on the signal under analysis. This allows to compute

them once at the beginning of the expansion process and to store them for their posterior use in the

subsequent MP iterations. When this one time computation and storage is performed, Eq. (6.18)

trivially implies the need of

O (MF ·N) (6.25)

memory words, which in some cases and depending on the dictionary size (and image size) may be

feasible.

6.4.3 FFT based FS-MP: from Scalar Products to Spatial Convolution

In Section 6.4.1 the computation of the whole set of scalar products has been presented as a very

computationally complex task, while Section 6.4.2 has explained the special case of truncated basis

functions, and how these differ from the non truncated ones. In order to lessen the complexity of

computing the convolution, the use of a fast convolution algorithm based on the Fourier transform

is to be considered. The use of such a fast algorithm makes a full search strategy for large dictio-

naries possible. Eq. (6.19), which gives the complexity of computing the scalar products through

convolution, is then substituted by

O (MF ·N log (N)) . (6.26)

If the fast convolution using the Fourier Transform is used, it is more efficient to store in memory

the Fourier version of the basis functions, such that only one FFT will be needed (and IFFT, to

obtain the spatial convolution). In the case of a dictionary of non-complex functions, the amount

of memory needed for the Fourier domain versions is the same as the amount needed in the spatial

domain. However, as performing a Fourier Transform causes a periodization in space, some spatial

zero padding has to be added, in order to avoid this periodization effect give artificial non-zero

boundary coefficients. This zero padding has to be big enough, so that the basis function does not

see the periodization, but small enough, not to give too much extra computations. In the worst case

(basis function with support as big as the image size), the zero padding has to be of Sizex

2 pixels

per side horizontally, and
Sizey

2 per side vertically. Furthermore, the mask of normalizing weights

has to be stored in memory as well, in order not to compute it at every iteration, which increases

even more the memory needs. Taking these facts into account, one gets an asymptotic memory

requirement of:

O
(
MF ·N2

)
(6.27)

memory words.
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Figure 6.4: Description of the setting up procedure to generate the look up tables to be used in

Figure 6.5

The scheme used to generate and store the dictionary functions and the weighting masks is

shown in Figure 6.4. The dictionary functions are generated from its analytic expression, and after

being transformed in the Fourier domain, stored in a look-up table. Weighting masks are generated

by convolving a centered squared atom by an image size pulse function of unitary amplitude. The

weighting masks are stored in another look-up table.

The generation of the scalar products from the stored Fourier atoms and their weighting masks is

then generated as illustrated in Figure 6.5 . Convolutions are performed on the Fourier domain, by

multiplying the signal to represent with the basis function. Once this product has been performed,

the output is transformed to the spatial domain, where it is multiplied by the weighting mask of

the basis function being analyzed. Once scalar products are available, as reviewed in Section 4.3.2,

only the search of the suprema of all these scalar products has to be done.

This section has presented a faster FS-MP, using the Fourier domain convolution to compute the

scalar products of the signal to represent and the basis functions in the dictionary. It has been seen,

though, that even though this scheme is faster than the “Brute force” approach, it still needs high

amounts of memory. This approach, though, has not taken benefit from specific dictionary features,

such as space-frequency localization. Section 6.5 will present how MP can benefit of very interesting

improvements in terms of computational cost and memory requirements when special care of the

structure of the dictionary is taken into account. Before trying to optimize the full search algorithm

memory and computational requirements, though, it is worth seeing what are the improvements in

terms of approximation properties of using a full search algorithm instead of a genetic based MP.
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Figure 6.5: Schematic description of the full search algorithm for one iteration of MP. Look up

tables are used to hold the DFT of the dictionary functions and the normalizing masks.

Image Algorithm Computation Time PSNR

Lenna 128x128
GA-MP

FS-MP

156’ 26.909”

126’ 29.792”

26.1506 dB

29.9076 dB

Cameraman 128x128
GA-MP

FS-MP

157’3.249”

128’13.957”

25.0485 dB

28.8270 dB

Baboon 128x128
GA-MP

FS-MP

160’19.048”

128’9.170”

25.1374 dB

26.7932 dB

Table 6.1: Comparison of the computational time and the image quality obtained with the Genetic

Algorithm, using 39 individuals and 75 generations, and the Full Search algorithm.

6.4.4 Results: Full Search vs Genetic Algorithm Search

This section compares the performance of the Full Search MP (FS-MP) algorithm versus the Weak

MP based on the GA (GA-MP). Table 6.1 states the relations of computation time required by each

algorithm and the approximation quality achieved. The experiments have been performed on a Dual

Xeon 2.2 GHz with 2GB of RAM platform. One can see that the optimized full search algorithm

improves, for similar or smaller computation times than the GA, the quality of the approximation.

It is very relevant the improvement of 3.8 dBs registered in the piecewise-smooth like images (Lenna

and Cameraman) with a significantly smaller computational time. For the case of Baboon, the

improvement is only of 1.6 dBs due to the higher complexity of the signal (much more textured). In

the three cases, approximations have been generated by recovering the first 300 terms of their MP

expansions.

Figures 6.7, 6.8 and 6.9 show a visual comparison of the approximation properties of the FS-

MP and the GA-MP. The visual comparison of Figures 6.7, 6.8 and 6.9 with their original images

(Figure 6.6) shows that the GA causes some geometric noise to appear in the image approximations
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(a) Lenna (b) Cameraman (c) Baboon

Figure 6.6: Original Lenna, Cameraman and Baboon images.

(a) Genetic Algorithm (b) Full Search Algorithm

Figure 6.7: Visual comparison of Lenna 128x128 decomposed with MP with 300 coefficients (a)

with the GA-MP and (b) with the FS-MP.

performed through this implementation of Weak MP. This geometric noise, or lines that extend the

contours of an object, appear near relevant salient geometric structures, such as edges, due to the

suboptimality of the GA search. In the FS case, the exhaustive search at every iteration drastically

reduces this kind of noise.

A numerical comparison about the approximation properties of GA-MP and FS-MP can be

found in Figure 6.10. This figure shows the evolution of the PSNR with the number of coefficients

for the FS-MP algorithm and the GA based MP algorithm, when the image Lenna is approximated.

As expected, the FS algorithm outperforms through all iterations the weak greedy algorithm, and

this out-performance increases as the number of terms in the expansion increases as well. It is

thus clear that the quick implementation of a FS-MP is worth, if one wants to use MP for image

approximation, both for the PSNR improvement and the visual quality improvement that it brings.

6.5 Exploiting the dictionary features

In the previous section, the use of the Fourier Transform to perform the convolution and the com-

putational gain that this brings have been studied for a general dictionary. It has been shown
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(a) Genetic Algorithm (b) Full Search Algorithm

Figure 6.8: Visual comparison of Cameraman 128x128 decomposed with MP with 300 coefficients

(a) with the Genetic Algorithm and (b) with the Full Search MP.

(a) Genetic Algorithm (b) Full Search Algorithm

Figure 6.9: Visual comparison of Baboon 128x128 decomposed with MP with 300 coefficients (a)

with the Genetic Algorithm and (b) with the Full Search MP.

that the fact of using the Fourier Transform to perform a convolution implies reducing the cost of

computing a coefficient of the MP expansion by a square factor. However, this reduction could be

even higher if some specific features of the dictionary were taken into account. In this section, the

dictionary spatio-frequential localization is exploited to reduce bot computational complexity and

memory usage. Several results are presented to illustrate the gains and the limits of this reduction.

6.5.1 Exploiting Spatio-Temporal Energy Localization: Compact Sup-

port and Atoms Approximation

The presented full search approach can easily reduce the computational complexity if the dictionary

of basis functions has compact support functions in it. There are basically two different sorts of com-

pactness: compactness in frequency and compactness in space. Natural image decompositions often

use dictionaries where functions have spatial localized support, see for example the one proposed

in Section 6.2 or, more generally, the basis functions used for classic dyadic wavelet decomposi-

tions [118]. Concerning the dictionary used in this work, even if the functions in use do not have
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Figure 6.10: Evolution of the PSNR with the iteration number for the Genetic and the FS-MP

algorithms. The image used in this case is the gray-scale 128x128 Lenna.

a compact support, energy is mostly compacted on a very localized fashion. Moreover, as atoms

envelop is Gaussian shaped, energy is localized in both domains: space and frequency. This allows

to perform an approximation of the dictionary which significantly reduces the memory usage and

the computational resources needed, without affecting the MP rate of convergence. This section

presents such a computational optimization, and its limits∗.

A first advantage of spatially localized dictionaries is that one can use the so called M-fold MP

strategy [79]. This consist in recovering M atoms at each MP iteration. Indeed, distant atoms in

space that have a localized support, are often incoherent among them. Some heuristics can be based

on this and contribute with M times speeds-up.

Thanks to the incoherence among spatially distant atoms, further savings are possible. Indeed,

for a given MP iteration, once an atom has been selected, all the scalar products of those atoms

that are highly incoherent with the selected one do not need to be recomputed. This can bring to

the possibility of parallelizing the MP, and computing it for different influence zones. This strategy

can be in some cases also coupled with the M -fold approach leading to an even better general

performance.

Even though these two approaches (M-fold MP and using the spatial incoherence of the dic-

tionary) can improve the computational time needed, they are not discussed in this chapter. The

full search solution proposed here is based on the massive use of the FFT in order to reduce the

complexity of computing the scalar products of all the atom translations. For this purpose, all the

centered versions of the atoms in the Fourier domain are stored into memory such that they are

only computed once. The fact that an atom and the normalizing modulus masks (as described

in Section 6.4) may have few non-zero samples in an image gives the possibility to optimize their

storage by efficiently indicating where zero samples are, reducing the amount of memory needed for

the MP full search algorithm. Moreover, the efficient description of zero sample positions can also

be used to reduce the number of multiplications involved in the algorithm.

∗Original idea and implementation of Oscar Divorra Escoda.
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Memory Compression

The reduction of the memory usage of the MP algorithm is performed by taking profit of the lo-

calization in frequency of the atoms used. Figure 6.11 illustrates the kind of information contained

in the maps that represent the frequency domain form of atoms (see the first row), and the nor-

malizing factor maps (see the third row), used to compensate the image border effects in the scalar

products computation. The second and fourth row of Figure 6.11 represent, respectively, for the

Fourier domain atoms and normalization masks, the areas of each map where relevant information

is cumulated (white areas). Concerning the Fourier domain atoms version, in this examples one sees

in the second column, in white, the support where the modulus of the Fourier transform is greater

than a given threshold (10−3 in this example). In the fourth column, the areas in white are the

locations where the renormalization factor differs from 1 by more than a certain threshold –10−3 in

the presented case – (factors smaller than 1 are used to re-normalize scalar products of atoms that

significantly cross the image border). In both cases, only the original values that correspond to the

white areas are required to be stored, the rest can be approximated by zero for the first case or one

in the second case without a significant lost of quality.

It is interesting to notice, in Figure 6.11, that zeros and ones cumulate in successive memory

position. Such a case distribution of significant an non-significant values allows an easy reduction

of the storage space needed, by using a basic run-length coding [164] to store more efficiently into

memory the default values (zero or one) for every kind of map. Of course, better techniques using

quadtrees could be used, but they would slow down the algorithm, and thus they are out of the

scope of this work.

Figure 6.12 depicts the scanning order followed in the run-length based storage of a simple

example. In a top-down fashion, the signal is scanned line by line. Two lists of values are kept: one

contains the list of elements belonging to every run of significant pixels and the other contains how

long is each run of values (significant and 1 or 0 constant).

Examples

The fact of approximating to zero or to one some values that are close to these values has, of course,

some impact in the quality of the reconstruction and on the atom shape. This impact has to be

analyzed, in order to check that it does not negatively affect the quality of the decomposition. Fig-

ures 6.13 and 6.14 show how memory compression affects the quality of the approximation of Lenna

(gray-scale 128x128 pixels) when using FS-MP. Figure 6.13 plots the memory occupation versus the

quality obtained for a Lenna approximation of 100 terms and a give threshold of approximation in

the memory compression scheme. Figure 6.14 shows some visual results with the same method. The

degree of memory compression is varied by means of changing the threshold used to decide which

region has significant values. The experiments are done by logarithmically varying the threshold

from zero up to 100 (0, 10−5, 10−4, 10−3, . . . , 100). This means that, for the Fourier modulus of the

basis functions, everything that is smaller than the threshold is set to zero, and for the masks, every

1 − mask value that is smaller than the threshold is set to zero as well. Notice that, for the mask,

having a threshold bigger than one simply means ignoring the renormalization of the truncated basis

functions.

As can be appreciated in the figures, the dictionary can be approximated such that up to more

than 75% of memory is saved without any significant increase in distortion. Figure 6.14 shows that

visually, the threshold effects appear even later than when looking at the PSNR plot. A very high

threshold has to be set before important distortions are perceived.
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(c) Renormalization maps
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(d) Binary renormalization mask

Figure 6.11: Example of different functions in the dictionary and their respective normalization

masks. (a) Frequency modulus of three selected dictionary atoms (white corresponds to high values

and black to zero). (b) Respective support of the significant values that need to be stored in

memory (in white, values with modulus greater than 0.001). (c) Spatial renormalization maps that

correspond to the atoms of the first row (white corresponds to 1 and black to zero). (d) White

zones represent the binary mask that determines where values different from 1.0 with a significant

difference (greater than 0.001) are located.
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Figure 6.12: Every Fourier domain atom is stored in a run-length fashion. All values considered

non-significant (black zones in the figure) are set to zero. All consecutive zeros (considering a line

wise scanning of images, as indicated by the red arrows) are efficiently stored using a single integer.

Significant values (white zones in the image) are stored one by one together with an integer number

that specifies how many significant values are consecutively aligned.

6.5.2 Steerability of Atoms and Complexity Benefits

For the purposes of this work, the FS-MP algorithm with memory compression is already efficient

enough, in terms of computation speed and memory occupation. Nevertheless, for some applications,

one may be interested in having a quicker and less memory consuming scheme. This can be achieved

using steerability.

Steerability is an interesting tool when dealing with orientable functions. It is based on the

principle that certain classes of kernels can be tuned according to a set of geometric parameters at

the same time that can be decomposed in a linear combination of few functions sampled from that

parameter space. For example, for the kind of atoms used in this work, when they have isotropic

scaling, it is possible to generate all the possible orientations of these from just 3 basic functions with

different orientations [69]. It is common to use the orientations of 0, π
3 and 2π

3 (see Figure 6.15).

However, the concept of steerability can be extended to any other affine transformation. In some

cases, the steered functions are only approximations of the ideal ones. An extensive review of

steerability can be found in [69, 94, 95, 120, 145].

In terms of computational advantages, the use of steerability would contribute significantly to

reduce the number of necessary inverse Fourier transforms. To give an example, let us take again

the isotropically scaled second derivative of a Gaussian. Consider that the scalar products of all the

translated versions of Nθ different orientations of our steerable kernel are needed. For that purpose,

if we store into memory a Fourier domain version of the function for each one of the Nθ orientations,

as described in Section 6.4, a total number of:

O (N) ·Nθ +O (N logN) ·Nθ (6.28)

operations will be necessary (whereN is the size of the data). In Eq. (6.28), the first term corresponds

to the product in the transformed domain for filtering, and the second indicates the complexity

associated to all the inverse Fourier transforms. If steerability is used instead, and all the needed
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Figure 6.13: Approximation PSNR vs memory used for the FFT based full search algorithm for

Lenna 128x128. In the left the approximation is done with 100 terms. In the right, 300 terms are

used. The graphics have been obtained by increasing the threshold of approximation logarithmically.

It can be seen that up to 75% in memory savings can be achieved without loss in approximation

convergence.

orientations are obtained by linear combination of a basic set composed by three functions, the

number of necessary operations turns into:

O (N) · 3 +O (N logN) · 3 +O (N) · 5 · (Nθ − 3) , (6.29)

where the first two terms correspond to the complexity required by the Fourier domain filtering step

and the last term corresponds to the steerability based computation of the remaining orientations.

The 5 factor is due to the three products and two additions of the linear combination used to steer

the filters. Figure 6.16 illustrates the potential savings of using steerability in the computation of

the scalar products for the simple example of isotropically scaled anisotropic second derivatives of a

Gaussian. Even for small N , the use of steerability is computationally advantageous. Moreover, the

bigger the N the more resources are spared. According to the particular example given by (6.28)

and (6.29) for Nθ = 36, when N → ∞ the spare factor converges to 12. Moreover, in terms of

memory usage, the amount of needed storage falls down of a factor Nθ

3 . This not only reduces the

memory consumption but also the time required to transfer the data from memory to the processor.

This section has stated the advantages of introducing the steerability principle in the analysis

step of each MP iteration. Nevertheless, its practical implementation and integration is out of the

scope of this work, and will be left for future work.

6.6 MP with low-pass and band-pass dictionary

Until here, an image approximation method that uses a highly redundant dictionary has been

presented. The dictionary is based on geometric transformation (translation, anisotropic scaling

and rotation) of a single basis function. It has been seen that the approximation properties of such

an algorithm are very good, with few terms, one gets approximations with a small residual and good

visual quality. But the image approximation scheme presented here is not still fully based on the use
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(a) Threshold 0 (b) Threshold 10−4

(c) Threshold 1 (d) Threshold 10

Figure 6.14: Visual comparison of the different approximation of Lenna 128x128 for the amounts

of memory of: (a) 377 MB (threshold 0), (b) 122 MB (threshold 10−4), (c) 22 MB (threshold 1) and

(d) 2.2 MB (threshold 10).

of redundant dictionaries, the low-frequencies of the image need to be treated separately. One of the

main advantages that the use of fully geometrically based image representations is the possibility

of performing geometric image manipulations (such as reconstruction at different size or rotation of

the image) without the need of interpolation. This flexibility is not present in the approximation

scheme that uses a downsampled version of the low frequency image in order to represent this part

of the visual information. It is interesting, then, to design a dictionary of basis functions that takes

into account the low frequencies of the image as well through geometrical transformations of a single

basis function. In order to be able to keep on using the FS-MP algorithm, this basis function should

have similar characteristics than the Anisotropic Refinement atoms, defined by Eq. (6.2). This

section presents such a dictionary, and explains how it has been designed, in order to be able to

capture all the frequencies of the image.

As in the Anisotropic Refinement Atoms, the low pass atoms are chosen to have Gaussian

support, to have spatial and frequential localization. Gaussians are already low-band pass, and

thus, no more modulation or derivation is needed. The generating function is then:

g(x, y) = Ce−x2−y2

, (6.30)

where C =
√

2
π is a normalizing constant. Of course, the low-pass atoms need to be translated all

over the image as well, similarly to the Anisotropic refinement atoms. They also need of dilations,
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Figure 6.16: Comparison of the growth of complexity with and without using steerability as a

function of N . This graph has been performed assuming Nθ = 36.

in order to be capable of capturing big or small smooth zones. As big Anisotropic Refinement

atoms already capture middle frequencies, anisotropy and rotations are not included in the low-pass

dictionary. Elongated and thin structures are already properly captured by Anisotropic Refinement

Atoms. Thus, the dictionary of basis functions have now two generating functions in it, one for

the low frequencies of the images (big smooth zones) and one for the middle to high frequencies

(basically, contours). The final dictionary of functions that will be used to decompose an image is
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(a) AR atom (b) FFT of AR atom

(c) Gaussian atom (d) FFT of Gaussian atom

Figure 6.17: Example of AR and Gaussian atoms and their respective Fourier Transforms.

then formed by two subdictionaries: the Anisotropic Refinement Atoms dictionary, generated by

translation, anisotropic scaling and rotation of a wavelet like basis functions (see Section 6.2), and the

Gaussian Atoms dictionary, generated by translating and isotropically scaling a Gaussian function.

An example of atoms belonging to these two families of functions can be seen in Figure 6.17.

6.6.1 Construction of the dictionary

Again, the dictionary of basis functions is constructed by applying a unitary group to, in this case,

to the two generating functions defined before:

g1(x, y) =

√
2

π
e−x2−y2

, (6.31)

g2(x, y) =

√
2

3π
(4 x2 − 2)e−(x2+y2) , (6.32)

Now, the question is how dense these dictionaries have to be, and which sampling of the transforma-

tion parameters has to be done in order to ensure a dictionary redundant enough to have efficient

approximations, but small enough to be able to compute these approximations with a finite time.

The Anisotropic Refinement Atoms have the same sampling of the parameters that has been

exposed in Section 6.2, with an angle resolution pf π
18 and the scales octave-based sampled, with

three scales per octave. The translations take any integer value going from zero to the image size

(pixel accuracy translation).

The Gaussian dictionary does not have anisotropy or rotations, it has only isotropic scaling

and translations. The translation can also take any integer value from zero the size of the image.
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The dilations are computed so that there is some overlap in the frequency domain between the

Anisotropic Refinement atoms and the Gaussian dictionary, but that this overlap is small enough

so that there are not destructive interactions between the two dictionaries. The sampling of the

scaling factors is taken, similarly to the case of the anisotropic refinement atoms, octave based, with

at least three scales per octave. The maximum dilation of this dictionary is taken so that at least

a 90% of the energy of the atom is inside the signal domain when this is in placed in the center.

A more detailed computation of the maximum and the minimum scaling factors allowed for every

dictionary can be found in Appendix B.

6.7 Fully flexible image representation with MP

When decomposing an image with the dictionary described in the previous section, the image is fully

represented in a set of basis functions that are covariant to translations, rotations and dilations. In

addition, the approximation has the coefficient upper-bound that is strictly decreasing. This gives

a fully flexible image approximation, in the sense that one can truncate this approximation and

have an approximation with fewer terms, or, from an approximation of n terms, continue and have

an approximation with n + t terms. In addition, thanks to the properties of the set of functions

used, which are covariant to translations, dilations and rotations, a reconstruction of a different size

image or a rotated images is straightforward. The covariance to dilations is specially useful, because

it allows to reconstruct images at a bigger or smaller size than the original image without having

to perform any interpolation operations. Some examples of images reconstructed at different sizes

are given in Chapter 7. A way to see this property is through the invariance to dilations. The

covariance to dilations can be understood in a very intuitive way if one thinks that the dictionary is

formed by continuous functions, that have been sampled to a certain rate, in order to use them in

discrete signals. Changing the dilation factor of all the functions that form an image decomposition

can be seen as changing the sampling rate. If one divides all the scaling factors of an image by two,

it corresponds to sampling at a frequency two times smaller, and thus, one gets half of the points it

had. On the contrary, if one multiplies all the scaling factors of all the functions that form an image

decomposition, it is equivalent at multiplying by two the sampling frequency, and thus, the size of

the image will double (one gets a number of points that is the double of the original image).

Both dictionaries, the high-pass and the low-pass are created by performing affine transforma-

tions to a basis function. As both the low-pass and the high-pass dictionary functions are continuous

functions covariant to dilations, rotations and translations, the dictionary gives a continuous rep-

resentation, covariant to these affine transformations. In addition, the AR atoms are covariant to

rotations, and the low-pass atoms are invariant to them (they do not have rotation parameter).

This causes the dictionary to be covariant to rotations as well. The image represented with such

a dictionary has a fully continuous representation, and can be thus reconstructed at any scale or

rotations only by varying the parameters of the atoms that represent the scale or the rotation. When

using the low-pass image version instead of the Gaussian dictionary, this was not possible, due to the

fact that the low-pass image did not have a representation that could have an affine transformation

applied to it by just changing the rotation or the dilation parameter of the basis function. The low

pass image was not continuous, and thus, changing the sampling rate without having to perform an

interpolation operation was not possible.

The question is whether the fact of using a Gaussian and an Anisotropic Refinement Atoms

dictionaries causes a gain or a loss of approximation properties. The fact of having a fully flexible

representation (covariant to translations, dilations and rotations) may have some price to be paid in

terms of approximation properties. Nevertheless, this is not the case. One has to count every pixel
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(a) MP without low frequencies (b) Low-pass and high-pass in MP
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Figure 6.18: Visual comparison of the image obtained with MP without the low pass with 500

terms (a) and MP with the low-pass dictionary with 500 terms(b), and evolution of the PSNR with

the number of coefficients for Lenna 128 × 128 image.

of the low pass image as a basis function, and thus the approximation properties are not lost due to

the use of these two subdictionaries, as can be seen in the example given in Figure 6.18, which shows

the evolution of the PSNR with the number of terms for Lenna 128 × 128. Both dictionaries have

three scales per octave and 18 angles in the anisotropic refinement part. For the image of Lenna

obtained with the fully flexible representation, the Gaussian dictionary dilation parameter has been

sampled at three scales per function as well. Notice that, to perform this comparison, every pixel

in the low resolution image (that for a 128× 128 image can be of size 16× 16) is counted as a basis

function (every pixel is considered to be a delta function). Of course, this graphic shows only the

evolution of the PSNR with the number of coefficients. This does not mean that the Rate-Distortion

properties of the fully flexible scheme are more performing than for the scheme that does not include

the low-band dictionary. The rate distortion properties are discussed in the next chapter.
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6.8 MP with a priori knowledge: Weighted MP

The image representation scheme presented in this chapter is efficient for edge representation. But

natural images have often textured parts, which are not efficiently approximated by the edge like

functions. For representations with very few terms, this fact is not so important, because normally

textures bring less information, and can be ignored. In some cases, though, one can be interested in

coding the textures at the same time as the contours. The efficiency would be improved if a set of

basis functions more efficient at representing textures than the Anisotropic Refinement atoms was

included in the dictionary. Adding more functions in the dictionary increases its redundancy, and

thus, decreases the capacity of MP at finding the sparsest approximations. But having an a priori

knowledge about the fact that some of the basis functions of the dictionary are more suitable for

edge representation, and some of them are more suitable for textures allows to perform a modified

MP search, that takes this information into account in the choice of the basis functions. It has been

proved in [38, 39] that, if the a priori is properly chosen, it can help MP find the sparsest solution

in some cases where, without the a priori, it would fail.

This section introduces a new set of basis functions that are more efficient at texture representa-

tion than the anisotropic refinement atoms. It presents some results of image approximations using

this new bigger dictionary, including atoms capable of representing textures, anisotropic refinement

atoms and the low-pass Gaussian atoms. Then, presents the computation of the weights in order to

help MP finding a sparser approximation.

Intuitively, MP chooses at every iteration the basis function of the dictionary that is more

similar to the signal (maximum projection). In some cases, this leads to suboptimal approximations.

Intuitively, if an a priori knowledge about which basis functions of the dictionary are more suitable

for a given approximation, one can help MP by penalizing the functions that are not supposed to

be in the optimal approximation. This penalization can be just an α factor (with 0 < αγ ≤ 1)

that multiplies the scalar product. Then, MP does not any more choose the basis function that has

the most energetic projection at every iteration, but the basis function that has the most energetic

weighted projection (where the weight is atom dependent). Analytically, it can be seen as computing:

gγm
= arg max

γ
αγ |〈Rms,gγ〉|, (6.33)

where γ is the index that defines the basis function of the dictionary. As it has been mentioned in

Chapter 4, in [182, 184], Temlyakov demonstrated that such a weighted scheme, with some constraint

on the weights, converges. Nevertheless, the intuitive fact that if the weights are properly chosen,

they may help MP to converge did not appear in these studies. Lately, it has been demonstrated in

[38] that if the weights are properly chosen, this weighted MP does not only converge but it can find

the sparsest approximation in some cases where standard MP does not find it, due to the excessive

redundancy of the dictionary. Thus, it seems logical to use this a priori knowledge, if it exists.

Images seem a good candidate to have several families of basis functions in the dictionary,

because they have different structures with different characteristics. An image has mainly three

kinds of differentiate structures: smooth parts, textures and edges. Smooth parts are efficiently

represented by smooth functions and edges are efficiently represented by anisotropic refinement

atoms. A dictionary to represent textures has to be found, that takes profit of the main features

of textures: pattern repetition, localization in space, etc. A weighted MP scheme that has a very

redundant dictionary formed by the union of three basis function families is presented here.
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6.8.1 Edge dictionary

The edge dictionary of this scheme is the same that has been introduced in Section 6.2, thus, formed

by anisotropic refinement atoms.The same sampling of the parameters is the same that has been

explained before (one pixel translation, octave based scaling and uniform angle quantization).

6.8.2 Texture dictionary

Textures are difficult to model, and a lot of work has been done to better understand their nature

[97, 121, 127, 176, 196]. The main characteristic of textures is that they form a pattern. This

pattern may be very regular, such as a brick wall or a stripped shirt, or more random, as it is the

case with the fur of Baboon, the hat of Lenna or the grass of Cameraman (see Figure 6.6). The

dictionary that is more appropriate for sparsely representing sparsely should be localized in space

(as textures are, in most of the images, bounded to a region of this image). The basis functions used

to represent textures should also be localized in frequency, in order to have the space-localization

properties described in the previous sections and be able to use the FS-MP algorithm. It is well

known that the Gaussian envelope gives a good compromise in frequency and space localization, and

this kind of envelope has proved to give good results with contours and smooth regions. Thus, it is

interesting to keep on using it. The dictionary of basis functions adapted to frequencies will be just

Gabor atoms (modulated Gaussians), which have indeed been already used for texture segmentation

[97]:

gγ(x, y) =
√

2Ke−(x2+y2)ei(ωxx+ωyy). (6.34)

where K is a normalizing constant. As images are real signals, just the real part of gγ(x, y) is

considered:

gγ(x, y) =
√

2Ke−(x2+y2) cos(ωxx), (6.35)

where γ = (p, a, θ, ωx) defines the set of parameters that apply to the basis function, similarly

to the AR or the Gaussian dictionary. The use of these parameters to define the basis function

follows the same logic than the case of AR atoms. As the sense of the frequency structure can be

at any orientation, these kind of atoms have an angle parameters that orients them parallel to the

structure of the signal to represent. The size of the structure can vary from signal to signal, and

thus, a dilation parameter has to be applied to this kind of atoms. Of course, translations all over

the pixels of the image are needed as well. In addition, several modulating frequencies have to be

taken into account, in order to be able to capture structures that have quick variations and textures

with wide structures. The minimum modulation frequency is taken such that the atoms have more

than two local minima in them. This is done because, as it is explained in the next subsection, the

edge dictionary is formed by anisotropic refinement atoms, that have two local minima in them, and

thus, if this kind of structure is needed, it can be efficiently represented by AR atoms.

6.8.3 Smooth parts dictionary

As in the case of the dictionary formed by anisotropic refinement atoms, the dictionary formed by

Gabor atoms and anisotropic refinement atoms is not capable of representing the low frequencies of

the signal. The Gaussian subdictionary (see Section 6.6) is added, to capture these frequencies.

6.8.4 Comments about the final dictionary

The three dictionaries presented in this section are put together in a macro-dictionary, which has

basis functions that are efficient for edge representation, basis functions efficient for smooth zone rep-

resentation and basis functions for texture representation. The final dictionary is highly redundant,
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(a) (b) (c)

(d)

Figure 6.19: Example of texture coding with different dictionaries [19]. Subfigure (a) corresponds

to a detail of Barbara and (b) and (c) to the MP coding with 50 AR atoms and Gabor atoms

respectively. It can be seen both through the visual comparison and through the PSNR plot that

Gabor atoms capture more efficiently the textures than AR atoms.

formed by three subdictionaries. MP is normally not capable of finding the sparsest representation

in such a highly redundant dictionary, and thus, some strategy to help it has to be found. As one has

three subdictionaries, each one adapted to a different image part, intuitively one can think about

forcing MP use every dictionary in the image part it has been designed for. This can be done by

imposing some weighting masks, which will improve MP convergence [38, 39]. The question is now

how these weighting masks can be computed and used.

6.8.5 Computation of the weights

The computation of the weights is the most critical part of the Weighted MP (WMP) representation

scheme. If the weights are properly computed, these cause WMP to perform better than the standard

MP. On the contrary, a bad computation of the weights causes a loss of approximation quality. One

can think of several methods in order to compute the weights. Probably the most straightforward

is to perform edge and texture detection, and to weight with higher values the texture regions for

the subdictionary of textures, and the edge regions for the subdictionary of edges. Intuitively, as

the dictionaries have been designed to be respectively performing for edges and for textures, this
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Figure 6.20: PSNR for MP approximations using various dictionaries types over Barbara image.

It is shown that the combined use of Anisotropic Refinement and Gabor dictionaries (AR GABOR)

leads to better PSNR ratios than the use of single dictionaries (AR or GABOR) because it catches

better the structures of the image.

should improve the approximation properties of the MP algorithm.

In this section, a definition of the concept of the weight mask is given, in order to better under-

stand its meaning and its effect in the decomposition. Its computation is as well presented, both for

the texture dictionary and for the edge dictionary. Finally, some examples of the masks are given.

Definition

A probability mask or weight mask can be defined as a matrix

W ∈ [0, 1] (6.36)

where each element has a real positive value limited between 0 and 1. This value indicates the

probability of a certain element of the dictionary to take part in the signal representation.

For the concrete case of the dictionary presented here, formed by AR atoms, Gaussian atoms

and Gabor atoms, and in order to be able to keep on using the same full search scheme that has

been presented in this chapter, the weight mask will be position based. The Gaussian atoms, as they

are used only in the first iterations of the MP algorithm, will not have any weight smaller than one.

The Gabor and the Anisotropic Refinement atoms, on the contrary, have some masks that influence

in which positions the MP algorithm uses them. Every basis function in the Gabor subdictionary

has the same position weighting mask, and, similarly, every basis function in the AR dictionary has

a common position weighting mask. Thus, the weighting masks tells, in this concrete case, where it

is more probable to use a Gabor atom (where textured zones are located in the image) and where it

is more probable to use AR atoms (contours). In order to compute the probability masks of edges

and of textures (respectively, of AR atoms and of Gabor atoms), the behavior of AR atoms and

Gabor atoms when approximating a signal has to be taken into account.
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Figure 6.21: Edge representation by two Anisotropic Refinement atoms. When MP represents an

edge, assuming a simple model of two atoms, the result looks like this. The green line represents

the edge and the two red spots the center of the two atoms. This figure shows that to shape a step

edge, the atoms are not on the edge itself but near it. Nevertheless, not all the edges are step edges,

and not all of them require of two AR atoms to be approximated.

Edge position mask

AR atoms are appropriate for edge approximation, and thus, the positions in the image where they

are supposed to be placed is near the image contours. The weights for AR atoms should be, then, of

value one around contours, and of value smaller than one everywhere else. Some more sophisticated

mask for AR atoms could be built, by estimating the orientation of contours, and performing different

masks for the different angles. This, though, does not bring a great improvement in the choice, of

the basis functions because this kind of atoms are very selective to directions. Thus, only one mask,

common for all the functions in the AR subdictionary, that helps the MP place AR atoms on edges

and not on textures is used.

In order to create the edge mask, the way AR atoms represent edges has to be taken into account.

To do this, an edge is modeled by its most simplified version, a Heaviside function:

I(x, y) =

{
Imin, if ax+ y < 0

Imax, if ax+ y > 0
. (6.37)

The representation of a Heaviside function with AR atoms is studied, and results are extrapolated

to understand the exact behavior of this kind of atoms toward edges, as shown in Figure 6.21.

AR atoms are naturally placed with their oscillatory axis perpendicular to edges. Knowing this,

it is possible to simplify the study of the behavior of this kind of atoms with respect to edges by

taking only a 1D signal that is the AR atoms oscillatory part. An edge is then represented by a 1D

Heaviside function, and only the oscillatory part of AR atoms is kept. The 1D Heaviside function

naturally becomes:

I(x) =

{
Imin, if x < 0

Imax, if x > 0
, (6.38)

and the 1D version of the AR atom is:

gγ(x) =

(
4

(
x− px

ax

)2

− 2

)
e−( x−px

ax
)
2

, (6.39)

with γ = [px, ax] the function index, that has as parameters translation and scale. If a two term
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I min
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c

c2
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Figure 6.22: Edge Model. The red plot models a step edge, while the green represents the simplest

representation of such an edge by taking a linear combination of two Anisotropic Refinement atoms.

edge approximation is wished, the expression of the edge approximation becomes:

Ĩ(x) = c1 · g[px1
,ax1

](x) + c2 · g[px2
,ax2

](x) (6.40)

where px1
are px2

the center of each atom, ax1
and ax2

their respective scaling factors and c1 and

c2 the coefficients, that depend on the amplitude of the edge.

In order to know where atoms are placed around edges, the distance px1
that maximizes the

scalar product between the atom and the edge for a given scale ax1
has to be computed. If this is

done with the Heaviside function, it can be seen that the center of the atom is at a distance d from

the edge proportional to its scaling parameter:

d =

√
2

2
sx. (6.41)

This shows that, for this kind of edges, the edge position probability mask needs to be one not only

on the edge himself, but inside two regions parallel to the edge and at each side (see Figure 6.23),

at starting and ending distances:

d =

[√
2

2
sxmin

,

√
2

2
sxmax

]
. (6.42)

Nevertheless, edges are not always symmetric, and cannot always be modeled by a Heaviside function

(most of natural edges are not a step function but a smoother). Thus, there is a need to put high

probability of using AR atoms on the edges as well.

To build the edge weight mask, the first thing to be done is, of course, to detect edges. Standard

edge detectors [18, 114, 122, 125, 133, 145] give a positive output on edges, and zero or very small

values everywhere else. It can be assumed that the output of the edge detector is one on edges,

and zero everywhere else (if this is not the case, a simple thresholding operation can give it). Some

post-processing has to be done in order have a wider zone, that goes from the edge to a distance√
2

2 sxmax
at both, with this high value. This wider area around the peak can be easily obtained
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δ

Figure 6.23: Atom placement area δ.

Figure 6.24: Impulsional response of the edge model mask linear filter

through linear filtering [19]. It can be useful, too, that the output of this filter does not present

discontinuities. A possible design of such a filter is:

ϕ(r, θ) =

{
1, if r < dmax

e−( r−δmax
σ )

2

, if r > dmax

, (6.43)

where the filter is expressed in polar coordinates and σ is the parameter that defines the smoothness

of the decay of the weight mask values. Figure 6.24 shows the right hand output of such a filter

with respect to the radius. As it is independent on the angle, the filter is isotropic.

Once this filter has been applied to the output of the edge detector, the resulting weighting mask

is an image that depicts the edges of the image and that has a soft transition among edgy and

non-edgy parts. This soft transition is useful, in order to allow MP to correct the oscillatory effects

that may result from the use of AR atoms.

A last point to be taken into account for the edge mask is that not all the edges have the same

strength. Most edge detectors give, before thresholding, an output that is directly dependent on the

strength of the edge. As normally stronger structures are more important for the visual impression,

it can be useful to take this into account in the edge mask. Nevertheless, MP usually takes the

strength of the edge into account intrinsically, because stronger edges usually give stronger scalar

products.
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Texture position mask

Gabor atoms mask is easier to compute than the edge mask, because Gabor atoms have to be placed

just inside textured parts. Thus, a texture detector tells directly in which zones Gabor atoms have

to be placed and in which positions of the image the Gabor atoms mask has to have values of one.

All the zones that do not present textures, or that present very weak textured zones, have values

smaller than one in the Gabor atom mask. The computation of the Gabor atoms mask is performed

just by applying a texture detector, and setting to one the zones where a texture has been detected:

WT (x, y) = T [I(x, y)], (6.44)

where T is the texture detector and I is the original image. As a certain regularity is wished in the

zone detection, it may be appropriate to perform a low-pass filtering of the output of the texture

detector.

Feedback between textured and edgy zones

Edge detectors and texture detectors do not perform always properly. Generally, edge detectors give

a positive output in textured zones, because they see a texture as a mix of edges. Thus, it can be

useful to use the output of the texture detector as a feedback for the edge mask. The zones that

have positively been detected as textures can be set to smaller values in the edge detector output,

before the convolution of the edge detector output with the linear filter that models the position or

AR atoms around edges. The output of this improved edge detection can be used to eliminate from

the texture detector output zones that are mostly edgy, and that have anyway a positive output in

the texture detector. This simple operation allows for better weighting masks for edge and texture

position.

Mask impact control

The computation of the weight masks as explained in Section 6.8.5 gives output values that are in

the interval [0, 1]. This scheme may be, in some cases, too penalizing (some AR atoms or some

Gabor atoms may be needed for zones that have not been detected as edgy or as textured). In

order to control the effect of the weighting mask, one can just impose that the minimum value of

this mask is higher than a positive constant α < 1. Of course, the higher α, the lower the effect

of the weighting mask is in the choice of the basis functions, and thus, the lower the selectivity of

the mask. Lower α implies that more basis functions are rejected, and thus, that MP is able to find

the sparsest solution with more redundant dictionaries. Having a very low α implies, too, that in

case the weighting mask is not accurate, more approximation accuracy is lost. As edge and texture

detectors are not one hundred per cent accurate, it is worth allowing MP to choose some functions

that have not been detected as being in the sparsest solution, by putting α big enough. Still, it has

to be small enough so that some help is given to the choosing algorithm. If α is chosen very big, it

is useless to have these weighting masks.

There are several ways to control the impact of the weighting masks: to shrink their values from

α to 1 by simply scaling them and adding a constant, to waterfill or watershed [149, 200] the mask.

The first will keep the errors the edge or texture detector may have done (errors that are normally in

the low energy structures). Performing a waterfilling has the advantage of smoothing the mask while

reducing the possible errors (low energy structures, see Figure 6.25). It seems thus appropriate to

perform a waterfilling of the mask before applying it to the MP algorithm. The waterfilled version
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1

0

(a) Original mask

α 2

1

0

(b) Waterfilled with low α

1

0

α1

(c) Waterfilled with high α

Figure 6.25: Waterfilling. The α parameter allows to control the influence of the masks into the

pondering process. In (a), the original a 1D-Mask. In (b), its waterfilled result with a high value of

α and, in (c), with a lower value. Note that in (c) begins to appear a weak probability region (lower

peak).

of the mask can be expressed as:

Wα(x, y) =

{
W(x, y), if W(x, y) > α

α, otherwise
, (6.45)

where Wα(x, y) is the mask with impact control and W(x, y) the edge or texture mask.

6.8.6 Weighted MP image representation

With the position probability masks presented (edge and textures), the weighted MP can be im-

plemented as shown in Figure 6.26: every convolution of a centered basis function with the image

is multiplied by the normalizing mask (as done in Section 6.4) and the weighting mask of the

corresponding dictionary (AR atoms or Gabor atoms, the Gaussian atoms do not have any mask).

Of course, the masks for the AR atoms and for the Gabor atoms have to be computed once at

the beginning of the image representation process, and kept in memory. Nevertheless, as only one

position mask per dictionary is taken into account, this does not represent a significant increase

in memory usage or computational time, specially because the weight mask and the normalization

mask can be integrated in a single matrix for every centered version of a basis function of the Gabor

or the AR dictionary.

Notice that the AR atom mask (the edgy region mask) has been designed to be suitable for all

the atoms of the AR subdictionary, from the tiniest scale to the larger one. A more elaborated

version of this mask could take into account the different scales, in order to adapt the width of the

flat part of the filter to the needs of every scale. This can help the MP algorithm avoid correcting

edges that have already been selected, and concentrate on the representation of the global sketchy

image before starting correcting the approximation artifacts. This “scale-personalized” edgy mask

can be as well integrated on the normalization mask, as there is a normalization mask for every

orientation, x and y scale combination.

The concept of using masks to enhance areas with more visual information was already proposed

in [207]. This scheme differs from foveated image representation by the fact that the masks here

are not use to enhance any visual information, but just to help MP find the sparsest solution. The

result, though, is quite similar: the masks cause the algorithm to prefer highly textured or edgy

zones, which coincide with areas with rich visual information.
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Figure 6.26: Structure of the Hybrid MP coder. It can be seen the Hybrid MP coder works

similarly to the FS-MP coder, but with a pondering of the scalar product energy when in the choice

of the basis functions.
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6.9 Color images: multichannel MP

6.9.1 Vector MP

When applying MP for color images, the signal s is no more a simple image, but a vector of

images. Color images have typically three channels. The color image representation that most

image capturing devices give represented in the RGB color space (Red, Green, Blue). This color

space is quite similar to the capturing system of the human eye in day-light conditions, where there

are three kinds of receptors, the Red cones, the Green cones and the Blue cones (see Chapter 2,

Section 2.3). Of course, in the Human eye there are luminance receptors as well, but these are

mostly used in poor light conditions.

Instead of performing independent iterations in each color channel, a vector search algorithm

is used in the proposed color image encoder. This is equivalent to using a dictionary of P vector

atoms of the form {gγcolor
= [gγ ,gγ ,gγ ]}γ∈Γ. In practice though, each channel is evaluated with one

single component of the vector atom, whose global energy is given by adding together its respective

contribution in each channel. MP then naturally chooses the vector atom gγcolor
, or equivalently the

vector component gγ , with the highest energy. Hence the component of the dictionary chosen at

each MP iteration satisfies:

γn = arg max
γn

√
〈Rns1,gγn

〉2+〈Rns2,gγn
〉2+〈Rns3,gγn

〉2, (6.46)

where Rnsi, i = 1, 2, 3 represents the signal residual in each of the color channels, instead of:

|〈Rns,gγn
〉| = arg max

D
|〈Rns,gγ〉| , (6.47)

the MP search criteria for single channel MP.

Note that the vector MP scheme presented in the scope of this thesis is slightly different than

the algorithm introduced in [116], where the sup norm of all projections is maximized :

max
i

sup
D

|〈Rnsi,gγn
〉| . (6.48)

The use of the quadratic sum is not mandatory: one could think of using any other vector norm,

depending on the application. For example, for certain applications, it can be useful to use the `1

norm instead of the `2 one.

All signal components are then jointly approximated through an expansion of the from :

si =

+∞∑

n=0

〈Rnsi,gγn
〉gγn

, ∀i = 1, 2, 3. (6.49)

Note that channel energy is conserved, and that the following Parseval-like equality is verified :

‖si‖2 =

+∞∑

n=0

|〈Rnsi,gγn
〉|2, ∀i = 1, 2, 3. (6.50)

The search for the atom with the highest global energy necessitates the computation of the three

scalar products cin = 〈Rnsi,gγn
〉, i = 1, 2, 3, for each atom gγn

, and for each iteration of the MP

expansion. The number of scalar products can be reduced by first identifying the color channel with

the highest residual energy, and then performing the atom search in this channel only. Once the best

atom has been identified, its contribution in the other two channels is also computed and encoded.

The reduced complexity algorithm performs in a suboptimal way compared to the maximization

of the global energy, but in most of the cases the quality of the approximation does only suffer a

minimal penalty, as can be seen in Figure 6.29(b), which presents an example of MP performed in

the most energetic channel.
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Figure 6.27: Distribution of the MP coefficients when MP is performed in the RGB color space

(left), with the diagonal of the cube shown in red, and in the YUV color space (right).

6.9.2 Color space choice

The choice of the color space has to be adapted to the proposed image representation strategy,

and minimize the distortion introduced to the image due to the representation scheme itself. As

the proposed image representation scheme tries to achieve sparsity by taking profit from the fact

that color channels have a high correlation among them, it is logical to choose the color space that

presents more correlation among channels.

In order to reach a maximal correlation between the color channels, and thus the possibility to

have high ans similarly valued coefficients for the same basis function in the three channels, the RGB

color space seems a natural choice. RGB color space is the only one that has not performed any

subtraction operation, or any linear combination in order to reduce redundancy among channels.

RGB color space presents, in most of the natural images, the same edge at the same position of the

image for the three channels, just with some differences on the importance of the edge. It has to be

seen, now, if this space really presents coefficients with similar energies at the three channels.

This fact is proved through the following simple experiment. The coefficients [c1n, c
2
n, c

3
n] of the

MP decomposition can be represented in a cube, where the three axes respectively corresponds

to the projections of the basis functions in the red, green and blue components of the image (see

Figure 6.27(a)). It can be seen that, when using RGB color space projection, the MP coefficients are

interestingly distributed along the diagonal of the color cube, or equivalently that the contribution

of MP atoms is very similar in the three color channels. On the contrary, the distribution of MP

coefficients resulting from the image decomposition in the YUV color space, does not seem to present

an obvious structure (see Figure 6.27(b)), and having large projection values of a dictionary basis

function in one channel does not mean having large values in the other two channels. Thus, RGB

color spaces seem the most appropriate to take advantage of the redundancy among channels and

to provide flexible signal representations.

Most of the image coding techniques use color spaces such as YUV, LAB of CrCbCg. These color

spaces have less redundancy among channels than RGB. For example, YUV has all the luminance

information in the Y channel, and the U and V channels have less information. LAB and CrCbCg

color spaces have the drawback that they have some user defined parameters, not standardized for
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Figure 6.28: Original Japanese woman image

all the displays. They do not present the same amount of redundancy among channels as RGB does.

The techniques which use the YUV color space generally take profit from the fact that the human

eye is less sensitive to color than luminance localization in images, and hence downsample the U and

V channels in order to reduce the amount of data. Such a downsampling is not helpful anymore in

the context of the proposed MP coder, since the same function is used for the three color channels,

in order to limit the coding cost of atom indexes. Since, in addition, the use of the same function

in Y, U and V channels may induce color distortion, RGB becomes clearly the preferred color space

for the MP coder.

6.10 Conclusions

This chapter has presented a FS-MP implementation, which uses the Fourier Transform in order

to speed the computation of the scalar product between the functions in the dictionary and the

signal to represent. It has shown that the approximation properties of this FS-MP algorithm us-

ing anisotropic refinement atoms are very good, compared to standard orthonormal basis. The

same chapter has introduced, as well, a new low-band dictionary, that can be used together with

the Anisotropic Refinement Atoms dictionary in order to give fully flexible image representations,

allowing intrinsic geometric operations, such as reconstruction of the images at different scales,

translations or rotations.

This FS-MP Algorithm has then been used to explore a new image approximation scheme, that

combined three dictionaries (one for low-frequencies, one for contours and one for textures). As

the macro-dictionary formed by these three subdictionaries becomes really complex, some weighting

masks have been presented, that help choosing, for different image structures, the good subdictionary

of functions.

Finally, a novel way to adapt the MP image approximation to color images has been presented.
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(a) YUV most energetic

(b) RGB most energetic

Figure 6.29: (a) Japanese woman coded with MP using the most energetic channel search strategy

in YUV color space and (b) in RGB color space.
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This color image representation has the particularity that, instead of trying to decorrelate the three

color channels and code them independently, takes advantage of this correlation. The Color MP

image representation keeps the same capability to perform geometrical image transformation in the

transformed domain than the gray-scale MP image approximation scheme, as the same dictionary

of functions has been used.

It has been seen, thus, in this chapter, that MP allows for sparser image approximations than

existing techniques. It has to be seen, now, if this gain in sparsity gives a gain in coding performances

as well. This fact, together with the study of the coding scheme to follow with such a signal

approximation, is explored in the following chapter.



Chapter 7

Flexible image coding with

Matching Pursuit

7.1 Introduction

Matching Pursuit with a dictionary formed by anisotropic refinement atoms and Gaussians has

proved to provide good approximations with a small number of terms. It seems logical that such a

scheme can give good very low bit-rate compression. Nevertheless, this is not straightforward, due

to the fact that, even though the number of terms is very small, the function index is very complex

to code, because the dictionary size is very large. On the other hand, the quantity of information

that this index brings is very large. In order to use this scheme for image coding, a detailed study

about the optimal MP coefficients quantization and the function index coding has to be performed.

This chapter examines the coding performances of a Matching Pursuit based on anisotropic

refinement atoms and Gaussians. A detailed study about the best strategy to code the atom indices

and to quantize and code the coefficients is presented. Finally, a flexible coder based on Matching

Pursuit, suitable for very low bit-rate applications, is introduced. This coder gives a scalable stream,

that allows for geometrical transformations in the compressed domain. The aim of this coder is to be

used in asymmetric applications, such as wireless networks. The requirements it has to accomplish

are:

• to be fully rate-scalable. Fully scalable means that the bit-stream can be truncated at any

point without implying impairing the reconstruction of the image at the receiver. In addition,

the loss of quality due to truncation must remain small. In order to check if the loss of quality

remains small, the truncated stream images has to be compared to a reconstructed image

coded directly at the truncated rate.

• to allow flexible geometric manipulations in the coded domain, in order to be able to recon-

struct the image at any size.

The requirement of being able to reconstruct the image at any size is needed due to the large variety

123
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of end-user terminals existing today, specially for mobile communications, which causes a large

variety of end-user terminals, receptor bandwidth capacities and scree sizes.

This chapter is organized as follows: Section 7.2 introduces the function indexation of the MP

coder. It discusses the complexity of this function indexation, and it presents different schemes that

can reduce the entropy of this indexes. Section 7.3 introduces a quantization scheme built on theo-

retical results derived in [72, 75] and an enhanced dequantization derived from empirical observation

of the evolution of the MP coefficients through the iteration number. Section 7.4 presents an image

coding scheme that use MP expansions and the practical implementation of the quantization scheme

presented in Section 7.3.2. Section 7.5 shows the coding performances of such a scheme, while Sec-

tion 7.6 evidences the flexibility such a coder fives. The coding scheme presented until this point is

based on the theoretical upper-bound of the MP coefficients, but it does not take into account its

real distribution. Section 7.7 states how to extend this coding scheme to color image compression

with Matching Pursuit, following a similar coding scheme than the one used for gray-scale images.

Finally, Section 7.8 gives some conclusions

7.2 Reduction of the entropy of the function index

The dictionary of functions used to achieve sparse image representations is very large, and if the

indexation of the function is performed just by one single index, this index takes very large values

and suffers no repetitions along a single image coding. The consequence is that the entropy of this

index, and thus the number of bits needed to encode it, becomes too large. To solve it, a smarter

indexation of the basis functions has to be performed. This section analyzes the strategy to follow

in order to reduce the number of bits needed to represent the basis function indexation.

As the basis function of this dictionary are created by applying affine transformations to a

single basis function, it sounds logical to use as function indexation the parameters of this affine

transformation. Doing this, some parameters of this index will be repeated from atom to atom, and

thus, some indexation bits can be spared. Moreover, the fact of sending the basis function affine

transformation parameters allows to reconstruct basis functions that were not in the initial dictionary

(the basis function do not need to be stored, but can be built on the fly both at the encoder and the

decoder), and to perform affine image transformations directly in the coded domain. In addition, this

split index coding allows to save some bits for the functions belonging to the Gaussian subdictionary.

The Gaussian atoms can be completely defined by three parameters: position x, position y and

dilation. The anisotropic refinement atoms need two more parameters to be completely defined.

They need, apart from the same three parameters of Gaussian atoms, two extra indices: an extra

scaling factor (because they have anisotropic scaling) and the rotation parameter. To have the

whole dictionary indexed, an extra parameter is needed, in order to perform the subdictionary

choice. Thus, the function index is of variable size: it has four integers if the basis function in use

is a Gaussian (kind of function, x position, y position and dilation) and six if the basis function in

use is an AR atom (kind of function, x position, y position, x scaling, y scaling and rotation). Of

course, for both the Gaussian subdictionary and the AR atoms subdictionary, the projection value

of the basis function has to be sent together with the basis function index himself.

Several strategies can be taken in order to reduce the entropy of the indices. In addition, the

function index should be analyzed, in order to better understand if it is possible to reduce the

amount of bits needed to transmit them. The main constraint that exists, in the reduction of the

entropy of the MP parameters, is the constraint of the full rate-scalability, which requires to send

the MP coefficients sorted by decreasing projection energy. Strategies such as ordering the MP

coefficients by position and sending them by differential position coding [135, 136] cause a loss of
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this rate-scalability. Nevertheless, in the case of natural images, this differential position coding does

not bring a significant reduction of the entropy of positions, due to the fact that the number of terms

in use is much smaller than the number of positions in an image, and thus, the range reduction due

to differential position coding is not significant. Several other schemes have been tested, in order

to reduce the entropy of the positions, such as quadtree position coding, but with none of little

improvement with respect to sending the raw positions: due to the (almost) uniform distribution

of the atom positions in the image and the small (compared to the size of the image) number of

atoms that are used for an image approximation, the improvements provided by these schemes are

not significant, and in addition they cause a loss of rate-scalability. The position indexing, thus, has

been sent without any modification.

The scaling parameters differ from the Gaussian atoms and the Anisotropic Refinement atoms.

The Gaussian atoms dilation parameter starts at a size that is dependent on the image size, but

that is fixed for a given image size. As both the receptor and the receiver know this amount, the

Gaussian dilation parameter is sent as a−amin, amin being the minimum Gaussian scaling parameter

allowed. The range of this parameter is then from 0 to amax − amin.

In the case of anisotropic refinement atoms, the scaling parameters are sent as follows: the y

scale is always bigger than the x scale, in order to have more efficiency in the representation of

contours (the oscillatory part has always to be smaller than the smooth part). The x scale starts

at one, but the parameter that is sent is ax, with 2
ax

NN (where NN defines the number of scales

per octave and is defined in Appendix B), which starts at zero. The scaling parameters have been

discretized in an octave based distribution, in order to keep the dictionary density approximately

constant (see Appendix B for a more detailed explanation). The y scale is similar to the x scale,

but the minimum y scale allowed depends on the x scale:

ax ∈ [0, dNN × log2 sizeime] (7.1)

ay ∈ [ax, dNN × log2 sizeime] . (7.2)

In order to reduce the entropy of the y scale parameter, then, the coder sends to the receiver ay −ax

instead of sending ay.

The angle parameter is, similarly to the positions: its distribution is quite uniform, and highly

depends on the image. The angle parameter goes from zero to the allowed number of angles minus

one. This allowed number of angles is normally 18. As the probability distribution of this angle

parameter over a set of numerous natural images is approximately uniform, it does not allow an

efficient encoding.

The main conclusions of the studies performed to reduce the entropy of the parameters is that

the atom indexes are quite aleatory, and highly depend on the image. Thus, few can be done to

reduce the number of bits needed to send this atoms. In order to reduce the number of bits needed

for every coefficient and atom index for the MP scheme used here is, then, necessary to concentrate

in the coefficient quantization.

7.3 A posteriori MP coefficients quantization

The previous section has stated the fact that the reduction of the number of bits needed to send

the atom parameters can be mainly achieved through the proper quantization of the value of the

projection of the basis function. Atom indices seem too complex and random to allow for a smart

coding strategy. The quantization of these projections has then to be carefully designed, in order

to provide a good rate-distortion behavior.
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Most Matching Pursuit schemes that appear in the literature use in loop quantization [135,

136, 137]. These in-loop schemes have the advantage of compensating, in the following iterations,

the quantization error performed at a given iteration. The main disadvantage of such schemes is

that, if one wished a different rate target, the MP decomposition has to be recomputed again. As

the coder presented in the scope of this thesis is intended for asymmetric applications that can

have variable bit-rate requirements, it has been considered that an out-loop quantization scheme

(a posteriori quantization) is more helpful, because it allows to quantify each end-user stream at

its rate-distortion target requirements. This possibility is specially useful for big images, because

the computational complexity for MP approximating a big image remains high. Thus, the in-loop

quantization schemes that appear in the literature cannot be used: an a posteriori quantization

scheme seems more appropriate.

In order to understand the a posteriori quantization scheme used in the scope of this thesis, the

upper-bound of the energy of the coefficients in the MP expansion is introduced. This upper-bound

is the basis of the MP a posteriori quantization scheme introduced in [72, 75]. It will be seen that

the quantizer takes profit from this upper-bound in order to reduce the amount of bits needed to

send the coefficient value without an increase in quantization error.

In this section, first a review of the theoretical results given in [72, 75] is given. From this

theoretical results, a practical implementation of the quantizer that is derived from this results is

built, with a new rate allocation strategy that improves the results obtained in [75]. Finally, an

original modification of improved reconstruction of the quantized values is implemented.

7.3.1 Redundancy-Driven a posteriori MP coefficients quantization

The convergence speed of Matching Pursuit corresponds to its ability to extract the maximum signal

energy in a few iterations. In other words, it corresponds to the decay rate of the residue. Since the

convergence speed directly depends on the dictionary, the decay rate of the residual energy can be

bounded once the dictionary is known, even without a priori information about the input signal.

The approximation error decay rate in Matching Pursuit has been shown to be bounded by an

exponential [29, 118]. In other words, the decay of the residue norm is faster than an exponential

decay curve whose rate depends on the dictionary only. From [118], there exists a decay parameter

τ > 0 such that for all N ≥ 0

‖RMs‖ ≤ 2−τM‖s‖ , (7.3)

or, equivalently,

‖Rm+1s‖ ≤ 2−τ‖Rms‖ ∀ m. (7.4)

The decay rate∗ can be written as [118]:

2−τ = (1 − α2 β2)
1
2 , (7.5)

where β is the redundancy factor and α ∈ (0, 1] represents an optimality factor. This latter factor

depends on the algorithm that, at each iteration, searches for the best atom in the dictionary. The

optimality factor α is set to one when MP browses the complete dictionary at each iteration (as it

is the case with the MP scheme presented in the scope of this thesis). The parameter β depends on

the dictionary construction. It represents the ability of the dictionary functions to capture features

of any input function f . The upper-bound on the coefficient norm is reached in the worst case where

∗The decay parameter τ decreases when the size of the signal space increases. However, at the limit of infinite

dimensional spaces, the convergence is not exponential any more [99].
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the input function is the farthest from any dictionary vector. β is defined as the largest constant

that satisfies:

sup
γ

|〈s,gγm
〉| ≥ β‖s‖. (7.6)

β can be interpreted as the cosine of the maximum angle between any direction in H and the closest

element of the dictionary, that we simply assume to be a L-dimensional subspace of H in the finite

dimensional case [119]. This parameter characterizes the redundancy of the dictionary and tends to

one when the size of the complete dictionary increases. A geometrical formulation of β is provided

in [74].

Notice that β and µ (redundancy factor introduced in Chapter 4) are not at all the same param-

eter. β is computed as one half of the cosine of the bigger angle among two neighboring functions

in the dictionary, while µ is the cosine of the smaller angle among two neighboring functions in the

dictionary. Thus, µ > β. For dictionaries that are uniformly distributed in the function space, β

and µ are highly related, but these two parameters can be very different if the dictionary is not

uniformly distributed in the function space.

The purpose of the a posteriori quantization scheme basically lies in the context of asymmetric

applications, and is thus appropriate for the purpose of the image coder presented in this thesis. Due

to the encoding complexity, the Matching Pursuit stream is computed only once and then differently

quantized to match various receiver requirements. An optimal coefficient quantization cannot be

included in the Matching Pursuit decomposition in contrast to [81, 82, 136], since this would imply

dedicated encoding for each end-user. While a posteriori quantization provides flexibility regarding

to the coding rate, the associated distortion is however not compensated by further MP iterations,

contrary to in-loop quantization. The quantization error propagation can nevertheless be kept small

for sufficiently fine quantization. A graphical explanation about the difference between in-loop and

out-loop quantization can be found in Figure 7.1.

Figure 7.2 shows that distortion resulting from a posteriori quantization are slightly higher than

those of the in-loop quantization, depending on the quantization step size however. The bit-stream

size is directly proportional to the number of MP iterations, since all iterations have the same size in

a uniform quantization scheme and random signal and dictionary. With in-loop quantization, MP

adapts to the quantized coefficient, and the residue corresponds to the stream used for reconstruction.

It therefore generally performs better than the a posteriori quantization, even if the MP decay can

be slightly slower. The difference between both quantization schemes is however very small for large

coefficients (where the relative quantization error is kept small). For very small coefficients (i.e.,

high stream size), the quantization step size is too large to capture the coefficient value. The a

posteriori quantization error can thus even increase with the number of iterations (i.e., very small

coefficients), as in the case of a mid-step uniform quantizer used in the Figure 7.2. However, an

in-loop quantization scheme stays less flexible than the a posteriori quantization since the stream is

generally targeted for a given rate.

The aim of quantization is to offer the best possible reconstruction quality for a given bit budget.

The a posteriori quantization based on the upper-bound of the coefficients proposes a rate-distortion

optimal solution taking benefit from the exponential decay of the residual energy. This interesting

property directly drives the quantization of the coefficients in two ways. Intuitively, the quantization

error on a Matching Pursuit element depends first on the iteration number. The highest iteration

elements indeed bring less energy than the first elements. Their quantization upper-bound can thus

be reduced compared to the upper-bound of the high energy coefficients. Second, the number of

Matching Pursuit elements can also be adapted to the available bandwidth, by dropping the lowest

energy elements.

Let cγn
represent the scalar product 〈gγn

,Rns〉. From Eq. (7.3), its norm is upper-bounded by
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Figure 7.1: In loop and out loop image quantization schemes. The in loop MP quantization scheme

subtracts to the original signal the quantized projection, while the out-loop uses the non-quantized

values for image subtraction.

an exponential function, which can be written as

|cγn
| ≤ (1 − α2β2)

n
2 ‖s‖ . (7.7)

The upper-bound depends on both the energy of the input function and the construction of the

dictionary. Since the coefficient can obviously not bring more energy than the residual function, the

norm of the coefficient is strongly related to the residual energy decay curve. Figure 7.3 represents the

energy of the Matching Pursuit coefficients for the expansion of random signals over a 128-random

vector dictionary (α = 1). It clearly illustrates that the coefficients norm can be upper-bounded by

an exponentially decaying curve. This qualitative result does not depend either on the signal or on

the dictionary. However, the decay rate directly depends on the redundancy factor β as presented

in previously in this chapter.

The exponential upper-bound on the coefficients can be used to design an efficient quantization

scheme [75]. In the following discussion, an Oracle computation of the structural redundancy factor

of the Matching Pursuit dictionary is assumed, and this redundancy factor is used to derive an

efficient quantizer. Later on, an adaptive algorithm that avoids the computation of such a factor

is presented. The starting point for the design of an efficient quantizer is from observation that

there is clearly no need to quantize all coefficients on the same range, since their values decrease

exponentially. In other words, the quantization applied to the first coefficients is certainly not

efficient on the last ones, as their range is (exponentially) smaller. Bits can thus be saved by simply

limiting the quantization region between 0 and the exponential decay curve given by the parameters
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Figure 7.2: Comparison of a priori and a posteriori uniform coefficient quantization of the MP

expansion of 10-sample random real signals over a dictionary of 128 random vectors. The distortion

have been averaged over 10 independent encodings. To draw this graph, the quantization step size

has been kept constant, and both the a priori and a posteriori quantization schemes have been

applied the same quantizer. The increase of distortion at the higher rates comes from the fact that,

for high iteration number, the coefficients become smaller than one half of the quantization step,

and thus the distortion due to quantization is higher than the energy that these basis functions

subtract.

(i.e., β and ‖s‖), after possible coefficients sorting. Indeed, even if the coefficient energy is upper-

bounded by an exponentially decaying curve, the coefficient magnitude is not necessarily strictly

decreasing due to the MP algorithm and its implementation. The quantized coefficients are then

sent to the entropy coder together with an additional bit of sign.

The a posteriori MP coefficient quantization allows to compute the optimal number of coeffi-

cients, as well as the optimal number of bits per coefficient in exponentially upper-bounded quanti-

zation. The distortion at decoding can be bounded by the sum of the quantization error and the ap-

proximation error due to the limit on the number of Matching Pursuit iterations. Let ξn = cγn
− c̃γn

denote the error on the coefficient. The total distortion D can thus be written as:

D ≤
N−1∑

n=0

|ξn|2 + ‖RNs‖2 ≤
N−1∑

n=0

|ξn|2 + (1 − α2β2)N‖s‖2 , (7.8)

where the energy of the residue at iteration N is bounded thanks to Eq. (7.3).

Assume now that the distribution of the coefficients norm is uniform between 0 and the exponen-

tial upper-bound given by Eq. (7.7). This is clearly an oversimplified hypothesis but, as can be seen

on Figure 7.4, the exact distribution depends on the iteration number and its properties dramatical-

ly change for different coefficients: the first coefficients are quite narrowly distributed close to the

upper-bound, while other tend to be more and more compactly distributed near small values. This

behavior is mainly due to the very conservative upper-bound defined in Eq. (7.7), which assumes no

a priori knowledge on the input signal. The simplified uniform distribution model therefore reflects

the lack of a real structure of coefficients distribution in this particular context. The uniform quanti-

zation is moreover justified in a generic algorithm, where the only available parameters are the signal
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Figure 7.3: Coefficient norm versus the iteration number for the MP expansion of 3 random signals

of length 10 over a 128-random vectors dictionary (α = 1).
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Figure 7.4: Distribution of coefficients n = {0, 4, 9, 19} relatively to the exponential upper-bound,

for the MP expansion of thousand 10-sample random signals over a random dictionary of 128 atoms

(α = 1).

energy and the dictionary redundancy, without considering neither the particular relation between

the signal and the dictionary or dependency among successive coefficients. For example, one could

assume a Gaussian coefficient distribution around an average value decaying faster than the expo-

nential upper-bound. However, the evolution of this average value clearly depend on the efficiency

of the dictionary to decompose a particular signal s. This relation is shown later in this chapter.

Finally, it can be observed that successive coefficient norms are likely to be close, and the distance to

the upper-bound increases with the coefficients order, since the upper-bound is clearly conservative.

The adaptive algorithm proposed in the next section will take benefit of these observations.
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Under the previous assumptions, the coefficient cj is uniformly quantized within the exponentially

decaying quantization range Ij = νj‖s‖ , where ν = (1 − α2β2)
1
2 . Let nj be the number of

quantization steps within [0, Ij ] for the quantization of the jth coefficient. Similarly, let aj represent

the number of bits needed to code the atom index. The atom indices can be entropy coded to

improve the compression and aj represents in this case the length of atom j codeword, without loss

of generality. The coding rate for N MP atoms is therefore given by:

R =

N−1∑

j=0

log2 (nj) +

N−1∑

j=0

aj . (7.9)

Also, in the case of fine uniform quantization, the distortion can be written as:

DQ =

N−1∑

n=0

|ξn|2 =

N−1∑

j=0

ν2j‖s‖2

12 n2
j

. (7.10)

The optimal quantization problem, which minimizes the distortion for a given bit budget Rbudget

can now be formulated as follows :

Problem 7.1 Given a Matching Pursuit expansion represented by a set of coefficients cj and their

respective atoms gγj
, coded on codewords of length aj, find N , the number of atoms, and {nj}, with

0 ≤ j ≤ N − 1, the number of bits needed to code the respective coefficients, such that the distortion

D is minimized, while the coding rate is smaller than the bit budget, i.e., R ≤ Rbudget.

The Lagrangian multiplier method [58, 141] is well suited for this kind of constrained optimization

problems. It defines a cost function L(λ) as the sum of the objective distortion function and the

constraint on the rate, weighted by the Lagrangian multiplier λ. This formulation allows to solve

the hard constrained problem of finding the optimal set of nj and N by converting it to a set of

unconstrained problems driven by λ. In our case the cost function can be written as:

L(λ) = D + λ R =

N−1∑

j=0

ν2j ‖s‖2

12 n2
j

+ ν2 N‖s‖2 + λ




N−1∑

j=0

log2 (nj) +

N−1∑

j=0

aj


 . (7.11)

The optimal quantization is obtained by differentiating L(λ) with respect to both nj and N .

First, solving
∂L(λ)

∂nj
= 0,∀j (7.12)

for nj positive and finite, yields

nj =

√
‖s‖2 ν2j log 2

6λ
. (7.13)

The solution of Eq. (7.13) is a minimum of the Lagrangian since the second derivative is positive at

this point, regardless of the value of j. Hence, the optimal quantization imposes an exponential law

on the number of quantization levels:

nj+1

nj
=
νj+1

νj
= (1 − α2 β2)

1
2 . (7.14)

Interestingly, this previous relation leads to an equivalent participation of each iteration to the total

distortion. Indeed, the average distortion per coefficient is equal to:

λ

2 log (2)
, ∀nj > 1, (7.15)
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independently of the iteration. Notice however that the Lagrangian formulation provides only an

approximation to the optimal quantization. Indeed, in the practical case, nj can only take integer

values, moreover often limited to integer powers of two.

The coding rate can also be limited by transmitting only part of the MP expansion. On the

one hand, even if small coefficients can be efficiently approximated by the exponential upper-bound,

the quantization scheme may decide not to code them because the cost of the atom index is too

expensive. On the other hand, it can be seen from Eq. (7.11) that atoms may be transmitted alone,

even if no coefficient is coded (nj ≤ 1). Depending on the redundancy of the dictionary, atom indices

often carry more information than coefficients. With efficient entropy coding, the atom indices may

moreover become very cheap to code. One can therefore imagine a scheme where the coefficients

are simply interpolated from the exponential decay curve, especially for high order iterations (i.e.,

small coefficients). The optimal number of iterations N is thus given by minimizing the Lagrangian

cost function of Eq. (7.11) where nj has been replaced by its optimal value from Eq. (7.13):

L(λ) =

N−1∑

j=0

Lj(λ) + ν2 N‖s‖2 (7.16)

with

Lj(λ) =





ν2j ‖s‖2

12 n2
j

+ λ (log2 nj + aj) if nj ≥ 1

ν2j ‖s‖2

12 + λ aj otherwise.
(7.17)

Because indices can be transmitted without coefficients, the Lagrangian is defined as a piecewise

function. The break-point occurs at j = NB = b− log (n0)
log (ν) c (i.e., nj = 1) where n0 =

√
‖s‖2 log (2)

6 λ

from Eq. (7.13). Notice that NB is positive only if λ ≤ ‖s‖2 log (2)
6 . Otherwise, the weight on the rate

in the Lagrangian cost function becomes much more important than the distortion, and the best

scheme would be not to transmit any coefficient. Let now assume that aj = A is constant, where

A correspond to the average size of the atom indices, after possible entropy coding. The optimal

number of iterations, N is given by the following theorem:

Theorem 7.1 The Lagrangian cost function of Eq. (7.16) has a unique minimum in terms of the

number of MP iterations and this optimal solution is given by:

N =

{
N1 if A > − 23 log (ν)+1

2 log (2)

N2 otherwise.
(7.18)

where:

N1 = −
1 + 2 A log (2) − log (ν) + log

(
‖s‖2 log (2)

6 λ

)

2 log (ν)
− W−1

(
3 23−2 A ν log (ν) e−1

)

2 log (ν)
, (7.19)

N2 =

log

(
− λ A

2‖s‖2 log (ν)
(
1+ 1

12 ν2−12

)
)

2 log (ν)
(7.20)

are the optimal values of N on both sides of the piecewise function (i.e., for respectively N ≤ NB

and N > NB).

The choice between N1 and N2 depends only on the relation between A and ν. Indeed, the atom

index size and the decay rate of the coefficient norm drive the decision of coding an atom without

coefficients. In Eq. (7.19), W−1(x) represents the second branch of the Lambert W function [25].
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Figure 7.5: Average R-D curve for the MP expansion of ten 10-sample random real signals over a

50-vector random dictionary, in the case of both exponential and uniform quantization.

Finally, the solution of Eq. (7.18) is a minimum of the Lagrangian cost function, since the second

derivative is positive at N (see [72, 75] for a detailed proof).

Now that the unconstrained problem of Eq. (7.11) has been solved optimally for an arbitrary λ,

the next step is to find the optimal λopt that guarantees a bit budget Rbudget. The solutions of the

optimization problem form a convex hull of the achievable rate-distortion curve, and the bit budget

constraint imposes a λopt that represents the slope of the rate-distortion function at R = Rbudget.

Several bisection methods have been proposed to solve this second problem [151, 166, 171]. Since

in our case the bit rate is expressed as a function of the Lagrangian multiplier λ, the constraint on

the bit budget directly imposes an approximated value for λopt from:

Rbudget =





N1−1∑

j=0

log2 (nj) +N1 A, if A > − 23 log (ν)+1
2 log (2)

NB−1∑

j=0

log2 (nj) +N2 A, otherwise.

(7.21)

where N1, N2 and nj are functions of λ from the above equations. Recall that the approximation

is due to the constraint of integer number of bits for each coefficient. The values of λopt can finally

easily be computed through numerical methods.

Figure 7.5 shows the rate-distortion characteristic of the MP expansion of a 10-sample random

signal over a 50-vector dictionary. The redundancy-driven quantization scheme is compared to

different lower-step uniform quantization schemes, which simply quantize the coefficients over a

range defined by the energy of the signal. The proposed exponentially upper-bounded quantization

clearly outperforms the uniform quantization, since it adapts to the rate and to the range of the

coefficients to provide the best approximation for the available rate. Uniform quantization schemes

provide good results for low rate, since the first coefficients are finely quantized. For high rates,

however, the coefficients become too small compared to the quantization steps and they are set

to zero. The error may even increase in the case of mid-step quantization, since the quantized

coefficient becomes larger than the true value computed by the MP (see Figure 7.2).Nevertheless,
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for a number of coefficients small compared to the dimensionality of the signal and an appropriate

quantization step, this case does not normally appear.

Finally, it can be noted that the exponentially upper-bounded uniform quantization is equiva-

lent to the division of the coefficients by an exponential quantization table factor, multiplied by a

quantizer scale factor which is given by the bit budget. Practically speaking, the only parameters

to pass to the decoder are ν, ‖s‖ and n0, or equivalently the quantizer scale factor. The optimal

number of iterations thus only depends on the bit budget and the design of the input dictionary.

The redundancy-driven quantization becomes particularly interesting for highly redundant dictio-

nary, where the coefficient value decreases very rapidly. In this case, the distribution of bits among

coefficients is particularly efficient compared to uniform quantization.

The scheme proposed above heavily relies on the knowledge of the structural redundancy factor

exponential decay factor ν. We call this scheme Oracle-based because, in practical situations, it

can be too demanding to compute this parameter. Moreover its influence is mixed with the sub-

optimality factor α brought in by MP implementation choices. This additional factor is moreover

very difficult to control. In the next section we develop an adaptive algorithm that uses the previous

theory to dynamically estimate the quantization parameters, therefore relaxing assumptions on the

a priori knowledge of the redundancy factor.

7.3.2 Practical Scheme: Adaptive Quantization

The previous optimal quantization scheme has several limitations, particularly in the practical case

of large dictionaries. Moreover, the accuracy of the exponential upper-bound is highly dependent

on the Matching Pursuit algorithm implementation. To overcome these limitations, we now propose

a suboptimal but very efficient algorithm based on the development of the previous section. The

key idea lies in a dynamic computation of the redundancy factor β (i.e., the parameter ν) from the

quantized data. Since this information is also available at the decoder, it will be able to perform the

inverse quantization without any additional side information. As in the previous section, we only

focus on the magnitude of coefficients, reporting their sign on an separate bit.

The MP coefficients are first re-ordered, and sorted in the decreasing order of their magnitude.

This operation may be necessary since the MP algorithm does not guarantee a strict decay of the

coefficient energy, it just guarantees a strict decrease of the upper-bound of the energy. The adaptive

quantization scheme then performs as follows. Let Q[ck], k = 1, . . . j − 1 denote the quantized

counterparts of the j − 1 first coefficients. Due to the rapid decay of the magnitude, coefficient cj

is very likely to be smaller than Q[cj−1]. It can thus be quantized in the range [0, Q[cj−1]]. The

number of quantization levels at step j is theoretically driven by the redundancy factor as given by

Eq. (7.14). The adaptive quantization uses an estimate of the redundancy factor to compute the

number of quantization levels as:

nj = ν̃j−1 nj−1 . (7.22)

The estimate of the redundancy factor ν̃ is recursively updated, replacing the quantization range Ij

of the optimal quantization scheme with the quantized coefficient Q[cj ] as:

ν̃j =

(
Q[cj ]

‖s‖

)1/j

. (7.23)

The adaptive quantization is described by Algorithm 7.1. The quantization is completely deter-

mined by the choice of n0, the number of bits for the first coefficient, and a positive value of N .

The algorithm iteratively quantizes each of the coefficients, and updates, at each step, the estimated

value of the redundancy factor. It finally stops after a predefined number of atoms N has been
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reached, or when it determines that the number of bits to code a coefficient becomes null (i.e.,

nj = 0).

Algorithm 7.1: Adaptive Quantization

Data: I0 = ‖s‖, n0 =
√

‖s‖2 log 2
6λ , ν̃0 = 1

while j < max iterations (N) do1

nj = ν̃j−1 nj−1 ;2

Q[cj ] ⇐ Quantize |cj | on nj levels with range Ij−1 ;3

Ij ⇐ Q[cj ] ;4

ν̃j ⇐
(

Q[cj ]
‖s‖

)1/j

/*update ν̃ */5

;6

j ⇐ j + 1;7

end8

When the bit-stream has to conform to a given bit budget, the parameter n0 is computed as

follows. First, ν is estimated with Eq. (7.23) by training the dictionary on large a set of signals (e.g.,

images), encoded with the adaptive quantization algorithm. It can be shown empirically that the

estimation quite rapidly tends to the asymptotic value of the redundancy factor. As the dictionary

is the same for all the images, this parameter is already know at the encoder and the decoder. The

estimation of ν is then used to compute λ as a function of the given bit budget with Eq. (7.21),

where N is given by Eq. (7.18) (for highly redundant dictionaries, we generally have N = N1). The

value of λ determines the number of bits of the first coefficient n0, and the number of atoms to

be coded, N , using appropriately Eq. (7.19) or Eq. (7.20). The adaptive quantization algorithm is

finally completely determined, and generally yields bit rates very close to the bit budget. For high

bit-rates, it sometimes under-estimates the quantizer efficiency, due to the fact that the quantization

range estimated from the quantized coefficient values is more accurate than the one obtained from

the theoretical exponential upper-bound. In this case, the actual bit rate becomes smaller than the

bit budget, which can however easily be met by coding additional coefficients.

Notice that, a loose estimation of ν or λ will not impair the efficiency of the quantization

algorithm, but rather displace the resulting encoding on the working rate-distortion curve. Finally,

several coefficients could be used for the computation of ν̃ in Algorithm 7.1. Such a modification will

improve the accuracy of the estimation of quantization parameters, and avoid potential oscillatory

effects.

Experimental Results on random signals

In this section we now compare the adaptive entropy-constrained quantization scheme with an

exponential quantization scheme [179] used in Matching Pursuit coding [137]. The exponential

quantization is clearly expected to provide better results than uniform quantization [73] due to

the particular distribution of the MP coefficients. Both the exponential and the adaptive entropy-

constrained quantization schemes, comparable in terms of complexity, are used for a posteriori MP

coefficients quantization. In the particular case of random signal coding, the distortion is reported

to the coding rate estimated as the sum of the quantized coefficients entropy and the index average

size. Note that the exponential quantization is similar to the one proposed in [137], where the

dead-zone is adapted to the statistics of the coefficients.

Figure 7.6 shows the evolution of the MSE distortion versus the coding rate for both the adaptive

entropy-constrained and the exponential quantization. The curve has been averaged on one hundred
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Figure 7.6: Rate-distortion curve for adaptive and exponential quantization the MP expansion of

10-sample random real signals over a 128-atom dictionary.

MP expansions of a random R
10 source. The adaptive scheme clearly provides better results since

it optimally distributes bits among MP coefficients. It moreover allows to reach much lower coding

rates, since the number of coefficients is adaptively chosen according to the bit budget. A more

detailed comparison of these two quantization schemes can be found in [75]. The results of applying

this quantization scheme to image coding are shown in the next section.

7.3.3 Probability distribution optimized MP coefficient quantization

Until here, it has been seen that taking into account the theoretical MP coefficient energy upper-

bound for quantization gives better R-D results than schemes that to not take this into account.

This section studies whether these results can be improved by studying not only the theoretical

energy upper-bound, but the real probability distribution of the coefficient value with respect to the

iteration number.

The empirical data for estimating the probability distribution and the first moment of the MP

coefficients with respect to the iteration number is needed to optimize the quantization scheme of

the MP coefficients. In order to have a proper estimation of the parameters, 500 MP coefficients

from 88 128x128 natural images were obtained. This allowed to estimate the mean evolution of the

MP coefficients, and to verify whether this evolution of the mean of the MP coefficients and the

evolution of a single image MP coefficient stream with the iteration number were similar. Results

where encouraging, because the evolution of a single coefficient and the evolution of the mean showed

a clearly linear behavior when using the log-log scale.

Taking this into account, a theoretical expression of the mean value coefficient n when coefficient

(n− 1) is known can be easily expressed mathematically. As it is linear in the log-log scale, in the

linear domain the coefficients evolve with the iteration number as:

cn = an−$ + b, (7.24)

with $ a real positive number. The above expression, when translated to the log-log scale gives a
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Figure 7.7: (a) Evolution of the mean of the log of the MP coefficients with the log of the iteration

number. It can be seen that the behavior is nearly linear. The mean was estimated from 88 different

images. (b) Evolution for a single image coefficient stream of the log of its coefficients with the log

of the iteration number. It can be seen that for a single image, the behavior of the coefficients does

not differ from the evolution of the mean.

linear behavior:

zi = u−$i. (7.25)

In the above expression, i = lnn is the logarithmic iteration number and zn = zln n = ln(cn − b) is

the logarithmic magnitude of the coefficient, shifted by a parameter b.

With the above expression, it is easy to prove that:

Theorem 7.2 If zi is the logarithmic magnitude at logarithmic iteration n and $ a valid slope,

then the logarithmic magnitude at logarithmic iteration n+ 1 is:

zi+1 = zi −$, (7.26)

with $ the characteristic value of process zn.

The accuracy of the above theorem is experimentally proved, through results shown in Figure 7.7.

In order to have a better understanding about the probability distribution of the evolution of

the energy of the projection with the iteration number, it is useful to compute the first and second

moment of zi, in addition of the mean. The first moment is straightforward to compute, due to the

linearity of all the operations that are involved. Being E{zi} = µzi
, E{u} = µu, and E{$} = µ$,

it can be seen that:

E{zi} = E{zi−1} − b = µu − iµ$. (7.27)

As can be seen in Figure 7.9, the mean value of $ does not depend on the iteration number, thus

in the above expression b is independent of the iteration number.

The second moment is computed by:

σ2
zi

= E
{

(zi − z̄i)
2
}

= E
{
z2
i

}
− µ2

zi
. (7.28)
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Figure 7.8: (a) Solid line: Evolution of the variance of zi with the iteration number. Dashed line:

Evolution of the variance of $ with the iteration number. Dot-dashed line: Evolution of i2σ2
$ with

the iteration number.(b) Evolution of the kurtosis (solid line) and the skewness (dashed line) of z.

Substituting zi by the expression given in Eq. (7.25), one can easily compute that the variance of

zi is given by:

σ2
zi

= σ2
u + 2i (µuµ$ − E{u$}) + i2σ2

$. (7.29)

From Figure 7.8, one can see that i2σ2
$ is, after the first iterations, very small and almost constant,

and thus does not really affect the value of σ2
zi

. As µu does not depend on the iteration number,

because it is the variance of the first MP coefficient, the variance of zi will evolve with n according

to the term 2n (µuµ$ − E{u$}). This means that µ and $ are not independent, which is logical,

because it is the term that somehow relates the dictionary and the signal to represent. E{u$} will

be a sort of measure of how the dictionary adapts to the signal to code.

The distribution of the coefficients around the mean is not exactly Gaussian, as can be seen by

the estimated Skewness and Kurtosis. For a Gaussian distribution, the Skewness should be 0 and

the Kurtosis, 3. This values of Kurtosis and Skewness show that the coefficient distribution around

the mean value is slightly asymmetric, skewed to the smaller coefficient values, and slightly flatter

than a normal distribution.

Some remarks about the coefficient evolution

Several deductions can be driven from the coefficient distribution and its evolution with the iteration

number. The first thing that can be seen is the linear evolution of the mean of the coefficients with

the logarithm of the iteration number. This linear evolution has to be taken carefully, though,

because it is not valid for infinite coefficients, it is just valid for a limited and small (compared to

the dimensionality of the signal to represent) number of coefficients. As the coding scheme presented

here works exactly in this range, this observations are appropriate for the data under study.

From this observations, we can deduce:

• The mean of the coefficients is decreasing following an exponential. The quantizer designed

with the upper bound of the coefficients does not take this into account, and performs a

step-like quantization. Knowing this exponential strict decreasing (not only the upper-bound,
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Figure 7.9: (a) Evolution of the empirical mean value of$ with the iteration number. (b) Evolution

of the value of $ for ten image coefficient streams.

but actually the real coefficient behavior is exponentially decreasing), one can, with the same

number of bits, reduce the distortion introduced by the quantizer by taking this fact into

account.

• The difference of consecutive coefficients has a much smaller variance than the actual coefficient

distribution, and thus, less bits are needed to code this difference. It is worth, then, performing

a differential coefficient coding, instead coding the value of the coefficient at each iteration.

• The kurtosis and the variance of the coefficients indicate that these do not follow a Gaussian

distribution, and thus, standard techniques based on Gaussian distributions cannot be applied

to improve the coding of this coefficients.

The study of the distribution of the coefficients indicated that the quantizer based on the theoret-

ical upper-bound of the coefficients is useful as a quantization, but that the value that has to be sent

to the entropy coder is not the direct output of this quantizer, but a differential coding (quantized

value of the previous coefficient minus quantized value of the present coefficient). In addition, the

quantization noise can be reduce by applying the observations of the mean of the coefficients to the

quantized data, and make this data closer to the real behavior of the coefficients. This will allow to

increase the quantization step while reducing the distortion due to quantization of the coefficients.

This allows to design an improved decoding scheme for MP streams is presented, based on the a

posteriori MP quantization method. This improved quantized and dequantizer scheme is presented

in the next section.

7.3.4 Reconstruction of MP Coefficients by Interpolation

By observing the output of the dequantizer it can be noticed that the output values are relatively

coarsely quantized for atoms with high iteration numbers (Figure 7.10). It is known that coefficient

magnitudes are always decreasing (when eventually the decreasing of the coefficients is not strict,

a reordering can be done), and the coefficient decay follows a very well defined pattern. It is thus

possible to estimate the original values and obtain a better quality for the reconstructed image.
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Figure 7.10: Image Goldhill (256x256): Behavior of unquantified coefficient magnitudes in log-log

scale compared to dequantized values using 1024 initial quantization levels.

Figure 7.10 shows the behavior of the coefficient magnitudes in the log-log scale for one single

image. It can be observed that this behavior is approximately linear in log-log scale starting from a

certain iteration number, even for a single image case. This linearity has been observed for most of

the images studied. Therefore, the logarithmic coefficient magnitudes and the logarithmic iteration

number ca be approximated by the expression given in Eq. (7.25).

Calling ĉn the estimated coefficient at iteration n, one can estimate the parameters a, $ and b of

Eq. (7.24) by minimizing the quadratic error (cn − ĉn)
2

(with cn the actual coefficient value and ĉn
the estimated one). Parameter b is introduced to model slight changes in the linearity for different

iteration numbers, which is quite usual in a single image coefficient evolution. Figure 7.11 shows the

original coefficient value and its approximation, computed with Eq. (7.24). The estimation has been

performed from the iteration 120 to 1000. It can be seen that the approximated values obtained

with such a method are very close to the real ones, thus, this property can be used to improve the

compression rate achieved with the MP coder. The question that arises now is how to parametrize

and quantize the parameters $, b and a. Any quantization of these parameters causes a big loss of

accuracy, and thus, some method to avoid directly sending them has to be found.

One can naturally think to use the well known a posteriori quantization scheme based on the

exponential upper bound and improve it with the knowledge of the log-log linearity of the MP

coefficients. The quantization scheme based on the exponential coefficient upper-bound, when few

quantization steps are used, gives not a smooth output, but a piecewise flat output (see Figure 7.12).

Knowing that the evolution of the MP coefficients has to be smooth, one can allow the a posteriori

quantizer to have a coarse quantization step (and this give a piecewise flat output) and apply a

sort of post-processing of the coefficients in order to reduce, at the receiver, the distortion due to

quantization.

Observing the flat constant regions, one can see that the most precise information about the

coefficient magnitude values can be obtained from edge points (where the dequantized values change):

the left edge point, A = [n
A
, c

A
] and the right one, B = [n

B
, c

B
]. There is just a region that cannot

use these edge points: the last region where the stream is cut, for which no precise value of B can

be found.
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Figure 7.11: Image Barbara (256x256): Approximation of coefficient magnitudes with Eq. (7.24);

parameters a, b and $ are calculated by using a linear regression on original coefficient values for

iteration numbers between 120 and 1000.

To compute the coordinates of the edge points, the decoder performs the dequantization and

notes two iteration numbers n1 and n2, where the dequantized value cdeq changes. The points A

and B are then calculated as:

n
A

= n1 − 1/2, c
A

=
cdeq(n1 − 1) + cdeq(n1)

2
(7.30)

n
B

= n2 − 1/2, c
B

=
cdeq(n2 − 1) + cdeq(n2)

2
(7.31)

These values represent a very good approximation to the actual values of the coefficient magnitudes

(see Figure 7.12; the edge points are represented by asterisks). The decoder knows those edge

points and can estimate the values for other iterations by using an interpolation function, better

than a constant function. The coefficients that lay in the middle of these two points A and B are

then interpolated with Eq. (7.24), substituting with the interpolation function the flat region. This

interpolation is performed by fixing one of the three degrees of freedom of the linear function, so

that the other two can be estimated using the flat region edge points cA and cB . The parameter a

and b of Eq. (7.24) are then estimated as:

a =
c

B
− c

A

1
n

B

− 1
n

A

, (7.32)

b = c
A
− a

n
A

, (7.33)

while the parameter $ is fixed to a mean value that has been estimated from a large set of natural

images.

In order to detect small variations of the slope of the line, for each constant region the calculation

of parameters is independent from neighboring regions, except for the last segment (where the stream

is cut), which requires special attention. As the decoder knows only point A, but not point B, the

interpolation will be done using the parameters computed from the previous segment,
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Figure 7.12: Selection of end-points A and B for interpolating from dequantized values in a given

constant region; end points are denoted by asterisks.
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Figure 7.13: Image Cameraman (256x256): interpolation with the rational function and 128 initial

levels, compared to non-quantized values. Inappropriate interpolation (done before the number of

quantization levels becomes low enough) is also shown.

Dequantization results

An example of interpolation using the rational function is given in Figure 7.13, which shows the

PSNR as function of the iteration number for the image Cameraman. The number of the quanti-

zation levels for the first atom is 128, which is very small for 1000 iterations. Some remarks need

to be given before keeping on the explanation of this scheme. The interpolation explained here per-

forms well only for high iteration number (lower coefficient values). This comes from the fact that

coefficients at higher iteration number present a more linear log-log behavior. It is thus important

to know which cases should be interpolated, otherwise, this scheme would worsen the quality of the



7.4. Matching Pursuit Image Coder structure 143

10
2

10
3

10
4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

Number of initial quantization levels

P
S

N
R

 [d
B

]

dequantized
rational interpolation

Figure 7.14: Image Cameraman (256x256): Optimal number of levels for the first atom, for the

given bit rate of 0.2bpp. The number of levels for the first atom ranges between 128 and 4096 with

a resolution of 3 values per octave.

reconstructed image instead of improving it. A good method to make sure that the flat zone has

to be interpolated is to look at its length: if the flat zone is “long enough”, the coefficients have to

be interpolated, otherwise it is better to leave them unchanged. Experimentally, it has been found

that the minimum length of the flat zone to need interpolation is approximately five coefficients.

The interpolation scheme does not perform equally well for all images and all numbers of quan-

tization levels. The image Barbara with 128 initial levels is such an example. The stream is cut

after 1000 atoms. The obtained PSNR for rational interpolation using 128 initial levels is better

than using 64 initial levels for most of the iteration numbers, but it deteriorates in the end. The

reason for this deterioration is the interpolation for the last segment. For the case of 128 initial

levels the final segment starts at iteration number 405 and continues till the end of the stream. The

interpolation is based on parameters calculated for the previous segment. Since this last segment

is very long, the proposed method does not perform very well. For the case of 64 levels, the last

segment starts at iteration number 827 and is much shorter. This last constant segment can be held

relatively short by using sufficiently high number of initial quantization levels.

7.4 Matching Pursuit Image Coder structure

7.4.1 Overview

The compression scheme proposed in the scope of this thesis uses the Matching Pursuit decomposi-

tion. After a quantization of the coefficients, it sends the atom parameters to an entropy coder, which

gives the final bit-stream. A schematic representation of such a coder can be seen in Figure 7.15.

In order to code an image, the coder first recursively decomposes it by Matching Pursuit, in a

series of atoms chosen from a redundant dictionary, with their respective coefficients. The coefficients

are then quantized by means of an exponentially bounded uniform quantization method adapted to

progressive Matching Pursuit stream characteristics, following the quantization scheme introduced

in the previous section. Coefficients and atom indexes are finally entropy coded with a context
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Figure 7.15: Block diagram of the Matching Pursuit image coder.

adaptive arithmetic coder. Quantization and coding are performed a posteriori, after the Matching

Pursuit expansion. This choice is justified by the fact that the Matching Pursuit algorithm clearly

represents the most computationally expensive part of the encoder. If the quantization is performed

a priori (i.e., in the MP loop), the generated expansion is specifically destined to a target streaming

rate. A posteriori quantization and coding allow for one single expansion to be encoded at different

target rates. The image is finally reconstructed by performing the reverse operations at the decoder.

One of the well-known drawbacks of Matching Pursuit is the computational complexity of the

search algorithm, which has to be repeated at each iteration. As it has been seen in the previous

chapter, the problem can be alleviated by sup-optimal implementations, based for example on Ge-

netic Algorithms [66], and by heuristics linked to the dictionary. Such methods greatly speed up

the search, but often sacrifice in the quality of the approximation. They sometimes get trapped in

local minima, and choose atoms which do not always maximize the projection coefficient |〈gγ , s〉|.
Other solutions can be found in efficient implementations of the Matching Pursuit algorithm, taking

benefit from the structure of the signal and the dictionary, that might for example be decomposed

in incoherent blocks. The actual implementation of the proposed encoder performs a full search over

the complete dictionary, and computes all the projections in the Fourier domain [62], as explained

in Chapter 6. This tremendously reduces the number of computations in the particular case of our

dictionary built on anisotropic refinement of rotated atoms, as described here-below. The number

of multiplications in this case only depends on the number of scales and rotations.

7.4.2 First coding scheme

Rate Control

When the bit-stream has to conform to a given bit budget, the quantization scheme parameters n0

and N are computed as follows. First, ν is estimated with Eq. (7.23) by training the dictionary on

a large set of signals (e.g., images), encoded with the adaptive quantization algorithm. It can be

shown empirically that the estimation quite rapidly tends to the asymptotic value of the redundancy

factor. The estimation of ν is then used to compute λ as a function of the given bit budget Rb which

has to satisfy:

Rb =

N−1∑

j=0

log2 nj +

N−1∑

j=0

aj =

N−1∑

j=0

log2 ν
j +N log2 n0 +N A , (7.34)

where aj represents the number of bits necessary to code the parameters of atom cj (i.e., positions,

scales and rotation indexes), and A = E[aj ] represents the average index size. From Eq. (7.13), the

value of λ indeed determines the number of bits of the first coefficient n0, and the number of atoms
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to be coded, N : under the condition that atoms whose coefficients are not quantized (i.e., nj < 2)

are not coded, νN−1 n0 has to be at least equal to 2.

The rate control completely determines the adaptive quantization parameters, and generally

yields bit rates very close to the bit budget. For high bit-rates, it sometimes under-estimates

the quantizer efficiency, due to the fact that the quantization range estimated from the quantized

coefficient values is more accurate than the one obtained from the theoretical exponential upper-

bound. In this case, the actual bit rate becomes smaller than the bit budget, which can however

easily be met by coding additional coefficients.

Notice that, a loose estimation of ν or λ does not significantly affect the efficiency of the quanti-

zation algorithm, but rather displaces the resulting encoding on the working rate-distortion curve.

Finally, several coefficients could be used for the computation of ν̃j in Eq. (7.23). Such a modifi-

cation will improve the accuracy of the estimation of quantization parameters, and avoid potential

oscillatory effects.

Coding

The image coder proposed in this paper implements an arithmetic adaptive entropy coder. The core

of this coder is based on [210], with the probability update method from [54]. As the distribution of

the atom parameters (e.g., positions or scales) is dependent on the image to be coded, the entropy

coder initializes the symbol probabilities to a uniform distribution. The atom parameters (projection

coefficients, positions, scales, etc.) are coded using independent context. In order to keep the intrin-

sic scalability features of the bit-stream, the parameters are sent in their natural order, along the

decreasing order of the coefficient magnitudes. The bit-stream is simply constructed by concatenat-

ing together coded coefficients and atom parameters. This method results in a progressive stream,

which can be cut at any point to generate rate scalable streams (see Section 7.6). Scalability is the

main motivation for choosing this kind of arithmetic coder, rather than more efficient coders that

previously estimate the parameters distribution in order to optimally distribute the bits. Grouping

atoms according to their position parameters, for example, would also increase the compression ra-

tio. However, the stream would not be progressive, since the atoms would not anymore be ordered

according to their relative importance.

7.4.3 Enhanced coding and decoding scheme

The enhanced coding scheme has then the following form of sending the parameters: For the first

iteration, the algorithm sends the real projection value, that will be used as upper-bound for the

quantizer, together with the image size. After sending this information, the next thing to send to

the receiver is the kind of atom that has been chosen by the algorithm in the first iteration. This

information takes only one bit (if the first bit is a one, the atom is a Gaussian, otherwise, it is an

AR). The positions of the atoms are sent in raw format (px, py), taking as much bits as needed

to cover the image size. Then, if the first atom is a Gaussian, the algorithm sends its dilation

parameter, and if it is an AR, it sends three integers: [sx, sy − sx, θ], being sx the x data needed

to compute the x axis scaling factor (that takes the form 2
sx

NN ). Instead of sending the raw format

of sy, as it is, by definition, always at least as high as sx, the difference between the first and the

second is sent. Finally, the angle parameter is also sent in raw format.

For the other iterations, the only parameter that is sent in a different way is the value of the

projection. The quantization algorithm defined in Algorithm 7.1 is used, but instead of sending to the

entropy coder the output of this algorithm, the value that is sent is cn−1−cn, n being the coefficient

number that is sent to the entropy coder (together with a sign bit for the n coefficient). This allows
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to have more data that is kept constant (as it has been seen in Figure 7.8, the mean of the coefficients

has a much lower variance, and thus, needs of less bits to be sent). In addition, the number of initial

quantization levels is not computed with the rate-control that comes from the theoretical upper-

bound, but from the empirical rate-control coming from the modified dequantization scheme. This

strategy of sending the difference of the coefficients instead of the coefficients themselves has as a

consequence that the coefficient data vector that is sent to the entropy coder has a lot of repeated

values. The adaptive entropy coder can, after some iterations of learning process, use a low number

of bits for this repeated values. This improved a posteriori quantization gives, for a given Rate-

budget, a smaller distortion than the previous scheme, as can be seen in Figure 7.23. The possibility

of truncating the bit-stream is still kept, with this new coding and decoding scheme, and thus,

the full rate-adaptivity is kept, and even improved, as the number of quantization levels needed to

achieve smaller distortion is more constant with this adaptive scheme than with the scheme based

uniquely on the MP upper-bound.

7.5 Coding Performance

All the results of this section have been obtained with the coding scheme that does not use the

enhanced quantization. At the end, some comparisons of the non-enhanced and the enhanced

coding scheme are given.

7.5.1 Benefits of anisotropy

Since Matching Pursuit has already been presented as a valid alternative to wavelets or DCT in

low bit rate coding schemes [135], it becomes important to show the real benefits of using an

anisotropically refined dictionary to represent natural images. Chapter 6 already introduced the

benefits of using anisotropy for achieving sparsity, comparing results obtained with four different

dictionaries, but the improvements in sparsity do not necessarily mean improvements in the Rate-

Distortion curve. It is interesting now to analyze the penalty of anisotropy on the coding rate. In our

coder, the addition of anisotropy induces the cost of coding an additional scaling parameter for each

atom. To highlight the coding penalty due to anisotropic refinement, the image has also been coded

with the same dictionary, built on isotropic atoms, all other parameters staying identical to the

proposed scheme. Figure 7.16 illustrates the quality of the MP encoding of Lenna, as a function of

the coding rate, with both dictionaries. To perform the comparison, the isotropic and the anisotropic

dictionaries are generated with the same generating function and with the same discretization of

the parameters (3 scales per octave and an angle resolution of 10 degrees). The anisotropy however

implies the coding of one additional scale parameter. It is shown that the dictionary based on

anisotropic refinement provides superior coding performance, even with longer atom indexes. The

penalty due to the coding cost of one additional scale parameter, is largely compensated by a better

approximation rate. Anisotropic refinement is thus clearly an advantage in MP image coding.

7.5.2 Rate-distortion performance

Now that the benefit of anisotropic refinement has been highlighted, the compression performance

of the proposed image coder is compared to the state-of-the-art JPEG2000 standard∗, and with the

SPIHT encoder [158]. Figure 7.17 shows the rate-distortion performance of the three coders for

common test images, at low to medium bit rates. It can be seen that Matching Pursuit provides

∗All results have been generated with the Java implementation available at http://jj2000.epfl.ch/, with default

settings (Daubechies 9/7 wavelets and 5 decomposition levels).
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Figure 7.16: Comparison of the rate distortion of anisotropic refinement in the dictionary and its

isotropic version. The basis functions used are the same for isotropic and anisotropic functions, with

the same parameter discretization, showing the Rate-Distortion improvement of adding anisotropy

to the dictionary.

better PSNR rating than JPEG2000 at low coding rates. However, the gap between both coding

schemes rapidly decreases when the bit rate increases, as expected. Matching Pursuit and overcom-

plete expansions are especially efficient for low bit rate coding. They very rapidly capture the most

important components of the image, but Matching Pursuit then suffers from its greedy character-

istic when the rate increases. Also, the dictionaries have not been designed for texture coding, but

rather to code geometry. It has to be noted as well that the bit-stream header penalizes JPEG2000

compared to Matching Pursuit, where the syntactic information is truly minimal (at most a few

bits). This penalty becomes particularly important at very low bit rate.

The performance of the proposed coder is also compared to SPIHT encoder, which introduces a

minimal syntactic overhead. SPIHT almost always outperforms the proposed coder on the complete

range of coding rate, and tends to perform similarly to JPEG2000 for high rates. However, the

stream generated by the SPIHT encoder is in general not easily spatially scalable, while MP and

JPEG2000 offer increased flexibility for stream adaptation.

Interestingly, all coders give equivalently poor results for highly textured images like Barbara.

None of them is really optimized for texture coding, and the dictionary used in the proposed MP

encoder is primarily designed to capture geometry in images. Finally, the proposed encoder performs

reasonably well in terms of rate-distortion performance, especially at low rates. When the rate

increases, the saturation of the quality can be explained by the limitations of redundant transforms

for high rate coding, and by the dictionary design choices. Hybrid coding schemes could provide

helpful solutions at high rate.

7.5.3 Visual comparisons

This section provides visual comparisons of images encoded with the proposed MP encoder, JPEG2000,

and SPIHT. Even if the three coding schemes perform similarly in terms of PSNR, as shown in the

previous section, the coding artifacts are in general visually less annoying in the MP coding algo-
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(a) Cameraman, 256 × 256
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Figure 7.17: Distortion-rate performance for JPEG2000, SPIHT and the proposed MP coder, for

several test images.

rithm. Figure 7.18 compares the encoding results for the Lenna image, at low bit rate. The decoded

images are quite similar in terms of PSNR, but visual comparisons generally seem to favor the MP

encoder. The artifacts introduced by MP (basically a simplification of the images) are indeed less

annoying than the ringing introduced by the wavelets in JPEG2000 and in SPIHT.

Figure 7.19 presents a similar comparison between MP and JPEG2000, but for a larger image.

In this case, the PSNR rating is clearly in favor of JPEG2000. However, the image encoded with MP

is visually more pleasant than the JPEG2000 version. The detailed view of the hat, as illustrated

in Figure 7.20, clearly confirms this impression. The JPEG2000 encoder introduces quite a lot

of ringing, while the MP encoder concentrates its effort on providing a good approximation of the

geometrical patterns. JPEG2000 has difficulties to approximate the 2-D oriented contours, which are

the predominant components of natural images. Figure 7.21 further confirms the different behaviors

of MP and JPEG2000. It can be seen that MP concentrates on edges, and thus rapidly provides
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(a) Original Lenna 256 × 256 image.

(b) Lenna 256 × 256 MP image, PSNR=30.3626 dB.
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(c) Lenna 256 × 256 JPEG2000 image, PSNR=30.7940 dB.

(d) Lenna 256 × 256 SPIHT image, PSNR=31.3471 dB.

Figure 7.18: Lenna 256 × 256 encoded at 0.35 bpp with MP, JPEG2000 and SPIHT.
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a ’sketchy’ representation of the image. At the same rate, JPEG2000 already spends some bits in

coding textures, while ringing artifacts are still visible.

Finally, Figure 7.22 proposes a comparison of the encoding of a highly textured image (Barbara),

at a quite low bit rate. As already discussed in the previous section, it can be seen that the three

encoders perform quite poorly in this scenario. The type of artifacts introduced by the encoders

is however very different. In the wavelet schemes, the low resolution sub-bands provide a low

resolution version of the image, but a lot of disturbing noise is present in textured regions. MP

first concentrates on well-defined contours, but might fail in coding important semantic parts, like

the eyes. Due to the flexibility of MP, one might however propose a modified coding strategy that

ensures with priority a low resolution coding of all regions of interest, even if they do not necessarily

represent the most energetic features. This modified coding strategy can be implemented through

(a) MP, 31.0610dB
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(b) JPEG2000, 31.9285 dB

Figure 7.19: Lenna (512 x 512) encoded with MP and JPEG2000 at 0.16 bpp.
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(a) MP (b) JPEG2000

Figure 7.20: Detail view of Lenna (512 × 512) encoded at 0.16 bpp.

the weighted MP scheme presented in Chapter 6, by giving weight 1 to visually important areas

(such as faces) and lower weights everywhere else.

7.5.4 Discussion

As shown by the results presented in this section, expansions over dictionaries built on non-separable

functions can bring new breakthroughs in image compression. Anisotropic refinement and orien-

tation allow to efficiently capture two-dimensional objects in images, and provide very good per-

formances at low bit rate. In addition to rapidly capturing the most important features of the

images, multidimensional representations generate less annoying artifacts than wavelet decomposi-

tions, which introduce some ringing at low rate.

Matching Pursuit is however just one method of signal approximation, which shows some limita-

tions at high rate due to its greedy nature. It however allows for quite good signal representations,

and presents the advantage of requiring a very low complexity decoding structure. The encoding

however still requires quite a lot of computations, and is definitely much more complex than a repre-

sentation over an orthogonal wavelet basis. A lot of progress have already been made in decreasing

the computational complexity of the Matching Pursuit implementation. Schemes based on the di-

vision of the dictionary in incoherent blocks for example, already permit to encode images in a few

seconds. MP also has the advantage of generating inherently progressive streams, which is a very

interesting property for visual communication applications, as discussed in the next Section.

The coding scheme used in this paper can also surely be improved, by taking into account the

proper characteristics of the image expansion. The implementation proposed in this paper has

been specifically driven by the objective of building highly adaptive bit-streams, but the coding

efficiency can certainly be improved when this constraint is relaxed. The PSNR ratings presented in

this section are generally better for JPEG2000 than for MP. At the same time, the approximation

rate in terms of number of coefficients in the expansion can be shown to be largely in favor of the

Matching Pursuit scheme [195].

R-D performance of the enhanced coding scheme

In the enhanced coding scheme, due to the reduction of distortion at the decoder side, the initial

number of levels of the a posteriori coefficient quantization can be decreased, and more coefficients
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(a) MP, 27.49 dB

(b) JPEG2000, 28.18 dB

Figure 7.21: Goldhill 256 × 256 encoded at 0.23 bpp.
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(a) Original

(b) MP, 21.35 dB
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(c) JPEG2000, 21.23 dB

(d) SPIHT, 21.29 dB

Figure 7.22: Barbara (256 x 256) encoded at 0.12 bpp.
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Figure 7.23: Image Cameraman (256x256): The RD performance obtained with the optimal initial

number of levels from the Figure 7.14 (203 initial quantization levels with interpolation).

can be sent. Thus, the rate-control scheme presented in Section 7.3.2 can no longer be used. For

the modified quantization scheme that takes into account the mean evolution of the coefficients, the

optimal number of levels for a given rate cannot be any more theoretically computed, but needs

to be estimated. To do this, once the rate has been fixed, a regressive algorithm is used, that

performs several quantizations and takes the optimal. This modified quantization scheme does not

give a convex R-D behavior with an increasing number of quantization levels, as can be seen in

Figure 7.14, and thus, the empirical method is the only way to find the optimal. Nevertheless, as

the reconstruction of the MP image is not a computationally hard problem, it is not a problem to

have to iterate this procedure. Figure 7.23 shows the improvement that this adaptive quantization

and dequantization scheme gives. It can be seen that now the R-D results are better that JPEG2000,

and have the same PSNR quality than SPIHT.

7.6 High adaptivity

7.6.1 Importance of adaptivity

As outlined in the previous section, one of the main advantages of the MP coder is to provide highly

flexible streams at no additional cost. This is very interesting in nowadays visual applications involv-

ing transmission and storage, like database browsing or pervasive image and video communications.

We call adaptivity the possibility for partial decoding of a stream, to fulfill decoding constraints

given in terms of rate, spatial resolution or complexity. The challenge in scalable coding is to build

a stream decodable at different resolutions without any significant loss in quality by comparison to

non-adaptive streams. In other words, adaptive coding is efficient if the stream does not contain

data redundant to any of the target resolutions.

In image coding, adaptivity generally comprises rate (or SNR-) adaptivity and spatial adaptivity.

On the one hand, the most efficient rate adaptivity is attained with progressive or embedded bit-

streams, which ensure that the most important part of the information is available, independently
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of the number of bits used by the decoder [159, 181]. In order to enable easy rate adaption, the

most important components of the signals should be placed near the beginning of the stream. The

encoding format has also to guarantee that the bit-stream can be decoded, even when truncated.

On the other hand, efficient adaptive coding schemes, like JPEG2000 or the coder proposed in [212]

are generally based on sub-band decompositions, which provide intrinsic multiresolution representa-

tions. However, spatial adaptivity is generally limited to octave-based representations, and different

resolutions can only be obtained after non-trivial transcoding operations.

Multidimensional and geometry-based coding methods can advantageously provide high flexibil-

ity in the stream representation and manipulation. In this section, we will emphasize the intrinsic

spatial and rate adaptivity of the bit-streams created with our MP image coder. First, due to the

geometrical structure of the proposed dictionary, the stream can easily and efficiently be decoded

at any spatial resolution. Second, the embedded bit-stream generated by the Matching Pursuit

coder can be adapted to any rate constraints, while the receiver is guaranteed to always get the

most energetic components of the MP representation. Most importantly, Matching Pursuit streams

offer the advantage of decoupling spatial and rate adaptivity, that can be performed independently.

Adaptive decoding is now discussed in more details in the remainder of the section.

7.6.2 Spatial adaptivity

Due to the structured nature of our dictionary, the Matching Pursuit stream provides inherent spatial

adaptivity. As explained in Chapter 6, the group law of the similitude group of R
2 indeed applies [4]

and allows for invariance with respect to isotropic scaling of α, rotation of Θ and translation of
~β. Therefore, when the compressed image ŝ is submitted to any combination of these transforms

(denoted here by the group element η), the indexes of the MP stream can simply be transformed

with help of the group law:

U(η)f̂ =

N−1∑

n=0

〈gγn
,Rnf〉 U(η)gγn

=

N−1∑

n=0

〈gγn
,Rns〉 U(η ◦ γn)g . (7.35)

In the above expression γn = (an, θn,bn) represents the parameter strings of the atom encoded

at iteration n, with scaling an, rotation θn and translation bn, and η = (α,Θ, ~β) represents the

geometric transformation that is applied to the set of atoms. The decoder can apply the trans-

formations to the encoded bit-stream simply by modifying the parameter strings of the unit-norm

atoms, according to the group law of similitude, where

(
a, θ,b

)
◦
(
α,Θ, ~β

)
=
(
α · a, θ + Θ,b + α · rΘ~β

)
. (7.36)

In other words, if ηα = (α, 0, 0) denotes the isotropic scaling by a factor α, the bit-stream of

an image of size W ×H, after entropy decoding, can be used to build an image at any resolution

αW × αH simply by multiplying positions and scales by the scaling factor α. The coefficients have

also to be scaled with the same factor to preserve the energy of the different components. The

quantization error on the coefficient will therefore also vary proportionally to the scaling factor, but

the absolute error on pixel values will remain almost unchanged, since the atom support also varies.

Finally, the scaled image is obtained by:

U(ηα)ŝ = α

N−1∑

n=0

cγn
gηα◦γn

. (7.37)

The modified atoms gηα◦γn
are simply given by Eq. (6.7) to Eq. (6.9), where b and a are respectively

replaced by α b and α a. It is worth noting that the scaling factor α can take any positive real value,
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as long as the scaling is isotropic. Atoms that become too small after transcoding are discarded.

This allows for further bit rate reduction, and avoids aliasing effects when α < 1. The smallest

atoms generally represent high frequency details in the image, and are located towards the end of

the stream. The MP encoder initially sorts atoms along their decreasing order of magnitude, and

scaling does not change this original arrangement.

Finally, scaling operations are quite close to image editing applications. The main difference

is in the use of the scaling property. Scaling will be used at a server, within intermediate network

(a)
√

1

2

(b) Original size
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(c)
√

2

Figure 7.24: Lenna image of size 256 × 256 encoded with MP at 0.3 bpp (b) and decoded with

scaling factors of
√

1
2 (a) and

√
2 (c).
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nodes, or directly at the client in transcoding operations, while it could be used in the authoring tool

for editing. Even in editing, the geometry-based expansion provides an important advantage over

conventional downsampling or interpolation functions, since there is no need for designing efficient

filters. Other image editing manipulations, such as rotation of the image, or zoom in a region of

interest, can easily be implemented following the same principles. The simple spatial adaptation

procedure is illustrated in Figure 7.24, where the encoded image of size 256×256 has been re-scaled

with irrational factors
√

1
2 and

√
2. The smallest atoms have been discarded in the down-scaled

image, without impairing the reconstruction quality. The up-scaled image provides a quite good

quality, even if very high-frequency characteristics are obviously missing since they are absent from

the initial (compressed) bit-stream.

Table 7.1 shows rate-distortion performance for spatial resizing of the 256 × 256 Lenna image

compressed at 0.3 bpp, with the proposed Matching Pursuit coder, and JPEG2000 respectively. It

presents the PSNR values of the resized image, as well as the actual bit rate after transcoding. It

also shows the PSNR values for encoding directly at the target spatial resolutions, for equivalent

rates. The reference images in Table 7.1 have been obtained by resizing the original 512× 512 pixel

Lenna image to 256 × 256 and to 128 × 128 with a standard image processing application (Gimp).

The reference image 128 DF is an image of size 128 × 128, obtained by taking the output of the

wavelet Daubechies 9/7 filter bank at this resolution (128 × 128) when giving as input signal the

256 × 256 Lenna reference image.

It can be seen that our scheme offers results competitive with respect to state-of-the-art coders

like JPEG2000 for octave-based downsizing. The quality of the down-scaled images is slightly

inferior for the MP coder, but the JPEG2000 transcoded image rate is largely superior to the MP

stream one. On the other hand, MP allows for non-dyadic spatial resizing, as well as easy up-

scaling. The scaling operation does not significantly affect the quality of the image reconstruction

from MP streams. Even in the up-scaling scenario, the transcoded image provides a very good

approximation of the encoding at the target (higher) resolution. Next, results are also reported for

a 128×128 reference image obtained from the output of the Daubechies 9/7 filter bank, that is used

in the JPEG2000 encoder. We can note that the PSNR after transcoding is obviously improved for

JPEG2000 in that case, and that the PSNR value for MP is decreased. We could expect the reverse

behavior with a reference image obtained with Gaussian filtering: this illustrates the importance

of the reference image in spatial resizing performance evaluation. It is finally interesting to note

that MP incurs a loss of almost 1.5 dB when coding that particular reference image, mostly due

to the aliasing present in this low frequency image∗, that the proposed dictionary cannot efficiently

capture.

7.6.3 Rate scalability

Matching Pursuit offers an intrinsic multiresolution advantage, which can be efficiently exploited

for rate adaptivity. The coefficients are by nature exponentially decreasing so that the stream can

simply be truncated at any point to provide a SNR-adaptive bit-stream, while ensuring that the most

energetic atoms are kept. The simplest possible rate adaption algorithm that uses the progressive

nature of the Matching Pursuit stream works as follows. Assume an image has been encoded at a

high target bit-rate Rb, using the rate controller described in Section 7.4. The encoded stream is

then restricted to lower bit budgets rk, k = 0, . . . ,K by simply dropping the bits rk + 1 to Rb. This

simple rate-adaption, or filtering operation is equivalent to dropping the last iterations in the MP

expansion, focusing on the highest energy atoms.

∗The Daubechies 9/7 filter gives aliasing when reconstructing at a smaller resolution, aliasing which is compensated

for the reconstruction of the original size image by information contained in the higher frequency bands.
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Encoder 128x128 128 DF 256x256 512x512

PSNR 28.32 24.62 29.70 27.40

MP Rate [bpp] 0.8 0.8 0.3 0.08

PSNR w/o tr. 29.48 28.03 29.70 28.48

PSNR 28.90 30.53 30.19 -

JPEG2000 Rate [bpp] 1.02 1.02 0.3 -

PSNR w/o tr. 33.66 31.08 30.19 -

Table 7.1: Comparison of spatial adaptivity of the MP encoder and JPEG2000. PSNR values are

compared to quality obtained without transcoding (w/o tr.). 128 DF is the 128x128 image obtained

with the JPEG2000 wavelet filter.
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Figure 7.25: Rate-distortion characteristics for MP encoding of the 256x256 Barbara and Camera-

man images at 0.17 bpp, and truncation/decoding at different (smaller) bit rates.

Figure 7.25 illustrates the rate adaptivity performance of the MP encoder. Images have been

encoded with MP at a rate of 0.17 bpp and truncated to lower rates rk. For comparison, the bit-

stream has also been encoded directly at the different target rates rk, as described in Section 7.4. It

can be seen that there is a very small loss in PSNR with respect to the optimal MP stream at the

same rate. This loss is due to the fact that the rate truncation simply results in dropping iterations,

without using the optimal quantizer settings imposed by rates rk as proposed in Section 7.4.2.

The quantization parameters are not optimal anymore with respect to the truncation rate, but the

penalty is quite low away from very low coding rates. The loss in performance is larger for images

that are easier to code, since the decay of the coefficients is faster. Nevertheless, both optimal and

truncated rate-distortion curves are quite close, which shows that a simple rate adaption method,

though quite basic, is very efficient.

Next section shows a dequantization scheme, based on the mean energy decay of the coefficients,

that improves the performance of this quantizer and reduces the effect of rate truncation.
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Figure 7.26: Histograms of the MP coefficients when represented in HSV coordinates.

7.7 Color image coding with Matching Pursuit

Now that the complete MP coder for gray-scale image has been presented, the natural question that

arises is how color images can be coded. The MP color image coder is very naturally follows the

same coding scheme than the gray-scale image coder for the atom indices, as these atom indices have

exactly the same properties for color images and for gray-scale images. The only difference between

color images and gray-scale images in the MP decomposition is the value of the projection of the

basis functions: color images have three coefficients (one projection value for every color channel),

while gray-scale images have only one.

It has been seen that color images are represented in the RGB color space, in order to take profit

from the redundancy among channels. The quantization of the MP coefficients of color images has

to be done carefully, and cannot be performed in the RGB color space, because the quantization

error would bring color distortion, very annoying for the Human observer. A color space that does

not create color distortion in the quantization of color images MP coefficients has to be found. Once

this color space has been found, the appropriate quantization scheme for this color space has to be

found.

7.7.1 Color Image Parameter coding

Coefficient quantization

A fundamental goal of data compression is to obtain the best possible fidelity for a given data

rate or, equivalently, to minimize the rate required for a given fidelity. Due to the structure of the

coefficient distribution, centered around the diagonal of the RGB cube, an efficient color quantization

strategy is not anymore to code the raw value of the R, G and B components, but instead to code

the following parameters: the projection of the coefficients on the diagonal, the distance of the

coefficient from the diagonal and the direction where it is located. This is equivalent to coding the

MP coefficients in an HSV color space, where V (Value) becomes the projection of RGB coefficients

on the diagonal of the cube, S (Saturation) is the distance of the coefficient to the diagonal and H

(Hue) is the direction perpendicular to the diagonal where the RGB coefficient is placed. Figure 6.27

shows the 3D distribution of the MP coefficients when their coefficient values are computed as the

projection of the basis function in the red, the green and the blue channel and their distribution

when these values are transformed to projections in the HSV color space. The HSV values of the
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MP coefficients present the following distribution: the Value distribution is Laplacian centered in

zero (see Figure 7.26(c)), Saturation presents an exponential distribution (see Figure 7.26(b)), and

a Laplacian-like distribution with two peaks can be observed for Hue values (Figure 7.26(a)). Once

the HSV coefficients have been calculated from the available RGB coefficients, the quantization of

the parameters is performed as follows:

• V is exponentially quantized with Algorithm 7.1. The choice of exponential quantization is

driven by the exponential decay of V coefficients as the iteration number increase. The value

that will be given as input to the arithmetic coder will be Nj(l) −Quant(V ), where Nj(l) is

the number of quantization levels that are used for coefficient l.

• H and S are uniformly quantized, since the iteration number does not seem to have any

particular influence on their magnitude.

Entropy coding of the parameters

The entropy coding of the quantized parameters is performed through and adaptive arithmetic coder

based on [210], with the probability update method used in [54]. The only difference among the

entropy coding of color images and gray-scale images is the number of fields to be entropy coded

(color images need two extra fields to represent color information). Note that this coder is still under

study, and currently does not yet behave optimally. A more elaborated study of the entropy of the

parameters, and improved histogram initialization and update methods are necessary to obtain

better compression performance. However, the bit-stream obtained is still representative enough of

the behavior of the MP coder.

7.7.2 Results

In the previous section it has been shown that the choice of the RGB color space is the most adapted

to the MP algorithm which uses the same mother function for the three color channels. All results

presented in this section thus use RGB color space for MP expansion.

Figure 7.27 first compares the compression performance of the proposed MP encoder with state-

of-the-art JPEG-2000. It can be seen that MP advantageously compares to JPEG-2000, and even

performs better at low bit rates. This can be explained by the property of MP to immediately capture

most of the signal features in a very few iterations. At higher rates, the advantage of redundant

expansion obviously decreases in comparison to orthogonal signal decomposition as performed by

JPEG-2000. Note that the PSNR values have been computed in the Lab color space [59], in order

to closely evaluate the Human Visual System perception. Figure 7.28 proposes visual comparisons

between MP and JPEG-2000, and it can be clearly seen that MP indeed offers better visual quality

at low bit rate.

In addition to interesting compression properties, the MP bit-stream offers highly flexible adap-

tivity in terms of rate and spatial resolution. Figure 7.29 shows the effects of truncating the MP

expansion at different number of coefficients. It can be observed that the MP algorithm will first

describe the main objects in a sketchy way (keeping the colors) and then it will refine the details.

The stream generated by MP thus truly offers an intrinsic rate scalability in image representation.

Finally, MP decompositions with anisotropic refinement atoms are covariant under isotropic

dilations, as explained in Chapter 6. This means that the compressed image can be resized with any

ratio α, including irrational factors (see Figure 7.30). These spatial scalability properties, added to

very low complexity decoder implementation, make MP especially useful for asymmetric applications

with heterogeneous end-user terminals.
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Figure 7.27: PSNR comparison between JPEG 2000 and MP. The PSNR has been computed in

the CIELAB color space.
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Figure 7.28: Top row, MP of sail with coefficients quantized in HSV color space. Bottom row,

JPEG2000 for the same bit-rate.
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(a) 50 coeffs (b) 150 coeffs (c) 500 coeffs

Figure 7.29: MP of sail for 50, 150 and 500 coefficients.

(a) α = .5 (b) Original size (c) α =
√

2

Figure 7.30: Example of spatial scalability with MP streams.
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7.8 Conclusions

This chapter has introduced a lossy image compression scheme based on Matching Pursuit. This

compression scheme has been introduced for gray-scale and for color images. Both for gray-scale

and color images, the coding scheme presented in the scope of this thesis is useful for low to mid

bit-rate ranges. It has been seen that for mid bit-rate ranges, the PSNR of the reconstructed images

is not higher than the one obtained by the JPEG2000 image coder. Nevertheless, due to the basis

functions that have been used, which are similar to the V1 receptive fields of the Human Visual

System, the distortion introduced by MP with AR atoms is less annoying to the human observer

than the ringing introduced by wavelet like schemes. In addition, the MP based on AR atoms image

coder allows for geometrical transformations in the coded domain, which may be useful for visual

communications, where the size of the display of the end terminal is variable and (possibly) unknown

for the transmitter.

Compression schemes based on redundant dictionaries open interesting horizons for new image

compression schemes that are more adapted to the nature of images. These new compression schemes

can, not only see the regularity of contours and thus use less coefficients to represent them, but help

understand the nature of some image components.

The coder presented in this thesis is in an experimental stage, but it has already shown interesting

results. With this, it can be deduced that further investigation and development of redundant image

or video representation and approximation schemes may be of interest, and give new breakthroughs

in image coding and representation.

The main drawback of this coder is its low efficiency at high bit-rates, due to the nature of

the Matching Pursuit algorithm and the redundant dictionary. This drawback could be solved by

the use of hybrid coding schemes. Of course, the use of hybrid coding schemes would limit the

capabilities of the coder to perform affine image transformations in the coded domain.
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Chapter 8

Conclusions

8.1 Summary

This thesis has pointed out, in the introduction, the need for efficient or sparse approximation of

images and other multidimensional geometrically structured data. In the particular domain of image

processing, sparse and flexible image approximations or representations can bring solutions to new

image processing challenges. Some of these challenges include representations that provide a good

image modeling and parametrization. This may contribute to having better descriptions of the

image content, and may give good performances on data mining or automatic database indexation.

In this sense, this thesis focuses on the study of sparse image approximations, and their applications

to flexible image coding.

In order to better understand the nature of visual information and how it can be sparsely

represented, Chapter 2 has reviewed different sources that model and capture images. To achieve

sparse signal approximations, inspiration from nature, with an overview of the Human Visual System

was proposed. Human Visual System uses anisotropic and oriented basis functions, and it is supposed

to perform a sparse approximation of the visual information. This is the first hint that leads toward

the use of anisotropic and oriented basis functions to achieve sparse image approximations. However,

a more objective analysis is required, to understand why such properties in the basis functions are

required.

Chapter 3 used the Horizon Model introduced in Chapter 2 to check mathematically which are

the coding and approximation gains when using contour adaptive arbitrary anisotropic and oriented

basis functions. This chapter showed that, if a smart representation scheme is used, anisotropy

and rotation in the basis function does improve both the approximation properties and the coding

performances.

Arbitrary anisotropy and orientation in the basis functions can only be achieved by the use of

redundant dictionaries. However, redundant dictionaries do not provide a unique signal represen-

tation/approximation. From all the possible approximations of a signal in a redundant dictionary,

we would like to recover the sparsest (the one that, for a given number of terms, provides a min-

imum error, or that, for a given error, has a minimum number of terms in the decomposition).

169
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Chapter 4 enumerates different algorithms and techniques to recover sparse signal approximations

from redundant dictionaries and analyzed their performances. From all the algorithms presented

in this chapter, Matching Pursuit (MP) seemed to be the most appropriate for dealing with highly

redundant geometrical dictionaries for several reasons. The first reason is that MP is flexible and

easy to implement, and its approximation error converges to zero for any dictionary of functions.

The second reason is that MP, thanks to the fact that it is an iterative algorithm, permits to easily

select the number of terms involved in an approximation. Other algorithms, such as Basis Pursuit

Denoising, do not allow to choose an exact number of terms, one has to play with some algorithm

parameters to reduce or increase the number of terms that are found in order to have a certain

amount of non-zero coefficients in a given signal approximation. Finally, Matching Pursuit is able

to find, under certain circumstances, the sparsest existing solution in a redundant dictionary. Nev-

ertheless, MP does not guarantee to retrieve the sparsest image approximation for all dictionaries

and signals. This motivated a detailed analysis of sparse signal approximations, which is presented

in Chapter 5. This analysis of the properties of sparse approximations has, as starting point, the

conditions needed for a sparse approximation to be unique and optimal. From these conditions, a

test to check the optimality of a sparse approximation was derived. This test has the particularity

of being algorithm independent, and tighter than existing ones.

Chapter 6 took the features of the basis functions that have arisen from Chapter 3 to create a re-

dundant dictionary having these features. This dictionary is formed by anisotropic refinement atoms

and Gaussians. This chapter presented then an efficient Full Search Matching Pursuit algorithm to

perform the image decomposition in such a dictionary. The same chapter emphasizes the fact that

the dictionary formed by anisotropic refinement atoms and Gaussians, even though it is able to per-

form sparser image approximations than other sets of basis functions, fails to efficiently approximate

textures. In order to efficiently approximate images with textures, a new dictionary, based on Ga-

bor atoms, is added to the dictionary based on anisotropic refinement atoms. The macro-dictionary

formed by the union of the Gaussian dictionary, the Gabor dictionary and the Anisotropic refine-

ment atom dictionary becomes far too redundant for recovering the sparsest signal approximation.

To help MP choose the good kind of basis function (Gabor for textures, anisotropic refinement

atoms for edges or Gaussians for smooth parts), a Weighted MP (WMP) algorithm is introduced.

This WMP algorithm influences the choice of MP by pondering the scalar product of the different

basis functions in the dictionary according to a priori information of the nature of the signal to

represent. Even though the weighted MP algorithm has been introduced to help MP to choose

between three different kinds of basis functions, the same scheme can be used to force MP to put

more basis functions in image zones where there is more visual information (such as faces in natural

images) or to choose image parts that are more important first (for example, for medical images,

the part of the image that shows a certain pathology) to be represented before other less significant

information. Finally, this chapter explains an adaption of the MP image approximation algorithm

to color images through a Vector MP. Interestingly, this color image approximation algorithm does

not try to uncorrelate the three different color channels, but profits from the existing correlation

among channels.

Finally, Chapter 7 proposed a flexible image coding scheme, that uses the image approximations

obtained in Chapter 6 in the anisotropic refinement atoms and Gaussian dictionary. This chapter

presents a detailed study about the coding performances of such a dictionary, which evidences the

fact that coefficient quantization appears to be of crucial importance in the design of a Matching

Pursuit based coding scheme. Thus, an enhanced MP coefficient quantization scheme is designed.

This quantization scheme is based on the theoretical upper-bound of the energy of the coefficients

and empirical observations of the distribution of the energy of this coefficients and its evolution



8.2. Future research 171

with the iteration number. This coding scheme has two main interesting characteristics: it has rate

scalability and it allows for several affine image transformations directly in the coded domain. The

drawback of such a coding scheme is its incapability of achieving high bit-rates or lossless image

representation. However, this drawback can be solved by using hybrid image coding schemes, that

combine redundant representations with orthonormal basis.

8.2 Future research

There are more and more techniques that claim to build sparse image approximations. However,

obtaining sparse image approximations that allow for image manipulations, such as affine image

transformations in the coded domain, is still an open problem. This thesis has presented a possible

primary approach to solve this kind of problems, but it has not presented the final solution to these

questions. The study of further redundant dictionaries, that still keep geometrical properties in

the basis functions but that are even more adapted to natural image sparse approximation is one

of the future research lines that come out of this work. These basis functions could have special

features, such as low coherence among them or at least block incoherence to facilitate the search of

the sparsest approximation.

Signal representation in structured redundant dictionaries has proved to give interesting results,

but theoretical bounds for recoverability of the sparsest approximation do not demonstrate that this

structured dictionaries have better approximation properties or can more easily recover the sparsest

signal approximation than non-structured ones. A study about specific sparsity properties of struc-

tured dictionaries can be useful to better understand the properties of such signal decompositions.

This thesis has shown the study of a geometric dictionary to approximate images. This dictionary

provides a continuous image representation, that is then sampled to obtain the digital signal. The

fact of having this continuous image representation allows for several interesting operations in the

coded domain, such as rotation or resizing of the image. Further studies can be of interest, in order

to use this continuous version of the image to provide super-resolution images.

Image coding through a Matching Pursuit in a geometric edge adaptive dictionary has provided

interesting results for low and medium bit-rates. In addition, due to the fact that MP with AR atoms

produces sketchy versions of the image and not ringing artifacts, the low-rate images obtained with

MP have generally better visual quality than the low-rate images obtained with wavelets, even

for higher wavelet PSNRs. The MP-based image coder has mainly two drawbacks: the loss of

compression ratio at high bit-rates and the complexity of the algorithm. MP loses compression

ration at high bit-rates due to the redundancy of the dictionary. In addition, MP cannot achieve

lossless image representations. Hybrid schemes, that use MP decompositions and orthogonal basis

should be studied, in order to achieve higher bit-rates without loosing R-D performances [144].

About the complexity of MP, optimized fast MP schemes can be used, such as tree search schemes

[100], in order to speed up the search, but a lot remains to be investigated about this suboptimal

approaches.

Another interesting future work is to study the real R-D behavior of image approximations

obtained with the AR dictionary. The R-D study performed with the anisotropic quadtree was

useful to check whether the inclusion of anisotropy and orientation in the basis function brings any

improvement in image approximations. Nevertheless, it does not model the real R-D behavior of

image approximations obtained with the AR dictionary. The main reason for this is that the basis

functions that approximate edges in this dictionary are not necessarily nested, and thus, the coding

scheme that took profit from the nested partitions cannot be used.

The use of redundant structured dictionaries for higher dimensionality data can be very useful
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for several applications. The first extension of the work is to apply it in 3D, for example for video

signals or for 3D still images [37]. In order to do this, a study about the features the dictionary

should have for representing this higher dimensionality data has to be performed.

Finally, one could think about substituting the MP algorithm for some other more sophisticated

algorithm, that allows to find the sparsest approximation in more cases than MP does.
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Appendix A

Some proves on the algorithm

independent sparsity measures

A.1 Sparsity measures

For the sake of completeness we include some properties of sub-additive (resp. admissible) sparsity

measures.

Lemma A.1 ([87, Prop. 1]) Every admissible sparsity measure is sub-additive, but the reciprocal

is false.

Proof. For t, u ≥ 0, since f(t+ u)/(t+ u) ≤ f(u)/u and f(t+ u)/(t+ u) ≤ f(t)/t, we have

f(t) + f(u) ≥ f(t+ u) · t

t+ u
+ f(t+ u) · u

t+ u
= f(t+ u).

Now, denoting btc the largest integer such that btc < t ≤ btc, and f the function such that f(0) = 0

and f(t) = 1 + btc for t > 0, we let the reader check that f is sub-additive but not admissible.

Lemma A.2 If f, g are sub-additive sparsity measures, then f ◦ g is also a sub-additive sparsity

measure.

Proof. First, since f(0) = g(0) = 0 and f, g are non decreasing, f ◦ g has the same properties. Now,

for any t, u ≥ 0 we have

f
[
g(t+ u)

]
≤ f

[
g(t) + g(u)

]
≤ f

[
g(t)

]
+ f

[
g(u)

]

Figure A.1 illustrates the fact that admissible sparsity measures are not necessarily as “nice” as

one could imagine from their most natural examples the `τ measures. Using the fact that the min or

the max of two admissible sparsity measures yields another admissible sparsity measure [87], we can

combine the `0 and the `1 norms into the “exotic” measure f(t) := min(f1(t),max(f0(t), f1(t)/2)).
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Figure A.1: (a) The “nice” functions f0(t) and f1(t) corresponding to the `0 and the `1 norm (b)

An “exotic” sparsity measure, based on a mix of the `0 and `1 measures plotted in (a).

A.2 Proof of Lemma 5.1

For any index set I, we let C(I) = {c, support(c) = I}. Since CM =
⋃

card(I)=M C(I) we have

Ef (CM ) =
⋃

card(I)≤M

Ef (C(I)). (A.1)

By definition, δ ∈ Ef (C(I)) if, and only if, for all z ∈ C(I)

∑

k∈I

f(|zk|) = ‖z‖f ≥ ‖z + δ‖f

=
∑

k∈I

f(|zk + δk|) +
∑

k/∈I

f(|δk|),

or in other words if, and only if, for all z ∈ C(I)

∑

k∈I

[f(|δk|) + f(|zk|) − f(|zk + δk|)] ≥ ‖δ‖f . (A.2)

Letting Gf (t) := supu∈R
f(|u|) − f(|u+ t|) we have

• if
∑

k∈I [f(|δk|) +Gf (δk)] > ‖δ‖f then δ ∈ Ef (C(I));

• if
∑

k∈I [f(|δk|) +Gf (δk)] < ‖δ‖f then δ /∈ Ef (C(I)).

and the case
∑

k∈I [f(|δk|) +Gf (δk)] = ‖δ‖f depends whether the supremum is achieved in the

definition of Gf . For any f one can see that Gf (t) ≥ f(|t|) by letting u = −t in the definition of

Gf . When f is non-decreasing and sub-additive, we have for all u and t

f(|u|) − f(|u+ t|) = f(|u+ t− t|) − f(|u+ t|)
≤ f(|u+ t| + |t|) − f(|u+ t|)
≤ f(|u+ t|) + f(|t|) − f(|u+ t|)
= f(|t|)

which shows that we have indeed Gf (t) = f(|t|), and the supremum is achieved in the defini-

tion of Gf . Thus, if f is non-decreasing and sub-additive, we have δ ∈ Ef (C(I)) if, and only if,∑
k∈I f(|δk|) ≥ ‖δ‖f/2. From the characterization (A.1) we conclude that δ ∈ Ef (CM ) iff

∑

k∈IM (δ)

f(|δ|) ≥ ‖δ‖f

2

where IM (δ) indexes the M largest components |δk|.



Appendix B

Computation of the sampling of

the dictionary parameters

Chapter 6 joined three dictionaries to make a macro-dictionary (or multi-component dictionary).

The PSNR of MP image approximations improves with the number of components of the “multi-

component” dictionary. This is because the MP algorithm has a richer variety of atoms available to

catch the structures of the image. In the following sections, the different dictionaries used in this work

are described. Each one of the basic dictionaries used to build the multi-component dictionary is

based on a generic, continuous domain, mother function; each mother function is tunned to a variety

of geometric transformations to generate each dictionary. For compression purposes, the maximum

amount of possible geometric transformations has to be controlled. Indeed, the parameters that

conform there is a need of sampling the parameters that define the basis functions. On can find in

the following how this sampling is performed, and the effect it has on each one of the sub-dictionaries

used in this thesis.

B.1 Dictionary DAR based on AR atoms

The use of Anisotropic Refinement (AR) dictionaries was introduced by [195] to code image edges

more efficiently. Furthermore, it has been shown in [139], [64] and [66] that Anisotropic Refinement

atoms are more suitable for edge image coding. Moreover, Human Visual System (HVS) is adapted

to this type of functions [138]. Hence, this type of atoms seems to be an appropriate choice to code

the edges of images.

An AR atom is defined as a combination of a Gaussian in an axis and its second derivative in

the other axis

gγ (x, y) = K
(
4x2 − 2

)
e−(x2+y2), (B.1)

where K is a normalization constant to have unitary norm. Assuming that our image has a size of

Nx × Ny pixels, we can define the set of parameters γ = (p, s, θ) necessary to generate the whole

dictionary:

177
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(a) (b)

Figure B.1: Anisotropic Refined atom.

p = [px, py] where px ∈ [0, Nx), py ∈ [0, Ny) translations

s = [sx, sy] scaling factors

θ ∈ [0, π) rotation,

with p the translation vector that will set the atom location within the image, s where sx is the

dilation in the x axis and sy is the dilation in the y axis and θ the rotation angle.

At this point, we have to choose our parameters carefully such that a large enough variety of

orientations, scalings a translations is available to efficiently represent edges in images. If ∆θ and

∆s are small enough finite linear expansions of space-frequency atoms are dense in L2(R2), hence

this dictionary is also complete and, then, valid for image approximation. To satisfy these conditions

we have chosen our parameters in this way:

• ∆θ = π
18 .

• {sx, sy} ∈ [0, NN · (blog2(N)c − 3)] ∈ Z where NN ∈ [1, log2(N)] ∈ Z, N = min(Nx, Ny) and

sx > sy.

Once we have defined the parameters to generate the atoms family, we can define the procedure

to create the atom. This procedure is non-commutative, so, the order is fixed and its application is:

1. Apply the translation by [px, py] ∈ Z
2.

2. Rotate by θ the translated atom.

3. Scale the translated and rotated atom by σx = 2
sx

NN and σy = 2
sy

NN in the axis x and y

respectively.

This leads to compute:

xγ =
(x− px) cos(θ) + (y − py) sin(θ))

2
sx

NN

(B.2)

yγ =
(x− px) sin(θ) − (y − py) cos(θ))

2
sy

NN

, (B.3)

and gγ = g(xγ , yγ).
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B.1.1 A Typical Parameter Discretization

Translations The translations must cover the whole image, hence:

[0, 0] ≤ [px, py] ≤ [Nx − 1, Ny − 1]. (B.4)

NN The quality of the approximated image increases with NN , but the size of the dictionary too.

If NN is too small some artifacts (lines) may appear in the image, and if NN is too large, the

computational load to perform Matching Pursuit becomes prohibitive. A good compromise is

to take

NN = 3. (B.5)

Scaling Factors The scaling factors are chosen in a way that the smaller scale is the unit and the

bigger is proportional to the size of the image. So:

2
simin
NN = 1 ; si ≥ 0 (B.6)

2
simax

NN = min(Nx, Ny) ; si ≤ NN log2 (min(Nx, Ny)) , (B.7)

where i = x, y and

si ∈ [0, NN · (blog2(N)c − 3)], (B.8)

where the factor 3 has been added in order limit the biggest scale used (bigger ones are rarely

used in natural images).

Rotation A the rotation is in steps of π
18 degrees. Rotations, in order to cover all the spectrum,

must range from 0 to π radiants (because all the atoms are real and have a spectral component

in the positive frequency plain and its symmetric component in the negative plain. Otherwise,

it should move from 0 to 2π). So,

phasen = n∆θ = n
π

18
. (B.9)

Size of the dictionary With the former assumptions, the size of the dictionary can be calculated:

26.836.992 atoms for an image of 128 squared pixels.

B.2 Dictionary DG based on Gaussian atoms

The use of a dictionary based on Gaussian functions has the purpose of better approximating smooth

image parts. The AR atoms are suitable for approximating contours, but they are not adapted to

the low frequency band of natural images. In previous works ([66],[65]), the lower frequencies of an

image were represented by either using a downsampled copy of the image or by just leaving this

task to the AR atoms. The drawback of using a downsampled image to code the baseband is that

it limits coding flexibility.

A Gaussian atom is defined as:

gγ(x, y) =
√

2Ke−(x2+y2), (B.10)

where γ is the set of parameters to generate the dictionary and K a constant that normalizes the

discrete norm of gγ . Assuming our Gaussian atoms isotropic, we can define our parameters xγ and

yγ :

xτ =
(x− px)

σx
=

(x− px)

2
sx

NN

(B.11)

yτ =
(y − py)

σy
=

(y − py)

2
sy

NN

. (B.12)
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Ny

Nx

6σsmax

Figure B.2: Framework to calculate σsmax

where sx = sy = s. The design of the dictionary must be carefully done in order to cover a variety

of baseband areas in the Fourier domain. Hence, we must impose few constrains on the s parameter

but, for simplicity, let’s call 2
s

NN = σs. We call σs due that this parameter refers to the spatial σ in

contraposition with the frequential σf . We have to review that the Fourier transform of a Gaussian

is also a Gaussian and their σ’s are connected by:

σs · σf = 2. (B.13)

Applying few constraints we might find the upper and lower bounds of σs:

• σsmax
; The biggest Gaussian we will be able to put in our image (in spatial sense) will be

determined by the image itself: its size (taking the smallest side of an Nx ×Ny pixels image).

We know that the 99% of the energy of the Gaussian is concentrated in the 6σs area of it.

This leads us to:

6 · σsmax
= min(Nx, Ny) ; σsmax

=
min(Nx, Ny)

6
. (B.14)

This Gaussian will have the lowest frequency representation, so by applying B.13 we find the

smallest bandwidth our Gaussians will cover:

BWmin = σf · 3 =
2

σs
· 3 =

36

min(Nx, Ny)
. (B.15)

• σsmin
; The previous constrain was found in the spatial domain of the image; this other is

found in the Fourier domain. As we want to cover the baseband of the Fourier domain, we

have already defined the constrain that will give the lowest frequency; to find the upper bound

we have to find the point where our Gaussians collide with the lowest central frequency of

the AR dictionary atoms. We have to find the frequency (ωx, ωy) of the atom with lowest

frequency where it has maximum power. First, let’s find the Fourier transform of a generic

AR atom:

Gλ(ωx, ωy) = −πσxω
2
xe

− (σxωx)2+(σyωy)2

4 , (B.16)
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(a) (b)

Figure B.3: Gaussian atom.

where σx = 2
sx

NN and σy = 2
sy

NN are the scaling factors of the AR atom as we defined in B.2

and B.3. To find the maximum of this function we can impose the condition ωy = 0 due to

the symmetry of our spectrum. So, we have:

∂Gλ(ωx, 0)

∂ωx
= −2πσxωxe

− (σxωx)2+(σyωy)2

4

(
1 − (ωxσx)2

4

)
= 0. (B.17)

Avoiding the trivial solution ωx = 0, it leads to find the lowest frequency ωxmin
of the AR

atoms (so that is when the scaling σx factor is maximum):

ωxmin
=

2

σxmax

. (B.18)

Also this lowest frequency of AR atoms is the biggest bandwidth our Gaussian dictionary will

represent, that is

BWmax =
2

σxmax

. (B.19)

Once we have set this lowest frequency, we can find the lower bound of σs. Taking in consid-

eration:

3σf =
2

σxmax

. (B.20)

Then, by applying B.13 we find:

σsmin
= 3 · σxmax

. (B.21)

B.2.1 A Typical Parameter Discretization

The design parameters chosen for this Gaussian dictionary are:

Translation We will make the same assumptions done in the previous dictionary.

Scales By strictly applying the relations B.14 and B.21 we find that (in concrete for our squared

images of 128 pixels):

σsmax
=

128

6
≈ 21 (B.22)

σsmin
= 3σARmax = 3 · 2 12

3 = 48. (B.23)
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σf(max)

σf(min)

σarmin

Figure B.4: Gaussian design frequency scheme. The bigger circle corresponds to the spectrum of

the Gaussian with σsmin
(and σfmax

inversely) defined by the lowest frequency of the AR Atoms.

The small circle corresponds to the σsmin
(and σfmin

accordingly) defined by the size of the image.

The reader can see that these bound for σs are not logical in the sense that σsmin
> σsmax

. The

reason is because our Anisotropic Refinement dictionary has too big scales. There would be two

solutions: to reduce the scales of the AR dictionary or relax our assumptions in the calculation

of σsmin
. The first option leads to reduce the AR dictionary and the following results are poor

because Matching Pursuit does not have enough atoms to catch efficiently the structures of the

image. The second option seems more feasible, thus, we will relax the constrain and, instead

of taking the maximum σARmax we would take the first σ′
AR that accomplishes the criteria.

Hence,

σsmin
= 3σ′

AR = 3 · 2 8
3 ≈ 19, (B.24)

and, finally, σs ∈ [19, 21].

Size of the dictionary With the former assumptions, the size of the dictionary can be calculated:

49.152 atoms for an image of 128 squared pixels.

B.3 Dictionary DGa based on Gabor Atoms

In most of the previous research done on Matching Pursuit over images, most of the decompositions

have been done over dictionaries based on Gabor atoms [97] due to its good time-frequency localiza-

tion. For our purposes, the use of Gabor atoms is justified due to the fact that they are appropriate

functions to code patterns and textures.

Note that we will take isotropic Gaussians instead of anisotropic Gaussians here. The only new

constrain here is the election of the frequencies ωx; we must choose the frequencies carefully to

accomplish the Nyquist criteria and set an overlap ratio that would guarantee the density condition

in the associated Hilbert space.

Then for each scaling factor σs = 2
s

NN we must calculate the set of frequencies ωxi
it will

represent. For our purpose we can define a set of constrains that will determinate those frequencies:

Condition 1: It is clear that a determined Gaussian will be able to represent a range of (normalized)

frequencies [ωxmin
, 1] where ωxmin

is the minimum frequency. This minimum frequency will the
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determined by the size of the Gaussian, so:

6σs > T ; ωx >
1

6σs
, (B.25)

where T is the spatial period of the atoms. We can rewrite this equation in term of the scaling

factor s:

ωx >
2−

s
NN

6
. (B.26)

Also, sometimes it is not critical to reach the lower bound since low frequencies would be

already represented by either the Anisotropic refinement atoms or the Gaussian atoms. So, it

is possible to relax the lower frequency condition by applying a correction factor :

6σs > αT ; ωx >
α

6σs
. (B.27)

Then the corrected lower frequency is:

ωx > α
2−

s
NN

6
. (B.28)

Remember that we are here working with normalized frequencies. If we want to work with

absolute frequencies we have to multiply by the sampling frequency, that is Nx

2 .

Condition 2: Once we have set the range of frequencies, we must define the step between two

represented frequencies in this set. That is the increment between two adjacent frequencies.

We could represent all the frequencies in the range [ωxmin
, 1] incrementing by unary steps 2

Nx
.

But this would be a waste of resources. Indeed, according with Figure B.5, there would be

too much overlapping. We can overlap less, for example just half a Gaussian in the Fourier

domain:

∆f = 3σf . (B.29)

Or, rewritten into terms of s:

∆f = 6 · 2− s
NN . (B.30)

Also, we can control the overlap:

∆f ′ = β∆f β ∈ (1, 2]. (B.31)

Then, finally, we can generate the associated frequencies per each scaling factor s:

ωxi
(s,NN) = 1 − i∆f ′ (s,NN) (B.32)

i ∈ [0, j t.q ωxj
> ωxmin

]. (B.33)

B.3.1 A typical parameter discretization

The design parameters chosen for the Gabor dictionary are:

Translation We make the same assumptions done in the previous dictionaries.
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fΒ∆

ωx

ωy

Figure B.5: Incremental factor.

(a) (b)

Figure B.6: Gabor atom.

Scaling A good compromise is:

si =

[
NN · (blog2(N)c − 3)

2
, NN · (blog2(N)c − 3)

]
(B.34)

Correction parameters The adjustable parameters that defines our dictionary have been set as:

α = 1.5 β = 1 (B.35)

Size of the dictionary With the former assumptions, the size of the dictionary can be calculated:

44.236.800 atoms for an image of 128 squared pixels.



Bibliography

[1] (2003). Cool optical illusions. http://www.coolopticalillusions.com/.

[2] (2004). Information technology - JPEG2000 image coding system. International Organization

for Standardization, ISO/IEC 15444 edn.

[3] N. Ahmed, T. Natarajan, K. R. Rao (1974). Discrete cosine transform. IEEE Transactions

on Computers 23(1):90–93.

[4] J.-P. Antoine, R. Murenzi, P. Vandergheynst (1999). Directional wavelets revisited: Cauchy

wavelets and symmetry detection in patterns. Appl. Comput. Harmon. Anal. 6(3):314–345.

[5] G. B. Arfken, H. J. Weber (1995). Mathematical Methods for Physicists, chap. 9.3 Gram-

Schmidt Orthogonalization, pp. 558–564. Academic Press.

[6] R. Baraniuk (2004). Multiscale geometric analysis for higher-dimensional signals. lecture 1:

Wedgelets. IHP Summer School 2004 Slide support.

[7] F. Bergeaud, S. Mallat (1995). Matching pursuit of images. In Proc. ICIP ’95, vol. 1, pp.

53–56.

[8] D. Bernier, K. Taylor (1996). Wavelets from square-integrable representations. SIAM J. on

Math. Anal. 27(2):594–608.

[9] D. P. Bertsekas (2004). Nonlinear Programming. Athena Scientific, USA, 2 edn.

[10] M. J. Black, G. Sapiro (1999). Edges as outliers: Anisotropic smoothing using local image

statistics. In Scale-Space Theories in Computer Vision, pp. 259–270, Second Int. Conf., Scale-

Space ’99, Springer.

[11] K. R. Boff, L. Kaufman, J. P. Thomas (1986). Handbook of perception and Human Perfor-

mance. A Wiley-Interscience publication.
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