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Abstract

This paper describes a novel video coding scheme based on a three-dimensional Matching Pursuit algorithm. In
addition to good compression performance at low bit rate, the proposed coder allows for flexible spatial, temporal
and rate scalability thanks to its progressive coding structure. The Matching Pursuit algorithm generates a sparse
decomposition of a video sequence in a series of spatio-temporal atoms, taken from an overcomplete dictionary
of three-dimensional basis functions. The dictionary is generated by shifting, scaling and rotating two different
mother atoms in order to cover the whole frequency cube. An embedded stream is then produced from the series
of atoms. They are first distributed into sets through the set-partitioned position map algorithm (SPPM) to form
the index-map, inspired from bit plane encoding. Scalar quantization is then applied to the coefficients which
are finally arithmetic coded. A complete MP3D codec has been implemented, and performances are shown to
favorably compare to other scalable coders like MPEG-4 FGS and SPIHT-3D. In addition, the MP3D streams offer
an incomparable flexibility for multiresolution streaming or adaptive decoding.

I. INTRODUCTION

Most successful video compression algorithms are based on the hybrid approach that combines motion
compensation between successive frames, and DCT block transform. Such schemes have been quite
successful, and represent the core of the current compression standards, like H263 or MPEG-4. While
they provide interesting performance in compression, these coders generally lack a increasingly important
feature, which is a flexible scalability. The need for adaptive streaming or the possibility to offer different
resolutions from a single bitstream is fueled by the continuing development of heterogeneous networks
and infrastructure. In streaming applications, for example, a progressive stream allows to adapt to changing
network conditions, or to clients with different access bandwidths. Spatio-temporal scalability offers yet
additional flexibility since the frame rate, and the size of the decoded frames can be adapted to the client
capacities. Due to these recent needs in adaptive coding, scalability is getting a lot of attention and efforts
from the research community.

A fine granular scalability (FGS) video coding scheme [1] based on MPEG has recently been proposed to
provide SNR scalability. In the same context, Van der Schaar and Hayder [2] proposed MPEG-based video
coding scheme with SNR and temporal scalability. A different class of scalable video coding algorithms
has been introduced for video streaming applications, based on a 3-D wavelet coding approach. These
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methods generally use temporal filtering in the direction of motion [3], [4], [5], [6], but interesting results
have also been shown in the absence of any motion compensation as in SPIHT-3D [7], which may provide
also additional adaptivity and error resilience.

In this paper, a new highly scalable video coding scheme is proposed, based on a three-dimensional
Matching Pursuit algorithm (MP3D). The compression performance are shown to compare favorably to
SPIHT-3D and MPEG-FGS, especially at low coding rates. Additionally, the stream generated by MP3D
provides an increased flexibility in terms of adaptivity. The paper is organized as follows. In Section II, the
matching pursuit video coder is presented, and the dictionary construction is detailed. In Section III, the
scalability features of MP3D (i.e., SNR, spatial and temporal scalability), are presented. The performance
of MP3D are then discussed in Section IV, and Section V finally concludes the paper.

II. MP3D: MATCHING PURSUIT VIDEO CODER

A. Sparse Representations
Most acclaimed technical solutions to both image and video compression, namely the JPEG2000 and

MPEGx/H.26x families of standards, rely heavily on transform coding. Moving to the transform domain
is usually performed in order to obtain decorrelated sets of coefficients on which scalar quantization and
entropy coding is performed, and this drives the choice of the transform. Most techniques use two well
controlled orthonormal basis (ONB): DCT and wavelets. Performing the transform by means of an ONB
allows the use of well studied data compression results, and in both cases fast algorithms help keeping a
low complexity implementation. Unfortunately, restricting a representation to an ONB fixes a very rigid
structure on the components of the signals that are represented and sometimes dramatically damages the
coherence and quality of important visual primitives : This results in annoying artifacts at low bit rates
on textures and edges.

To cope with these problems, an interesting line of research consists in representing the image with
a transform whose building blocks match important signal structures. Unfortunately the price to pay for
such a freedom is that no genuine ONB can be used and a new coding paradigm has to be adopted. In the
following, we basically try to derive a coding scheme that preserves pre-defined structures in a sequence
of frames. More specifically we consider such a sequence as a 3-D space-time signal �������
	�����
 and try to
efficiently encode coherent spatio-temporal structures.

The chosen approach relies on expanding the signal as a linear superposition of generalized waveforms
tuned to match the requested structures and selected among a vast library :

��� ������ � �����
��� ���! (1)

The only constraint on the collection "#�%$
� � ��&('*),+ is that it is dense in the space of finite energy

signals. In the following we refer to

� � as an atom and to " as a dictionary. The set ) in (1) can be
chosen as an anonymous set of labels but may also carry important information about the atoms, for
example space and frequency localization, as will be the case in this paper. Of course we also wish that
the necessary parameters in this expansion, namely the set of coefficients �

�
and indexes &

�
yield good

compression performances and this leads us to a generic requirement about (1), namely that this expansion
is sparse enough.

Without additional constraints on " , and in particular if it is not an ONB, there is generally not a
unique sparse expansion. One possible solution can be to look for the sparsest possible exact expansion,
that is minimizing the number of coefficients in (1). This unfortunately leads to a daunting combinatorial
optimization problem that is NP hard. A close solution may be provided by relaxing this problem and
trying to minimize the - � norm of the coefficients which leads to the Basis Pursuit algorithm deeply
studied by Donoho et al. [8]. Interestingly this algorithm sometimes leads to the optimal sparsest solution
of (1) with particular dictionaries [9], [10], [11].
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Alternatively, the Matching Pursuit (MP) algorithm [12] provides a interesting generic solution to (1)
by iteratively decomposing the signal using a greedy strategy. Starting with . � �/� , the 0�132 iteration reads.�45�768.�49�

� ��:<; � �=:?> .�4A@ � � (2)

where the atom

� ��: is the one having maximum correlation with .B4 :� ��: �/C<D=EGFHCJIK L 68.�49�
� �M; L  (3)

After N steps MP yields a sparse approximation :

��� ������ � ��� 68.
�
�
� ���O; � �=��> . � � (4)

where . � is a small residual error. Matching Pursuit converges, that is PQ. � PHR S when N tends to
infinity and converges even exponentially in finite dimension [12]:PQ. � PUTWVX�ZY?[]\�TU
 � (5)

where \ is constant that solely depends on " and is getting close to 1 when the redundancy increases.
Recently more constructive results have been obtained concerning the approximation properties of greedy
algorithms [11] but their description is beyond the scope of this paper. As already shown in [13] MP is
intrinsically well suited for compression of visual information because it easily yields scalable streams
by simply truncating (4). Moreover a good approximation is obtained with few well chosen components,
mostly because MP will first pick the most prominent signal structures in the dictionary. This property
makes it particularly useful at very low bit rates.

B. Spatio-temporal dictionary
In order to capture the video signal information, the atoms have to be able to efficiently represent both

the spatial image content, and the temporal information within groups of frames. In the same time, the
dictionary has also to be designed to permit multiresolution decoding, and provide spatial and temporal
scalability with minimal effort. In summary, an effective dictionary should mainly offer the following
properties [14]:^ Multiresolution,^ Localization: the atoms are localized in space and frequency,^ Directionality: the atoms can be oriented along image singularities,^ Anisotropy: the atoms can deformed to match signal components.

Based on these requirements, the proposed encoder uses the following dictionary. Firstly, the spatial part
of the atoms are generated from two mother functions, that satisfy the localization property: a 2-D Gaussian
function

� � �_���
	9
`� �a b�c ��dfeQg @9h gji and a wavelet-like function where one of the direction corresponds to
the k 4ml derivative

�
T �_���=	�
`� Ta n b �Oom� T [pkq
 c ��dre g @9h g i of a gaussian function. The 2-D Gaussian is used

to capture the low frequency spatial features, whereas clearly the wavelet-like function, besides nice
localization properties and a small number of oscillations, is able to capture image singularities like
edges and contours. This function has been shown to yield good approximation performance in natural
image representation [15]. The overcomplete spatial dictionary is then generated by shifting, orienting,
and scaling the two spatial mother atoms, as follows :^ Shift: s dfeUt=u h t!i

�
�
�
�=���H[v� � 
Q�M�_	w[]	 � 
=
^ Orientation: syx

�
T �

�
T �_zAxM�����
	�
�
^ Scaling: sy{

� � �
� � � e { � h { 
 , s d {}| u { g i

�
T �

�
T � e{U| � h{ g 


Clearly, the number of translation, rotation and scaling has to be limited to avoid a prohibitive dictionary
size, and thus limit the complexity of the search algorithm. In the current implementation, ��� � �
	 � 
 sweeps
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the whole image, and ~/�
� b�O� where ��� S��  A A �AYM� . The scaling factors finally are distributed on a

logarithmic scale, as �w��k
�
, with ���pS9�  A A �9�����qE��

� � {Z�Z�8� �f�O�� 
!� .
Secondly, the temporal part of the dictionary is built on \ -spline \ 4 ����
 functions, in order to efficiently

capture motion information, and in the same time satisfy the multiresolution and localization properties.
The order of \ 4 ����
 has to be larger than k , to have a smooth transition and benefit from a limited support.
Experiments have shown that 0��/� already offers good performance for group of pictures of a commonly
accepted size of 16 frames. The temporal part of the dictionary is finally generated by shifting and scaling
the \ -spline � 1 t=u � \ n �/\ n � d 1 � 1 t�i� 
 , similarly to the construction of the spatial part of the dictionary. In the
current implementation, translation covers the complete group of frames (i.e., � � '���S  � r���w� �

� � � � ), and the
scaling follows a logarithmic distribution, ¡¢�£k

�
with �5�¤S9�  A A �9���¥�mE�� ���w� �

� � ��
�� . It is noteworthy to
notice that in the temporal scale ¡¦�§k

�
, � refers to the number of frames that are filtered in the sequence.

For example, �y�pS means that only Y frame is considered, what happens in case of abrupt motion or scene
change. It can be noted also that the present implementation does not contain any rotation of the temporal
functions, this part is currently under study. Finally, the video dictionary is built on spatio-temporal
separable functions, which combine the spatial and temporal sub-dictionaries to yield three dimensional
atoms able to match the video signal structures.

C. MP3D encoder

Matching Pursuit
Decomposition

Video sequence GOP 16

Find the best atom
in dictionary

Split the selected 
atoms into N sets

In each set:
Sort the atoms spatially
Quantize coefficients

Arithmetic coding
(bitstream)

Fig. 1. Block diagram of the MP3D encoder

The complete MP3D encoder can be represented with the block diagram in Figure 1. The original video
sequence is first segmented in group of 16 frames (GOP), whose length has been chosen as a good trade-off
between encoding complexity, compression efficiency and decoding delay. The Matching Pursuit encoder
iteratively selects the 3-D atoms

� � �����
	¨�=��
 from the dictionary that best match the residual GOP signal,
in terms of the energy of the correlation coefficients, following (3). This iterative process continues until
a stopping criteria is reached. Figure 2 (a) shows how the PSNR of the coded video sequence (foreman
qcif) behaves in terms of iteration number � . Clearly, the rate of increase is very fast at the beginning, due
to the nature of MP. The coefficients �

�
�©6j.

�
�
� ���O; indeed decay exponentially with the iteration number� as shown in Figure 2 (b).
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Fig. 2. PSNR and atom coefficient evolution vs iteration number

A classical implementation of the Matching Pursuit search would result in a quite high heavy compu-
tation process, since the encoder needs to browse the dictionary and perform the inner product between
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each element and the residual signal for every MP iteration � . The current implementation of the MP3D
uses a reduced complexity scheme, based on a Fast Fourier Transform.

Coefficients and atoms are then encoded in order to provide a flexible bitstream, but still with a high
compression ratio. The embedded coding is achieved through the set-partitioned position map algorithm
(SPPM), which is derived from the bit plane encoding. The atoms are first split into ª sets according to
their energy, where each set contains N�« contiguous atoms, and then spatially sorted to form the index-
map. The first sets contain fewer elements than the other sets, but have larger global energies due to the
properties of the MP decomposition (see Figure 2 (b)). The number of sets and their size is determined by
the energy of the coefficients. The distribution of the coefficients in each set is found to be Laplacian, so
uniform quantization is applied since it has been shown to be close to optimal [16]. Finally, the index-map
of each set and its quantized coefficients are losslessly coded with an adaptive arithmetic coding scheme.

The decoding process is very simple. It simply consists in decoding the coefficients, and adding the
3-D atoms multiplied by the corresponding coefficients to reconstruct the video signal.

III. SCALABILITY PROPERTIES

Due to the multiresolution structure of the dictionary, MP3D streams are highly scalable in terms of
spatial or temporal (i.e., frame rate) resolution. The geometric properties of the dictionary ensures very
easy transcoding operations, such a single bitstream, can with no effort be decoded at any spatial resolution
(as long as the re-scaling is isotropic) and various frame rate. For example, a coded video signal ¬ of
size ­ ®°¯ with a frame rate ± can be spatially transcoded into a video signal ²¬ of spatial resolution³ ­ ® ³ ¯ at the same frame rate as follows :

²¬´� ������ � ��� ³ �
�
²
� ��� � (6)

where �
�

are the atom coefficients and ²
� �=� corresponds to the atom

� ��� after transcoding. Transcoding
simply modifies the atom index �3µ e �jµ�hJ�jµ 1 �}¡ e �U¡¶h<�}¡ 1 
 which becomes � ³ µ e � ³ µ�hJ�jµ 1 � ³ ¡ e � ³ ¡¶hM�U¡ 1 
 where ·µ
and ·¡ respectively represents the spatio-temporal position and scale of the atom

� ��� . Figure 3 illustrates
an example of the spatial transcoding of the Foreman sequence at 200 kbps, scaled with a factor

�T .In addition to spatio-temporal scalability, MP3D intrinsically provides SNR scalability thanks to the
properties of the Matching Pursuit algorithm. The energy of the coefficients is exponentially decreasing
along the iteration number. Therefore, simple truncation of the embedded bitstream produced by the
proposed encoder still ensures that the decoder receives most of the signal energy for the available
bandwidth.

(a) Original frame (b) Decoded frame.

(c) Scaled by 0.5

Fig. 3. The ¸ �º¹ frame in foreman decoded and transcoded
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IV. EXPERIMENTAL RESULTS

Performance of MP3D are now compared with state-of-the-art scalable video coding schemes, like
MPEG-4 (FGS) and SPIHT-3D. The rate-distortion characteristics are first compared to SPIHT-3D for
the video sequence foreman (qcif format), with GOP size Y¼» . As shown in Figure 4, the PSNR quality is
better for MP3D than for SPIHT-3D at low bit rates �½kmS`[¾kq�mS<� kbps. Note that both schemes offer nice
scalability properties, with MP3D being more flexible however. When compared against MPEG-4 with
spatial scalability, MP3D outperforms the multi-layer scheme by almost one dB at low bit rates. Finally,
Figure 5 proposes a comparison with the state-of-the-art MPEG-4 with FGS scalability having the base
layer coded at different bit rates (46, 60, 70) kbps for the same video sequence. When used with a base
layer at o¿» kbps for increased SNR scalability, MPEG-FGS loses up to k  » dB against MP3D at higher
bit rates kq�mS kbps. When the base layer is coded at »qS kbps, FGS is slightly better than MP3D at low
bit rates, but it loses a lot of flexibility in terms of scalability, since it obviously cannot serve bit rates
lower than the base layer. It also loses its quality advantage at higher bit rates. Finally, visual comparisons
also favors MP3D at low bit rates, since it provides less annoying artifacts than ringing in wavelet-based
coding, or blocking in DCT-based coding.
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V. CONCLUSIONS

This paper has presented a novel video coding scheme based on a Matching Pursuit algorithm. It has
been shown to provide a highly flexible scalable bitstream, as a response by an ever increasing demand
for adaptive coding structures. In the same time, it still favorably compares with state-of-the-art scalable
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coders in terms of rate-distortion characteristics at low bit rates. Even if the current implementation can
still be greatly improved, the MP3D structure thus represents a promising alternative for scalable video
coding and streaming applications.
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