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ABSTRACT
The pyramidal directional filter bank (PDFB) for the con-
tourlet transform is analyzed in this paper. First, the PDFB
is viewed as an overcomplete filter bank, and the directional
filters are expressed in terms of polyphase components of the
pyramidal filter bank and the conventional DFB. The alias-
ing effect of the conventional DFB and the Laplacian pyra-
mid to the equivalent directional filters is then considered,
and the conditions to reduce this effect are presented. Ex-
periments show that the designed PDFBs satisfying these re-
quirements have the equivalent filters with much better fre-
quency responses. The performance of the new PDFB is ver-
ified by non-linear approximation of images. It is found that
improvement of 0.2 to 0.5 dB in PSNR as compared to the
existing PDFB can be achieved.

1. INTRODUCTION

In the past two decades, wavelets and filter banks (FB) have
gained considerable interest in signal processing, partlydue
to the ability of wavelet functions and their associated reg-
ular FBs to optimally represent one-dimensional piecewise
smooth signals. However, the separable wavelets are not ef-
fective in capturing line discontinuities since they cannot take
advantage of the geometrical regularity of image structures.
Image transitions such as edges and textures are expensive to
represent through wavelets. Therefore, integrating the geo-
metric regularity in the image representation is a key chal-
lenge to improve the performances of current image coders.

Recently, Cand̀es and Donoho constructed the curvelet
transform [1], and proved that it is an essentially optimal rep-
resentation of two-variable functions, which are smooth ex-
cept at discontinuities alongC2 (twice differentiable) curve.
The nonlinear approximation of a functionf , f

(c)
M , recon-

structed byM curvelet coefficients has an asymptotic decay
rate of‖f − f

(c)
M ‖2 ≤ CM−2(log2 M)3. This decay rate of

the approximation error is a significant theoretical improve-
ment compared to those by wavelet or Fourier coefficients,
which areO(M−1) andO(M−1/2), respectively [2]. Since
the space of smooth functions with singularities alongC2

curves is similar to natural images with regions of continu-
ous intensity value and discontinuous along smooth curves
(edges), there is strong motivation for finding similar trans-
form in the discrete domain [3].

In [4], Do and Vetterli proposed the pyramidal direc-
tional filter bank (PDFB) to implement the contourlet trans-
form. The proposed structure of the PDFB is a combination
of the Laplacian pyramid [5] and the conventional DFB [6].
It unites the advantages of both structures, which are mul-
tiresolution and multidirection. The authors also show that
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the contourlet transform can achieve the asymptotic optimal
result as the curvelet transform. Essentially, these conditions
assume that the directional filters have good bandpass and
stopband characteristics in the Fourier domain.

Since the main motivation for the new image basis are
its effectiveness in representing natural image, there areal-
ready several attempts to employ the PDFB in image cod-
ing [7, 8, 9]. These works are based on the original imple-
mentation of the PDFB [4], which contains some aliasing in
the directional filters. Therefore, the achieved coding results
are not comparable to state-of-the-art wavelet based coders,
such as JPEG2000.

Paper outline. In Section 2, the PDFB is viewed as an
overcomplete FB, and the equivalent directional filters are
expressed in terms of the polyphase components of the filters
used in the PDFB structure. The aliasing problems existing
in the PDFB structure are analyzed in Section 3, where it is
shown that most of the aliasing can be removed if the two
lowpass filters employed in the pyramid satisfy the Nyquist
criteria. Discussion and simulations in Section 4 demonstrate
the improvement of the PDFB with new design conditions.
The paper is concluded in Section 5.

A note on notation. Bold face lower case letters are used
to represent vectors, and bold face upper case letters are
reserved for matrices. For exampleH(ω) is equivalent to
H(ω1, ω2). The superscriptsT and−T denote the transpose
and transpose of the inverse operators, respectively.N (Q) is
the set of integer vectors in the regionQt wheret ∈ [0, 1)2.
|Q| represents the determinant of the matrixQ. The matrix
exponentialzM is defined as

zM ∆

= [zm11

1 zm21

2 , zm12

1 zm22

2 ]T , (1)

whereM =

[

m11 m12

m21 m22

]

. On the unit circlezM is

equivalent toMT ω = [m11ω1+m21ω2,m12ω1+m22ω2]
T .

D2 is defined asdiag{2, 2} matrix. For other notations and
a review of multidimensional multirate operations, the reader
is referred to [10].

2. THE PYRAMIDAL DFB AS AN
OVERCOMPLETE FILTER BANK

The pyramidal DFB (contourlet transform) is created by
combining the Laplacian pyramid and the DFB with2n ori-
entational subbands [4]. It is shown in this section that the
combination of a Laplacian pyramid and a four-band DFB is
equivalent to an overcomplete five-band FB. Let us write the
two-dimensional lowpass filterG(z) in polyphase form:

G(z) = G(0)(zD2) + z−1
1 G(1)(zD2) + z−1

2 G(2)(zD2) +

+z−1
1 z−1

2 G(3)(zD2) = gT (zD2)e(z),
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where g(z) = [G(0)(z), G(1)(z), G(2)(z), G(3)(z)]T and
e(z) = [1, z−1

1 , z−1
2 , z−1

1 z−1
2 ]T . Similarly, f(z) represents

the column matrix of the polyphase components of the inter-
polation filterF (z), i.e.

F (z) = F (0)(zD2) + z1F
(1)(zD2) + z2F

(2)(zD2) +

+z1z2F
(3)(zD2) = fT (zD2)e(z−1).

Let us denote the detailed output of the Laplacian pyra-
mid asd(n) (see Fig. 1(a)) andI is the4×4 identity matrix.
If one considersd(n) as the output of a FB with inputx(n)
then it can be shown that the corresponding polyphase matrix
is I − f(z)gT (z).
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Figure 1: The four-band PDFB (a) The analysis side of the
PDFB, (b) Equivalent overcomplete FB and (c) The synthesis
FB.

In the PDFB depicted in Fig. 1(a), a four-band DFB is ap-
plied to the detailed signald(n). Let E(z) be the polyphase
matrix of the four orientational filters, i.e.

[H1(z),H2(z),H3(z),H4(z)]T = E(zD2)e(z). (2)

The inputx(n) goes through a Laplacian pyramid and a
four-band DFB to produce four subsampled outputsyi(n),
i = 1, 2, 3 and4. These four signals can be considered as the
outputs of the analysis side of a FB with inputx(n), and it
can be shown that the polyphase matrix of this overall FB is
Ẽ(z) = E(z)

(

I − f(z)gT (z)
)

.
Therefore, the PDFB in Fig. 1(a) is equivalent to the

structure in Fig. 1(b) with the same lowpass filterG(z) and
four directional filterH̃i(z) which are given as

[H̃1(z), H̃2(z), H̃3(z), H̃4(z)]T = Ẽ(zD2)e(z). (3)

Fig. 1(c) shows the corresponding synthesis four-band DFB.

3. ALIASING ON THE PDFB

In order for the PDFB to achieve its potential performance,
it is necessary that the equivalent directional filters haveex-
cellent frequency responses. In general, the implementation
of the PDFB consists of a separable Laplacian pyramid and
a binary-tree conventional DFB [6]. Thus, there are two
sources of aliasing that will be considered in this section:
those on the DFB tree, and those caused by the pyramid
structure.

3.1 Aliasing on the binary tree of the conventional DFB

The conventional DFB is often realized by a binary-tree of
maximally-decimated two-channel FBs [6]. Although this
method has a very efficient structure, it also implies some
inherent aliasing problems. It is possible to implement the
tree structure with only one prototype fan FB [11]. Let us
assume that one prototype fan filter isHF

0 (ω), then it can be
shown that one equivalent directional filter of an eight-band
DFB is

H̃0(ω1, ω2) = HF
0 (ω1, ω2)H

F
0 (ω1 + ω2, ω1 − ω2)

HF
0 (2(ω1 + ω2), 2ω1), (4)

where the frequency supports ofHF
0 (ω1, ω2), HF

0 (ω1 +
ω2, ω1 − ω2), HF

0 (2(ω1 + ω2), 2ω1) are plotted in Fig. 2(a).
Assume that these filters have reasonably good frequency
responses, i.e. flat in the passbands and stopbands (black
and white areas), and have transition regions in between
(gray areas). The resulting filter̃H0(ω1, ω2) will have a fre-
quency support as in Fig. 2(b), which has transition bands at
ω2 ≈ ±π.
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Figure 2: Aliasing effect on DFBs obtained by using the tree
structure: (a) the equivalent product filter of one subband
(obtained by using the noble identity), (b) the equivalent di-
rectional filterH̃0(ω1, ω2). Black, gray and white colors de-
note passband, transition band and stopband, respectively,
and (c) an example of equivalent PDFB filter at the second
resolution level.

This aliasing problem is more obvious in the directional
filters of the second resolution of the PDFB if the lowpass
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filter G(ω) does not satisfy the Nyquist criteria with respect
to decimation matrixD2, i.e. if its passband and transition
band are not restricted within[−π/2, π/2]2. The equivalent
directional filters of the PDFB in [4] at the second level of
the pyramid is plotted in Fig. 2(c) where the aliasing at high
frequency is displayed very clearly. However, if the filter
G(ω) is designed to satisfy the Nyquist sampling criteria,
the lowpass images beginning from the second level of the
Laplacian pyramid will have negligible aliasing. As a result,
the aliasing effect on the directional filters can be reduced.

3.2 Aliasing effect of the Laplacian pyramid

(a) (b)

Figure 3: Examples of equivalent directional filters in the
PDFB (a) The equivalent filter̃H1(ω1, ω2) of four-band
PDFB (b) A directional filter of eight-band PDFB. function
associated with filter̃H1.

In (3), the equivalent directional filters̃Hi(z) can be ex-
pressed in terms of the lowpass filtersG(z), F (z) and the
four highpass filtersHi(z). Let us consider a realization of
the PDFB implemented using the ‘9-7’ biorthogonal filters
as the lowpass filtersG(z) andF (z) as in [4]. The fan FBs
in the DFB tree structure are implemented using the ladder
structure (with filter lengths of 21 and 41) in [12]. The first
directional filter for the cases of four-band DFB is plotted
in Fig. 3(a). It is observed that the directional filters have
‘bumps’ in the stopband region. Similarly, an eight-band
DFB can be obtained by cascading one more step of two-
channal filter banks at the binary-tree of the DFB. Its first di-
rectional filter is presented in Fig. 3(b) showing more bumps
in the stopband. It will be shown later that this effect is due
to aliasing resulting from decimation and interpolation ofthe
Laplacian pyramid, and the heights of these peaks are inde-
pendent from the directional filters in the DFB.

Let FH1(z) = F (z)H1(z) be written in a polyphase
form as

FH1(z) = FH
(0)
1 (zD2) + z−1

1 FH
(1)
1 (zD2)

+z−1
2 FH

(2)
1 (zD2) + z−1

1 z−1
2 FH

(3)
1 (zD2).

By some manipulation, it can be shown that the block dia-
grams in Figs. 5(a) and (b) are equivalent whereFH

(0)
1 (z)

is the first polyphase component ofFH1(z). Consider the
signaly1(n) in Fig 1(a). The corresponding block diagram
can be redrawn as in Fig 4(a) where the subsystem in the
dotted rectangle is equivalent toFH

(0)
1 (z). Using the noble

identity, the top path in Fig 4(a) can be further simplified as
in as in Fig. 4(b).

Since the PDFB is implemented with FIR filters, all the
filters’ frequency responses have transition bands between
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Figure 4: The equivalent structure to the directional filter
H̃1(ω1, ω2) in the four-band PDFB in Fig. 1.
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Figure 5: Equivalent block diagrams.

the stopbands and passbands. Fig. 6(a) shows the passband
support ofFH1(z) where black, gray and white correspond
to passband, transition band and stopband, respectively. The
resulting filterFH

(0)
1 (zD2) in Fig 4(b) is obtained by down-

sampling followed by upsampling the filterFH1(z) by D2.
The corresponding frequency responseFH

(0)
1 (DT

2 ω) whose
supports are displayed in Fig 6(b) can be given by

FH
(0)
1 (DT

2 ω) =
1

|D2|

∑

k∈N (DT

2
)

FH1(ω − 2πD−T
2 k).

(5)
Therefore,

H̃1(ω) = H1(ω)− (6)
1

|D2|
G(ω)

∑

k∈N (DT

2
)

F (ω − 2πD−T
2 k)H1(ω − 2πD−T

2 k).

(a) (b)

Figure 6: The frequency support of (a)FH1(ω), and (b)
FH

(0)
1 (DT

2 ω).

Assuming that the lowpass filterG(ω) is approximately
zero in its stopband regions, two of the aliasing terms in the

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



H̃1(ω1, ω2) ≈ H1(ω1, ω2)

(

1 −
1

|D2|
G(ω1, ω2)F (ω1, ω2)

)

−
1

|D2|
G(ω1, ω2)F (ω1, ω2 − π)H1(ω1, ω2 − π). (7)

summation can be neglected, and the overall filterH̃1(ω) can
be approximated by (7). The second term in (7) produces the
peaks in stopband regions of̃H1(ω) (see Fig. 3). The posi-
tions of these peaks are in the passband of the modulated di-
rectional filterH1(ω1, ω2 − π), so the only way to eliminate
these ‘bumps’ is to reduce the overlapping transition bands
betweenG(ω1, ω2) andF (ω1, ω2−π). Since bothG(z) and
F (z) are lowpass, and if the Nyquist sampling condition is
satisfied, the above aliasing term will be cancelled. There-
fore, the two filters in the Laplacian pyramid should satisfy
the following conditions:

G(ω1, ω2) ≈ 0, and F (ω1, ω2) ≈ 0 (8)

when|ω1| > π/2 or |ω2| > π/2. This means that the cutoff
frequency ofG(z) andF (z) must be a little less thanπ/2 in
order to keep approximately zero response beyondπ/2. Let
us call the conventional PDFB (with cutoff frequency atπ/2)
aliasingPDFB, and the one satisfying the above constraints
non-aliasingPDFB.

4. EXPERIMENTS AND DISCUSSIONS

In order to demonstrate the aliasing effect from the direc-
tional filters in the PDFB, the impulse responses of the over-
all directional filters at different scales are plotted in Fig. 7.
In the aliasing case (Fig. 7(a)), the Laplacian filters are ob-
tained from the lowpass filters in the ‘9-7’ biorthogonal FB,
whereas in the non-aliasing case (Fig. 7(b)), the two low-
pass filtersG(z) andF (z) are defined in the frequency do-
main to have frequency responses approximately zero when
ωi > π/2 and the transition band fromπ/4 to π/2. The DFB
in both aliasing and non-aliasing PDFBs are realized by a bi-
nary tree of two-channel fan FBs, which are implemented by
a two-steps ladder structure [12]. Both of the two decompo-
sitions have 32, 16, 8 and 4 directional subbands at the first,
second, third and fourth resolutions, respectively. Examples
of the equivalent directional filters at the four resolutions of
the two PDFBs are illustrated in Fig. 7. It is evident that the
filters in Fig. 7(b) have much less aliasing and better direc-
tionalities than those in Fig. 7(a).

In practice, most of the unwanted aliasing components
considered in the previous section can be reduced if the two
lowpass filters in the pyramid have slightly smaller passband.
Figs. 8(a) and (b) show examples of the first directional fil-
ters of the four-band and eight-band PDFBs whoseF (z) and
G(z) are designed to have a transition band0.3π < |ωi| <
0.6π. Comparing to the frequency responses obtained in
Figs. 3(a) and (b), it is clear that those aliasing bumps have
been significantly suppressed.

The aliasing effect is also demonstrated in an experiment.
The coefficients obtained from the aliasing and non-aliasing
PDFBs are used to approximate theBarbara andLena im-
ages by thresholding a certain amount of smallest coeffi-
cients. The PSNRs of the reconstruction images obtained
by keeping different numbers of coefficients are summarized
in Table 1. It is evident that an improvement of 0.2 to 0.5 dB
is achieved from using the non-aliasing PDFB.

(a) (b)

Figure 8: Examples of directional filters in the PDFB (a)
H̃1(ω1, ω2) of a four-band PDFB and (b) a directional filter
of an eight-band PDFB.

Table 1: The nonlinear approximation of the aliasing and
non-aliasing PDFBs inBarbaraandLenaimages in term of
PSNR.

Barbara Lena
#coeffs Aliasing Non-aliasing Aliasing Non-aliasing

1024 21.64 21.71 24.69 24.93
2048 23.18 23.41 27.19 27.27
4096 25.07 25.47 29.65 29.79
8192 27.30 27.92 32.19 32.39

16384 29.80 30.69 34.73 34.92

Although the equivalent directional filters of the PDFB
(or contourlet basis) are efficient in representing image con-
tours, it performance tends to be lower than that of the tra-
ditional discrete wavelet transform (DWT) when the image
sizes get smaller. In our non-linear approximation exper-
iment with typical testing images (Lena and Barbara), the
best results are achieved when the PDFB is used at the high-
est resolution, and the DWT is used when the image sizes are
less than or equal to256 × 256. An image coder based on
reduced-aliasing PDFB and DWT decomposition is reported
in [13]. Experimental results show that the proposed coding
algorithm outperforms the current state-of-the-art wavelet
based coders, such as JPEG2000, for images with directional
features.

(a) (b)

Figure 9: Reconstructed Barbara images at 0.15 bpp using
(a) JPEG2000, PSNR = 25.93 dB and (b) PDFB, PSNR =
26.74 dB [13].
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Figure 7: (a) The essential frequency supports of directional filters in the PDFB at different scales: level 1 - 32 bands, level 2 -
16 bands, level 3 - 8 bands, level 4 - 4 bands. The corresponding impulse responses in case of (b) aliasing Laplacian pyramid
filters and (c) non-aliasing Laplacian pyramid filters.

5. CONCLUSION

The paper discusses the PDFB for the contourlet transform
as an overcomplete FB and shows that the equivalent direc-
tional filters of the PDFB suffer from the aliasing effects due
to its multiresolution structure. By imposing the conditions
that the two lowpass filters of the Laplacian pyramid should
have frequency supports restricted within[−π/2, π/2]2, the
aliasing in the stopbands is reduced, except for those in the
finest resolution. The findings in this paper can help improve
the performance of the PDFB in image processing applica-
tions, such as low-bitrate coding and image denoising.
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