190 research outputs found

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.info:eu-repo/semantics/acceptedVersio

    Algorithms, Hardware Systems, and Virtual Environments for Perception-Guided Robotic Weed Management

    Get PDF
    Weed competition is one of the most limiting factors affecting yield and profitability in crop production. In addition to the shortage and cost of labor for weed management, the widespread occurrence of herbicide-resistant weeds due to the heavy reliance on herbicides is threatening agricultural sustainability and global food security. The introduction of robot-based automation for weed management has great potential to effectively address weed issues and reduce the drudgery of manual labor. The progress with robotic weed control requires improvements in the robots’ perception to understand complex agricultural environments and weed control actuators. Vision-based robot perception, a process of identifying and interpreting visual information in order to represent and understand the environment, is one of the most promising routes toward robotic weed management. This dissertation aims to develop algorithms and systems for perception-guided robotic weed management, where effective weed detection is essential. Despite the promise of robotic weed management, several technological advances must be made in the areas of plant detection and weeding actuation before robots are fully capable of autonomous weeding. In this regard, this dissertation has four specific objectives towards achieving precision weed management. The first objective is to study the influence of image quality and light consistency on the performance of convolutional neural networks (CNNs) for weed detection. State-of-the-art CNNs rely on a vast number of training images, which are time-consuming and expensive to collect and annotate. The second objective is to develop an image synthesis and semi-supervised learning pipeline to reduce the need for annotated training images for weed detection. Virtual environments are powerful tools and have been widely used for developing robotic systems. However, virtual environments for agriculture are lacking. The third objective is to develop a photometric-based framework to facilitate the synthesis of 3D agricultural vegetation scenes that are both geometrically and optically detailed. In the fourth objective, algorithms and hardware systems have been developed for vision-guided automatic micro-volume herbicide spray using linearly actuated nozzles on a mobile robot platform. The system precisely applies a micro-volume of herbicide liquid on every single weed plant. Compared to the traditional application approach where herbicides are broadcasted, the system greatly reduces herbicide usage

    Vision-based Learning for Drones: A Survey

    Full text link
    Drones as advanced cyber-physical systems are undergoing a transformative shift with the advent of vision-based learning, a field that is rapidly gaining prominence due to its profound impact on drone autonomy and functionality. Different from existing task-specific surveys, this review offers a comprehensive overview of vision-based learning in drones, emphasizing its pivotal role in enhancing their operational capabilities under various scenarios. We start by elucidating the fundamental principles of vision-based learning, highlighting how it significantly improves drones' visual perception and decision-making processes. We then categorize vision-based control methods into indirect, semi-direct, and end-to-end approaches from the perception-control perspective. We further explore various applications of vision-based drones with learning capabilities, ranging from single-agent systems to more complex multi-agent and heterogeneous system scenarios, and underscore the challenges and innovations characterizing each area. Finally, we explore open questions and potential solutions, paving the way for ongoing research and development in this dynamic and rapidly evolving field. With growing large language models (LLMs) and embodied intelligence, vision-based learning for drones provides a promising but challenging road towards artificial general intelligence (AGI) in 3D physical world

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible

    Disruptive Technologies in Agricultural Operations: A Systematic Review of AI-driven AgriTech Research

    Get PDF
    YesThe evolving field of disruptive technologies has recently gained significant interest in various industries, including agriculture. The fourth industrial revolution has reshaped the context of Agricultural Technology (AgriTech) with applications of Artificial Intelligence (AI) and a strong focus on data-driven analytical techniques. Motivated by the advances in AgriTech for agrarian operations, the study presents a state-of-the-art review of the research advances which are, evolving in a fast pace over the last decades (due to the disruptive potential of the technological context). Following a systematic literature approach, we develop a categorisation of the various types of AgriTech, as well as the associated AI-driven techniques which form the continuously shifting definition of AgriTech. The contribution primarily draws on the conceptualisation and awareness about AI-driven AgriTech context relevant to the agricultural operations for smart, efficient, and sustainable farming. The study provides a single normative reference for the definition, context and future directions of the field for further research towards the operational context of AgriTech. Our findings indicate that AgriTech research and the disruptive potential of AI in the agricultural sector are still in infancy in Operations Research. Through the systematic review, we also intend to inform a wide range of agricultural stakeholders (farmers, agripreneurs, scholars and practitioners) and to provide research agenda for a growing field with multiple potentialities for the future of the agricultural operations

    Design og styring av smarte robotsystemer for applikasjoner innen biovitenskap: biologisk prøvetaking og jordbærhøsting

    Get PDF
    This thesis aims to contribute knowledge to support fully automation in life-science applications, which includes design, development, control and integration of robotic systems for sample preparation and strawberry harvesting, and is divided into two parts. Part I shows the development of robotic systems for the preparation of fungal samples for Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully automated robot for homogenization of fungal samples using ultrasonication. The platform was constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and blank wells. Machine vision was also used to quantify the fungi homogenization process using model fitting, suggesting that homogeneity level to ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback control strategy was proposed that used the standard deviation of local homogeneity values to determine the ultrasonication termination time. The second step extended the first step to develop a fully automated robot for the whole process preparation of fungal samples for FTIR spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample washing, concentration and spotting. The new system used machine vision with deep learning to identify the labware settings, which frees the users from inputting the labware information manually. Part II of the thesis deals with robotic strawberry harvesting. This part can be further divided into three stages. i) The first stage designed a novel cable-driven gripper with sensing capabilities, which has high tolerance to positional errors and can reduce picking time with a storage container. The gripper uses fingers to form a closed space that can open to capture a fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper is able to control a robotic arm to correct for positional errors introduced by the vision system, improving the robustness. The gripper and a detection method based on color thresholding were integrated into a complete system for strawberry harvesting. ii) The second stage introduced the improvements and updates to the first stage where the main focus was to address the challenges in unstructured environment by introducing a light-adaptive color thresholding method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the new fully integrated strawberry-harvesting system with dual-manipulator was capable of picking strawberries continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-separation path-planning algorithm, which is fundamentally different from traditional path planning where obstacles are typically avoided. The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) The third stage improved the obstacle-separation method by introducing a zig-zag push for both horizontal and upward directions and a novel dragging operation to separate upper obstacles from the target. The zig-zag push can help the gripper capture a target since the generated shaking motion can break the static contact force between the target and obstacles. The dragging operation is able to address the issue of mis-capturing obstacles located above the target, in which the gripper drags the target to a place with fewer obstacles and then pushes back to move the obstacles aside for further detachment. The separation paths are determined by the number and distribution of obstacles based on the downsampled point cloud in the region of interest.Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som gjør at brukerne slipper å registrere innstillingene manuelt.Norwegian University of Life SciencespublishedVersio

    Spatial combination of sensor data deriving from mobile platforms for precision farming applications

    Get PDF
    This thesis combines optical sensors on a ground and on an aerial platform for field measurements in wheat, to identify nitrogen (N) levels, estimating biomass (BM) and predicting yield. The Multiplex Research (MP) fluorescence sensor was used for the first time in wheat. The individual objectives were: (i) Evaluation of different available sensors and sensor platforms used in Precision Farming (PF) to quantify the crop nutrition status, (ii) Acquisition of ground and aerial sensor data with two ground spectrometers, an aerial spectrometer and a ground fluorescence sensor, (iii) Development of effective post-processing methods for correction of the sensor data, (iv) Analysis and evaluation of the sensors with regard to the mapping of biomass, yield and nitrogen content in the plant, and (v) Yield simulation as a function of different sensor signals. This thesis contains three papers, published in international peer-reviewed journals. The first publication is a literature review on sensor platforms used in agricultural research. A subdivision of sensors and their applications was done, based on a detailed categorization model. It evaluates strengths and weaknesses, and discusses research results gathered with aerial and ground platforms with different sensors. Also, autonomous robots and swarm technologies suitable for PF tasks were reviewed. The second publication focuses on spectral and fluorescence sensors for BM, yield and N detection. The ground sensors were mounted on the Hohenheim research sensor platform Sensicle. A further spectrometer was installed in a fixed-wing Unmanned Aerial Vehicle (UAV). In this study, the sensors of the Sensicle and the UAV were used to determine plant characteristics and yield of three-year field trials at the research station Ihinger Hof, Renningen (Germany), an institution of the University of Hohenheim, Stuttgart (Germany). Winter wheat (Triticum aestivum L.) was sown on three research fields, with different N levels applied to each field. The measurements in the field were geo-referenced and logged with an absolute GPS accuracy of ±2.5 cm. The GPS data of the UAV was corrected based on the pitch and roll position of the UAV at each measurement. In the first step of the data analysis, raw data obtained from the sensors was post-processed and was converted into indices and ratios relating to plant characteristics. The converted ground sensor data were analysed, and the results of the correlations were interpreted related to the dependent variables (DV) BM weight, wheat yield and available N. The results showed significant positive correlations between the DVs and the Sensicle sensor data. For the third paper, the UAV sensor data was included into the evaluations. The UAV data analysis revealed low significant results for only one field in the year 2011. A multirotor UAV was considered as a more viable aerial platform, that allows for more precision and higher payload. Thereby, the ground sensors showed their strength at a close measuring distance to the plant and a smaller measurement footprint. The results of the two ground spectrometers showed significant positive correlations between yield and the indices from CropSpec, NDVI (Normalised Difference Vegetation Index) and REIP (Red-Edge Inflection Point). Also, FERARI and SFR (Simple Fluorescence Ratio) of the MP fluorescence sensor were chosen for the yield prediction model analysis. With the available N, CropSpec and REIP correlated significantly. The BM weight correlated with REIP even at a very early growing stage (Z 31), and with SAVI (Soil-Adjusted Vegetation Index) at ripening stage (Z 85). REIP, FERARI and SFR showed high correlations to the available N, especially in June and July. The ratios and signals of the MP sensor were highly significant compared to the BM weight above Z 85. Both ground spectrometers are suitable for data comparison and data combination with the active MP fluorescence sensor. Through a combination of fluorescence ratios and spectrometer indices, linear models for the prediction of wheat yield were generated, correlating significantly over the course of the vegetative period for research field Lammwirt (LW) in 2012. The best model for field LW in 2012 was selected for cross-validation with the measurements of the fields Inneres Täle (IT) and Riech (RI) in 2011 and 2012. However, it was not significant. By exchanging only one spectral index with a fluorescence ratio in a similar linear model, it showed significant correlations. This work successfully proves the combination of different sensor ratios and indices for the detection of plant characteristics, offering better and more robust predictions and quantifications of field parameters without employing destructive methods. The MP sensor proved to be universally applicable, showing significant correlations to the investigated characteristics such as BM weight, wheat yield and available N.Diese Arbeit kombiniert optische Sensoren auf einer Sensorplattform (SPF) am Boden und in der Luft bei Messungen in Weizen, um die Stickstoff-(N)-Werte zu identifizieren, während gleichzeitig die Biomasse (BM) geschätzt und der Ertrag vorhergesagt wird. Erstmals wurde hierfür der Fluoreszenzsensor Multiplex Research (MP) in Weizen eingesetzt. Die Ziele dieser Dissertation umfassen: (i) Bewertung verfügbarer Sensoren und SPF, die in der Präzisionslandwirtschaft zur Quantifizierung des Ernährungszustandes von Nutzpflanzen verwendet werden, (ii) Erfassung von Daten mit zwei Spektrometern am Boden, einem Spektrometer auf einem Modellflugzeug (UAV) und einem Fluoreszenzsensor am Boden, (iii) Erstellung effektiver Nachbearbeitungsmethoden für die Datenkorrektur, (iv) Analyse und Evaluation der Sensoren für die Abbildung der BM, des Ertrags und des N-Gehaltes in der Pflanze, und (v) Ertragssimulation als Funktion von Merkmalen unterschiedlicher Sensorsignale. Diese Arbeit enthält drei Artikel, die in international begutachteten Fachzeitschriften publiziert wurden. Die erste Veröffentlichung ist eine Literaturrecherche über SPF in der Agrarforschung. Ein detailliertes Kategorisierungsmodell wird für eine allgemeine Unterteilung der Sensoren und deren Anwendungsgebiete herangenommen, die Stärken und Schwächen bewertet, und die Forschungsergebnisse von Luft- und Bodenplattformen mit unterschiedlicher Sensorik diskutiert. Außerdem werden autonome Roboter und für landwirtschaftliche Aufgaben geeignete Schwarmtechnologien beschrieben. Die zweite Publikation fokussiert sich auf Spektral- und Fluoreszenzsensoren für die Erfassung von BM, Ertrag und N. In der Arbeit wurden die Bodensensoren auf der Hohenheimer Forschungs-SPF Sensicle und der Sensor auf dem UAV in dreijährigen Feldversuchen auf der Versuchsstation Ihinger Hof der Universität Hohenheim in Renningen für die Bestimmung von Pflanzenmerkmalen und des Ertrags eingesetzt. Auf drei Versuchsfeldern wurde Winterweizen ausgesät, und in einem randomisierten Versuchsdesign unterschiedliche N-Düngestufen angelegt. Die Sensormessungen im Feld wurden mit einer absoluten GPS Genauigkeit von ±2,5 cm verortet. Die GPS Daten des UAVs wurden mittels der Nick- und Rollposition lagekorrigiert. Im ersten Schritt der Datenanalyse wurden die Sensorrohdaten nachbearbeitet und in Indizes und Ratios umgerechnet. Die Bodensensordaten wurden analysiert, und die Ergebnisse der Korrelationen in Bezug zu den abhängigen Variablen (DV) BM-Gewicht, Weizenertrag, verfügbarer sowie aufgenommener N dargestellt. Die Ergebnisse zeigen signifikant positive Korrelationen zwischen den DVs und den Sensicle-Sensordaten. Für die dritte Publikation wurden die Sensordaten des UAV in die Auswertungen miteinbezogen. Die Analyse der UAV Daten zeigte niedrige signifikante Ergebnisse für nur ein Feld im Versuchsjahr 2011. Ein Multikopter wird als zuverlässigere Luftplattform erachtet, der mehr Präzision und eine höhere Nutzlast ermöglicht. Die Sensoren auf dem Sensicle zeigten ihren Vorteil bedingt durch einen kürzeren Messabstand zur Pflanze und eine kleinere Messfläche. Die Ergebnisse der beiden Sensicle-Spektrometer zeigten signifikant positive Korrelationen zwischen dem Ertrag und den Indizes von CropSpec, NDVI (Normalised Difference Vegetation Index) und REIP (Red-Edge Inflection Point). Auch FERARI und SFR (Simple Fluorescence Ratio) des MP-Sensors wurden für die Analyse des Ertragsvorhersagemodells ausgewählt. Mit dem verfügbaren N korrelierten CropSpec und REIP hochsignifikant. Das BM-Gewicht korrelierte bereits ab einem sehr frühen Wachstumsstadium (Z31) mit REIP und im Reifestadium (Z85) mit SAVI (Soil-Adjusted Vegetation Index). REIP, FERARI und SFR zeigten hohe Korrelationen mit dem verfügbaren N, insbesondere im Juni und Juli. Die Ratios und Signale des MP Sensors sind vor allem ab Z85 gegenüber dem BM-Gewicht hochsignifikant. Durch eine Kombination von Fluoreszenzwerten und Spektrometerindizes wurden lineare Modelle zur Vorhersage des Weizenertrags erstellt, die im Verlauf der Vegetationsperiode für das Versuchsfeld Lammwirt (LW) im Jahr 2012 signifikant korrelierten. Das beste Modell für das Feld LW im Jahr 2012 wurde für die Kreuzvalidierung mit den Messungen der Versuchsfelder Inneres Täle (IT) und Riech (RI) in den Jahren 2011 und 2012 ausgewählt. Sie waren nicht signifikant, jedoch zeigten sich durch den Austausch nur eines Spektralindexes mit einem Fluoreszenzratio in einem ähnlichen linearen Modell signifikante Korrelationen. Die vorliegende Arbeit zeigt erfolgreich, dass sich die Kombination verschiedener Sensorwerte und Sensorindizes zur Erkennung von Pflanzenmerkmalen gut eignet, und ohne den Einsatz destruktiver Methoden die Möglichkeit für bessere und robustere Vorhersagen bietet. Vor allem der MP-Fluoreszenzsensor erwies sich als universell einsetzbarer Sensor, der signifikante Korrelationen zu den untersuchten Merkmalen BM-Gewicht, Weizenertrag und verfügbarem N aufzeigte
    corecore