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Disruptive	 Technologies	 in	 Agricultural	 Operations:	 A	

Systematic	Review	of	AI-driven	AgriTech	Research	

Abstract		

The	 evolving	 field	 of	 disruptive	 technologies	 has	 recently	 gained	 significant	 interest	 in	

various	 industries,	 including	agriculture.	 The	 fourth	 industrial	 revolution	has	 reshaped	 the	

context	of	Agricultural	Technology	(AgriTech)	with	applications	of	Artificial	 Intelligence	(AI)	

and	 a	 strong	 focus	 on	 data-driven	 analytical	 techniques.	 Motivated	 by	 the	 advances	 in	

AgriTech	 for	 agrarian	 operations,	 the	 study	 presents	 a	 state-of-the-art	 review	 of	 the	

research	 advances	 which	 are,	 evolving	 in	 a	 fast	 pace	 over	 the	 last	 decades	 (due	 to	 the	

disruptive	 potential	 of	 the	 technological	 context).	 Following	 a	 systematic	 literature	

approach,	 we	 develop	 a	 categorisation	 of	 the	 various	 types	 of	 AgriTech,	 as	 well	 as	 the	

associated	AI-driven	techniques	which	form	the	continuously	shifting	definition	of	AgriTech.	

The	contribution	primarily	draws	on	 the	conceptualisation	and	awareness	about	AI-driven	

AgriTech	context	relevant	to	the	agricultural	operations	for	smart,	efficient,	and	sustainable	

farming.	 The	 study	 provides	 a	 single	 normative	 reference	 for	 the	 definition,	 context	 and	

future	 directions	 of	 the	 field	 for	 further	 research	 towards	 the	 operational	 context	 of	

AgriTech.	Our	findings	 indicate	that	AgriTech	research	and	the	disruptive	potential	of	AI	 in	

the	 agricultural	 sector	 are	 still	 in	 infancy	 in	Operations	 Research.	 Through	 the	 systematic	

review,	 we	 also	 intend	 to	 inform	 a	 wide	 range	 of	 agricultural	 stakeholders	 (farmers,	

agripreneurs,	scholars	and	practitioners)	and	to	provide	research	agenda	for	a	growing	field	

with	multiple	potentialities	for	the	future	of	the	agricultural	operations.		

Keywords:	 Disruptive	 Technologies;	 Agricultural	 Operations;	 Agricultural	 Technology	

(AgriTech);	Artificial	Intelligence	(AI);	Systematic	Literature	Review	

	 	



1 Introduction		

The	last	decade	has	gone	through	a	data-driven	evolution	in	multiple	sectors	and	fields.	The	

fourth	industrial	revolution	(Industry	4.0)	is	vast	and	spans	from	the	rise	of	social	media	to	

smart	devices	resulting	in	the	development	of	ground-breaking	innovative	digital	operating	

models,	leading	to	radical	changes	to	the	lifestyle	and	the	daily	lives	of	individuals	(George	

et	al.	2014;	Knippenberg	et	al.	2015;	Mikalef	and	Pateli	2017).	The	data-driven	evolution	and	

emergent	technologies	can	generate	different	kinds	of	value;	value	in	terms	of	business	and	

societal	goals	(Günther	et	al.2017;	Mikalef	et	al.	2020),	but	also	can	lead	to	the	creation	of	

sustainable	 societies	 (Pappas	 et	 al.	 2018).	 In	 the	 agricultural	 field,	 unlike	 most	 of	 the	

technological	disruptions,	the	transition	from	conventional	operating	models	of	farming	to	

modern	but	also	to	smart	data-driven	ones	come	out	of	necessity	to	feed	the	ever-growing	

population	coupled	with	environmental	triggers	(Yahya	2018).	As	highlighted	in	the	United	

Nations	Sustainable	Development	Goals	(UN	SDGs),	 food	security	 is	a	key	goal	that	should	

bring	 to	 the	 table	 serious	 intent	 and	 innovative	 solutions	 as	 it	 is	 highlighted	 through	

subsequent		UN	reports	(2017a,	2017b,	2017c),	and	recent	studies		(Sharif	and	Irani	2017).	

The	current	farming	methods	and	models	of	conventional	agricultural	processes,	where	the	

focus	 was	 on	 mass	 production	 of	 food,	 led	 to	 an	 unsustainable	 solution	 both	 for	 the	

environment	 and	 for	 the	 individuals	 and	 societies	 on	 a	 long-term	 basis	 (Tripicchio	 et	 al.	

2015). While	 farming	 more	 land	 will	 not	 be	 a	 viable	 solution	 anymore,	 alternative	 ways	

should	be	followed	in	order	to	increase	the	yield	and	crops	(Wolfert	et	al.	2017).	Therefore,	

the	 arising	 requirements	 for	 a	 redesign	 of	 the	 farming	 production	 call	 for	 innovative	

sustainability-oriented	 smart	 solutions	 applied	 in	 the	 farming	 fields	 (Fountas	 et	 al.	 2015;	

Lampridi	et	al.	2019).	Within	this	context,	disruptive	technologies	have	a	critical	role	to	play,	

through	 the	 development	 of	 breakthrough	 ideas	 for	 precise	 agricultural	 processes,	 data	

analytics	and	AI	techniques	(Miranda	et	al.	2019).	Feeding	the	future	population	relies	highly	

on	 a	 sustainable	 agricultural	 system;	 therefore	 an	 optimal	 solution	 for	 the	 sustainability	

could	 be	 viewed	 through	 the	 applications	 of	 smart	 and	 precision	 techniques	 in	 agrarian	

operations	(for	the	problems	associated	with	the	arable	land	and	environmental	efficiency).		



The	 flourishing	 field	 of	 Agricultural	 Technology	 (AgriTech)	 and	 the	 interest	 in	 relevant	

investments	come	as	no	surprise,	as	well	as	a	growing	enthusiasm	 from	practitioners	and	

researchers	 from	 various	 fields,	 with	 regards	 to	 the	 AI	 application	 of	 AgriTech	 in	 the	

associated	operations	and	practices	(Boshkoska	et	al.	2019;	Carayannis	et	al.	2018;	Lezoche	

et	al.	2020).	The	field	of	Agriculture	has	immerse	potential	to	benefit	from	the	technological	

disruption	(Kaloxylos	et	al.	2012;	Nukala	et	al.	2016;	Wolfert	et	al.	2017),	through	the	use	of	

technologies	as	 the	 Internet	of	Things	 (IoT),	 sensors,	 smart	devices,	Big	Data	Analytics,	 as	

well	as	Machine	Learning	(ML)	and	a	vast	range	of	techniques	of	Artificial	Intelligence	(AI).	

Recent	 studies	 like	 those	 of	 Boshoska	 et	 al	 (2019)	 present	 decision	 support	 systems	 for	

knowledge	dissemination	across	agri-food	value	chains	and	also	Lezoche	et	al	(2020)	with	an	

initial	scoping	survey	around	the	term	of	Agriculture	4.0,	identify	the	lack	of	research	from	

an	operational	perspective	and	open	the	way	forward	for	more	studies	around	data-driven	

technological	advances	in	the	fields	of	agricultural	operations.	There	is	still	a	wide	scope	in	

the	 operations	 field	 to	 explore	 the	 processes,	 practices	 and	 the	 overall	 disruption	 of	 the	

agricultural	sector	due	to	the	AI	applications	of	AgriTech.	The	review	of	the	extant	literature	

will	define	the	term	of	AgriTech,	explore	the	context,	develop	a	research	agenda,	and	act	as	

a	normative	reference	for	future	research.	

Initially,	 in	this	study,	 the	focus	 is	on	exploring	the	AgriTech	evolution	throughout	the	 last	

decade,	 in	order	to	provide	a	definition	of	the	term	“AgriTech”	associated	with	the	recent	

advances	of	the	field	and	linked	to	AI-driven	applications.	Secondly,	through	a	synthesis	of	

205	 studies,	 the	 review	 identifies	 the	 various	 types	 and	 techniques	 applied	 in	 the	

agricultural	operations	relevant	to	the	context	of	“technology	for	the	farming	operations”.	

Following	 this	 direction,	 through	 the	 pool	 of	 studies	 identified	 and	 analysed	 for	 the	

systematic	 review,	 the	 paper	 iteratively	 distinguishes	 the	 Artificial	 Intelligence	 (AI)	

techniques	for	the	farm	management	cycle	and	subsequent	implications	for	the	Agricultural	

Operations.	Finally,	the	study	provides	a	review	of	the	implications	of	AI-driven	AgriTech	in	

Agricultural	Operations,	potential	 applications	 for	 the	Agricultural	 Sector	and	 the	multiple	

opportunities	and	challenges	for	research	and	practice.		

2 The	Evolution	of	Agricultural	Technology	(AgriTech)		



The	introduction	of	technology	in	the	agricultural	processes	originates	back	to	the	centuries	

since	the	Agricultural	Age	(ancient	years	-	appx	9000	BC),	and	dates	to	the	Information	Age	

and	 the	 “Big	 Data”	 Evolution	 which	 recently	 expands	 to	 various	 sectors.	 The	 need	 for	

technology	 in	 the	 farming	 field	 stems	 from	 the	 strong	 motivation	 to	 feed	 the	 world	

population;	 which	 evolved	 the	 agricultural	 area	 through	 the	 years	 to	 facilitate	 modern	

practices	and	processes	to	meet	the	ever-growing	needs	(Corallo	et	al.	2018).	Applications	

of	 technology	 in	 farming	 are	 attempting	 to	 enhance	 the	 agrarian	 operations	 through	

sophisticated	information	and	communication	developments	(Tsolakis,	Bechtsis,	and	Bochtis	

2019;	 Tsolakis,	 Bechtsis,	 and	 Srai	 2019).	 Aspects	 of	 the	 agricultural	 industry	 such	 as	 crop	

cultivation	management	and	control,	quality	management,	transport	of	food	products	and	

food	 preservation	 may	 all	 be	 enhanced	 by	 taking	 into	 account	 their	 domain-specific	

requirements	and	translating	them	into	the	respective	functional	design,	development	and	

applications	by	ICT	experts	(Barmpounakis	et	al.	2015;	Miranda	et	al.	2019).	

Table	1.	 The	progression	from	conventional	farming	to	smart	farming	

Agricultural	 Technology	 (AgriTech)	 is	 not	 defined	 always	 in	 the	 same	 way;	 the	 current	

definition	 is	 strongly	 associated	 with	 AI	 applications	 and	 refers	 to	 the	 progression	 from	

	 Period	 Characteristics	 Scope	 Advances	of	Technology	

Agricultural	
Evolution	

Pre-industrial	
Agriculture	

(ancient	years	to	
appx.	1920)	

Labour	intensity	

Essential	
subsistence	

farming	(small	
farms)	

Manual	processes,	
conventional	farming	

tools	

	

Industrial	
Evolution	

Industrial	and	
Massive	

Agriculture	
(1920	to	appx.	

2010)	

Industrialisation	
Large	

commercial	
farms	

Tractors,	harvesters,	
chemical	fertilisers	and	

seeds	

	

Information	
and	Data	
Evolution	

Smart	and	
Precision	
Agriculture	

(2010	onwards)	

Data	intensity	
Smart	farms	
(larger	or	
smaller)	

Exploiting	through	AI	
multi-source	data,	
sensors	on	farm	

equipment	and	plants,	
satellite	images	and	
weather	tracking	

monitoring	of	water	and	
fertiliser	use	(precision	

farming)	
	



farming	to	smart	farming,	which	flourished	in	three	periods	(Miranda	et	al.	2019;	Wolfert	et	

al.	 2017).	 Initially,	 the	 Agricultural	 Evolution	 which	 has	 started	 from	 ancient	 years	 to	

approximately	1920s	and	infers	mostly	to	the	pre-industrial	agriculture.	Characteristics	and	

advancements	of	this	period	include	the	labour	intensity	and	essential	subsistence	farming	

in	the	form	of	small-scale	farms	(the	agricultural	activities	as	a	focus	on	feeding	the	farmer’s	

family).	 As	 technology	 evolved	 rapidly	 during	 the	 Industrial	 Evolution,	 the	 model	 of	

industrial	 and	massive	 agriculture	 started	 to	 arise,	 following	 a	 high	 industrialised	pattern.	

The	robust	industrialisation	of	agriculture	was	transformed	with	technological	advances	like	

tractors,	harvesters,	chemical	 fertilisers	and	seeds,	and	developed	the	model	of	 the	 large-

scale	 commercial	 farms.	 However,	 the	 industrial	 model	 of	 farming	 was	 proven	

unsustainable	 (Darnhofer	 et	 al.	 2009;	Miranda	et	 al.	 2019;	Rigby	et	 al.	 2001;	Wezel	 et	 al.	

2009,	 2014).	 Recently,	 new	 practices	were	 introduced	 based	 on	 data-intensive	 disruptive	

ways	for	solving	agricultural	problems	(Miranda	et	al.	2019;	Wolfert	et	al.	2017)	introducing	

an	unpreceded	AI-driven	approach	for	Agricultural	Technology	(AgriTech).	Table	1	illustrates	

the	progression	stages	from	conventional	farming	to	modern	and	smart	farming.	

The	 Information	and	Data	Evolution,	as	well	 as	Artificial	 Intelligence	 (AI)	 techniques,	have	

entered	 the	 smart	 and	precision	agriculture,	which	 is	 characterised	by	 the	exploitation	of	

disruptive	 technologies	 (e.g.	 multi-source	 data,	 sensors	 on	 farm	 equipment	 and	 plants,	

satellite	 images	and	weather	tracking,	monitoring	of	water	and	fertiliser	use)	 for	precision	

farming.	 The	model	 of	 data-intensive	 agriculture	 is	 applied	 in	 both	 large-scale	 and	 small-

scale	farms	and	transforms	the	way	they	operate	while	providing	multiple	forms	of	value	for	

the	farmer,	consumer,	as	well	as	the	society	(Miranda	et	al.	2019).		

The	rapid	evolution	of	AgriTech	motivates	the	study	herein,	as	the	technology	was	always	a	

part	of	the	agricultural	practices,	even	in	pre-industrial	farming	operations.	However,	the	AI	

applications	of	disruptive	technologies	in	the	agrarian	fields	and	the	modern	smart	farming	

operating	 models,	 present	 an	 AI-driven	 approach	 of	 AgriTech	 that	 should	 be	 further	

discussed.	The	study	initially	has	a	view	to	developing	a	categorisation	of	the	various	types	

and	techniques	which	define	the	term	“AgriTech”	within	the	studies	of	the	last	decade	and	

explore	a	future	research	agenda	for	consideration.	Numerous	studies	disparately	describe	

AgriTech,	mainly	from	a	solution-driven	perspective	(more	than	200	as	 identified	from	the	

systematic	review).	However,	there	are	only	a	few	of	recent	AgriTech	studies	to	provide	a	



clear	link	of	AI-applications	with	a	business	and	operations	focus.	So	far,	AgriTech	research	

refers	solely	on	the	technical	aspects	and	not	the	operational	background	surrounding	the	

applications	 as	 a	 single	 source	 of	 normative	 text	 that	 culminates	 historical	 works	 and,	

outlines	 foresight	 research.	 Therefore,	 a	 systematic	 review	 and	 synthesis	 of	 the	 extant	

literature	will	act	as	a	single	reference	source	to	motivate	new	insights	of	AI-driven	AgriTech	

research	and	applications	from	an	operations	perspective.		

3 Research	Methodology	

The	 study	 follows	 a	 systematic	 review	 research	 design	 to	 synthesise	 and	 present	 a	

comprehensive,	structured	analysis	of	the	normative	literature	in	the	scope	of	“Technology	

for	Agricultural	Operations”.	Thus,	the	research	builds	on	the	Systematic	Literature	Review	

(SLR)	 methodology	 proposed	 by	 Tranfield	 et	 al.	 (2003)	 to	 review	 the	 extant	 field.	 The	

evidence-based	 reviews	 as	 proposed	 by	 Tranfield	 et	 al.	 (2003)	 is	 a	 successfully	 employed	

methodology	 for	 a	 systematic	 and	 state-of-the-art	 comprehensive	 way	 to	 review	 the	

literature	 in	 the	various	 fields	of	management	 (	 see,	e.g.	Adams	et	al.	2015;	Colicchia	and	

Strozzi	2012;	Delbufalo	2012;	Kitchenham	et	al.	2009;	Sivarajah	et	al.	2017;	Spanaki	et	al.	

2018).	 According	 to	 Tranfield	 et	 al.(2003),	 undertaking	 a	 literature	 review	 to	 provide	 the	

manifestation	 for	 enlightening	 policy	 and	 practice	 in	 any	 discipline,	 is	 a	 key	 research	

objective	 for	 the	 academic	 and	 practitioner	 communities.	 This	 further	 adds	 to	 the	

significance	 of	 such	 literature	 review	 papers	 that	 may	 further	 result	 in	 aiding	 evidence-

based	decision-making	in	future	research	endeavours.	The	study	followed	the	methodology	

of	evidence-based	reviews	(Denyer	and	Tranfield	2009;	Tranfield	et	al.	2003)	which	differs	

from	 the	 conventional	 narrative	 reviews	 through	 a	 systematic,	 structured	 and	 explicit	

approach	in	the	selection	of	the	studies	in	Agricultural	Technology	and	Operations	area	(at	

every	stage	in	this	paper),	employing	rigorous	and	reproducible	methods	of	evaluation.	

Seminal	literature	on	SLR	process	(e.g.	Delbufalo	2012;	Kitchenham	et	al.	2009)	2012)	assert	

that	an	SLR	is	designed	to	(a)	support	in	generating	a	sense	of	joint	effort,	importance	and	

openness	 between	 the	 research	 studies	 in	 order	 to	 impede	 unproductive	 recurrence	 of	

effort,	(b)	support	in	connecting	potential	research	to	the	queries	and	issues	that	have	been	

modelled	by	previous	 research	 studies	 (e.g.	most	 of	 those	paper	 reviewed	as	 part	 of	 this	



research	 exercise)	 and	 (c)	 develop	 the	 approaches	 employed	 to	 assemble	 and	 synthesise	

preceding	 pragmatic	 evidence.	 In	 the	 interest	 of	 parsimony,	 a	 meticulous	 though	 not	

exhaustive	 SLR	 was	 carried	 out	 in	 this	 paper	 by	 following	 the	 three-stage	 approach	

(Tranfield	et	al.	2003):	

• Stage	 1	 –	 Planning	 the	 Review	 Process	 –	 Defining	 the	 research	 aim	 and	 objectives;	

preparing	the	proposal	and	developing	the	review	protocol;	

• Stage	 2	 –	 Conducting	 the	 Review	 Process	 –	 Identifying,	 selecting,	 evaluating,	 and	

synthesising	the	pertinent	research	studies;	and	

• Stage	 3	 –	 Reporting	 and	 Dissemination	 of	 the	 Overall	 Research	 Results	 –	 Descriptive	

reporting	of	results	and	thematic	reporting	of	journal	articles.	

Following	 the	 three-stage	approach,	 the	next	 subsection	3.1	 summarises	 the	definition	of	

the	aim	and	objectives,	 including	the	proposal	and	subsection	3.2.	summarises	the	review	

protocol.	Sub-section	3.3	describes	 the	Scopus	database	searching	process	of	 the	relevant	

articles.	 An	 overview	 of	 the	 selected	 studies	 is	 presented	 in	 3.4,	 where	 the	 study	

demographics	 are	 discussed	 in	 brief	 to	 provide	 an	 initial	 view	 of	 the	 field.	 Finally,	 the	

reporting	and	dissemination	the	overall	results	will	be	discussed	in	the	following	sections	of	

the	paper.		

3.1 Defining	the	research	aim	and	objectives	and	preparing	the	proposal		

As	highlighted	 in	 the	 introduction	 section,	 this	 research	aims	 to	present	a	 comprehensive	

systematic	 review	 of	 the	 Agricultural	 Technology	 (AgriTech)	 applications	 and	 techniques	

theorised/proposed/employed	 AI	 for	 Agricultural	 Operations	 to	 provide	 a	 holistic	

understanding	of	this	landscape	with	the	objective	of	making	sound	investment	decisions.	In	

doing	 so,	 the	 paper’s	 focus	 is	 on	 systematically	 analysing	 and	 synthesising	 the	 extant	

research	 published	 in	 Agricultural	Operations	 area.	More	 specifically,	 the	 authors	 seek	 to	

answer	the	following	three	principal	questions:	

• Question	 1:	 What	 are	 the	 various	 disruptive	 technologies	 presented	 for	 the	

operations	management	processes	of	the	Agricultural	sector	over	the	last	decades?		

• Question	 2:	What	 are	 the	 distinct	 types	 and	 categories	 of	 Agricultural	 Technology	

(AgriTech)?	



• Question	3:	What	is	the	role	of	Artificial	Intelligence	(AI)	for	AgriTech	applications	in	

Agricultural	Operations?	

3.2 The	Review	Protocol		

The	 review	 protocol	 was	 developed	 around	 three	 questions	 as	 mentioned	 in	 a	 previous	

section	(i.e.	Q1,	Q2	and	Q3)	by	following	the	prescriptive	three-staged	approach.	Essentially,	

the	responses	to	the	question	Q3	results	from	the	review	of	the	205	papers	for	Q1	and	Q2.		

The	 review	process	ensured	 that	 the	 seven	conditions	highlighted	 in	Table	2	were	 strictly	

adhered	 to	 ensure	 that	 an	 effective	 and	 reproducible	 database	 examining	 process	

highlighting	the	inclusion	and	exclusion	criteria	for	each	of	the	review	process.		

Table	2.	 The	Review	Protocol		

Review	
Conditions	 Description	

1. Use	of	
Database	

Scopus	database	was	used	to	undertake	the	search	for	published	articles	
in	the	area	of	Technology	for	Agricultural	Operations.	The	rationale	for	
using	 this	 database	 was	 based	 on	 its	 extensive	 coverage	 of	 journal	
articles	 almost	 reaching	 22,800	 titles	 from	 over	 5000	 international	
publishers,	 including	 coverage	 of	 approximately	 21,950	 peer-reviewed	
journals	on	different	areas.		

2. Quality	
Control	

Inclusion	 Criteria:	 To	 ensure	 quality,	 the	 review	 considered	 only	
published	peer-reviewed	journal	(including	articles	in	press)	by	selecting	
the	‘Article’	option	from	the	Document	Type	option.		
Exclusion	 Criteria:	 Grey	 literature	 and	 other	 document	 types	 such	 as	
conference	 articles,	 trade	 publications,	 books	 series,	 book	 or	 book	
chapter,	and	editorials	were	omitted.	

3. Publication	
Year	

Inclusion	 Criteria:	 The	 selected	 articles	 were	 published	 only	 between	
1984	 and	 early	 2020,	 in	 order	 to	 cover	 the	 whole	 transition	 from	
AgriTech	to	AI-driven	AgriTech	approaches.	
	

4. Publication	
Language	

Inclusion	Criteria:	Only	 articles	 published	 in	 the	 English	 language	were	
considered.	
Exclusion	 Criteria:	 Articles	 published	 in	 any	 other	 languages	 were	 not	
considered.	

5. Types	of	
publication	
articles	

Inclusion	 Criteria:	 The	 selected	 articles	were	 only	 empirical-based	 (i.e.	
case-study,	 survey,	 results,	 analytical,	 etc.),	 models	 and	 conceptual	
papers.	
Exclusion	Criteria:	Review	papers	were	excluded;	however,	these	studies	
were	 used	 in	 Stage	 1	 (to	 define	 the	 aim	 and	 objectives	 and	 the	
proposal).			

6. Article	 Inclusion	Criteria:	Article	suitability	process	was	conducted	by	ensuring	



Suitability	
Review	

that	 selected	 articles	 contained	 several	 key	 phrases	 throughout	 the	
paper,	 including,	 title,	 abstract,	 keywords	 and	 thereafter	 the	 whole	
paper.	This	process	focuses	on	those	section(s)	that	explicitly	referred	to	
Agricultural	Technology	and	Operations.	

7. Finalising	
Articles	

Finalising	article	 suitability	 for	 the	 review	was	done	by	 reading	 the	 full	
remaining	 article	 for	 essential	 research	 perspective	 and	 manuscripts	
withempirical	 data.	 This	 process	 ensured	 the	 alignment	 between	 the	
selected	articles	and	the	research	review	objectives.	

3.3 Scopus	Database	Searching	Process	and	Results		

The	use	of	databases	step	of	the	review	protocol	reports	on	the	steps	and	activities	of	the	

database	 searching	 process	 and	 demonstrates	 the	 outcomes	 both	 descriptively	 and	

synthetically	 by	 searching	 for	 relevant	 articles	 through	 the	 Scopus	 database	 (Delbufalo	

2012).	In	order	to	identify	the	relevant	articles	through	the	Scopus	Database,	the	following	

keywords	 search	 criteria	 was	 used	 following	 the	 conditions	 2,	 3	 and	 4	 of	 Table	 2.	 This	

process	 resulted	 in	 9951	 publications,	 of	 which	 543	 were	 left	 as	 relevant	 after	 filtering	

according	to	the	barring	conditions.		

TITLE-ABS-KEY(artificial	OR	tech*	OR	Robot*	OR	machine	learning	OR	computer*	OR	

deep	learning	OR	visualis*	OR	visualiz*	OR	Intellig*	OR	simulation	OR	Smart	OR	4.0	

OR	 IoT	 OR	 Big	 Data	 OR	 Technology	 OR	 drone*	 OR	 evolution*	 OR	 disruption	 OR	

Platform	OR	analyt*	OR	precision	OR	ICT	OR	AI)	AND	TITLE-ABS-KEY(Agri*	OR	Farm*	

OR	Agro*	OR	crop*)	

A	title	and	abstract	analysis	were	thereafter	conducted	on	the	extracted	articles	based	on	

the	conditions	5	and	6.	At	the	end	of	the	process,	205	articles	were	considered	for	further	

investigation	(Table	3).	Finally,	the	authors	followed	the	quality	criteria	matrix	as	adopted	by	

Pittaway	et	al.(2004).	 In	 this	 step,	 the	selected	205	articles	 (Appendix	 II	 -included	studies)	

were	 further	 scanned	 through	 the	 criteria	 highlighted	 in	 conditions	 6	 and	 7.	 Besides	

extracting	data	related	to	Q1,	Q2	and	Q3,	the	descriptive	investigation	also	produced	graphs	

and	 tables	 designed	 to	 contain	 the	 yearly	 publications,	 geographical	 regions	 of	 where	

studies	were	conducted,	the	journal	outlets	and	the	various	AI-driven	solutions	published	in	

AgriTech	research	for	all	205	articles	(Appendix	I-	publication	demographics).	

Table	3.	 The	Search	Process	and	Results	



Search	Process	

Electronic	Database	Search	 9840	articles	

Hand	Search	 76	articles	

Citation	Search	 35	articles	

Total	 9951	articles	

Title	and	abstract	review	excluded	(n=9408)	 	

Total	 543	articles	

Full	text	analysis	excluded	(n=338)	 	

Total	 205	journal	articles	

3.4 Demographics	of	the	selected	studies	

The	 included	 research	 studies	 of	 the	 last	 decades	 with	 a	 focus	 on	 AgriTech,	 present	 an	

evolving	rise	of	AI-driven	solutions	for	the	agricultural	stakeholders.	The	potential	value	of	

any	 AgriTech	 interventions	 can	 appear	 through	 the	 application	 of	 multiple	 advanced	

solutions	that	could	be	applied	in	the	farming	field.	Agricultural	stakeholders	can	apply	the	

AgriTech	 solutions	 for	 processing	 a	 large	 volume	of	multi-form	data	 and	 information	 into	

meaningful	 knowledge.	 There	 are	 multiple	 opportunities	 nowadays	 for	 agricultural	

stakeholders	to	apply	AgriTech	interventions	for	everyday	farming	operations,	however,	 in	

order	these	interventions	to	be	successful,	advanced	solutions	are	required	to	transform	the	

farming	operations	in	AI-driven	approaches.	The	review	of	the	studies	in	the	field	indicated	

that	the	top	three	most	applied	solutions	in	the	AgriTech	research	(Figure	1)	consist	of	AI-

driven	 solutions	 and	 they	 are	 namely,	Machine	 Learning	 (ML),	Modelling	 and	 Simulation,	

and	Data	Analytics.		

Figure	1.	 Number	and	Type	of	AI-driven	AgriTech	Studies	



The	 key	 journal	 outlets	 where	 the	 studies	 in	 the	 field	 of	 AgriTech	 and	 AI	 have	 been	

published	appear	in	Figure	2.		

Figure	2.	 Journals	publishing	AgriTech	research	

Many	studies	have	been	published	in	the	Computers	and	Electronics	in	Agriculture	outlet	(C=	

48).	Unsurprisingly,	the	findings	highlight	the	majority	of	the	AI-driven	AgriTech	studies	have	

been	published	 in	 technical	and	agriculture-based	outlets,	 such	as	Biosystems	Engineering	

and	Remote	Sensing	of	Environment.	There	is	clear	evidence	to	highlight	the	need	for	more	

research	 to	be	published	 in	business,	operations	and	 information	 technology	and	systems	

management	journals	(except	a	Special	Issue	in	Computers	in	Industry,	where	5	studies	were	

published	 in	 2019)	 that	 allows	 exploring	 organisational	 and	 business	 efficiency-related	

issues	of	applying	AgriTech.	



The	yearly	studies	published	in	the	field	of	AI-driven	AgriTech	(Figure	2)	highlight	an	evolving	

interest	in	the	field,	with	the	most	significant	number	of	publications	recorded	for	the	year	

2019	(with	C	=	40,	19.6%),	followed	by	years	2017-18	(with	C=28	and	27,	13%).With	fewer	

publications	(i.e.	below	the	10	mark)	were	recorded	from	2015	and	a	range	of	one	and	two	

articles	between	1984	and	2000.	Figure	1	below	illustrates	a	rise	 in	the	number	of	 journal	

articles	 in	 the	AgriTech	and	AI	 research	area	 from	2015	onwards	until	 2019,	which	 is	 still	

evolving	even	in	early	2020.		

Figure	3.	 Publications		per	year	in	the	field	of	AgriTech		

An	 initial	 screening	 of	 the	 identified	 studies	 revealed	 three	 interesting	 directions	 of	 the	

AgriTech	Research:		

1. The	AgriTech	studies	are	presenting	AI-driven	solutions	from	a	technical	perspective.	

However,	 there	 is	 a	 low	 number	 of	 conceptual	 and	 empirical	 studies	 (Figure	 1	 -

methodological	approaches	in	the	studies).	

2. The	 AgriTech	 research	 is	 flourishing	 in	 mostly	 engineering	 and	 biosciences	 fields,	

with	 a	 lack	 of	 research	 in	 the	 field	 of	 operations	 and	 management	 (Figure	 2-	

publication	outlets)	

3. There	is	an	evolving	interest	in	AgriTech	research	in	the	last	decade	(Figure	3	-yearly	

publications).	



The	demographics	of	the	identified	studies	show	the	awareness	and	importance	of	this	area	

among	the	academic	community,	practitioners,	and	even	governments	worldwide.	Despite	

the	 increase	 in	the	number	of	articles	on	disruptive	technologies	for	Agriculture,	AI-driven	

AgriTech	 research	 is	 still	 in	 infancy,	 especially	 in	 terms	 of	 conceptual	 but	 also	 empirical	

studies.	 The	 research	 domain	 requires	 further	 in-depth	 conceptual	 as	 well	 as	 empirical	

studies,	especially	case	study	and	survey-based	research	to	explain	the	implication	and	the	

potential	 social	 and	 industrial	 change	 and	 transformation(from	 business	 and	 operations	

perspectives).	

4 Synthesis	of	the	AgriTech	Operations	and	Applications		

The	systematic	review	revealed	various	types	of	AgriTech	in	the	analysed	studies	based	on	

the	 representative	 aspects	of	 the	disruptive	 technology	which	 is	 applied	and	described	 in	

each	study.	The	identification	of	the	types	of	AgriTech	was	built	initially	from	the	framework	

of	Tsolakis	et	al.	 (2019),	where	 three	categories	were	defined	according	 to	 the	aspects	of	

the	 specific	 technological	 application	 (physical,	 cyber,	 and	 cyber-physical).	 However,	 the	

research	synthesis	provided	here	expands	the	typology	of	Tsolakis	et	al.	 (2019)	by	scoping	

the	studies	on	those	on	AI-driven	AgriTech	and	defining	the	application	type	by	operation	

area	and	the	operational	challenges	that	each	category	could	support.		

The	 categorisation	 in	 application	 types	 by	 operation	 area	 supports	 future	 directions	 for	

Operations	Management	 by	 expanding	 the	 scope	 to	 an	 operations-oriented	 and	 process-

based	 approach.	 The	 physical	 AgriTech	 application	 types	 are	 defined	 as	 the	 disruptive	

technologies	for	agricultural	operations	which	can	replace	not	only	human	labour	tasks	(e.g.	

robotic	 machinery,	 irrigation	 systems	 etc.)	 but	 also	 present	 physical	 features	 as	 the	

“hardware”	of	AgriTech,	mostly	this	category	refers	to	machinery	and	tools	for	agricultural	

tasks.	On	 the	other	hand,	 the	cyber	aspects	of	AgriTech	 appear	 as	 applications	which	are	

mostly	 platform-software	 related	 and	 have	 a	 strong	 link	with	 data	 analytics	 and	 decision	

support	systems	for	agricultural	operations	whereas	there	 is	also	a	third	category	which	 is	

the	 combination	 of	 the	 two	 previous,	 the	 cyber-physical	 application	 area,	 which	 refers	

mostly	 to	 smart	 agricultural	 machinery	 and/	 or	 robotics	 for	 the	 farm	 which	 include	 the	

hardware	and	 the	 software	 for	data	analysis	 and	predictive/prescriptive	 tailored	decision-



making,	advice	and	recommendations.	The	cyber-physical	applications	have	been	developed	

within	the	last	decade	and	follow	the	design	and	production	patterns	of	the	fourth	industrial	

revolution	applying	disruptive	technologies	and	AI	techniques	in	the	farming	field.	

4.1.1 AgriTech	Physical	Aspects	per	Operation	type	and	Application	Area	

The	 Physical	 AgriTech	 aspects	 can	 be	 categorised	 and	 related	 to	water	 operations,	 aerial	

operations,	land	operations	and	a	combination	of	them	based	on	their	relevance	with	plants	

or	 animals	 (livestock).	 Table	 4	 shows	 the	 different	 AgriTech	 physical	 applications	 per	

operation	 type,	 application	 area	 and	 the	 associated	 challenges	 of	 the	 agricultural	 sector	

addressed	by	each	solution.	

Table	4.	 AgriTech	Physical	Aspects	per	Operation	type	and	Application	area	

Our	analysis	revealed	the	existence	of	only	one	study	for	physical	aerial	operations	and	the	

non-existence	 of	 water-based	 physical	 operations.	 In	 terms	 of	 studies	 providing	 context	

around	 the	physical	 aerial	 operations,	 Radcliffe	 et	 al.	 (2018)	 focussed	on	 the	 tree	 canopy	

and	 sky	 of	 an	 orchard	 row	 to	 be	 used	 by	 an	 autonomous	 vehicle	 platform	 to	 navigate	

through	 the	 centre	 of	 the	 tree	 rows.	 The	 research	 studies	 on	 AgriTech	 physical	 aspects	

mostly	 consider	 land	 operations	 on	 both	 plant	 and	 animal	 applications	 and	 their	

implementation	using	a	variety	of	AgriTech	tools	and	techniques	such	as	satellite	 imagery,	

surveillance	 systems,	 agricultural	 machinery,	 field	 training,	 robots,	 and	 algorithms	 for	

machine	learning	and	data	processing.		

Operation	type	

No.	of	Studies	per	
Application	Area	

Challenges	addressed	by	AgriTech	solution	
Plant	 Animal	

(Livestock)	
Water	 0	 0	 	

Aerial	 1	 0	 • Tree	condition	checking	

Land	 11	 3	

• Land	and	crop	classification	
• Land	&	animal	surveillance	
• Farmer	education	
• Plant	condition	assessment	
• Irrigation	mapping	
• Crop	harvesting	
• Insect	infestations	assessment	
• Automated	feeding	of	animals	
• Health	assessment	of	animals	

Combination	 1	 0	 • Environmental	parameters	monitoring	



In	 terms	 of	 the	 physical	 applications	 on	 plants,	 Kussul	 et	 al.	 (2017)	 used	 architecture	 to	

classify	 land	 cover	 and	 crop	 types	 through	 multi-temporal	 multi-source	 satellite	 imagery	

(deep	 learning).	 Studies	 as	 the	 one	 of	 Ennouri	 et	 al.	 (2019)	 discussed	 the	 importance	 of	

remote	sensing	technology,	while	the	study	of	Seelan	et	al.	(2003)	is	extending	the	context	

of	 remote	 sensing	and	 implements	a	 learning	 community	approach	 for	educating	 farmers	

with	 the	 associated	 technologies	 (field	 training).	 Other	 approaches	 of	 remote	 sensing	

imagery	 technologies	 in	 studies	 about	 physical	 AgriTech	 for	 land	 and	 aerial	 operations,	

present	training	algorithms	to	explore	image	processing	techniques	(Pydipati	et	al.	2006)	for	

plant	 colour	 features	 differentiation	 (data	 analytics,	 algorithm).	 Some	 studies	 also	 show	

multiple	irrigation	mapping	algorithms	through	machine	learning	techniques	(Ozdogan	and	

Gutman	 2008),	 but	 also	 odometry	 robotic	 systems	 for	 imagery	 collection	 (Ericson	 and	

Åstrand	2018).	Robotic	applications	for	land	surveillance	appear	in	studies	such	as	those	of	

Ko	et	al.	(2015)	that	presented	a	mobile	robotic	platform	for	agricultural	applications),	Edan	

et	al.	 (1993)	presented	a	robot	harvester	for	melons	using	3-D,	real-time	animation,	Bayar	

(2017)	 developed	 an	 autonomous	 detection	 mobile	 robotic	 system	 of	 tree	 trunks,	 and	

Kounalakis	 et	 al.	 (2019)	 with	 robotic	 weed	 recognition	 for	 grasslands.	 From	 these	

applications	various	benefits	were	archived	such	as	reduced	picking	time	of	crops,	increase	

of	harvest	efficiency,	and	faster	detection	of	plant	health	issues.		

Regarding	the	physical	aspects	of	AgriTech	 in	animal-related	application	areas,	 the	studies	

focus	on	 automated	 feeding	 technologies	 for	 pregnant	 sows	 (Manteuffel	 et	 al.	 2011)	 and	

surveillance	systems	 for	social	 interaction	monitoring	 in	dairy	stalls	of	cows	 (Guzhva	et	al.	

2016),	behaviour	and	 living	condition	monitoring	 through	an	animal-mounted	sensor,	and	

automatic	 surveillance	 intelligent	 systems	 to	 automatically	 and	 continuously	monitor	 the	

health	 animals	 (Yazdanbakhsh	 et	 al.	 2017).	 Also,	 one	 study	 with	 a	 combination	 of	 land,	

water,	and	aerial	operations	was	identified	(Mesas-Carrascosa	et	al.	2015),	where	an	open-

source	hardware	system	is	presented	for	monitoring	different	environmental	parameters.		

4.1.2 AgriTech	Cyber	Aspects	per	Operation	type	and	Application	Area		

The	 AgriTech	 cyber	 aspects	 can	 be	 categorised	 into	 three	 forms:	 analytics,	

virtual/simulation,	 and	 algorithmic-based	 on	 the	 different	 types	 of	 tools	 and	 techniques	

applied	(which	will	be	explained	further	in	a	following	designated	section).	These	have	been	



further	 classified	 in	water,	 aerial,	 land	operations	 or	 a	 combination	of	 them	as	well	 as	 in	

terms	of	their	application	on	animals	or	plants	(see	Table	5).		

Table	5.	 AgriTech	Cyber	Aspects	per	Operation	type	and	Application	area		

	In	the	analytics	categorisation,	research	directions	are	often	focussed	on	water	applications	

on	 plants	 and	 with	 combinations	 of	 soft-computing	methods,	 as	 well	 as	 simulations	 and	

algorithms	 to	 improve	 the	 planning	 and	 management	 of	 water	 resources	 and	 to	 detect	

chemicals	 in	the	water.	For	example,	Gocic	et	al.	 (2015)	analysed	different	soft-computing	

methods,	 i.e.	 genetic	 programming	 (GP),	 support	 vector	 machine-firefly	 algorithm	 (SVM-

FFA),	 artificial	neural	network	 (ANN),	 and	 support	 vector	machine-wavelet	 (SVM-Wavelet)	

to	 forecast	 reference	 evapotranspiration	 (ET0)	 which	 is	 used	 for	 planning	 and	 managing	

water	 resources	 in	 agriculture.	 While,	 Wang	 et	 al.	 (2006)	 simulated	 agriculture	 derived	

groundwater	nitrate	pollution	patterns	using	the	artificial	neural	network	(ANN)	technique,	

and	Brumbelow	and	Georgakakos	(2007)	presented	an	application	of	physiologically	based	

crop	models	to	near-optimisation	of	‘‘planning-level’’	irrigation	schedules.	

Operation	
Type	

No.	of	Studies	per	Application	Area	
Challenges	addressed	by	AgriTech	

Solution	
Analytics	Platforms	 Virtual/simulation	

Proposed	
Algorithms	

Plant	 Animal	 Plant	 Animal	 Plant	 Animal	

Water	 3	 4	 2	 0	 3	 1	

• irrigation	 planning	 and	
management	

• chemicals	detection	
• automated	 resource	

collection	from	animals	
• climate	 control	 of	 animals	

housing	
• water	resources	allocation	
• soil	assessment	
• animal	condition	analysis	

Aerial	 4	 0	 0	 0	 0	 0	

• image	processing	 for	enabling	
precision	agriculture	

• emissions	modelling	
• air	temperature	estimation	
• yield	classification	

Land	 4	 1	 3	 1	 7	 3	

• crop	 &	 climatic	 conditions	
assessment	

• animal	behaviour	prediction	
• animal	disease	control	

Combinatio
n	

4	 1	 1	 0	 3	 1	

• yield	optimisation	
• natural	 resource	 availability	

assessment	
• assessment	 of	 soil	 changes	

and	their	implications	



Studies	 using	 analytics	 in	water	 applications	 for	 animals	 use	 a	 combination	of	 simulation,	

optimisation	and	lab	experiments.	Halachmi	(2009),	for	example,	simulated	the	hierarchical	

order	and	cow	queue	 length	 in	an	automatic	milking	system.	Another	example	appears	 in	

the	study	of		Aerts	and	Berckmans	(2004),	where	a	virtual	chicken	(VirChick)	was	developed	

for	computer−aided	design	and	engineering	of	climate	controllers	 for	poultry	house.	On	a	

similar	note,	Chen	et	al.	 (2016)	 formulated	a	deterministic	optimisation	model	to	alleviate	

the	 impact	 of	 seasonal	 drought,	 which	 allocates	 available	 irrigation	 water	 resources	 to	

maximise	 annual	 returns	 in	 a	 reservoir-pond	 irrigation	 system.	 In	 the	 field	 of	 animal	

applications,	 O’Conell	 et	 al.	 (2015)	 analysed	 the	 animal	 conditions	 through	 artificial	

insemination	in	a	lab	environment.		

AgriTech	aerial	analytics	applications	on	plants	are	considering	autonomous	vehicles,	meta-

models,	and	image	features	capturing	methods.	Several	studies	used	analytics	for	non-rigid	

image	 feature	 matching	 in	 precision	 agriculture	 via	 probabilistic	 inference	 with	

regularisation	techniques(e.g.	Yu	et	al.	2017),	and	meta-models	for	complex	environmental	

and	ecological	processes	over	large	geographic	areas	for	emissions	modelling	of	N20	/	land,	

climate	(e.g.	Perlman	et	al	.2014).	Other	studies,	such	as	the	study	of	Sanikhani	et	al.	(2018),	

analysed	 the	 design	 and	 application	 of	 data-intelligent	 models	 for	 air	 temperature	

estimation	without	climate-based	 inputs	using	geographic	 factors.	While	 in	Radcliffe	et	al.	

(2018),	the	authors	used	an	autonomous	vehicle	platform	guided	by	machine	vision	system	

for	tree	canopy	and	sky	of	an	orchard	row.		

There	are	numerous	studies	about	analytics	applications	on	land	for	plants	that	use	a	wide	

range	of	AgriTech,	such	as	mixed	spectral	responses,	neural	networks,	fuzzy	logic,	and	index	

development.	 In	 this	 categorisation,	 some	 studies	 include	 approaches	 presenting	 training	

methods	 for	 vector	machines	 (Foody	and	Mathur	2006),	 	 neural	networks	 in	 combination	

with	fuzzy	techniques	in	the	field	of	agro-ecological	modelling	(Schultz	and	Wieland	1997),	

presence-only	 geographic	 species	 distribution	 models,	 i.e.	 MaxEnt	 for	 agricultural	 crop	

suitability	mapping	(Heumann	et	al.	2011),	and	IoT-	cloud-enabled	measurement	indexes	for	

temperature	and	humidity	assessment	of	crops	(Mekala	and	Viswanathan	2019).		

A	combination	of	aerial,	water	and	land	application	studies	that	used	analytics	for	land	and	

animals	adopted	a	wide	range	of	AgriTech	applications.	Some	of	these	AgriTech	applications	



are	 simulation	 models	 in	 combination	 with	 geographic	 information	 systems	 and	

optimisation,	 as	 well	 as	 algorithms	 with	 analytics.	 For	 example,	 McKinion	 et	 al.	 (2001)	

investigated	 the	 use	 of	 precision	 agriculture	 in	 combination	with	 simulation	models,	 and	

geographic	 information	 systems	 in	 a	 cotton	 production	 system	 to	 optimise	 yields	 while	

minimising	water	and	nitrogen	 inputs.	Other	 studies	 in	 the	same	categorisation	evaluated	

the	 future	 impact	 of	 soil	 degradation	 using	 simulation	 and	 optimisation	 (Sonneveld	 and	

Keyzer	2003).	At	the	same	time,	other	studies	used	innovative	unmanned	airborne	vehicles	

to	visualise	and	quantify	soil	physical	changes	and	their	influence	on	surface	morphology	at	

submillimetre	 resolution	 (Kaiser	 et	 al.	 2018)	 and	 identify	 the	 yield-limiting	 factors	 for	

farmers	using	real	crop	data	(Paz	et	al.	2002).	

With	 regards	 to	 simulation	 techniques,	 the	analysis	 revealed	 the	existence	of	 two	 studies	

that	used	simulation	for	water	and	land	applications.	Specifically,	the	interest	of	simulation	

models	is	about	the	agricultural	water	drainage	challenge	at	the	beginning	of	the	cropping	

season	(Jury	et	al.	2003),	and	the	combination	of	unsaturated	flow	and	groundwater	(Kumar	

and	Singh	2003).	

There	is	also	a	stream	of	literature	discussing	the	simulation	models	problems	theoretically	

as	population	dynamics	and	population	genetics	of	H.	zea	in	mixed	cropping	systems	(Storer	

et	 al.	 2003),	 and	 the	 effects	 of	 tillage	 and	 traffic	 on	 crop	 production	 in	 dryland	 farming	

systems	 (Li	 et	 al.	 2008).	 While	 the	 study	 of	 Luecke	 (2012)	 developed	 a	 virtual	 reality	

interface	that	could	be	used	 in	operating	a	combine	when	harvesting	virtual	crops.	 	Other	

simulation	 models	 are	 presented	 for	 soil-plant-atmosphere	 in	 order	 to	 examine	 the	

influence	of	a	winter	cereal	rye	cover	crop	on	nitrate-N	losses	(Feyereisen	et	al.	2007).	

There	 is	 a	 wide	 range	 of	 algorithmic	 models	 presented	 in	 the	 reviewed	 studies	 for	 the	

improvement	 of	 water	 efficiency,	 optimisation	 of	 irrigation	 planning,	 and	 assessment	 of	

drainage.	Such	studies	show	stochastic	dynamic	programming	models	(SDPM)	to	analyse	a	

farmer’s	optimal	 investment	strategy	to	adopt	a	water-efficient	drip	 irrigation	system	or	a	

sprinkler	irrigation	systems	(Heumesser	et	al.	2012),	soil	and	assessment	tool	algorithms	to	

relate	drainage	volume	to	water	table	depth	(Moriasi	et	al.	2011),	and	physiologically	based	

crop	models	to	near-optimisation	of	 ‘‘planning-level’’	 irrigation	schedules	(Brumbelow	and	

Georgakakos	 2007).	 Only	 one	 study	 was	 identified	 with	 algorithmic	 water-based	



applications	on	animals	which	used	neural	network	applications	to	intelligent	data	analysis	

in	the	field	of	animal	science	(Fernández	et	al.	2006).		

There	 are	 a	 plethora	 of	 studies	 that	 developed	AgriTech	 algorithmic	 applications	 for	 land	

and	 plants.	 Some	 of	 the	 studies	 presented	 neural	 networks	 (Moshou	 et	 al.	 2001)	 for	 the	

classification	 of	 crops	 and	 weeds,	 and	 hyperspectral	 imagery	 for	 defection	 segmentation	

using	classifiers	based	on	Artificial	Neural	Networks	and	Decision	Trees	 (Gómez-Sanchis	et	

al.	 2012).	While	 studies	 such	as	 those	of	Richards	at	al.	 (2009)	 considered	 the	knowledge	

content	of	 farmer	 seed	 systems	 in	 the	 light	of	 a	distinction	drawn	 in	artificial	 intelligence	

research	 between	 supervised	 and	 unsupervised	 learning	 and	 suggested	 an	 alternative	

approach	supported	by	functional	genomic	analysis.	On	a	similar	note,	but	using	the	fuzzy	

logic	approach	for	decision	systems,	the	review	identified	a	few	studies	for	decisions	around	

specific	nitrogen	fertilisation	(Papadopoulos	et	al.	2011),	hybrid	 learning	of	 fuzzy	cognitive	

maps	 for	 sugarcane	 yield	 classification	 (Natarajan	 et	 al.	 2016),	 and	 flexible	 irrigation	

scheduling	for	different	irrigation	districts	and	cases	(Yang	et	al.	2017).			

Algorithmic	 land	 applications	 on	 animals	 are	 not	 that	 frequent,	 and	 most	 of	 the	 studies	

towards	 this	 direction	 present	 mostly	 machine	 learning	 techniques	 and	 computer	

programming.	 In	 this	 category,	 there	 are	 research	 projects	 applying	 machine	 learning	

techniques	to	detect	oestrus	in	dairy	cows	(Scott	Mitchell	et	al.	1996),	convolutional	neural	

networks	 for	body	condition	estimation	on	cows	from	depth	 images	 (Rodríguez	Alvarez	et	

al.	2018),	and	computer	programs	for	the	prototypical	knowledge	base	for	cows	(Oltjen	et	

al.	1990)	

Combinations	 of	 water	 and	 land	 algorithmic	 applications	 on	 plants	 are	 focusing	 on	 soil	

forecasting	 and	 planning.	 In	 this	 category,	 Keller	 et	 al.	 (2007)	 developed	 a	 	 new	model,	

‘SoilFlex-LLWR’,	which	combines	a	soil	compaction	model	with	the	least	limiting	water	range	

(LLWR)	concept.	Also,	there	are	models	for	monthly	soil	moisture	forecasting	(Prasad	et	al.	

2018),	 and	 machine	 learning	 assessments	 of	 soil	 drying	 for	 agricultural	 planning	

(Coopersmith	et	al.	2016).	While	algorithms	and	models	about	various	applications	related	

to	animal	and	 livestock	conditions	and	welfare	are	very	 limited.	 In	 the	 few	studies	of	 that	

category,	 there	 are	 examples	of	 studies	 such	 as	Gonzalez	 et	 al.	 (2015)	 that	 developed	an	

algorithm	 for	 unsupervised	 behavioural	 classification	 of	 electronic	 data	 collected	 at	 high	



frequency	from	collar-mounted	motion	and	GPS	sensors	in	grazing	cattle	for	automatic	and	

real-time	monitoring	of	behaviour	with	a	high	spatial	and	temporal	resolution.	

4.1.3 AgriTech	Cyber-Physical	Applications	

AgriTech	cyber-physical	applications	refer	to	applications	that	combine	physical	aspects	with	

cyber	aspects	of	AgriTech,	e.g.	smart	 tractors,	drones	connected	with	sensors	at	 the	 field,	

and	a	number	of	smart	devices	for	applying	AI	for	agricultural	processes.	Table	6	presents	a	

summary	of	the	AgriTech	cyber-physical	applications	per	application	area.		

There	are	numerous	studies	about	AgriTech	analytical	cyber-physical	applications	for	tasks	

related	 to	 land	 and	 plants	 that	 develop	 platforms,	 algorithms	 for	 robots,	 and	 decision	

support	systems.	These	applications	are	presented	as:	

• A	suboptimal	path	for	agricultural	mobile	robots	combining	neural	network	methods	

and	genetic	algorithms	(Noguchi	and	Terao	1997);		

• a	 private	 Internet	 of	 Things	 (IoT)	 enabled	 platform	 for	 the	 research	 in	 precision	

agriculture	and	ecological	monitoring	domains	(Popović	et	al.	2017);		

• a	decision-making	system	for	intelligent	chemical	control	(Guedes	et	al.	2013);	

• a	 research	 data	 collection	 platform	 for	 ISO	 11783	 compatible	 and	 retrofit	 farm	

equipment	to	control	agricultural	operations	on	the	farm	(Backman	et	al.	2019);		

• a	methodology	 for	 olive	oil	 traceability	 to	 interconnect	 field	 and	 industry	 to	 share	

information	(Bayano-Tejero	et	al.	2019).		

There	are	also	several	studies	about	AgriTech	cyber-physical	analytical	applications	on	land	

and	 animals	 that	 used	 sensors,	 imagery,	 and	 algorithms.	 For	 example,	 Manteuffel	 et	 al.	

(2011)	 implemented	 a	 call	 feeding	 for	 pregnant	 sows	 which	 is	 a	 modular	 extension	 of	 a	

conventional	electronic	feeder	and	communicates	via	a	network.	Another	study	(Sakai	et	al.	

2019)	 classified	 goat	 behaviours	 using	 9-axis	 multi-sensor	 data	 and	 a	 machine	 learning	

algorithm.	 In	 studies	 such	 as	 Ivushkin	 et	 al.	 (2019),	 the	 authors	 presented	 a	method	 for	

livestock	mapping	of	pastured	to	produce	spatial-temporal	consistent	maps,	while	Bishop	et	

al.	(2019)	developed	a	multi-purpose	livestock	vocalisation	algorithm	with	machine	learning	

techniques	 for	 a	 continuous	 acoustic	monitoring	 system.	 Combination	 studies	 about	 land	

and	water	cyber-physical	analytics	for	plants	are	using	drones	and	imagery	technologies	for	



soil	 quantification.	 Kaiser	 et	 al.	 (2018)	 used	 unmanned	 airborne	 vehicle	 to	 visualise	 and	

quantify	 soil	physical	 changes	and	 their	 influence	on	surface	morphology	at	 submillimetre	

resolution.	 Another	 research	 direction	 quantified	 soil	 pore	 characteristics	 using	 a	 high-

resolution	X-ray	CT	scanner	linked	to	soil	friability	assessed	using	the	drop	shatter	method	

(Munkholm	et	al.	2012).	The	review	indicated	that	analytics	applications	of	AgriTech	in	aerial	

studies	of	cyber-physical	systems	for	plants	are	very	limited,	while	for	animals	are	absent.	In	

this	 research	 category,	 there	 are	 studies,	 for	 example,	 that	 present	 Unmanned	 Aerial	

Vehicles	(UAVs)	to	collect	imagery	about	sunflower	and	maze	crops	to	solve	the	problem	of	

weed	 mapping	 for	 precision	 agriculture	 and	 proposed	 a	 method	 for	 pattern	 selection	

(Pérez-Ortiz	et	al.	2016).		

Table	6.	 	AgriTech	Cyber-physical	Applications	per	application	area	

Studies	 about	 cyber-physical	 simulation	 applications	 focussing	 on	 land	 and	 plants	 use	

Discrete	Element	Model	(DEM)	to	simulate	a	deep	tillage	tool	and	its	interaction	with	soil	to	

address	the	stratified	soil	layers	in	agricultural	fields	(Zeng	et	al.	2017),	and	simulation	of	a	

comprehensive	 framework	 that	 transforms	data	acquisition	platforms	and	makes	possible	

the	‘‘plug-and-play’’	connection	of	various	sensors	(Fernandes	et	al.	2013).	Only	one	study	

was	identified	that	considered	aerial	cyber-physical	application	using	simulation.	To	be	more	

precise,	 the	 study	 of	 (Andersen	 et	 al.	 2005)	 explored	 the	 potential	 of	 using	 area-based	

binocular	stereo	vision	for	three-dimensional	(3-D)	analysis	of	single	plants	and	estimation	

of	geometric	attributes	such	as	height	and	total	leaf	area.		

Operation	Type	
No.	of	Studies	per	Application	Area	by	Technique	

Challenges	addressed	by	
AgriTech	Solution	

Analytics	
Platforms	

Virtual/simulation	 Proposed	
Algorithms	

	 Plant	 Animal	 Plant	 Animal	 Plant	 Animal	

water	 0	 0	 0	 0	 1	 0	 • mimicking	crop	
irrigation	

aerial	 1	 0	 1	 0	 1	 0	 • Insect	mapping	on	crops	
• Plant	analysis	

land	 5	 3	 2	 1	 4	 3	

• traceability	
enhancement	

• chemical	control	
• animal	feeding	
• animal	condition	analysis	
• livestock	mapping	

combination	 2	 0	 0	 0	 0	 0	 • soil	quantification	



Studies	 about	 algorithmic	 cyber-physical	 applications	 on	 land	 and	 plants	 are	 focussing	 on	

machine	 learning	 algorithms	 and	 robotics.	 Such	 studies	 present	 automatic	 observation	

systems	 for	 wheat	 heading	 stage	 based	 on	 computer	 vision	 (Zhu	 et	 al.	 2016)	 remotely	

assessing	 soil	 conditions	 (Coopersmith	 et	 al.	 2016),	 spiking	 neural	 networks	 (SNNs)	 for	

remote	sensing	spatiotemporal	analysis	of	image	time	series(Bose	et	al.	2016),	robotic	weed	

recognition	applications	for	precision	agriculture	in	grasslands	(Kounalakis	et	al.	2019).		

Cyber-physical	algorithms	for	animals	consider	machine	learning	techniques	and	suggested	

new	algorithmic	functions.	An	example	of	these	is	a	supervised	machine	learning	technique	

to	classify	cattle	behaviour	patterns	recorded	using	collar	systems	with	3-axis	accelerometer	

and	magnetometer,	fitted	to	individual	dairy	cows	to	infer	their	physical	behaviours	(Dutta	

et	al.	2015).		Cattle	behaviours	were	also	classified	upon	the	‘‘one-vs-all”	framework	(Smith	

et	al.	2016).	Studies	about	conditions	for	pig	development	used	RGB-D	computer	vision	and	

machine	 learning,	 physical	 (images	 from	 pigs),	 algorithm	 (machine	 learning	 and	 RGB-D	

computer	 vision)	 to	 estimate	 the	muscularity	 of	 live	 pigs	 (Alsahaf	 et	 al.	 2019).	 Only	 one	

study	 about	 cyber-physical	 water	 application	 on	 plants	 was	 found,	 while	 studies	 about	

water-based	 applications	 on	 animals	 are	 non-existent.	 On	 that	 basis,	 Viani	 et	 al.	 (2017)	

developed	 an	 innovative	 methodology	 based	 on	 Fuzzy	 Logic	 (FL)	 to	 mimic	 the	 farmers’	

experience	 and	 best	 practices	 for	 crop	 irrigation.	 No	 cyber-physical	 studies	 about	 aerial	

applications	on	animals	and	plants	were	found.		

5 Future	Considerations	and	the	Way	Forward	

The	applications	of	AI	and	disruptive	 technologies	 in	Agricultural	Operations	are	providing	

new	ways	 to	 increase	 the	 yield,	 optimise	 the	processes	 and	enhance	 the	 sustainability	 of	

agricultural	production	(Miranda	et	al.	2019;	Wolfert	et	al.	2017).	The	focus	of	AgriTech	and	

smart	 farming	appears	mostly	around	AI-driven	approaches	and	agricultural	data	analytics	

platforms	collecting	data	in	order	to	provide	planting	advice,	tailored	recommendations	and	

a	 general	 sense-making	 process	 of	 the	 data	 stemming	 from	 the	 fields	 (Boshkoska	 et	 al.	

2019;	 Miranda	 et	 al.	 2019).	 The	 systematic	 review	 of	 AgriTech	 research	 has	 unravelled	

multiple	opportunities	for	disruptive	technologies	based	on	AI-techniques	and	applications,	



with	 a	 focus	mostly	 on	 creating	 value	 for	 the	 Agricultural	 Sector	 (Boshkoska	 et	 al.	 2019;	

Tzounis	et	al.	2017).		

Through	the	use	of	AgriTech	and	applications	of	AI,	the	Agricultural	Sector	can	operate	and	

transform	 the	 conventional	 practices	 through	 data	 analytics	 and	 machine	 learning	

techniques,	which	are	able	 to	provide	targeted	advice	on	each	case	 (Kouadio	et	al.	2018).	

The	 use	 of	 the	 data	 can	 envisage	 competitive	 advantage	 even	 by	 itself	 not	 only	 for	 the	

farmers	 but	 also	 for	 the	 whole	 Agricultural	 Sector.	 By	 collecting	 data	 from	 the	 field,	 the	

farmer	 can	 gain	 knowledge	 according	 to	 each	 case’s	 requirements,	 as	 well	 as	 follow	

prescriptions	in	advance	and	provide	them	as	a	solution	to	broader	farming	problems	(Kale	

and	 Sonavane	 2019;	 Kouadio	 et	 al.	 2018;	 Renuka	 and	 Terdal	 2019;	 Tatapudi	 and	 Suresh	

Varma	2019).	For	instance,	this	will	help	farmers	in	mapping	the	fields,	monitor	crop	canopy	

remotely,	check	for	anomalies	and	take	precautionary	actions	in	order	to	implement	more	

proactive,	resilient	and	sustainable	agricultural	practices.	

AI-driven	AgriTech	 is	 developed	 from	cross-section	disciplines	 involving	 a	 variety	of	 smart	

and	 data-intensive	 approaches,	 disruptive	 technologies–	 spanning	 from	 smart	 devices,	

sensors,	 and	 big	 data	 to	 drone	 technology	 and	 robotics	 	 (Miranda	 et	 al.	 2019;	 Tsolakis,	

Bechtsis,	and	Bochtis	2019).	Smart	monitoring,	irrigation,	images	and	temperature	from	the	

field,	as	well	as	the	soil	or	livestock	conditions,	to	name	a	few,	can	provide	a	pool	of	data	for	

tailored	 recommendations	 to	 the	 farmer	 and	 any	 interested	 parties	 (Karim	 et	 al.	 2017;	

Manoj	 Athreya	 et	 al.	 2019;	 Tsolakis,	 Bechtsis,	 and	 Bochtis	 2019).	 Data	 analytics,	machine	

learning,	 robotics,	 or	 any	 other	 AI	 technique	 applied	 in	 the	 farm	 through	 automated	

practices	 could	 provide	 recommendations,	 warnings,	 or	 even	 efficiency	 monitoring	 and	

enhance	the	farming	operations,	suggesting	opportunities	for	Agriculture	to	be	viable	again	

(Corallo	et	al.	2018).	

The	data	evolution	and	cutting-edge,	disruptive	technologies	have	shifted	the	paradigm	of	

conventional	 and	 modern	 agriculture	 and	 farming	 to	 smart	 and	 intelligent	 approaches.	

Following	 data-driven	 analytical	 technologies	 and	 high-performance	 computing,	 the	 AI	

context	was	reshaped	and	re-emerged	in	the	last	decade,	creating	numerous	opportunities	

for	 smart	 and	 data-intensive	 solutions	 in	 the	 AgriTech	 domain.	 Hence,	 AgriTech	 could	 be	

defined	 in	 today’s	 Agricultural	 context	 as	 the	 use	 of	 data-driven	 smart	 technologies	 and	



analytical	methods	for	enhancing	the	farming	practices,	operations	and	decision-making	in	

order	 to	 achieve	 in	 multiple	 forms	 and	 ways	 the	 economic	 efficiency	 and	 environmental	

sustainability	of	the	Agricultural	field.		

The	 authors	 of	 this	 research	 would	 like	 to	 highlight	 that	 the	 findings	 of	 this	 systematic	

review	should	be	considered	within	the	context	of	its	methodological	limitations.	It	is	to	be	

noted	 that	 In	order	 to	be	 thorough	and	conduct	an	exhaustive	 search	 in	an	SLR	 research,	

other	notable	databases	need	to	be	used	which	helps	with	being	able	to	cross-check	as	well	

as	explore	in-depth	the	area	of	interest.	So,	the	use	of	only	one	database	(i.e.	Scopus)	may	

be	considered	as	a	limitation	in	this	research.	The	authors	followed	a	strict	review	protocol	

to	 conduct	 a	 comprehensive	 search	 through	 the	 Scopus	 database	 to	 mitigate	 the	 risks	

associated	with	 relying	 on	 a	 single	 database.	 A	 summary	 of	 the	 implications	 of	 AI-driven	

AgriTech	applications	and	the	associated	future	research	required	in	the	field	of	operations	

is	highlighted	in	Table	7.	

Table	7.	 Future	considerations	for	AgriTech	Research.	

Area	of	
Research	 Future	Research	Considerations	

Farm	
Management	
Cycle	and	
Operations	

• How	Virtual	and	Augmented	Reality	can	enhance	the	applications	of	
precision	agriculture?	

• How	can	Smart	Indoor	Vertical	Farming	evolve	and	support	farming	
production?	

• How	can	future	AgriTech	innovations	reshape	the	farming	processes?		

Analytics	
Platforms	

• How	can	farming	analytics	(Farm	to	Fork	Analytics)	contribute	to	
sustainability	challenges?	

• How	can	Farming	Analytics	provide	an	advantage	to	small,	medium	
and	larger	farms?	

Sensor	
Technology	

• How	can	IoT-enabled	platforms	improve	farming	production	for	the	
sustainability	of	AgriFood	sector?	

• How	can	IoT-enabled	regenerative	agriculture	evolve	the	next	decade?		
• What	are	the	required	data	sharing	policies	in	order	to	ensure	privacy	

and	competitive	advantage	for	the	operations	of	each	farm?	



Robotics	

• What	are	the	next	AI	and	Robotics	Ventures	(ARV)	for	socially	and	
environmentally	responsible	farming?	

• What	is	the	role	of	AgriTech	robots	in	the	new	agricultural	operations?	
• How	can	3D	mapping	and	monitoring	contribute	to	the	sustainability	

goals	of	each	farm?	
• How	can	hybrid	(aerial-ground)	drones	improve	operation	

management	in	an	unmanned	way	for	agricultural	monitoring?	
• How	can	drones	be	used	for	remote	agricultural	operations	in	crisis	

situations?	
• How	can	hybrid	drones	and	manned	aviators	collaborate	for	precision	

agriculture?	

6 Implications	to	practice	

Triggered	by	the	urgency	to	deal	with	food	security,	the	digital	disruption	of	Agriculture	 is	

unique	by	its	roots	and	therefore	the	motivation	to	adopt	AgriTech	should	be	genuine	from	

farmers	 (CEMA	 -	 European	 Agricultural	 Machinery	 2017).	 	 While	 farmers	 are	 keen	 on	

applying	innovative	and	emerging	technologies	(e.g.	in	previous	centuries	and	decades	early	

adopters	started	with	the	wheel,	tractors,	fertilisers	etc.)	the	industrial	revolution	resulted	

in	large-scale	farming	and	massive	production	at	any	cost,	in	a	socially	and	environmentally	

unsustainable,	and	economically	inefficient	way	(Yahya	2018;	Zambon	et	al.	2019).	Despite	

the	challenges,	already	there	is	a	new	range	of	motivated	farmers	and	agricultural	start-ups	

adopting	disruptive	 technologies	 to	manage	 their	operations	 in	digitalised	and	automated	

ways.	 Disruptive	 technologies	 in	 Agricultural	 Sector,	 often	 dubbed	 as	 	 AgriTech,	 can	 be	

widely	 used	 by	 a	 new	 generation	 of	 farmers	 but	 also	 Agripreneurs,	 a	 new	 category	 of	

farmer-entrepreneurs	 trialling	AgriTech	 innovations	 for	 the	 farming	 field	 (Carayannis	et	al.	

2018).	 Agripreneurs	 consist	 of	 a	 new	 breed	 of	 educated	 entrepreneurs	 who	merge	 their	

knowledge	 and	 expertise	 on	 agriculture	 and	 farming	 with	 an	 acquired	 business	 and	

management	approach	 in	order	 to	bridge	 the	gap	between	 farming	practices	and	applied	

agribusiness	 principles.	 	 Among	 agribusiness	 principles,	 sustainability	 is	 becoming	

increasingly	 crucial	 for	 the	 success	 of	 Agrichains.	 Sustainable	 Agrichains	 are	 dealing	 with	

continued	 complexities	 of	 stakeholders’	 demands	 on	 Sustainable	 Development.	 As	

sustainability	 is	 becoming	 more	 complex,	 dealing	 with	 its	 challenges	 are	 also	 becoming	

challenging	 and	 costly	 for	 Agripreneurs.	 The	 initial	 pragmatic	 solution	 is	 to	 incorporate	

Agritech	 interventions	 to	 tackle	 the	 sustainablity	 challenges	 in	 Agrichains.	 Over	 the	 last	



decade,	 advances	 in	 Agritech	 solutions	 research	 have	 made	 a	 significant	 contribution	

towards	 the	 understanding	 and	 implementation	 of	 sustainablity	 criteria	 in	 farming	 and	

Agrichains.	

In	 a	 nutshell,	 with	 the	 application	 of	 new	 AgriTech	 technologies,	 every	 farmer	 could	

potentially	 become	 an	 Agripreneur	 and	 a	 champion	 of	 sustainability	 in	 the	 near	 future.	

Thus,	 the	 role	 of	 Operations	 Management	 is	 vital	 to	 bridge	 the	 research	 gap	 between	

“Agricultural	 Technology”	 and	 “Sustainable	 Agricultural	 Operations”	 and	 equip	 the	 future	

generation	of	farmers-agripreneurs.	

7 Conclusions	

Drawing	 on	 the	 recent	 advances	 of	 disruptive	 technologies	 for	 agriculture	 the	 review	

provided	interesting	insight	in	the	field	of	AI-driven	AgriTech	research.	The	synthesis	of	the	

literature	can	act	as	a	normative	reference	for	the	Operations	discipline	when	studying	the	

thematic	area	of	disruptive	agricultural	technologies.	The	key	findings	of	this	review	in	line	

with	the	initial	three	research	questions	are	as	follows:	

• Key	Types	of	Disruptive	Technologies	and	Categories	of	AgriTech	 (Q1	and	Q2):	The	

analysis	 highlights	 that	 majority	 of	 the	 types	 of	 disruptive	 technologies	 in	 the	

agricultural	 sector	 can	 be	 categorised	 into	 three	 application	 areas.	 The	 first	 is	 (1)	

Physical	AgriTech	application	 type	which	highlights	 the	use	of	machinery	and	 tools	

for	 agricultural	 operations	 which	 can	 replace	 not	 only	 human	 labour	 tasks	 (e.g.	

robotic	machinery,	irrigation	systems	etc.)	but	also	presents	physical	features	as	the	

“hardware”	of	AgriTech.	The	second	is	(2)	Cyber	AgriTech	as	applications	which	are	

mostly	 platform-software	 related	 and	 have	 a	 strong	 link	 with	 data	 analytics	 and	

decision	 support	 systems	 for	 agricultural	 operations.	 	 Finally,	 (3)	 Cyber-physical	

application	area	which	mainly	refers	to	the	use	of	smart	agricultural	machinery	and/	

or	 robotics	 for	 the	 farm	 which	 include	 the	 hardware	 and	 the	 software	 for	 data	

analysis	 and	 predictive/prescriptive	 tailored	 decision-making,	 advice	 and	

recommendations.	

• Role	of	AI	applications	in	Agricultural	Operations	(Q3):	The	analysis	highlighted	that	

AI-driven	 AgriTech	 could	 disrupt	 Agricultural	 Operations	 and	 provide	 new	ways	 of	



farming	practices.	There	 is	still	an	open	discussion	around	various	 implications	and	

future	 considerations	 in	 the	 Operations	 field.	 The	 Operations	 scholars	 have	 a	 key	

role	to	play	in	future	AgriTech	research	in	order	to	define	and	efficiently	design	the	

operational	context	around	AI-driven	AgriTech.	

The	 findings	 of	 the	 systematic	 review	 will	 assist	 both	 academics	 and	 practitioners	 with	

interest	 in	 the	 agricultural	 sector	 to	 develop	 new	 solutions	 based	 on	 the	 challenges	

identified	in	this	paper.	Also,	it	 integrates	multiple	disciplines	and	approaches	for	different	

research	 fields	 (spanning	 from	 engineering,	 biotechnology,	 to	 data	 science,	 cognitive	

processes	of	decision-making,	etc.).	It	is	evident	from	the	comprehensive	review	conducted	

that	 there	 is	 growing	 interest	 in	 the	 use	 of	 AI	 and	 data	 science	 to	 support	 the	 use	 of	

disruptive	technologies;	motivated	to	enhance	productivity,	reduce	cost,	 integrate	systems	

and,	promote	sustainable	farming	and	food	production	practice.	
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