4,454 research outputs found

    Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Get PDF
    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings

    Proceedings of the 1994 Monterey Workshop, Increasing the Practical Impact of Formal Methods for Computer-Aided Software Development: Evolution Control for Large Software Systems Techniques for Integrating Software Development Environments

    Get PDF
    Office of Naval Research, Advanced Research Projects Agency, Air Force Office of Scientific Research, Army Research Office, Naval Postgraduate School, National Science Foundatio

    Data-driven extraction and analysis of repairable fault trees from time series data

    Get PDF
    Fault tree analysis is a probability-based technique for estimating the risk of an undesired top event, typically a system failure. Traditionally, building a fault tree requires involvement of knowledgeable experts from different fields, relevant for the system under study. Nowadays’ systems, however, integrate numerous Internet of Things (IoT) devices and are able to generate large amounts of data that can be utilized to extract fault trees that reflect the true fault-related behavior of the corresponding systems. This is especially relevant as systems typically change their behaviors during their lifetimes, rendering initial fault trees obsolete. For this reason, we are interested in extracting fault trees from data that is generated from systems during their lifetimes. We present DDFTAnb algorithm for learning fault trees of systems using time series data from observed faults, enhanced with Naïve Bayes classifiers for estimating the future fault-related behavior of the system for unobserved combinations of basic events, where the state of the top event is unknown. Our proposed algorithm extracts repairable fault trees from multinomial time series data, classifies the top event for the unseen combinations of basic events, and then uses proxel-based simulation to estimate the system’s reliability. We, furthermore, assess the sensitivity of our algorithm to different percentages of data availabilities. Results indicate DDFTAnb’s high performance for low levels of data availability, however, when there are sufficient or high amounts of data, there is no need for classifying the top event

    Model-connected safety cases

    Get PDF
    Regulatory authorities require justification that safety-critical systems exhibit acceptable levels of safety. Safety cases are traditionally documents which allow the exchange of information between stakeholders and communicate the rationale of how safety is achieved via a clear, convincing and comprehensive argument and its supporting evidence. In the automotive and aviation industries, safety cases have a critical role in the certification process and their maintenance is required throughout a system’s lifecycle. Safety-case-based certification is typically handled manually and the increase in scale and complexity of modern systems renders it impractical and error prone.Several contemporary safety standards have adopted a safety-related framework that revolves around a concept of generic safety requirements, known as Safety Integrity Levels (SILs). Following these guidelines, safety can be justified through satisfaction of SILs. Careful examination of these standards suggests that despite the noticeable differences, there are converging aspects. This thesis elicits the common elements found in safety standards and defines a pattern for the development of safety cases for cross-sector application. It also establishes a metamodel that connects parts of the safety case with the target system architecture and model-based safety analysis methods. This enables the semi- automatic construction and maintenance of safety arguments that help mitigate problems related to manual approaches. Specifically, the proposed metamodel incorporates system modelling, failure information, model-based safety analysis and optimisation techniques to allocate requirements in the form of SILs. The system architecture and the allocated requirements along with a user-defined safety argument pattern, which describes the target argument structure, enable the instantiation algorithm to automatically generate the corresponding safety argument. The idea behind model-connected safety cases stemmed from a critical literature review on safety standards and practices related to safety cases. The thesis presents the method, and implemented framework, in detail and showcases the different phases and outcomes via a simple example. It then applies the method on a case study based on the Boeing 787’s brake system and evaluates the resulting argument against certain criteria, such as scalability. Finally, contributions compared to traditional approaches are laid out

    Development of a web application for touristic data categorization and trip planning

    Get PDF
    The goal of the project is to retrieve and categorize points of touristic interest. Based on these points, the application can generate a customized journey. The project reports the design and implementation of a client-server web application developed using ReactJs and NodeJS

    Conceptual design study for an advanced cab and visual system, volume 2

    Get PDF
    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation

    Node-Based Native Solution to Procedural Game Level Generation

    Get PDF
    A Geração Procedural de Conteúdo (PCG) aplicada ao domínio do desenvolvimento de jogos tem se tornado um tópico proeminente, com um número crescente de implementações e aplicações. Soluções de PCG standalone e plugin, regidas por interfaces baseadas em nós e outros modelos de alto nível, enfrentam limitações em termos de integração, interatividade e responsividade quando inseridas no processo de desenvolvimento de jogos. Essas limitações afetam a experiência do utilizador e inibem o verdadeiro potencial que estes sistemas podem oferecer. Adotando uma metodologia de Action-Research, realizou-se um estudo preliminar com entrevistas a especialistas da área. A avaliação da pertinência desta metodologia nativa e da abordagem visual mais adequada para a sua interface foi efetuada através de uma série de protótipos. Posteriormente, foi implementado um protótipo funcional e conduzido um estudo de caso com uma amostra constituída por um grupo de especialistas em PCG e de desenvolvedores de jogos. Os participantes realizaram uma série de exercícios que estavam documentados com os respetivos tutoriais. Após a conclusão dos exercícios propostos, os participantes avaliaram a relevância da solução e da experiência do utilizador através de um questionário. No desenvolvimento de uma metodologia nativa de PCG baseado em nós, integrado no motor de jogo, identificamos limitações e concluímos que existem diversos desafios ainda por superar no que diz respeito a uma implementação completa de um sistema complexo e amplo.Procedural Content Generation (PCG) applied to game development has become a prominent topic with increasing implementations and use cases. However, existing standalone and plugin PCG solutions, which use Node-based interfaces and other high-level approaches, face limitations in integration, interactivity, and responsiveness within the game development pipeline. These limitations hinder the overall user experience and restrain the true potential of PCG systems. Adopting an Action-Research methodology, a preliminary interview was conducted with experts in the field. The relevance assessment of this native methodology and the most suitable visual approach for its interface was carried out through a series of prototypes. Subsequently, a functional prototype was implemented, and a case study was conducted using a sample consisting of a group of PCG experts and game developers. The participants performed a series of exercises documented with the respective tutorials. After completing the exercises, the solution's relevancy and user experience were evaluated through a questionnaire. In developing a native node-based PCG methodology integrated into the game engine, we identified limitations. We concluded that several challenges are yet to be overcome regarding fully implementing a complex and extensive system

    Design and Implementation of HD Wireless Video Transmission System Based on Millimeter Wave

    Get PDF
    With the improvement of optical fiber communication network construction and the improvement of camera technology, the video that the terminal can receive becomes clearer, with resolution up to 4K. Although optical fiber communication has high bandwidth and fast transmission speed, it is not the best solution for indoor short-distance video transmission in terms of cost, laying difficulty and speed. In this context, this thesis proposes to design and implement a multi-channel wireless HD video transmission system with high transmission performance by using the 60GHz millimeter wave technology, aiming to improve the bandwidth from optical nodes to wireless terminals and improve the quality of video transmission. This thesis mainly covers the following parts: (1) This thesis implements wireless video transmission algorithm, which is divided into wireless transmission algorithm and video transmission algorithm, such as 64QAM modulation and demodulation algorithm, H.264 video algorithm and YUV420P algorithm. (2) This thesis designs the hardware of wireless HD video transmission system, including network processing unit (NPU) and millimeter wave module. Millimeter wave module uses RWM6050 baseband chip and TRX-BF01 rf chip. This thesis will design the corresponding hardware circuit based on the above chip, such as 10Gb/s network port, PCIE. (3) This thesis realizes the software design of wireless HD video transmission system, selects FFmpeg and Nginx to build the sending platform of video transmission system on NPU, and realizes video multiplex transmission with Docker. On the receiving platform of video transmission, FFmpeg and Qt are selected to realize video decoding, and OpenGL is combined to realize video playback. (4) Finally, the thesis completed the wireless HD video transmission system test, including pressure test, Web test and application scenario test. It has been verified that its HD video wireless transmission system can transmit HD VR video with three-channel bit rate of 1.2GB /s, and its rate can reach up to 3.7GB /s, which meets the research goal

    Intelligent Fault-Tolerant Mechanism for Data Centers of Cloud Infrastructure

    Get PDF
    Fault tolerance in cloud computing is considered as one of the most vital issues to deliver reliable services. Checkpoint/restart is one of the methods used to enhance the reliability of the cloud services. However, many existing methods do not focus on virtual machine (VM) failure that occurs due to the higher response time of a node, byzantine fault, and performance fault, and existing methods also ignore the optimization during the recovery phase. This paper proposes a checkpoint/restart mechanism to enhance reliability of cloud services. Our work is threefold: (1) we design an algorithm to identify virtual machine failure due to several faults; (2) an algorithm to optimize the checkpoint interval time is designed; (3) lastly, the asynchronous checkpoint/restart with log-based recovery mechanism is used to restart the failed tasks. The valuation results obtained using a real-time dataset shows that the proposed model reduces power consumption and improves the performance with a better fault tolerance solution compared to the nonoptimization method
    corecore