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A B S T R A C T   

Fault tree analysis is a probability-based technique for estimating the risk of an undesired top event, typically a 
system failure. Traditionally, building a fault tree requires involvement of knowledgeable experts from different 
fields, relevant for the system under study. Nowadays’ systems, however, integrate numerous Internet of Things 
(IoT) devices and are able to generate large amounts of data that can be utilized to extract fault trees that reflect 
the true fault-related behavior of the corresponding systems. This is especially relevant as systems typically 
change their behaviors during their lifetimes, rendering initial fault trees obsolete. For this reason, we are 
interested in extracting fault trees from data that is generated from systems during their lifetimes. We present 
DDFTAnb algorithm for learning fault trees of systems using time series data from observed faults, enhanced with 
Naïve Bayes classifiers for estimating the future fault-related behavior of the system for unobserved combinations 
of basic events, where the state of the top event is unknown. Our proposed algorithm extracts repairable fault 
trees from multinomial time series data, classifies the top event for the unseen combinations of basic events, and 
then uses proxel-based simulation to estimate the system’s reliability. We, furthermore, assess the sensitivity of 
our algorithm to different percentages of data availabilities. Results indicate DDFTAnb’s high performance for 
low levels of data availability, however, when there are sufficient or high amounts of data, there is no need for 
classifying the top event.   

1. Introduction 

Fault Tree Analysis (FTA) is a prominent method in analysing safety 
and reliability of systems (Vesely et al., 1981; Lee et al., 1985; Ruijters 
and Stoelinga, 2015). While in most of the real-world cases, it is 
necessary to consider both failures and repairs for components of a 
system, traditional fault trees do not consider repairable components. 
Repairable fault trees address this issue and consider information not 
only about failure times of basic components, but also about mainte-
nance or repairs within a system. 

Multi-state fault trees have the same structure as regular fault trees, 
but the components or the system may have more than two functioning 
levels. If the system and its components, either completely function or 
fail, reliability analysis for this system has a binary perspective. None-
theless, there are systems that operate at various levels of performance, 
which usually yields more than two states associated with basic events 
(Lisnianski and Levitin, 2003). Studies have been dedicated to analyse 
these types of systems (Compare et al., 2017; Barlow and Heidtmann, 

1984; Nadjafi et al., 2017; Caldarola, 1980). 
Many extensions of fault trees have been proposed in the literature, 

each having their own variety of shortcomings and assumptions. How-
ever, even with the emerging availability of data through Internet of 
Thing (IoT) devices and all existing software tools, yet fault tree analysis 
requires a lot of manual effort and expert knowledge. Hence, the pos-
sibility to use data-driven methods to extract information about the 
status of a system under study has not yet been fully explored. Data- 
driven approaches are gaining attraction in many areas for their abil-
ity to analyse data from a system to derive the system’s behaviour 
(Huang et al., 2021; Solomatine and Ostfeld, 2008). Big data are 
nowadays collected in a large portion of manufacturing systems, espe-
cially in non-safety–critical systems, where faults are more common 
occurrence and do not have associated catastrophic consequences. Data- 
driven fault detection, diagnosis or prediction are well-studied using 
machine learning and data mining methods (Dogan and Birant, 2021; 
Ayvaz and Alpay, 2021). However, completely ignoring human cogni-
tive capabilities and expert knowledge causes a great loss of informa-
tion, which might only be compensated by collecting large amounts of 

* Corresponding author. 
E-mail addresses: parni@mmmi.sdu.dk (P. Niloofar), sanja.lazarova-molnar@kit.edu (S. Lazarova-Molnar).  

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2022.119345 
Received 2 December 2021; Received in revised form 16 September 2022; Accepted 22 November 2022   

mailto:parni@mmmi.sdu.dk
mailto:sanja.lazarova-molnar@kit.edu
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.119345
https://doi.org/10.1016/j.eswa.2022.119345
https://doi.org/10.1016/j.eswa.2022.119345
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119345&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 215 (2023) 119345

2

data that is costly in many aspects. Hence, a systematic method for 
fusion of data and expert knowledge can increase the accuracy in reli-
ability analysis of a system (Niloofar and Lazarova-Molnar, 2021). 

Models extracted from observational data are often used to predict 
future behaviours of systems under study for unseen inputs of the 
models. When it comes to learning/extracting fault tree models from 
fault records of the components in a system, one also needs to know how 
unseen events/failures of components or combinations of events/fail-
ures of components impact the overall system, i.e., whether they lead to 
system failures or not. To address the issue of unavailability of data for 
unseen events or combinations of events, we present DDFTAnb that adds 
a classification functionality to the DDFTA algorithm introduced by 
Lazarova-Molnar et al. (2020), in an attempt to forecast system’s 
behavior for unobserved combinations of basic events. Our proposed 
extended algorithm, DDFTAnb, first extracts repairable multi-state fault 
trees from observational multinomial time series data, then analyses the 
results to estimate reliability and maintainability distributions of basic 
events, and finally estimates the future behaviour of the system for the 
unobserved occurrences of combinations of basic events. Data-driven 
modelling can detect hidden causes of a system failure which are not 
evident utilizing solely expert knowledge. However, expert knowledge 
can be deployed as a prior information into the model and can also be 
supplemented for model validation. The highlights of the paper are:  

1. Learning structures of repairable multi-state fault trees using only 
time series data from faults and other relevant basic events that 
contribute to a system failure  

2. Working with reliability and maintainability distributions other than 
exponential  

3. Estimating future fault-related behaviours of systems in terms of 
fault tree structures and systems’ reliabilities 

4. Simulating fault trees using proxel-based simulation, which is espe-
cially well suited for simulating complex stochastic dependencies 
and different probability distributions. 

The rest of the paper is organized as follows. Section 2 presents the 
literature review. Section 3 provides the methodology where DDFTAnb 
with its classification module are described in details. In Section 4, two 
case studies are demonstrated, and finally, in Section 5, we conclude the 

paper. 

2. Literature review 

Classic FTA is primarily knowledge-driven, rather than data-driven. 
This can limit the capacity of the generated fault trees in depicting the 
true fault-related behaviours of the corresponding systems, especially as 
systems often evolve and change their behaviours during their lifetimes, 
rendering initial fault trees obsolete. Model building based on experts’ 
knowledge alone is becoming outdated with evolving systems designs, 
data collection technologies, and blockchain-based data storage and 
access frameworks. 

Automation of extracting dependability information from system 
models has led to the field of model-based dependability analysis 
(MBDA) (Sharvia et al., 2016; Aizpurua and Muxika, 2013; Kabir, 2017). 
Different tools and techniques have been developed as part of MBDA to 
automate the generation of dependability analysis artefacts such as fault 
trees (Papadopoulos and McDermid, 1999; Feiler et al., 2006; Arnold 
et al., 2000). Besides model-based approaches, statistical and artificial 
intelligence methods are another solution for automating or semi- 
automating the extraction of dependability information from systems 
(Jardine et al., 2006; Zhang et al., 2017). 

While model-based methodologies need information about the 
physical characteristics of the system for the establishment of an explicit 
mathematical model, statistical models use historical data to represent 
and predict the future behaviour of a system. In addition, artificial in-
telligence techniques are suitable for addressing the complex and large- 
scale nonlinear problems that mostly requires no statistical assumptions 
about the data. Neural computation, evolutionary algorithms, and fuzzy 
computing as different categorizations of computational intelligence 
(which is a branch of artificial intelligence) have been applied for fault 
detection and classification (Chen et al., 2008; Zheng et al., 2017; 
Theodoropoulos et al., 2021; Brito et al., 2022). The applications of 
(explainable) artificial intelligence techniques for fault diagnosis and 
machinery monitoring is a subject based on the theory of signal pro-
cessing and pattern recognition, and these techniques are mostly used 
for estimating the remaining useful life (Sikorska et al., 2011; Ayvaz and 
Alpay, 2021). However, some researchers combine artificial intelligence 
and statistical approaches with FTA, which we note in the following. 

Nomenclature 

AADL Architecture Analysis & Design Language 
ACC Accuracy 
AltaRica Altarica Language and Its Semantics 
BE Basic Event 
DAG Directed Acyclic Graph 
DDFTA Data Driven Fault Tree Analysis 
DDFTAnb Data Driven Fault Tree Analysis enhanced with Naïve 

Bayes classifier 
Dij Disk number ij 
FN False Negative 
FP False Positive 
FTA Fault Tree Analysis 
f/h failures per hour 
HiP-HOPS Hierarchically Performed Hazard Origin & Propagation 

Studies 
IE Intermediate Event 
IFT Induction of Fault Trees 
ILTA Interpretable Logic Tree Analysis 
IoT Internet of Things 
LIFT Learning Fault Trees from observational data 
MAP Maximum a Posteriori 

MBDA Model Based Dependability Analysis 
MCS Minimal Cut Sets 
Mi Memory number i 
MILTA Multi-Level Interpretable Logic Tree Analysis 
MP Multiprocessor 
MTTF Mean Time to Failure 
MTTR Mean Time to Repair 
NB Naïve Bayes 
Pi Processor number i 
Proxel Probability Elements 
PS Power Supply 
RBC Radio Block Center 
RMSE Root Mean Square Error 
SHyFTA Stochastic Hybrid Fault Tree Automaton 
T Total time 
TE Top Event 
TN True Negative 
TP True Positive 
Ui Unavailability at time step i 
Ûi Estimated unavailability at time step i 
Δt Size of a time step  
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Lampis and Andrews (2009) applied Bayesian Belief networks to 
diagnose faults in a system. They first constructed fault trees to indicate 
how the component failures can combine to cause unexpected de-
viations in the variables monitored by the sensors, and then converted 
these fault trees into Bayesian networks for further analysis. Cai et al. 
(2015) addressed a case study of subsea pipe ram BOP system by pro-
posing a new method for real-time reliability analysis through a com-
bination of traditional and dynamic Bayesian networks. In this study, 
prior reliability knowledge of the system (failure distributions) is 
updated via dynamic Bayesian networks. In FTA, basic components are 
assumed to be independent and this is a strong assumption for some 
dynamic systems. Guo et al. (2021) proposed a reliability analysis model 
for dynamic systems with common cause failures based on discrete-time 
Bayesian networks. They applied their model for fault diagnosis of a 
digital safety-level distributed control system of nuclear power plants. 
These studies do not apply observational/historical data to build or to 
learn the fault tree structure, but some researchers use data to update or 
estimate the failure rates (Cai et al., 2015). 

Observational data were used to generate FTs with the IFT (Induction 
of Fault Trees) algorithm (Nolan et al., 1994) based on standard 
decision-tree statistical learning. Later, Liggesmeyer and Rothfelder 
(1998) coined the term formal risk analysis and developed an approach 
for automatically generating a fault tree from finite state machine-based 
descriptions of a system where the generated fault tree is complete with 
respect to all failures assumed possible. Mukherjee and Chakraborty 
(2007) describe a technique to automatically generate fault trees using 
historical maintenance data in text form. Their technique relies on 
domain knowledge and linguistic analysis. Majdara and Wakabayashi 
(2009) represent a new system of modelling approach, composed of 
some components and different types of flows propagating through 
them, for computer-aided fault tree generation. Chiacchio et al. (2016) 
combined the Dynamic Fault Tree technique and the Stochastic Hybrid 
Automaton within the Simulink environment that represented an 
important step ahead for the delivering of a user-friendly computer- 
aided tool for the dynamic reliability. They also developed a library 
called Stochastic Hybrid Fault Tree Automaton (SHyFTA) that allows the 
accurate dependability analysis of repairable multi-state systems 
(Chiacchio et al., 2020). Nauta et al. (2018) introduced LIFT (Learning 
Fault Trees from observational data) to learn structures of static fault 
trees from untimed data bases with Boolean event variables, however, 
their method needs information about intermediate events. Linard et al. 
(2019) applied an evolutionary algorithm to learn fault trees from 
untimed Boolean basic event variables. Instead of the independence test 
in the LIFT algorithm, they used a score-based algorithm to extract fault 
trees. Furthermore, Waghen and Ouali (2019) proposes interpretable 
logic tree analysis (ILTA), which characterizes and quantifies event 
causality occurring in engineering systems with the minimum involve-
ment of human experts. Their method is an integration of two concepts: 
knowledge discovery in database and fault tree analysis, which was 
improved to a multi-level interpretable logic tree (MILTA) (Waghen and 
Ouali, 2021). Qian et al. (2021), for the first time, applied association 
rule analysis to extract fault trees from overhead contact system of an 
electrified railway. They first transform the failure records of overhead 
contact system into transaction database, and then the extracted asso-
ciation rules from the data are converted to a fault tree. Lazarova-Molnar 
et al. (2020) introduce DDFTA algorithm that uses time series data of 
faults to extract repairable multi-state fault tree of a system. 

The above-mentioned techniques have different requirements; 
however, except for the work of Lazarova-Molnar et al. (2020), they 
cannot extract reliability models from time series data recorded from 
multi-state/repairable systems. Also, labelling the top event is not 
studied in the literature. Time series data of a system consists of a 
sequence of status change times for each basic event and the system 
state. In this study, we follow the work of Lazarova-Molnar et al. (2020) 
and add a classification module so that the algorithm does not only 
extract repairable multi-state fault trees from observational data, but 

also makes predictions on the future reliability state of the system. Being 
able to label the system state (classify the top event), becomes more 
important when the system contains rare events (or components with 
rare failures), which is the case for safety critical systems, or for systems 
composed of so many components that observing all the possibilities 
becomes unfeasible and non-realistic. 

In the following, we provide background on the relevant concepts 
and methods that we refer to in this paper, i.e., repairable multi-state 
fault trees, Naïve Bayes classifier and proxel-based simulation. 

2.1. Repairable multi-state fault trees 

A fault tree is a Directed Acyclic Graph (DAG) whose leaves are the 
basic events (typically basic faults), and the root represents the top 
event, which is typically a system failure. The gates in a fault tree 
represent the propagation of failure through the tree (Ruijters and 
Stoelinga, 2015). Multi-state fault trees have the same structure of 
regular fault trees, except that the components or the system may have 
more than two functioning levels. In other words, the state space of the 
system and its components may be represented by {0,1,⋯,M}, where 
0 indicates a completely failed state, M indicates a perfectly working 
state, and the others are degraded states. Repairable fault trees consider 
both faults and repairs within a system. Hence, for each basic event that 
is typically associated with a fault, there are probability distributions 
that describe the fault’s occurrences and repair times. 

There are two essential analysis techniques for fault trees, qualitative 
analysis, and quantitative analysis. Qualitative analysis considers the 
structure of the fault tree, while the quantitative analysis computes 
failure probabilities, reliability, etc. of the system represented by the 
fault tree. The first step towards computing reliability of a system is to 
extract the structure of the system’s underlying fault tree. When the 
structure of the fault tree is extracted, using the probability distribution 
functions of the basic events, we can calculate the reliability of the 
system, the likelihood of a top event occurrence, as well as those of the 
basic events that have caused the occurrence of the top event. The re-
sults of quantitative analysis give analysts an indication about system 
reliability and also help to determine which components or parts of the 
system are more critical so analysts can put more emphasis on the 
critical components or parts by taking necessary steps, e.g., including 
redundant components in the system model (Kabir, 2017). 

2.2. Naïve Bayes classifier 

The Naïve Bayes (NB) classifier is a probability-based supervised 
learning classification method which is well studied in the literature. NB 
is among the simplest Bayesian Network models and has received much 
attention due to its simple classification model and excellent classifica-
tion performance. An early description can be found in Duda and Hart 
(1973). Domingos and Pazzani (1996) discuss its feature independence 
assumption and explain why Naïve Bayes performs well for classification 
even with such an over-simplified assumption. 

In this paper, we apply NB to classify the state of the system for the 
unobserved combinations of basic events. Basic events, which are al-
ways considered independent, are the features in NB, and the top event 
is the class variable. We use observed data from fault occurrences related 
to basic events as a training set to fit the NB model, and we use the 
unobserved combinations of basic events as a testing set. NB first cal-
culates the posterior for the top event and then applies the maximum a 
posteriori (MAP) decision rule: the label is the class with the max-
imum posterior. Those combinations of basic events in the testing set for 
which the top event is classified as “failed”, along with those in the 
training set, where the state of the top event is “failed”, are considered 
cut sets. These predicted cut sets are used to extract minimal cut sets that 
will construct the predicted behaviour of the system in terms of a fault 
tree. 

Challenging point in data-driven modelling of faults for classification 
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tasks is the imbalanced proportion of classes as faults are rarely 
observed, especially for highly reliable systems. Hence, we are troubled 
with an imbalanced classification where one class of the dependent 
(response) variable (here, working state) outnumbers the other class 
(failed state) by a large proportion. There are many ways to combat this 
issue, where the very best is to accumulate more data. This, however, is 
not possible in our case. Another approach is to manually balance the 
classes. One common method of doing this is to upsample/oversample 
the minority class or undersample the majority class using resampling 
(bootstrapping) techniques. In this study we upsample the faulty state to 
balance the classes and apply bootstrapping techniques. 

2.3. Proxel-based simulation 

Proxel-based simulation is a state space-based simulation method to 
compute transient solutions for discrete stochastic systems. It relies on a 
user-definable discrete time step and computes the probability of all 
possible single state changes (and the case that no change happens at all) 
during a time step. The target states along with their probabilities are 
stored as so-called proxels (short for probability elements). To account 

Fig. 1. Overall framework of DDFTAnb algorithm with the classifica-
tion module. 

Fig. 2. The process workflow of the DDFTA algorithm.  

Fig. 3. Workflow of classification module for DDFTAnb algorithm.  
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for aging (i.e., non-Markovian) transitions, proxels contain supplemen-
tary variables that keep track of the ages of all active and all race-age 
transitions. For each proxel created, the algorithm iteratively com-
putes all successors for each time step. This results in a tree of proxels 
where all proxels having the same distance from the tree root belong to 
the same time step and all leaf proxels represent the possible states being 
reached at the end of the simulation. 

Proxel-based simulation explores all possible future developments of 
the system each with a determined computable probability, based on the 

distribution functions which describe the events, as well as the time they 
have been pending, in discrete time steps. It determines all possible 
follow-up states and the rendering probability of the corresponding state 
transitions. The proxel-based simulation is well-known for its ability to 
cope with stiff models, as fault models are typically (Lazarova-Molnar 
and Horton, 2003; Lazarova-Molnar, 2005). 

3. Methodology 

In this section, we describe the methods and techniques that we 
developed to enable the data-driven reliability modelling and analysis to 
extract repairable multi-state fault trees from observational data and to 
estimate the future reliability state of the system. The overall framework 
that describes the high-level workflow of DDFTAnb algorithm is shown 
in Fig. 1, and more detailed workflows are illustrated in Fig. 2 and Fig. 3. 

DDFTA, as illustrated in Fig. 2, comprises of three steps (Lazarova- 
Molnar et al., 2020): 1) converting time series data of faults into a truth 
table with time steps, 2) structure learning and parameter learning of the 
fault tree, and 3) estimating reliability measures. To learn the structure 
of the fault tree, we extract the minimal cut sets (MCS) from the time 

Table 1 
Time series data of faults converted into a truth table.  

Time BE1 BE2 BE3 BE4 BE5 TE  

17.96968 0 0 1 1 0 0  
18.63438 0 1 1 1 0 1  
20.1585 0 1 1 0 0 0  
21.11844 1 1 1 0 0 0  
21.52825 0 1 1 0 0 0  
22.12907 0 0 1 0 0 0  
23.07983 0 0 1 1 0 0  
24.67361 0 0 1 0 0 0  
24.74219 1 0 1 0 0 0  
25.01376 1 0 1 1 0 1  

Table 2 
Sets of cut sets and minimal cut sets for the truth table data of 
Table 1.  

Cut sets Minimal cut sets 

{BE2, BE3, BE4} {BE2, BE3, BE4} 
{BE1, BE3, BE4} {BE1, BE3, BE4}  

Table 3 
Constructing the fault tree based on the minimal cut sets of 
Table 2.  

Step Boolean representation 

1 TE=(BE1.BE3.BE4)  
+(BE2.BE3.BE4) 

2 TE=(BE1 + BE2). (BE3.BE4) 

3 TE = IE1.IE2  

Fig. 4. Fault tree constructed from data of Table 1.  

Table 4 
Truth table with a multi-state event BE1 (up) turned into a truth table with bi-
nary events (down).  

Time BE1 BE2 BE3 TE  

17.96968 0 0 1 0  
18.63438 0 1 1 1  
20.1585 2 1 1 1  
21.11844 1 1 1 0  
21.52825 0 1 1 0  
22.12907 0 0 1 0  
23.07983 2 0 1 0  
24.67361 0 0 1 0  
24.74219 1 0 1 0  
25.01376 1 0 1 1  

Time BE1_1 BE1_2 BE2 BE3 TE  

17.96968 0 0 0 1 0  
18.63438 0 0 1 1 1  
20.1585 0 1 1 1 1  
21.11844 1 0 1 1 0  
21.52825 0 0 1 1 0  
22.12907 0 0 0 1 0  
23.07983 0 1 0 1 0  
24.67361 0 0 0 1 0  
24.74219 1 0 0 1 0  
25.01376 1 0 0 1 1  

Fig. 5. Multi-state fault tree extracted from the data in Table 4.  
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series data set, and then use Boolean algebra to build a fault tree that is 
aimed to be mathematically identical to the true fault tree of the system. 
For parameter learning, reliability and repair distribution functions of 
the basic events, along with the fault tree structure, are inputs to the 
proxel-based simulation in the final step, which is used to calculate the 
system’s reliability measures, in form of complete transient solutions. 
The classification module of DDFTAnb algorithm is described in the 
Section 3.1. 

3.1. Classification module for DDFTAnb algorithm 

The basic DDFTA approach performs reliability analysis based on 
observed components’ faults. DDFTA, however, does not provide a 
robust solution for very rare events or cases of small amounts of data 
with low resolution, where not all possible combinations of basic events 
have occurred and the corresponding top event statuses are unknown. 

The DDFTA approach (Fig. 2) begins by converting time series data of 
faults to a truth table with time steps. The next steps are structure 
learning and parameter learning, and the final step is estimating reli-
ability measures. In this section, the classification module of the 
advanced DDFTAnb approach, as illustrated in Fig. 3, is described in 
detail. 

The classification module for the DDFTAnb algorithm consists of six 
steps: 1) dividing the truth table with time steps into training set and 
testing sets, 2) fitting Naïve Bayes classifier to the training set, 3) clas-
sification of the top event for the testing set using the fitted Naïve Bayes 
model, 4) learning the fault tree structure from the combination of 
training and testing data set, 5) learning the fault tree parameters from 
the training set, and finally 6) estimate reliability measures. DDFTAnb 
with its classification module are better explained through an illustra-
tive example in the next section. 

Fig. 6. First three time steps of proxel simulation.  

Fig. 7. Unavailabilities of basic events along with the top event for the fault tree from Fig. 4.  
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3.2. Illustrative example 

Assume that time series data on faults for a system with five basic 
components (BEi, i = 1, 2, …, 5) and the top event (TE) are collected 
until a specific point in time. The goal is to use these observed time series 
data to assess the current reliability of the system and estimate the future 
structure of the system’s fault tree as well as its reliability measures. For 
simplicity and without loss of generality, we assume that the observed 
data contain 10 records as in Table 1. 

3.2.1. DDFTA algorithm 
According to DDFTA, the first step is to convert the time series data of 

faults to a truth table with time stamp. Table 1 shows the time-stamped 
truth table of the collected data, where 0 indicates working state and 1 
shows failure state. 

Structure Learning: To build the structure of the fault tree, we need 
to extract the minimal cut sets. Those rows in Table 1, where the system 
is failed (TE has label 1) indicate the cut sets (Table 2), and since they 
cannot be reduced to smaller cut sets, they are also minimal cut sets. 
These minimal cut sets build the structure of the fault tree (Table 3), 
which is also shown in Fig. 4. 

To extract the minimal cut sets of a multi-state fault tree, the multi- 
state events with m (>2) number of states, are converted into m-1 binary 
events. Assume a system with three basic events {BE1, BE2, BE3}, in 

Table 5 
The power set for the five binary basic events and the number of occurrences in parentheses.   

BE1 BE2 BE3 BE4 BE5 TE (#)  BE1 BE2 BE3 BE4 BE5 TE 

1 1 0 1 0 0 0 (1) 17 1 0 0 0 0 NA 
2 0 0 1 0 0 0 (2) 18 1 0 0 0 1 NA 
3 0 0 1 1 0 0 (2) 19 1 0 0 1 0 NA 
4 0 1 1 0 0 0 (2) 20 1 0 0 1 1 NA 
5 0 1 1 1 0 1 (1) 21 0 0 0 1 0 NA 
6 1 1 1 0 0 0 (1) 22 1 0 1 0 1 NA 
7 1 0 1 1 0 1 (1) 23 0 1 0 0 0 NA 
8 0 0 0 0 0 0 24 0 1 0 0 1 NA 
9 1 1 1 1 1 1 25 1 1 0 0 0 NA 
10 1 0 1 1 1 1 26 1 1 0 0 1 NA 
11 1 1 1 1 0 1 27 1 1 0 1 0 NA 
12 0 1 1 1 1 1 28 1 1 0 1 1 NA 
13 0 0 0 1 1 NA 29 0 0 1 1 1 NA 
14 0 0 0 0 1 NA 30 1 1 1 0 1 NA 
15 0 1 0 1 0 NA 31 0 0 1 0 1 NA 
16 0 1 0 1 1 NA 32 0 1 1 0 1 NA  

Table 6 
Classification results for the top event using Naïve Bayes classifier.   

BE1 BE2 BE3 BE4 BE5 Classified TE 

13 0 0 0 1 1 0 
14 0 0 0 0 1 0 
15 0 1 0 1 0 1 
16 0 1 0 1 1 1 
17 1 0 0 0 0 0 
18 1 0 0 0 1 0 
19 1 0 0 1 0 1 
20 1 0 0 1 1 1 
21 0 0 0 1 0 0 
22 1 0 1 0 1 0 
23 0 1 0 0 0 0 
24 0 1 0 0 1 0 
25 1 1 0 0 0 0 
26 1 1 0 0 1 0 
27 1 1 0 1 0 1 
28 1 1 0 1 1 1 
29 0 0 1 1 1 0 
30 1 1 1 0 1 0 
31 0 0 1 0 1 0 
32 0 1 1 0 1 0  

Table 7 
Updated sets of cut sets and minimal cut sets based on the Clas-
sifications in Table 6.  

Cut sets Minimal cut sets 

{BE2, BE3, BE4} {BE2, BE4} 
{BE1, BE3, BE4} {BE1, BE4} 
{BE2, BE4}  
{BE2, BE4, BE5}  
{BE1, BE4}  
{BE1, BE4, BE5}  
{BE1, BE2, BE4}  
{BE1, BE2, BE4, BE5}   

Table 8 
Boolean representation of the fault tree based on the 
minimal cut sets of Table 7.  

Step Boolean representation 

1 TE=(BE1.BE4)  
+(BE2.BE4) 

2 TE=(BE1 + BE2). (BE4) 

3 TE = IE1. BE4  

Fig. 8. Extracted fault tree based on the minimal cut sets of Table 7.  
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which BE1 has three states: working (0), failed (1), idle (2) and the 
recorded data of Table 4. Here, CS={{BE2, BE3}, {BE1_1, BE2, BE3}, 
{BE1_1, BE3}}is the set of cut sets and hence the minimal cut sets are 
MCS={{BE2, BE3}, {BE1_1, BE3}}. Finally the fault tree equals TE=
(BE2.BE3)+(BE1_1.BE3) = BE3.(BE2 + BE1_1), which is also illustrated 
in Fig. 5.  

• Parameter Learning: Once the structure of the fault tree is extracted 
from data, we use it to calculate the reliability metrics of the con-
structed fault tree (here is the fault tree of Fig. 4). The first step to the 
quantitative analysis is to estimate reliability and maintainability 
probability distribution functions of the basic events, based on the 
time series data. Suppose we are interested in estimating the reli-
ability distribution of BE1. We calculate the times to failures by 
looking at the points in time where the state of the basic event 
changes from working (label = 0) to failed (label = 1). For example, 
the first two times to failures for BE1 are: 

r1 = 21.11844 – 17.96968 = 3.14876, r2 = 24.74219 – 21.52825 =
3.21394. 

Also, times to repairs are calculated by looking at the points in time 
where the state of the basic event changes from failed (label = 1) to 
working (label = 0). Hence, m1 = 21.52825–21.11844 = 0.40981. ri’s 
and mi’s are then used to estimate not only the parameters of the reli-
ability and maintainability distributions, but also types of the 

Fig. 9. Unavailability of the system changes by the new structure of the fault tree in Fig. 8.  

Table 9 
2*2 confusion matrix that depicts all four possible outcomes in classification.   

True fault tree 

Reconstructed fault tree Identified Not identified 

Identified True Positive (TP) False Positive (FP) 

Not identified False Negative (FN) True Negative (TN)  

Fig. 10. A fault-tolerant multiprocessor system with a multi-state compo-
nent PS. 

Table 10 
Reliability and maintainability distribution functions of the basic events in 
Fig. 10.   

Basic events Reliability distribution 
(rate in f/h) 

Maintainability distribution  

1 Disk Dij Exp(8.0e-05) Weibull(5, 0.75) 

2 Proc Pi Exp(5.0e-07) Exp(0.25) 

3 Mem Mj Exp(3.0e-08) Weibull(5, 20) 

4 Bus N Exp(2.0e-09) Exp(0.006) 

5 Power supply PS 
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distributions themselves, because our algorithm can cope with distri-
butions other than the common exponential distribution. 

The packages in R, gamlss (Rigby and Stasinopoulos, 2005) and fit-
distrplus (Delignette-Muller and Dutang, 2015), cover a wide range of 
probability distributions supported on the interval [0,∞). Hence, we 
applied these R packages for the distribution fitting part. MTTF and 
MTTR for each basic event are the means of the reliability and main-
tainability distributions, respectively. 

For exponential distributions, unavailability of an event is MTTR/ 
(MTTR + MTTF), but for non-exponential distributions we need more 
advanced methods to calculate the unavailability of the system. Un-
availability is the probability that the component or system is not 
operational. Proxel-based simulation (Lazarova-Molnar and Horton, 
2003; Niloofar and Lazarova-Molnar, 2022) is not limited to exponential 
distributions, and can be used to determine the instantaneous unavail-
ability of basic components with nonexponential distributions and 
multi-state events. 

Assume a binary repairable basic event where the reliability distri-
bution is estimated as an Exponential distribution function with rate 0.1 
and the estimated repair distribution function is Normal with mean 2 
and the standard deviation of 1. Fig. 6 illustrates the first three-time 
steps of the proxel simulation process for this basic event. Each proxel 
is a vector with three elements: State, Age intensity (which tracks the 
time that each of the possible state changes has been pending) and 
Probability. 

Assuming that Δt = 0.1, the detailed calculation of p1, p2 and p3 in 
Fig. 6 are as follows: 

p1 = Δt ×
f (AgeIntP0)

1 − F(AgeIntP0)
= 0.1 ×

0.1e− 0.1×0
∫∞

0 0.1e− 0.1xdx
= 0.01  

p2 = Δt ×
f (AgeIntP00)

1 − F(AgeIntP00)
= 0.1 ×

0.1e− 0.1×0.1
∫∞

0.1 0.1e− 0.1xdx
= 0.01  

p3 = Δt ×
f (AgeIntP01)

1 − F(AgeIntP01)
= 0.1 ×

1̅̅̅̅̅̅̅̅̅
2π(1)2

√ e−
(0− 2)2

2(1)2

∫∞
0

1̅̅̅̅̅̅̅̅̅
2π(1)2

√ e−
(x− 2)2

2(1)2 dx
= 0.0055 

We, then, propagate the unavailability of each individual component 
through the fault tree to calculate the unavailability of the system. Fig. 7 
shows the unavailability related to the basic events and the top event, for 

the fault tree from Fig. 4. 

3.2.2. DDFTAnb algorithm 
The system’s fault tree along with the corresponding reliability 

measures are extracted from the observed time series data of faults using 
DDFTA algorithm. The observed data in Table 1 is only a portion of what 
can happen in a system with five components, and not all possibilities 
can be considered in fault tree analysis of the system. For example, the 
state of the system is unknown when only basic events 4 and 5 occur and 
other components are working perfectly (row 13 in Table 5). In 
DDFTAnb’s classification module, we address the problem of the un-
observed combination of basic events. 

Step 1: Obtaining training and testing sets is the first step of the 
classification module. To obtain the training and testing sets, we need 
the power set for the 5 binary basic events. The power set for {BE1, BE2, 
BE3, BE4, BE5} or the set of all possible subsets of these basic events has 
25 = 32 elements, as shown in Table 5. 

Combinations shown in rows 1 to 7 in Table 5 are observed and the 
state of the system (TE) for these combination of basic events can be 
extracted from the truth table in Table 1. Also, the number of occur-
rences for each row is indicated in the parenthesis in the TE column. For 
example, row 2 belongs to the case where all components are working, 
except for the one linked to the basic event BE3. We see this combination 
in Table 1 at times 22.12907 and 24.67361, along with the state of TE as 
working. Obviously, the state of TE when all basic events are working 
and when all of them are failed (rows 8 and 9 of Table 5) is 0 and 1, 
respectively. The top event also occurs in rows 10 to 12 because minimal 
cut sets {BE1, BE3, BE4} and {BE2, BE3, BE4} (Table 2) are subsets of 
these rows. The state of the top event is unknown for rows 13 to 32, 
because we have no information on these combinations of basic events. 
It is worth noticing that at this stage we have the highest percentage of 
missing values for TE, as not enough data is collected from the system 
yet. We take rows 1 to 12 as the training set with TE as the class variable, 
and rows 13–32 with missing information on TE belong to the testing 
set. 

Step 2 and 3: In the next two steps, Naïve Bayes classifier as a su-
pervised machine learning algorithm is fitted to the training set and the 
state of TE is classified by applying the fitted model to the testing set. 
Once we label the values of TE for these rows, we apply the method 
explained in Section 2.2.1, to build an updated structure of the fault tree. 
The extracted fault tree at this stage is most probably not reliable 

Fig. 11. Instantaneous unavailabilities for the fault-tolerant multiprocessor of Fig. 10.  
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enough, because it is estimated using 12/32 = 37.5 % of the data. 
Classification results of the top event for rows 13–32 can be found in 
Table 6. 

Step 4: the rows in Table 6 where “classified TE” has label 1, construct 
the new cut sets that should be added to the ones in Table 2. Table 7 
shows that the new cut sets impose a great change in the minimal cuts 
sets which consequently affects the constructed fault tree as can be seen 
in Table 8 and Fig. 8. 

Step 5 and 6: Since the results of the top event using Naïve Bayes 
model are not time-stamped, they cannot be used to update the esti-
mates for the reliability and maintainability distributions. Hence, we use 
the estimated distribution functions of the DDFTA algorithm and the 
extracted fault tree of Fig. 8 to estimate unavailability of the system 
through proxel-based simulation. The unavailability of the system 
changes by the new structure of the fault tree and this change is depicted 
in Fig. 9. 

As more data are recorded, newly observed data can be added to the 
training set to update the fault tree analysis and increase the classifi-
cation accuracy. 

3.3. Performance evaluation 

To measure the performance of DDFTA in depicting a system’s 
behaviour, we assume that the true behaviour of that system follows a 
repairable fault tree with a set of reliability and maintainability distri-
butions as its parameters. We call this fault tree the original fault tree, 
and in the first simulation step, time series data are fabricated from this 
model. In the second step, truth table of the generated data set with time 
steps is used as an input to DDFTA algorithm. The structure of the fault 
tree is learnt and the unavailability of the system is computed. Finally, 
using DDFTAnb, future fault tree of the system and its unavailabilities 
are estimated. Hence, the performance of the presented method needs to 
be evaluated in regard to three aspects: structure learning evaluation, 
evaluation of reliability measures estimation and classification 
evaluation. 

3.3.1. Structure learning evaluation 
To compare the reconstructed fault tree with the original fault tree, 

we use the 2*2 confusion matrix of Table 9, that depicts all four possible 
outcomes. 

In this confusion matrix, true positive represents the number of sets 
that are both in the MCS of the reconstructed fault tree and the true fault 

Table 11 
Results of the DDFTA and DDFTAnb algorithms for the multiprocessor fault tree of Fig. 10 considering different levels of data availability.     

Data Availability    

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 

DDFTA Structure 
learning 
measures 

Sen 0.1091 
±

0.0238 

0.1909 
±

0.0178 

0.2636 
±

0.0178 

0.3273 
±

0.0394 

0.4000 
±

0.0713 

0.7182 
±

0.0178 

0.6566 
±

0.0376 

0.8889 
±

0.0248 

0.9182 
±

0.0178 

1.0000 
±

0.0000 

Spe 0.9904 
±

0.0004 

0.9895 
±

0.0011 

0.9911 
±

0.0004 

0.9926 
±

0.0011 

0.9941 
±

0.0007 

0.9965 
±

0.0004 

0.9957 
±

0.0007 

0.9987 
±

0.0006 

0.9985 
±

0.0005 

1.0000 
±

0.0000 

ACC 0.9881 
±

0.0003 

0.9874 
±

0.0011 

0.9891 
±

0.0005 

0.9908 
±

0.0012 

0.9925 
±

0.0009 

0.9956 
±

0.0004 

0.9948 
±

0.0008 

0.9984 
±

0.0007 

0.9983 
±

0.0005 

1.0000 
±

0.0000 

Parameter 
Learning 
measures 

Ûn 3.2673 
e-10 

±

1.03 
e-10 

6.35589 
e-07 

±

1.24 
e-06 

5.0887 
e-06 

±

1.65 
e-06 

2.6121 
e-06 

±

2.03 
e-06 

6.4228 
e-06 

±

1.54 
e-15 

5.1527 
e-06 

±

1.65 
e-06 

6.4228 
e-06 

±

8.27 
e-13 

5.7172 
e-06 

±

1.31 
e-06 

6.4228 
e-06 

±

1.19 
e-12 

6.4228 
2,649,198 

e-06 

±

0.0000 

RMSE 6.3411 
e-06 
±

1.02 
e-10 

5.7111 
e-06 
±

1.23 
e-06 

1.2983 
e-06 
±

1.64 
e-06 

3.7822 
e-06 
±

2.01 
e-06 

3.5645 
e-12 
±

1.41 
e-15 

1.2606 
e-06 
±

1.64 
e-06 

3.1690 
e-12 
±

7.36 
e-13 

7.0034 
e-07 
±

1.30 
e-06 

2.4905 
e-12 
±

1.06 
e-12 

0.0000 
±

0.0000 

DDFTAnb Structure 
learning 
measures 

Sen 0.4182 
±

0.0606 

0.5545 
±

0.0675 

0.4545 
±

0.0000 

0.5727 
±

0.0597 

0.5545 
±

0.0675 

0.7545 
±

0.0380 

0.6967 
±

0.0398 

0.9091 
±

0.0000 

0.9818 
±

0.0238 

——— 

Spe 0.9928 
±

0.0012 

0.9922 
±

0.0013 

0.9890 
±

0.0005 

0.9892 
±

0.0007 

0.9894 
±

0.0014 

0.9926 
±

0.0006 

0.9914 
±

0.0010 

0.9962 
±

0.0003 

0.9977 
±

0.0003 

——— 

ACC 0.9912 
±

0.0013 

0.9910 
±

0.0015 

0.9876 
±

0.0005 

0.9881 
±

0.0007 

0.9882 
±

0.0016 

0.9920 
±

0.0007 

0.9906 
±

0.0010 

0.9960 
±

0.0003 

0.9977 
±

0.0003 

——— 

Parameter 
learning 
measures 

Ûn 6.4229 
090,742 

e-06 

±

3.52 
e-11 

6.4228 
257,002 

e-06 

±

1.05 
e-12 

6.4228 
261,012 

e-06 

±

7.82 
e-13 

6.4228 
248,979 

e-06 

±

1.28 
e-12 

6.4228 
252,955 

e-06 

±

1.20 
e-12 

6.4228 
232,938 

e-06 

±

1.05 
e-12 

6.4228 
229,310 

e-06 

±

8.28 
e-13 

6.4228 
264,911 

e-06 

±

1.52 
e-15 

6.4228 
264,919 

e-06 

±

1.96 
e-17 

——— 

RMSE 7.6858 
e-11 
±

3.18 
e-11 

7.2144 
e-13 
±

9.29 
e-13 

3.6145 
e-13 
±

6.93 
e-13 

1.4266 
e-12 
±

1.13 
e-12 

1.0729 
e-12 
±

1.06 
e-12 

2.8470 
e-12 
±

9.29 
e-13 

3.1686 
e-12 
±

7.36 
e-13 

7.6663 
e-16 
±

1.40 
e-15 

1.9424 
e-17 
±

1.57 
e-17 

———  

P. Niloofar and S. Lazarova-Molnar                                                                                                                                                                                                        



Expert Systems With Applications 215 (2023) 119345

11

tree (correctly identified sets). False positive is the number of sets in the 
MCS of the extracted fault tree which are not in the MCS of the true fault 
tree (incorrectly identified sets). False negative is the number of incor-
rectly rejected sets and finally, true negative is the number of correctly 
rejected sets. Using the confusion matrix, we calculate the sensitivity, 
specificity, and accuracy (ACC): 

Sensitivity=
TP

TP+FN
, Specificity=

TN
TN +FP

, ACC =
TP+TN

TP+TN +FP+FN 

Larger values of above-mentioned measures indicate higher perfor-
mance in structure learning. 

3.3.2. Reliability measures estimation 
When the structure of the fault tree is extracted from the data set, the 

unavailability of the system can be calculated using proxel-based 

simulation. Since unavailabilities are calculated as transient solutions 
for each time step, we have a vector of instantaneous unavailabilities 
calculated for the extracted fault tree {Ûi}, i = 1,2,⋯,n, where n is the 
total number of time steps. For the original fault tree, there is also an 
associated vector of instantaneous unavailabilities: {Ui}, i = 1, 2,⋯, n. 
Root Mean Square Error (RMSE) is used to compare these vectors of 
unavailabilities: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ui − Û i)

2

n

√
√
√
√
√

(1) 

Better estimation of unavailability leads to a smaller distance be-
tween {Ûi} and {Ui}, hence smaller values of RMSE. We also report Ûn 

and Un as the final stable unavailability values. 

3.3.3. Classification evaluation 
In the classification module, first the training set (observed cut sets) 

and the testing set (unobserved cut sets) are prepared. Then, a Naïve 
Bayes model is fitted to the training set and the fitted model is applied to 
classify the top event in the test set. Since the classification module in-
cludes extracting the structure and the unavailability of the learnt fault 
tree, it is evaluated in regard to structure learning and estimation of the 
reliability measures. Hence, the methods of Sections 3.3.1 and 3.3.2 are 
applied for the classification module as well. 

We assess the performance of our algorithm using two repairable 
fault trees: 1) A fault-tolerant multiprocessor system shown in Fig. 10 
(Malhotra and Trivedi, 1995); 2) Radio Block Center (RBC) fault tree 
(Fig. 12) explained in Galileo textual format (Sullivan and Dugan, 1996). 
The general steps in the experiments are as follows:  

1. Generate time series data from the basic events of each original fault 
tree.  

2. Build the timely truth tables based on each generated time series.  
3. Obtain training and testing sets using the truth table with time 

stamps.  
4. Learn the fault tree (structure and parameters) from the observed 

data set using DDFTAnb algorithm.  
5. Compare the MCS of the reconstructed fault tree with that of the 

original fault tree in terms of sensitivity, specificity, accuracy (ACC). 

Fig. 12. Radio Block Center fault tree with six different types of basic events.  

Fig. 13. Unavailability values for the RBC fault tree in Fig. 12.  
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6. Use the reconstructed fault tree and the reliability and maintain-
ability distributions to obtain the reliability measures of the top 
event as well as those of the basic events.  

7. Estimate the structure and reliability measures of the system for the 
unobserved combinations of the basic events using DDFTAnb’s 
classification module.  

8. Report the evaluation measures in terms of 95 % confidence 
intervals. 

3.4. A fault-tolerant multiprocessor system 

Fig. 10 shows the fault tree of a fault-tolerant multiprocessor system 
which consists of two processors Pi (i = 1, 2) with private memories Mi (i 
= 1, 2) and M3 as a shared one. A processor and a memory form a 
processing unit. Each processing unit is connected to a mirrored disk 
system Dij (i = 1, 2 and j = 1, 2), forming a processing subsystem. Both 
the processing subsystems and M3 are connected via an interconnection 
Bus N. (Bobbio et al., 2001) refine the description of the multiprocessor 
system by adding the component power supply (PS) such that, when 
failing, it causes a system failure. The PS is modelled with three possible 
modes: working, defective and failed, where the first corresponds to a 
nominal behaviour, the second to a defective working mode with 
abnormal voltage provided, while the last mode (failed) corresponds to a 

situation where the PS cannot work at all. As anticipated, the failed 
mode causes the whole system to be down. According to the literature, 
the failure distribution of all components (except for the PS) is assumed 
to be exponential with failure rates given in Table 10, expressed in 
failures per hour (f/h). State changes diagram for PS, is also illustrated in 
Table 10, where it has exponential probability distribution with the rate 
of 3.0e-05 (Exp(3.0e-05)) as the transition probability from working to 
defective state. PS fails with a rate following Normal(0.25, 0.1) distri-
bution function, and it is repaired again with Uniform(0.1, 0.2) transi-
tion proability. For binary events, we add individual repair distributions 
that are not limited to exponential distribution to highlight the ability of 
our algorithm to cope with non-exponential probability distribution 
functions, as well as repairable and multi-state components. 

Unavailability values, calculated using proxel-based simulation for 
the basic events and the system (top event), are illustrated in Fig. 11, and 
the system unavailability (Un) is 6.422826e-06. The results of the 
DDFTA algorithm for the fault tree in Fig. 10 considering 10 % to 100 % 
data availabilities are shown in Table 11. As we observe more data 
points, unavailability and RMSE values converge to the true value 
6.422826e-06 and the ideal value of 0, respectively. As expected, the 
best structure learning performance occurs with the highest data avail-
abilities and worsens as the data availability decreases. As can be seen, 
Naïve Bayes classifier, indicated by NB, performs relatively well for 

Table 12 
Results of the DDFTA and DDFTAnb algorithms for the RBC fault tree considering different percentages of data availabilities.     

Data Availability    

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % 

DDFTA Structure 
learning 
measures 

Sen 0.1250 
±

0.0000 

0.2750 
±

0.1200 

0.3250 
±

0.0980 

0.4500 
±

0.1660 

0.4750 
±

0.1430 

0.5000 
±

0.1550 

0.6500 
±

0.1630 

0.7500 
±

0.1340 

0.7750 
±

0.1429 

1.0000 
±

0.0000 

Spe 0.9972 
±

3e-04 

0.997 
±

5e-04 

0.9974 
±

5e-04 

0.9981 
±

7e-04 

0.9983 
±

7e-04 

0.9983 
±

7e-04 

0.9990 
±

8e-04 

0.9995 
±

6e-04 

0.9995 
±

6e-04 

1.0000 
±

0.0000 

ACC 0.9967 
±

3e-04 

0.9966 
±

6e-04 

0.9971 
±

6e-04 

0.9978 
±

8e-04 

0.9980 
±

7e-04 

0.9981 
±

8e-04 

0.9988 
±

8e-04 

0.9994 
±

6e-04 

0.9994 
±

7e-04 

1.0000 
±

0.0000 

Parameter learning 
measures 

Ûn 1.80e- 
13 

±

3.54e- 
13 

1.76e- 
12 

±

4.82e- 
13 

2.61e-12 

±

1.01e-12 

3.71e- 
12 

±

1.16e- 
12 

4.39e- 
12 

±

1.29e- 
12 

4.20e- 
12 

±

1.87e- 
12 

5.29e- 
12 

±

8.59e- 
13 

5.78e- 
12 

±

1.19e- 
12 

6.09e- 
12 

±

1.19e- 
12 

6.86e- 
12 

±

0.0000 

RMSE 6.48e- 
12 
±

3.44e- 
13 

4.94e- 
12 
±

4.59e- 
13 

4.12e-12 
±

9.74e-13 

3.06e- 
12 
±

1.12e- 
12 

2.41e- 
12 
±

1.25e- 
12 

2.59e- 
12 
±

1.81e- 
12 

1.53e- 
12 
±

8.29e- 
13 

1.06e- 
12 
±

1.16e- 
12 

7.60e- 
13 
±

1.16e- 
12 

0.0000 
±

0.0000 

DDFTAnb Structure 
learning 
measures 

Sen 0.3500 
±

0.1800 

0.3500 
±

0.2616 

0.5000 
±

0.1550 

0.6250 
±

0.1096 

0.6562 
±

0.1049 

0.6500 
±

0.1200 

0.7250 
±

0.1429 

0.8250 
±

0.0600 

0.8250 
±

0.0600 

——— 

Spe 0.9989 
±

4e-04 

0.9981 
±

7e-04 

0.9982 
±

4e-04 

0.9983 
±

5e-04 

0.9982 
±

7e-04 

0.9983 
±

6e-04 

0.9987 
±

7e-04 

0.9994 
±

3e-04 

0.9995 
±

3e-04 

——— 

ACC 0.9985 
±

3e-04 

0.9978 
±

8e-04 

0.9979 
±

5e-04 

0.9981 
±

5e-04 

0.9981 
±

8e-04 

0.9982 
±

6e-04 

0.9985 
±

8e-04 

0.9993 
±

4e-04 

0.9994 
±

3e-04 

——— 

Parameter learning 
measures 

Ûn 1.48e- 
06 

±

1.78e- 
06 

7.40e- 
07 

±

9.67e- 
07 

2.47e-07 

±

4.84e-07 

9.47e- 
12 

±

2.46e- 
12 

7.64e- 
12 

±

2.57e- 
12 

7.89e- 
12 

±

3.00e- 
12 

7.28e- 
12 

±

1.32e- 
12 

6.51e- 
12 

±

4.33e- 
13 

6.51e- 
12 

±

4.33e- 
13 

——— 

RMSE 1.45e- 
06 
±

1.74e- 
06 

7.24e- 
07 
±

9.47e- 
07 

2.41e-07 
±

4.73e-07 

2.87e- 
12 
±

1.94e- 
12 

2.36e- 
12 
±

9.93e- 
13 

2.15e- 
12 
±

2.20e- 
12 

1.16e- 
12 
±

7.00e- 
13 

3.51e- 
13 
±

4.21e- 
13 

3.51e- 
13 
±

4.21e- 
13 

———  
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small amounts of training data because it has a low propensity to overfit. 

3.5. Radio block center 

Radio Block Center (RBC) is the most important subsystem of The 
European Railway Traffic Management System / European Train Con-
trol System (Flammini et al., 2005). It is responsible for guaranteeing a 
safe outdistancing between trains by managing the information received 
from the onboard subsystem and from the interlocking subsystem. In the 
RBC fault tree illustrated in Fig. 12, “BUS1” lambda = 4.4444e-6 repair 
= 4 means that the reliability and maintainability distribution of the 
basic event “BUS1” are exponential with a failure rate of 4.4444e-6 and 
a repair rate of 4, respectively. Estimated unavailability of the system is 
6.8699e-12 and the instantaneous unavailabilities are illustrated in 
Fig. 13. Results shown in Table 12, demonstrate that this fault tree has 
been affected by loss of data more than the other two examples, because 

even with 90 % of data availability, DDFTA’s sensitivity is 0.775. We 
suspect that the reason for this is that the fault events are rare, and the 
system is highly reliable. 

4. Discussion 

In this paper, we investigate two fault trees as case studies, a fault- 
tolerant multiprocessor (MP) and the radio block center (RBC). MP 
has a lower reliability measure than RBC since the unavailability value 
for MP is 6.4228e-06 and that of the RBC equals 6.86e-12. Furthermore, 
MP has a multi-state event (PS) and repair rates that follow distributions 
other than exponential. 

In terms of structure learning, comparing the accuracies of the two 
fault trees indicate that for lower data availability applying the classi-
fication module is highly promising (Fig. 14). For RBC, as a highly 
reliable system, average ACC values when applying the classification 

Fig. 14. ACC mean values for MP and RBC fault trees, considering different levels of data availability, for DDFTA and DDFTAnb.  

Fig. 15. Ûn means of MP and RBC fault trees, considering different levels of data availability, for DDFTA and DDFTAnb.  
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module (NB) are higher even for 60 percentage of data availability. 
Accuracy values of DDFTA with classification module for MP are higher 
only for very low levels of data availabilities. In general, DDFTA with 
and without classification module has a higher accuracy for RBC fault 
tree. 

Considering parameter learning, as illustrated in Fig. 15, estimated 
unavailability values converge to the true unavailability values as data 
availability increases. For both fault trees, estimated unavailabilities 
using DDFTA are lower than the true unavailability value, as opposed to 
DDFTAnb where the estimated unavailabilities are higher than the true 
unavailability value. The reason is that the sets of minimal cut sets 
predicted using DDFTA are always subsets of the real set of minimal cut 
sets. Unavailability values calculated using DDFTAnb are always higher 
(for low data availabilities) or equal (full data availability) to the true 
unavailability value which makes this algorithm more conservative 
since it estimates the reliability of the system lower than it really is. 
DDFTA calculates lower (for low data availability) or the same (for full 
data availability) unavailability values compared to the true unavail-
ability value, which is risky since it shows the system as more reliable 
than it truly is. 

DDFTAnb is affected by a set of experimental parameters. The 
structure learning step is affected by the number of basic events, 
whether basic events are multistate or binary, repairable/nonrepairable 
events and the number of minimal cut sets. Numbers of basic events and 
multistate or binary events affect the size of the truth table. For example, 
a system with 7 binary basic events has 27 = 128 possible combinations 
of basic events, whereas a system with 13 binary events and an event 
with three states has 213 × 31 = 24,576 number of combinations of basic 
events. The quantitative analysis part of the DDFTAnb is responsive to 
repairable/nonrepairable events, rare events, size of the time step and 
the total simulation time. If the total simulation time is 5 years and the 
size of the time step is 1 day, then the total number of time steps are 5 ×
365 = 1,825. For the same total simulation time of 5 years, if we take 
time steps of one month then we only have 5 × 12 = 60 time steps to 
calculate instantaneous unavailabilities. 

For a single fault tree, all the above parameters are fixed and the 
experimenter cannot change them, except for the total simulation time 
and the size of the time step. DDFTAnb’s results are not very sensitive to 
these parameters in general. However, for rare events DDFTAnb may 
obtain different unavailabilities for a fixed fault tree if we choose 
different total simulation time and size of the time step. Rare events may 
require larger total time and smaller time steps, hence larger number of 
time steps are necessary. Also, state changes of repairable events define 
the number of proxels that need to be calculated at each time step. 

Table 13 summarizes the computation time on a workstation with 16 
GB RAM and processor Core i7 2.8 GHz for the MP and RBC case studies. 
For the parameter learning step, the number of different types of basic 

events and the number of time steps are considered, and for the structure 
learning, we access the number of combinations of basic events and the 
number of minimal cut sets for both MP and RBC (computation times are 
reported in seconds). 

According to Table 13, DDFTA and DDFTAnb algorithms are not very 
efficient for complex systems with rare events. The main drawback is 
that as the number of cut sets, or the number of basic components in-
creases with the size of the system, the presented algorithm becomes 
slower. Also, some types of basic events need larger T (total time) with 
smaller Δt (size of the time steps). Hence, the quantitative analysis be-
comes more time-consuming. One way to overcome this difficulty is to 
divide the whole system into its major subsystems and use parallel 
computing methods to overcome these issues. 

5. Conclusion 

We presented DDFTAnb algorithm, an efficient and novel algorithm 
for extracting repairable fault trees from incomplete multinomial time 
series data to extract the future fault-related behaviour of a system in 
terms of a fault tree and estimate the system’s reliability measures. We 
extended the work of Lazarova-Molnar et al. (2020) by providing clas-
sification capability to address the issue of missing or unobserved cut 
sets in fault occurrences of basic events. Classifying the top event for 
unseen combinations of events becomes more critical when the system 
of interest is highly reliable with significantly rare events, or when it is 
composed of significantly many basic components. We demonstrated 
that our approach has clear benefits through two case studies. 

DDFTAnb can extract and analyse multi-state repairable fault trees, 
compute reliability metrics for probability distributions other than the 
usual exponential probability distribution and estimate the future reli-
ability of the system. In addition, DDFTAnb is highly recommended in 
cases when there is insufficient amount of data. In terms of our case 
studies, we observed the following: for 10 % of data availability, accu-
racies of DDFTAnb (DDFTA) are 0.9912 (0.9881) and 0.9985 (0.9967) 
for MP and RBC, respectively. However, in cases when there are suffi-
cient or high amounts of data, DDFTA alone has a high performance: for 
90 % of data availability, accuracies of DDFTAnb (DDFTA) are 0.9977 
(0.9983) and 0.9994 (0.9994) for MP and RBC, respectively. Moreover, 
the reliability measure calculated by DDFTA for a system of interest is 
higher than the system’s true reliability value, while DDFTAnb calcu-
lates a lower reliability measure than the system’s true reliability. 

DDFTAnb can be used to analyse any system where its fault tree can 
be expressed in terms of its minimal cut sets and has no limitations in 
this regard. The main limitation of the presented algorithm is that as the 
number of cut sets, or the number of basic components increase with the 
size of the system, it becomes slower and parallel computing can be 
considered as a solution. As future work, we intend to improve the 
classification performance of the presented algorithm and extend the 
tool to model and extract dynamic fault trees with more types of gates. 
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Table 13 
Computational times (in seconds) for RBC and MP fault trees.  

Parameter Learning 

Fault 
Tree 

# different 
types 
of basic events 

# time steps 

50 
(T = 5, Δt =

0.1) 

100 
(T = 5, Δt =

0.05) 

500 
(T = 5, Δt =

0.01) 

MP 5 12.68 58.07 1529 

RBC 6 22.73 94.17 2067.95 

Structure Learning 

Fault 
Tree 

# 
combinations 
of basic events 

# minimal cut 
sets   

MP 3 × 210 = 3,072 11 78.18  

RBC 214 = 16,384 8 3380.05   
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