
UNIVERSITAT POLITÉCNICA DE CATALUNYA
(UPC) Barcelona Tech

FACULTAT D'INFORMÁTICA DE BARCELONA (FIB)

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS

Development of a web application for

touristic data categorization and trip

planning.

Advisor: Author:

Josep Liuís Larriba-Pey Marina Ciavarra
Data Management Group (DAMA)

22 October 2019

Contents

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Data retrieval and validation . 1

1.2 Data categorization . 1

1.3 Tour creation . 2

1.4 Thesis Structure . 3

2 State of the art 5

2.1 Existing Data Set . 5

2.2 Data collection . 6

2.3 Map creation tools . 6

2.4 Trip planning . 8

3 Methodologies 11

3.1 Agile . 11

3.2 Scrum . 13

4 Technologies 15

4.1 React . 15

4.2 React Redux . 16

4.3 React Router . 17

4.4 Node.js . 17

4.5 Express . 18

4.6 PostgrSQL . 19

5 Requirement 21

5.1 Functional Requirement . 21

5.1.1 Use Case UC01: Register . 21

5.1.2 Use Case UC02: Login . 23

5.1.3 Use Case UC03: Add new category 24

5.1.4 Use Case UC04: Add new subcategory 25

5.1.5 Use Case UC05: Add new point of interest 26

i

5.1.6 Use Case UC06: Generate a touristic tour 27
5.1.7 Use Case UC07: Review and validation of categories and subcategories 29
5.1.8 Use Case UC08: Review valid categories and subcategories 30
5.1.9 Use Case UC09: Review invalid categories and subcategories . . . 31
5.1.10 Use Case UC10: Review and validate points of interest 32
5.1.11 Use Case UC11: Review valid points of interest 33
5.1.12 Use Case UC12: Review invalid points of interest 34

5.2 Non Functional Requirement . 35
5.2.1 Usability . 35
5.2.2 Maintainability . 35
5.2.3 Performance . 35
5.2.4 Platform compatibility . 36
5.2.5 Reliability . 36
5.2.6 Robustness . 36
5.2.7 Operability . 36
5.2.8 Security . 37

6 Architecture and Design 39

6.1 System architecture . 39
6.1.1 Back-end architecture . 40
6.1.2 Front-end architecture . 40

6.2 Data representation . 41

7 Development 43

7.1 Homepage . 43
7.2 User login . 44
7.3 User Registration . 46
7.4 Token Validation . 46
7.5 Standard user features . 48

7.5.1 Insertion of a new Category . 48
7.5.2 Insertion of a new point of interest 49
7.5.3 Tour Creation . 51

7.6 Authorized user features . 53
7.6.1 Validation of a category . 54
7.6.2 Validation of a point of interest . 55

8 Conclusion and future works 59

Bibliography 61

ii

List of Tables

5.1 Describes the main actor, the precondition, and the intentions of the Reg-
istration process. In the output section are described the steps to achieve
the registration. 22

5.2 This table describes the login process in all of its parts. First, de�ne the
main actor and the preconditions. Then it explains what the user wants to
do. In the last section are reported all the subsequent actions performed
by the user and the system with the possible outcome. 23

5.3 Describes the main actor, the precondition, and the intentions when the
user wants to add a new category. In the output section are described the
steps to achieve the action and the possible outcome. 24

5.4 Describes the main actor, the precondition, and the intentions when the
user wants to add a new subcategory. In the output section are described
the steps to achieve the action and the possible outcome. 25

5.5 Describes the main actor, the precondition, and the intentions when the
user wants to add a new point of interest. In the output section are de-
scribed the steps to achieve the insertion and the possible outcome. 26

5.6 In the tour generation process are described the main actor, the precondi-
tion, and the intentions of the user. In the output section are described the
steps to achieve the action and the possible outcome. 27

5.7 Describes the main actor, the precondition, and the intentions when the
user wants to review a category. In this scenario it can validate or invalidate
a category, as well as do nothing. In the output section are described the
steps to achieve the validation of a category. The process to invalidate a
category is exactly the same, the only di�erence is the button clicked in the
�fth step. The same process can be executed as well for the subcategories. 29

5.8 Describes the main actor, the precondition, and the intentions when the
user wants to review an already validated category. In this scenario it can
invalidate a category, as well as do nothing. In the output section are
described the steps to achieve the invalidation. The same process can be
executed as well for the subcategories. 30

iii

5.9 Describes the main actor, the precondition, and the intentions when the
user wants to review an already invalidated category. In this scenario it
can validate a category, as well as do nothing. In the output section are
described the steps to achieve the validation. The same process can be
executed as well for the subcategories. 31

5.10 Describes the main actor, the precondition, and the intentions when the
user wants to review a point of interest. In this scenario it can validate
or invalidate the point, as well as do nothing. In the output section are
described the steps to achieve the validation of a point of interest. The
process of invalidation is exactly the same, the only di�erence is the button
clicked in the �fth step. 32

5.11 Describes the main actor, the precondition, and the intentions when the
user wants to review an already validated point of interest. In this sce-
nario it can invalidate it, as well as do nothing. In the output section are
described the steps to achieve the invalidation. 33

5.12 Describes the main actor, the precondition, and the intentions when the
user wants to review an already invalidated point of interest. In this sce-
nario it can validate it, as well as do nothing. In the output section are
described the steps to achieve the validation. 34

5.13 Describes the usability requirement of the application. 35
5.14 Describes the maintainability requirement of the application. 35
5.15 Describes the performance requirement of the application. 35
5.16 Describes the platform compatibility requirement that also satis�es the

portability one. 36
5.17 Describes the reliability requirement of the application. 36
5.18 Describes the robustness requirement of the application. 36
5.19 Describes the operability requirement of the application. 36
5.20 Describes the security requirement of the application. 37

iv

List of Figures

2.1 Examples of detail level comparison between OpenStreetMap and Google
maps in two di�erent locations. Figure (a) and (b) is a capture of Montjuic
and the Port Vell in Barcelona. Figure (c) and (d) opposes the detail level
in a not touristic area in the south of Italy. 8

3.1 Agile methodology. 12

3.2 Scrum methodology. 13

4.1 Model-View-Controller design pattern. 16

4.2 Interaction between store, action, and reducer in React Redux. 17

5.1 The use case describes the access process to the system, both for authorized
and standard users. The detailed description is reported in the table 7.3
and 5.2 . 22

5.2 The use case describes all the actions that a standard user can execute in
the system. All the actions require that the user is logged in and is of type
standard. The detailed description is reported in the table 5.3, 5.4, 5.5 and
5.6 . 28

5.3 The use case describes all the actions that an authorized user can execute
in the system. All the actions require that the user is logged in and is of
type authorized.The detailed description is reported in the table 5.7, 5.8,
5.9, 5.10, 5.11 and , 5.12 . 34

6.1 Client-server architecture of the project. It shows the connection between
the components and also includes the server connection with the Post-
greSQL database and the OpenTripPlanner service. Each client has its
instance of the OpenStreetMap. 39

6.2 React+Redux architecture details with highlights on the components and
the relations between them. 41

6.3 Schema of the project database. 42

7.1 App registration page. The user has pointed his mouse on the Plaça
d'España marker and the label is shown 44

7.2 Sequence diagram for points of interest retrieval. 44

v

7.3 Sequence diagram of the login process. The �rst lifeline on the left it the
one related to the client. The others are all calls within the server. 45

7.4 App login page . 45
7.5 App registration page . 46
7.6 Sequence diagram of the registration process. 47
7.7 Sequence diagram of the authentication process. 47
7.8 Add new Category tab of the application. The user has already selected the

subcategory �eld, and the system has rendered the possible parent categories. 48
7.9 Sequence diagram of the category insertion process. 49
7.10 Sequence diagram of the process for get the categories already validated by

the authorized user. 49
7.11 Add new point of interest tab of the application. The user has already

selected the point on the map and the Outdoor category. The subcategory
rendered by the system are the one related to the Outdoor category already
selected. The user has also inserted the name and the description and
selected the Fountain subcategory. 50

7.12 Sequence diagram of the point of interest insertion process. 50
7.13 Sequence diagram of subcategory request process. 51
7.14 Creates point of interest tab of the application. The user has already

selected the Business category and the system renders the subcategory
related to it. The user selects Shopping and Restaurant subcategories . . . 51

7.15 Sequence diagram of the tour creation process. 52
7.16 Creates point of interest tab of the application after the tour creation. The

user navigates on the map and points on the bus line 59. 53
7.17 Application tab for the category reviews. 54
7.18 Sequence diagram of the validation process of a category. 54
7.19 Sequence diagram of the category review process. 55
7.20 Application tab for the points of interest reviews. 56
7.21 Sequence diagram of the point validation process. 56
7.22 Sequence diagram of the points of interest review process. 57

vi

Abstract

Nowadays, everyone travels and uses the internet to discover the place to visit. The goal
of the project is to retrieve and categorize points of touristic interest. Based on these
points, the application can generate a customized journey.

The points are inserted and categorized by the user to make sure that the tour gener-
ated afterward is consistent with the user's point of view. This ensures that when a user
wants to create his journey, he receives points with high quality that �t well to his expec-
tations. A set of reviewers guarantees the data quality by validating the data inserted by
the previous user in terms of correct place information and categorization.

The project report the design and implementation of a client-server web application
in chapter 6 and 7. It is developed using ReactJs and NodeJs, two JavaScript frameworks
very popular in web application development along with other technologies described in
chapter 4. State of the art, methodologies, and requirement speci�cation are reported
respectively in chapters 2, 3, and 5.

vii

Chapter 1

Introduction

In modern society, people travel all around the world for many di�erent reasons, but
knowing new cultures and places is the leading element into a new trip choice. Nowadays,
the internet is the primary source of information both for the journey organization and
the place to visit. The average tourist would like to visit both well-known places, which
made the city history that he is going to visit, and some little-known hidden places.

Having in mind the context above, producing the thesis idea was straightforward. The
goals are mainly two: retrieve and categorize points of touristic interest, and develop a web
application capable of generating a speci�c touristic journey based on that information.

1.1 Data retrieval and validation

People are the most signi�cant data source ever, and they own estimable information that
can be retrieved and used to create a new services. To do so, the project has to achieve
a supplementary goal: to give value to the information entered and include the user in
the creation of the data collection, making him aware of the value he owes. The user
can decide to participate by inserting new categories or insert and categorize points of
interest as well as utilize the app only for the tour creation. The majority of the people
that are going to use the application are named in the project standard users, and they
have access to all the functionality explained earlier.

There is another important role covered by a selected number of users that have to
ensure data quality. These users in the project are called authorized users to di�erentiate
them from the users inserting the data. The authorized user can review the categories
and subcategories inserted by the others and, if these are considered valid, they are going
to be available to all the users. Besides, the authorized user has to validate the point
of interest inserted checking the name, the coordinates, and the description and that the
categorization done by the user is coherent with the point of interest inserted.

1.2 Data categorization

For the data classi�cation, the �rst step is to choose the categorizing criteria in terms
of the class number, the existence of subcategories, and accordingly, the subcategories'

1

Introduction

number. After researching di�erent datasets, six focused categories were chosen as default
for the application:

Buildings category represents construction and includes as subcategories the purpose of
use that people made of it. Subcategories can be military, education, government,
residential, commercial, transport, religious, and historical.

People links a point of interest with a leading �gure that has designed or modi�ed the
corresponding places or was born and lived there. The subcategories are related to
the person's profession as artist, philosopher, writer, architect, and historical �gure.

Artistic Movement contains the most famous artistic currents of all time. The sub-
categories are: Modernism, Gothic, Surrealism, Cubism, Romanesque, Renaissance,
Pop-Art, and Street-Art.

Museum is the most straightforward category and contains several subcategories: bio-
graphical, archaeology, art, maritime, history, science, design, military, and zoolog-
ical park.

Business includes all the activities related to tourism in terms of accommodation, food,
and shopping. The subcategories contained are restaurant, hotel, bar-pub, shopping,
grocery, and ATM.

Outdoor is related to the city structure and its components, including the following
subcategories: park, garden, square, street, fountain, beach, and viewpoint.

Although the default categories cover entirely the data needed, there is also the pos-
sibility to insert a new category by the user.

1.3 Tour creation

Over the internet, there are several journey planning that, most of the time, incorporates
�ight planning, accommodations, and other material that made the user less available to
use it just for plan the tour. The goal of the project is to give the user the possibility to
choose what he wants to visit and give back to him a journey using public transportation.

The �lter selection is made using the categories and subcategories explained in section
1.2, and the user can select them with any limitation. To make the user more comfortable
with a UI already known, the system shows the points that �t the selected �lter and
the itinerary on a map.The user can interact with it and see the points of interest name,
how to reach them by bus, metro, or by walk. A written description to help the user
to understand the journey is displayed on the screen. By design choices, the charged
touristic tours are not inserted to give everyone the possibility to discover a city without
any restriction.

2

1.4 � Thesis Structure

1.4 Thesis Structure

The document is divided into eight chapters:

Introduction explains the motivations and the project goals, as well as the main actors
and the default categories used in the application.

State of the art describes the scienti�c and technological progress in data collection,
map creation, and trip planning. Besides, it reports the existing touristic dataset
and the website for trip planning existing nowadays.

Methodologies used in the development with a particular focus on the Agile and Scrum
methodologies.

Technologies adopted in the development of the project divided into front-end, back-
end, and database technologies. There is an overview of each technology with a
particular focus on their main aspects used in the project.

Requirements speci�es the detailed de�nition of the project in terms of functionality
to develop and non-functional requirements to be achieved. The requirements are
reported using tables and use case diagrams.

Architecture and design describe the system architecture in general and the ones used
in front-end and back-end, followed by the data model used. First is explained the
client-server architecture, then the REST architecture of the back-end, and at the
end the React+Redux front-end architecture.

Development details the implementation of the project with the technical resource used
and the development environment. Moreover, it outlines the user interaction with
the application and the process executed using the UML sequence diagrams.

Conclusion and future work states all the goals achieved and explain the possible
subsequent upgrades.

3

Chapter 2

State of the art

This project a�ects many specialists and large areas of the IT world. The primary concern
is if there are existing datasets that �t the project needs or, in the contrary case, how to
collect data from the users.

Section 2.1 de�nes what a Dataset is and describes di�erent existing datasets, which
can be used. There is also a discussion on why they don't �t the project goal. In Section
2.2, there is an overview of the data collection in the current century. The techniques
used are reported.

When the problem of data is solved, the development of the touristic tour turned out
Section 2.3 analyze the existing tools for map creation with their advantage and disad-
vantage. Section 2.4, instead analyzes the existing software for trip planning development
and the existing applications for trip planning.

2.1 Existing Data Set

Before list the dataset related to touristic information found during the researches, it is
essential to give the dataset de�nition. Dataset is a collection of information composed
of separate elements organized in block structures that can be manipulated as a unit. It
exists many di�erent types of dataset, di�erentiated on the data storage and structure.

Di�erent website maintains various dataset that classify data from all kinds. One need
only think about government entities as the European Union, dates September 2019, it
provides 13879 up-to-date datasets [5]. Google created in 2008 a public data explorer
allowing the user to search and examine large third-part datasets in the form of graphs,
plots, or on map [3]. The Spanish government maintains 22877 datasets subdivided into 22
categories: public sector, environment, society and welfare, economy, demography, culture
and leisure, education, employment, healthcare,treasury, tourism, transport, science and
technology, town planning and infrastructures, rural environment, housing, commerce,
legislation and justice, energy, industry, security, and sport [4].

The research for existing datasets that �t in the project scope was focused precisely on
this last one. The selected categories were tourism, culture and leisure, and environment.

Environment mainly contains geological data, forecaster measurement, and waste col-
lection. In this category, it can be found some information about fountains, beaches

5

State of the art

and green areas located in a signi�cant part of Spain but nothing about Barcelona.

Culture and leisure include data regarding cultural heritage, historic sites, monuments,
museums, and libraries. For the city of Barcelona, the only one relevant was the
"Archeological map of Barcelona" where the remains were classi�ed from the pre-
history to the Spanish Civil War.

Tourism covers information about hotels, statistics, and points of interest around Spain.
Only in this category, was found an interesting dataset on the points of interest of
Barcelona maintained by the Ajuntament. The dataset collects name, geographical
position, and a series of labels that structurally categorize the data. Speci�cally, the
recurring labels are museum, park and garden, urban space, architecture, transport,
sports facility, theaters but nothing about artistic movement, or famous people
linked with these places.

Given that, the only useful dataset was not exhaustive, to have the data needed for
the scope, the next step was to collect the categorized data from the most potent source
of information: the users.

2.2 Data collection

The frequency and magnitude of data produced using the internet increases every day
enough to become the 21st-century leading resource for business. The tech giants capture
signi�cant values from the data inserted by the users and the devices. The core of their
business is processing and selling data as well as use them for advertising purposes [1].

Facebook is the top scorer in terms of Billions generated from advertising. Amazon is
the leader in data collection and processing, and use that data to improve its data-centric
algorithm. These two are just simple examples of companies that made data their primary
asset. This trend is moving fast, but the consumer knows little about all the data he is
generating; Some time data are delivered consciously, but other times the user might not
know they're giving up anything at all. In this last case, the user receives something in
return for his data.

Information is primarily collected through screens when people use computers and
smartphones. With the adoption of new data-guzzling devices, like smart speakers, facial
recognition into smartphone and wearable devices, the amount and the variety of data
retrieved is going to be huge. Whether data is created by real people or by computers, the
biggest concern is how it is analyzed. Tech companies are also beginning to acknowledge
that personal data collection needs to be regulated, but it is not enough to only protect
personal data. Consumers need to own their information and receive compensation when
their data are used [2].

2.3 Map creation tools

Software technologies are always under evolution, although the tech giant are the driving
force of this industry, they are not the undisputed market leaders. When a developer has

6

2.3 � Map creation tools

to insert a map with some functionality, the �rst API considered is the Google Maps one.
Google Maps is a project born in 2005 that allows map visualization, but the services

built on top of it is its strength. It allows to research restaurant, monument, bus station,
airport and also to calculate the road routs between two or more points. Street view and
tra�c information are two additional services integrated with it [11]. The API renders
four basic map types:

Roadmap is the default road view.

Satellite includes the Google Earth images.

Hybrid is a combination of the previous two.

Terrain displays a physical map based on terrain information.

Both the element and the style of this basic map can be customized. The API supports
the overlay map type which is designed to work on top of an existing map type, and it
adds a new layer showing additional information to the user. There is also the possibility
of creating a custom map type.

At its �rst release, Google Maps was a free service but over the years have been applied
overly stringent rules. Nowadays, to use the API, the developer must include an API key,
enable billing on all of its projects, and it has a maximum of 500 requests per second
[12]. Moreover, the developer has no control over the policy applied by Google. On the
market, there are various alternatives. Apple MapKit is an Apple library that has higher
limits for map views and service calls, but it is still a beta version. Bing Maps: is similar
to Google one, but Microsoft owns it. It has 125000 free calls per year. These three API
are not for free, and they have a closed approach to data collection and distribution.

OpenStreetMap (OSM for conciseness) instead adopts an open philosophy: it is a
free and editable map released under the open-content license. Their goal is to create
a database which can be used by third parties. Nowadays, OSM maps are used both
for humanitarian aid and scienti�c research. The OSM project collects data using a
collaborative model similar to the Wikipedia one. It creates a free editable map of the
world entirely updated by the volunteers. The updates are immediately visible to all
the users, and the user and the OSM community own them. OSM also uses satellite
images and government data for map production[6]. Quality and granularity, as well as
equal coverage, is guaranteed by the OSM community. Google instead puts more e�ort
and resources into areas that are most pro�table to sell. The �gure 2.1 shows well this
concept comparing the Google and OMS maps in two di�erent places: Barcelona and a
small town in the south of Italy.

Even if the Google map in Barcelona is detailed, this map is still less updated that
the OSM one. For example, in �gure 2.1 (a) we can see the representation of the Tele-
fèric de Montjuic, the Telefèrico del Puerto, and the Funicular de Montjuic that are not
represented in the Google map.

OSM maps can be used both directly for their server or through an open-source
Javascript library. All the features of Google Maps are supported in OpenStreetMap
and in some cases, they are even better.

7

State of the art

(a) Barcelona OSM map. (b) Barcelona Google map.

(c) South of Italy OSM map. (d) South of Italy Google map.

Figure 2.1: Examples of detail level comparison between OpenStreetMap and Google maps in two dif-
ferent locations. Figure (a) and (b) is a capture of Montjuic and the Port Vell in Barcelona.
Figure (c) and (d) opposes the detail level in a not touristic area in the south of Italy.

2.4 Trip planning

Over the last decades, various Trip Planner systems have been developed, and researches
are still ongoing. A transit trip planner is a particular engine that assists users in planning
their trip inserting origin and destination, departure or arrival time, and the transport
means. Most systems are based on static schedules that don't take into consideration the
tra�c congestion and so the possible delay. There are also real-time transit trip planners
includes Vehicle Mounted Unit (VMU), on the bus. This system, based on the GPS
mounted in the vehicle, provides real-time location information which is used to track the
movement and, accordingly, the arrival time.

In 1999, the �rst multimodal itinerary planner was developed to provide the tourist
with schedules of public transports. The Itinerary Planner was developed to help trav-
elers �nd a suitable itinerary by generating alternative travel plans for a single Origin-
Destination pair with time and mode of travel constraints. It didn't consider the real-time
scenario but the unique one to start the Multimodal Trip Planner with constraints. In

8

2.4 � Trip planning

2010 was introduced the Park-n-Ride mode support for multimodal trip planner. It con-
siders parking lots near public transportation access points. During the years, di�erent
optimization algorithms have been created by inserting data caching and applying more
strict search criteria. For transit route planners to work, transit schedule data must al-
ways be kept up to date. To facilitate data exchange and interoperability, in 2006 was
developed a standard data formats have emerged called General Transit Feed Speci�cation
or GTFS [8]. The most advanced trip planner until today is Google Transit [7].

There are another two competitors with similar performance and free: OpenTrip-
Planner and Navitia. OpenTripPlanner or OTP is an open-source and multi-platform
multimodal trip planner. It has a monolithic architecture that makes it easy to con�g-
ure and run, and It uses the GTFS standard. Real-data informations are available as a
continuous stream from the GTFS-RT. Navitia is an open-source framework provided as
a hosted open service preloaded with open data from several regions. It has a modular
system more suitable for high-throughput service and uses an extended transit data sim-
ilar to GTFS but incompatible with it. The integration with real-time data is slow due
to the protocol applied [9].

Journey planners use an in-memory representation of the transportation network and
timetable to enable an e�cient and rapid search and routing algorithms to search the
transport network graph. The routing can use Dijkstra's algorithm when it is independent
of time. Users can create a custom itinerary by using di�erent websites that have a pre-
built database of points of interest.

Google travel put together �ights, and hotels deal with information on the trip desti-
nation. In the explore section, the user gets an overview of the main activities in
the selected city. Then it sees the popular things to do and some prede�ned Day
plans based on actual travelers' visits.

Itineree helps the trip planning. It has a section called Do & See This Day, where the
user can see the top ten places for TripAdvisor or the most recommended attractions.
It can also search for places inserting a keyword, but for this feature, the website
uses an external resource like Google and TripAdvisor. Besides, it also includes
�ight, hotel, and restaurant facilities.

Sygic Travel Maps shows attractions, hotels, restaurants and shops directly on the map
using a proprietary database of touristic attractions. There are two other sections
where the main attraction and the exiting touristic tours are presented.

TripHobo is an itinerary building website that based on seven categories, and the num-
ber and typology of travelers create a customized tour. The categories available
are adventure, arts and culture, entertainment, historical, leisure, outdoors, and
museum. It also includes transportation and hotel facilities.

Roadtrippers has two main functionality: explore places or plan trip. The explore place
section allows the user to select some feature as accommodation, attraction and
culture, food and drink, outdoors and recreation, point of interest, entertainment
and nightlife and some others more. It uses a map visualization where the user
selects one or more points, and the system renders the road trip between them.

9

State of the art

Inspirock is like TripHobo, but it is limited to selected countries, and it doesn't allow
the user to edit the trip after its creation. The �lter mechanism enables the user to
select the degree of point of interest popularity and one or more categories between
culture, romantic, museum, outdoors, beaches, shopping, relaxing, wildlife, and
historical sites. The daily trips proposed are based on existing touristic tours.

Ixigo uses the same style of Google travel. When the user inserts the city, it gives him
some tips about the best period of the year to visit the city with the weather forecast
and which fabric type is more suitable for the selected period.

There are also countless other web sites that allows the user to insert the itinerary
manually and to keep track of his trip without give any suggestion on the journey cre-
ation.

10

Chapter 3

Methodologies

Software development methodology is a series of processes like design, develop and test
phases, used to de�ne the software structure and to codify the communication. The
latter is regulated by a set of norms stating how and when clients and developers have to
communicate.

In the literature, there are many di�erent ways to organize software development.
From the ancestor Waterfall model to the newest Scrum methodologies, it is impossible
to choose the best because each one has its bene�ts. The only two mandatory elements
are discipline and organization in the development. Nowadays, most of the software
companies follow the Agile methodologies, speci�cally its subset Scrum. This project
follows the Scrum methodology.

3.1 Agile

The Agile methodology was developed as a response to the in�exibility of the Waterfall
methodology. This approach helps the developers to respond to the unpredictability of
software production. The underlying logic is to produce the software as quickly as possi-
ble, and then make adjustments and bug �xing in subsequent improvement cycles. The
Manifesto for Agile Software Development explains the Agile philosophy [33]:

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

Individuals and interactions over processes and tools.

Working software over comprehensive documentation.

Customer collaboration over contract negotiation.

Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on

the left more.

Twelve principles are the basis of the Manifesto [34]:

11

Methodologies

1. Customer satisfaction by early and continuous delivery of valuable software.

2. Welcome changing requirements, even in late development.

3. Deliver working software frequently (weeks rather than months)

4. Close, daily cooperation between business people and developers

5. Projects are built around motivated individuals, who should be trusted

6. Face-to-face conversation is the best form of communication

7. Working software is the primary measure of progress

8. Sustainable development, able to maintain a constant pace

9. Continuous attention to technical excellence and good design

10. Simplicity is essential

11. Best architectures, requirements, and designs emerge from self-organizing teams

12. Regularly, the team re�ects on how to become more e�ective, and adjusts accord-
ingly

Figure 3.1: Agile methodology.

Based on these principles, the Agile work�ow can be divided into six phases repeated
over time. Brainstorm is the �rst one, where the team produces the system requirements

12

3.2 � Scrum

based on customer and stakeholder feedback, product, and sprint backlog. In the design
phase, high-level UML diagrams are created to show the functionalities overview and to
establish the timeline. The third phase is the sprint development, followed by the testing
phase divided into internal, external, and Quality Assurance tests. The delivery phase
integrates and deliveries the working system into production. The last phase is composed
of feedbacks from customers and stakeholders that are then inserted in the requirement
of the next iteration.

3.2 Scrum

Scrum is a �exible and straightforward subset of Agile, it is not a methodology but a
framework used to address complex and adaptative problems while delivering products of
the highest possible value. Scrum is based on �ve principles:

1. Courage to do the right thing and work on severe problems.

2. Focus on the work and to reach the Sprint goals.

3. Personal commitment to achieve the Scrum Team goal.

4. Respect for the other members in terms of capabilities and independence.

5. Openness to work and the challenges associated with it.

Scrum is strongly collaborative, the developers, the Scrum Master, and the product
owner belong to the Scrum Team indeed. The product owner represents both the business
and the customers. He prioritizes the tasks in the Product Backlog an he is available to
answer questions and clarify the requirement. The developers are self-organized and cross-
functional. In other terms, they decide what is achievable in one sprint, and they have
the skills to do all the work. The Scrum Master helps everyone to understand the scrum
theory and make sure that everyone has everything he needs.

Figure 3.2: Scrum methodology.

13

Methodologies

Scrum has three artifacts to maximize transparency in communication:

Product Backlog is an ordered list of requirements prioritized by the Product Owner.

Sprint Backlog contains a set of items of the Product Backlog specially selected for a
Sprint. It is the team to-do list.

Increment is the result of the Sprint added to the previous Sprint completed. It de�nes
the project progress.

Scrum contains �ve events designed to maximize the bene�ts of face-to-face communi-
cation and maintain transparency. Sprint Planning is the �rst one where the team decides
what requirement insert into a speci�c Sprint.The main event is the Sprint: a work loop
where the developing takes place. It has a �xed length between 1 to 4 weeks. During the
Sprint the team participates in a Daily Scrum where the work for the next 24 hours is
planned. At the end of each Sprint, there is a Sprint Review to inspect the product, set
the Increments, and adapt the Product Backlog. The last event is the Sprint Retrospec-
tive, where the team can adjust the goals for the next Sprint. Figure 3.2 summarizes the
Scrum methodology.

For the development of this project, the Sprint length had two di�erent lengths:
monthly Sprint for the �rst period, followed by weekly Sprint at the end of the devel-
opment.

14

Chapter 4

Technologies

Before discussing about the requirements and the developing process, the technologies
used must be introduced. The ones employed in the frontend will be presented �rst,
followed by the backend technologies and, in the end, the database.

4.1 React

React is a javascript library purposely designed for the UI creation. The goal after its
development is to have an intuitive language capable of building dynamic and increasing
complex UIs. It is a declarative and stateless language made of immutable and reusable
elements nested together. React's components can receive inputs through props or can
store data in the state. Every time the state change, it updates the UI parts which depend
on it. React supports several frameworks and external plugin to manage routing, API
interaction, and more sophisticated features [20] [21].

Due to is nature, React well �ts into the Model-View-Controller software design pat-
tern. This paradigm decouples the presentation logic and the data representation, en-
hancing code reusability, and the usage of any backend language without restrictions.

Although there are several libraries for web application developing, the choice fell on
React because:

� Unlike JQuery it excludes a direct operation on the DOM. Instead, it provides a
virtual DOM to the developers to guarantee the best performance

� It is less complicated compared to AjaxJS

� It applies the Separation of Concerns. React isolate state and code based on their
scope of use to make the components more reusable at the expense of the inherent
separation of the MVC pattern.

� React's component uses the JSX syntax allowing the developer to include HTML in
React.

15

Technologies

Figure 4.1: Model-View-Controller design pattern.

In just under a year after its development, React has been adopted by major Internet
companies in their core products as Facebook, Instagram, Net�ix, and AirBnB [22]. Re-
acts needs two fundamentals packages for routing and private routes: React Router and
Redux.

4.2 React Redux

In a multi-component application, the state information should be available for all the
components in the application tree. Various state management libraries synchronize state
and UI components like Redux. It is a predictable state container that uses a central data
store to manage the state of the application. The store act as a source of truth on which
components can rely on state management [24].

Three basic concepts are Redux's cornerstone: store, action, and reducers. The whole
app state is stored in an object tree inside a single store. The store makes it easier to
debug and inspect the application. The only way to change the state tree is to emit an
action, an object describing what happened. All changes are centralized and follow a
strict order avoiding race conditions. Reducers are functions that specify how the actions
transform the state tree. It takes the previous state and generates a new one without
modifying the previous one [25].

This patter can be challenging for small applications, but it scales to large and complex
apps very well. The interaction between the three components is shown in the following
picture.

16

4.3 � React Router

Figure 4.2: Interaction between store, action, and reducer in React Redux.

4.3 React Router

React Router is an API for React application that allows the creation of a single-page
web application with dynamic navigation. The di�erence between static and dynamic
routing stands where the routes are declared. Static routing is declared when the app
is initialized outside of a running application. Dynamic routing instead, takes place as
the app is rendering. This library is built with React and embraces its philosophy of
component-based architecture.

There are three main components: router, route matching, and navigation. The router
component is the core of the application; it must be the outer component given to the
DOM in the render method. It creates a history object and enables these components
to interact with it to manage the routing. The router component is in its turn divided
into two parts: Route and Switch. The Route is mandatory, and it contains the path and
a component to render when a location matches the Route's path. The Switch can be
omitted, but it is useful to group the di�erent Routes and iterate among them to do the
matching. Navigation links are Link components to create links with styling attributes
[23].

React Router also enables the user to utilize the browser button, maintaining the
correct application view.

4.4 Node.js

Node.js is a cross-platform and open-source Javascript runtime environment built on
Chrome's V8 engine. It allows the usage of javascript both on the client and server-side
letting to implement the Javascript everywhere paradigm, unifying the Web application
development under a single programming language. This choice makes development faster
and bug-�xing more e�ective.

A Node.js application runs on a single process without creating a new thread for each
request going against the model of the classical web server. It accesses the operative system
resources through the event-driven model. This model is based on a simple concept: every
time there is a change an event is �red. Node.js uses a non-blocking paradigm, making
the blocking behavior the exception; in this way, it avoids the waste of memory and CPU

17

Technologies

cycles, in favor of increased performance. This characteristic makes it perfect for the
creation of a data-driven application where the I/O is put to the test.

Node.js is very �exible in terms of development architecture because it has few depen-
dencies and loosely guidelines. Node.js came along with a standard package management
useful for download and installed several plug-in and dependencies. Even if npm is the
largest javascript repository, its quality is still under veri�cation. The lack of a control
mechanism on these modules leads to a careful choice of them from the developer [27]
[28]. Node.js is a low-level platform, and there are thousands of libraries build on it to
make the development easier as Express.

4.5 Express

Express is the de facto standard server framework for Node.js. Express is an unopinion-
ated framework; it has few restrictions on how to achieve goals and which component to
use. It provides common tasks not directly provided by Node as routing and middleware
integration.

Routing determines how the server responds to a request to a particular URI and
HTTP request method. Route path can be string, string pattern, or regular expressions.
The server listens for requests on a speci�c route and method when it detects a match
execute the callback function associated with it. Route handlers behave like a middleware
with the only exception of the next() function, that can be used to skip the remaining
route callbacks. The callback function has to send a response back to the client to avoid
letting the request hanging. The express.Router class creates modular route handlers that
is a complete middleware [26].

Middleware functions can access the request-response object and the next middleware.
They can execute code, change the request-response object, end the function exiting the
request-response cycle and call the next middleware function in the stack. Express can
use di�erent types of middleware:

� Application-level is bind to the app object through the app.use() function. It takes
three arguments request, response, and next.

� Router-level is bound to the router object and works in the same way as the previous
one.

� Error-handling is bind to the app object but takes four arguments: error and the
usual ones.

� Built-in includes the JSON parser for incoming requests.

� Third-party is installed using npm and is applied using the app.use() function.

In the speci�c case of the thesis, express interact with three leading middleware: cors,
passport, and sequelize. Cors implement the cross-origin resource sharing a security policy
that allows the server to specify who can access it and which HTTP request use. Passport
is an authentication middleware designed to manage both traditional and through an

18

4.6 � PostgrSQL

OAuth provider as Facebook, Twitter, and Google. Sequellize is an Object-Relational-
Mapper for Node.js. Its basic idea is to abstract the complexity of interfacing with the
database writing SQL queries using the object-oriented paradigm instead of pure SQL
[29].

4.6 PostgrSQL

PostgreSQL is an open-source object-relational database management system. It uses
a client/server model where the two processes cooperate and communicate through a
TCP/IP network connection. The server process, called Postgres, manages the database
and performs actions on it on behalf of the client. The client application can have di�erent
natures: web server, text-oriented application, or database management tool. PostgreSQL
supports standard SQL and adds more complex features that simplify management and
prevent data loss and corruption [29]. It introduces [31] [32]:

� Views give a name to a query to access it like an ordinary table.

� Foreign keys maintain the data's referential integrity and improve database quality.

� Transactions ensure the ACID properties: Atomicity, Consistency, Isolation, and
Durability. Atomicity guarantees that a transaction is considered as a single unit.
It fails or succeeds completely. Consistency prevents database corruption bringing
the database from a correct state to another, but doesn't guarantee the transaction
correction. Isolation ensures that the concurrent execution of transactions produces
the same state as their sequential execution. Durability ensures that a transaction
remains committed even in case of a system failure.

� The multi-version concurrency control manage the concurrency. Each transaction
makes changes on a snapshot of the database to avoid read lock and ensure the
ACID properties.

� PostgreSQL provides by default several data types, but also it o�ers the possibility
to create new types.

19

Chapter 5

Requirement

The following chapter contains the requirements, both functional and non-functional, that
ensure the system quality. In the development, they were the milestones to monitor the
progress during the months. Since there wasn't a de�nite client, the requirements are the
result of market research and the opinion of the project advisor.

Before any further speci�cation, it is mandatory to explain the di�erence between
standard and authorized users. A standard user can access the website, navigate through
pages, insert categories and places, and generate a tour based on its preference. The
authorized user has speci�c priviledge given by the system administrator. It can review
the data inserted by the standard user and validate them.

5.1 Functional Requirement

The functional requirement speci�es the detailed requirements which the system shall
meet. The di�erent scenarios are presented using the Use Case diagram. Moreover, each
use case is described speci�ng:

� Main actor

� Precondition

� Input

� Output

5.1.1 Use Case UC01: Register

RF01 User registration

Main Actor User, both standard and authorized

Precondition The user didn't have an open session, and he is not registered
in the system.

Continued from previous page

21

Requirement

Input The user wants to access the system

Output
1. The user opens the application.
2. The system shows the main page.
3. The user selects "Sign Up" button.
4. The system shows the sign-up form.
5. The user inserts username, email and the password

twice.
6. The user clicks on the "Sign Up" button
7. The system validates all the �elds.

7.1 If the username or the email already exists, the
system shows an alert. The user has to change
them to sign-up.

7.2 If the password, the email, or the username
doesn't respect the criteria, the system shows an
alert.

7.3 If the two passwords inserted, don't match the
system shows an alert.

8. The system redirects the user to his main page.

Continues from previous page

Table 5.1: Describes the main actor, the precondition, and the intentions of the Registration process.
In the output section are described the steps to achieve the registration.

Figure 5.1: The use case describes the access process to the system, both for authorized and standard
users. The detailed description is reported in the table 7.3 and 5.2

22

5.1 � Functional Requirement

5.1.2 Use Case UC02: Login

RF02 User Login

Main Actor User, both standard and authorized

Precondition The user didn't have an open session, and he is already reg-
istered in the system.

Input The user wants to access the system

Output
1. The user opens the application.
2. The system shows the main page.
3. The user selects "sign-in" button.
4. The system shows the sign-in form.
5. The user inserts username and password.
6. The user clicks on the emph"Sign In" button.
7. The system checks if the user exists and validates the

two �elds.
7.1 If the username or the password is wrong, the

system shows an alert. The user has to change
them to sign-in.

7.2 If the user with that username doesn't exists, the
system shows an alert.

8. The system redirects the user to his main page.

Table 5.2: This table describes the login process in all of its parts. First, de�ne the main actor and the
preconditions. Then it explains what the user wants to do. In the last section are reported
all the subsequent actions performed by the user and the system with the possible outcome.

23

Requirement

5.1.3 Use Case UC03: Add new category

RF03 User add new category

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to insert a new category.

Output
1. The user selects, on the navigation bar on the left, the "Add new

Categories" section.
2. The system shows the related page.
3. The user selects the form and inserts the category name.
4. The user selects the "Category" radio button.
5. The user clicks on the "Insert" button.
6. The system checks that this new category isn't already in the

database.
6.1 If the category already exists, the system shows an alert.

The user can insert a new one or continue to navigate in the
system.

6.2 If the insertion succeeds, the system shows an alert to notify
the user.

The user can repeat this action as many times as he desires.

Table 5.3: Describes the main actor, the precondition, and the intentions when the user wants to add
a new category. In the output section are described the steps to achieve the action and the
possible outcome.

24

5.1 � Functional Requirement

5.1.4 Use Case UC04: Add new subcategory

RF04 User add new subcategory

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to insert a new subcategory.

Output
1. The user selects, on the navigation bar on the left, the "Add new

Categories" section.
2. The system shows the related page.
3. The user selects the "Subcategory" radio button.
4. The system shows the validate category already inserted in the

database.
5. The user selects the form and inserts the subcategory name.
6. The user selects one or more parent categories between the ones

rendered on the page.
7. The user clicks on the "Insert" button.
8. The system checks that this new subcategory isn't already in the

database.
8.1 If the subcategory already exists, the system shows an alert.

The user can insert a new one or continue to navigate in the
system.

8.2 If the insertion succeeds, the system shows an alert to notify
the user.

The user can repeat this action as many times as he desires.

Table 5.4: Describes the main actor, the precondition, and the intentions when the user wants to add a
new subcategory. In the output section are described the steps to achieve the action and the
possible outcome.

25

Requirement

5.1.5 Use Case UC05: Add new point of interest

RF05 User add new point of interest

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to insert a new point of interest.

Output
1. The user selects, on the navigation bar on the left, the "Add new

points" section.
2. The system shows the related page.
3. The user selects one point on the map.
4. The system renders a marker on the selected point, it blocks the

map and it shows a form.
5. The user inserts the place name and its description. It selects one

or more categories and subcategories.
6. The user clicks on the "Insert" button.
7. The system checks that this new point of interest isn't already in

the database.
7.1 If the place name already exists, the system shows an alert.

The user can insert a new one or continue to navigate in the
system.

7.2 If the insertion succeeds, the system shows an alert to notify
the user.

The user can repeat this action as many times as he desires.

Table 5.5: Describes the main actor, the precondition, and the intentions when the user wants to add a
new point of interest. In the output section are described the steps to achieve the insertion
and the possible outcome.

26

5.1 � Functional Requirement

5.1.6 Use Case UC06: Generate a touristic tour

RF06 User generate a tour

Main Actor Standard User

Precondition The user has an open session, and he is a standard user.

Input The user wants to generate a tour.

Output
1. The user selects, on the navigation bar on the left, the "Create

points of interest" section.
2. The system shows the related page.
3. The user selects one or more categories.
4. The system renders the subcategories related to the category se-

lected in the previous step.
5. The user optionally selects one or more subcategories.
6. The user clicks on the "Generate Points" button.
7. The system checks that there is in the database at least one point

linked to those categories and subcategories.
8. In case of success:

8.1 The system renders a map with the points found.
8.2 It also shows on the map a path between the points with

public transportation and a textual description of the jour-
ney.

9. In case of failure:
9.1 The system renders a map with no points.

The user can repeat this action as many times as he desires.

Table 5.6: In the tour generation process are described the main actor, the precondition, and the inten-
tions of the user. In the output section are described the steps to achieve the action and the
possible outcome.

27

Requirement

Figure 5.2: The use case describes all the actions that a standard user can execute in the system. All the
actions require that the user is logged in and is of type standard. The detailed description
is reported in the table 5.3, 5.4, 5.5 and 5.6

28

5.1 � Functional Requirement

5.1.7 Use Case UC07: Review and validation of categories and subcat-

egories

RF07 User reviews and validates categories

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user. The categories
and subcategories are still not reviewed by no one.

Input The user wants to validate a category inserted by standard users.

Output
1. The user selects, on the navigation bar on the left, the "Review

category" section.
2. The system shows the related page.
3. The user sees two di�erent columns, one for the categories and one

for the subcategories. Each row has two buttons: "Validate" and
"Invalidate". The subcategory column also shows the reference to
its parent category.

4. The user can choose to validate or invalidate each category and
subcategory.

5. The user clicks on the "Validate" button associated to the category
that he wants to validate.

6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are categories to review.

Table 5.7: Describes the main actor, the precondition, and the intentions when the user wants to review
a category. In this scenario it can validate or invalidate a category, as well as do nothing.
In the output section are described the steps to achieve the validation of a category. The
process to invalidate a category is exactly the same, the only di�erence is the button clicked
in the �fth step. The same process can be executed as well for the subcategories.

29

Requirement

5.1.8 Use Case UC08: Review valid categories and subcategories

RF08 User reviews valid categories and subcategories

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user. The categories
and subcategories have already been invalidated.

Input The user wants to invalidate a validate category.

Output
1. The user selects, on the navigation bar on the left, the "Validated

categories" section.
2. The system shows the related page.
3. The user sees two di�erent columns, one for the categories and one

for the subcategories already validated. Each row has the "Inval-
idate" button. The subcategory column also shows the reference
to its parent category.

4. The user can choose to invalidate or not each category and sub-
category.

5. The user clicks on the "Invalidate" button associated to the cat-
egory that he wants to invalidate.

6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are validated categories.

Table 5.8: Describes the main actor, the precondition, and the intentions when the user wants to review
an already validated category. In this scenario it can invalidate a category, as well as do
nothing. In the output section are described the steps to achieve the invalidation. The same
process can be executed as well for the subcategories.

30

5.1 � Functional Requirement

5.1.9 Use Case UC09: Review invalid categories and subcategories

RF09 User reviews invalid categories and subcategories

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user.The categories
and subcategories have already been validated.

Input The user wants to validate an invalid category.

Output
1. The user selects, on the navigation bar on the left, the "Invalidated

categories" section.
2. The system shows the related page.
3. The user sees two di�erent columns, one for the categories and one

for the subcategories already invalidated. Each row has the "Val-
idate" button. The subcategory column also shows the reference
to its parent category.

4. The user can choose to validate or not each category and subcat-
egory.

5. The user clicks on the "Validate" button associated to the category
that he wants to validate.

6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are invalidated categories.

Table 5.9: Describes the main actor, the precondition, and the intentions when the user wants to review
an already invalidated category. In this scenario it can validate a category, as well as do
nothing. In the output section are described the steps to achieve the validation. The same
process can be executed as well for the subcategories.

31

Requirement

5.1.10 Use Case UC10: Review and validate points of interest

RF10 User reviews and validates points of interest

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user.

Input The user wants to validate a point of interest inserted by standard
users.The points of interest are still not reviewed by no one.

Output
1. The user selects, on the navigation bar on the left, the "Review

points" section.
2. The system shows the related page.
3. The user sees a table with six columns.The columns contain re-

spectively: name, latitude, longitude, categories, subcategories,
and description of the point of interest. Each row has two but-
tons: "Validate" and "Invalidate".

4. The user can choose to validate or invalidate each point of interest.
5. The user clicks on the "Validate" button associated to the point

of interest that he wants to validate.
6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are points of interest to review.

Table 5.10: Describes the main actor, the precondition, and the intentions when the user wants to review
a point of interest. In this scenario it can validate or invalidate the point, as well as do
nothing. In the output section are described the steps to achieve the validation of a point
of interest. The process of invalidation is exactly the same, the only di�erence is the button
clicked in the �fth step.

32

5.1 � Functional Requirement

5.1.11 Use Case UC11: Review valid points of interest

RF11 User reviews valid points of interest

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user.The points of
interest have already been validated.

Input The user wants to invalidate a valid point of interest.

Output
1. The user selects, on the navigation bar on the left, the "Validated

points" section.
2. The system shows the related page.
3. The user sees a table with six columns.The columns contain re-

spectively: name, latitude, longitude, categories, subcategories,
and description of the points of interest already validated. Each
row has the "Invalidate" button.

4. The user can choose to invalidate or not each point of interest.
5. The user clicks on the "Invalidate" button associated to the point

of interest that he wants to invalidate.
6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are validated points of interest.

Table 5.11: Describes the main actor, the precondition, and the intentions when the user wants to review
an already validated point of interest. In this scenario it can invalidate it, as well as do
nothing. In the output section are described the steps to achieve the invalidation.

33

Requirement

5.1.12 Use Case UC12: Review invalid points of interest

RF12 User reviews invalid points of interest

Main Actor Authorized User

Precondition The user has an open session, and he is a authorized user. The points
of interest have already been invalidated.

Input The user wants to validate an invalid point of interest.

Output
1. The user selects, on the navigation bar on the left, the "Invalidated

points" section.
2. The system shows the related page.
3. The user sees a table with six columns.The columns contain re-

spectively: name, latitude, longitude, categories, subcategories,
and description of the points of interest already invalidated. Each
row has the "Validate" button.

4. The user can choose to invalidate or not each point of interest.
5. The user clicks on the "Validate" button associated to the point

of interest that he wants to validate.
6. The system stores the information on the database.

The user can repeat this action as many times as he desires until there
are invalidated points of interest.

Table 5.12: Describes the main actor, the precondition, and the intentions when the user wants to review
an already invalidated point of interest. In this scenario it can validate it, as well as do
nothing. In the output section are described the steps to achieve the validation.

Figure 5.3: The use case describes all the actions that an authorized user can execute in the system.
All the actions require that the user is logged in and is of type authorized.The detailed
description is reported in the table 5.7, 5.8, 5.9, 5.10, 5.11 and , 5.12

34

5.2 � Non Functional Requirement

5.2 Non Functional Requirement

Non-functional requirements state how the functional requirements need to be achieved.
In the following section, they are presented using tables that specify the identi�cation
number, the type, and the description.

5.2.1 Usability

RNF01 Usability

Description The UI design is attractive for the user. The combination of shapes
and colors made the interaction more natural and intuitive. Moreover,
UI follows the logic of similar applications making the interaction more
comfortable and error-free. The users don't need the training to use the
application.

Table 5.13: Describes the usability requirement of the application.

5.2.2 Maintainability

RNF02 Maintainability

Description The developer has to easy correct defects or their causes, prevent un-
expected working conditions, and repair or replace components without
having to rewrite the whole code. Besides, the useful system life must be
maximized along with its e�ciency, reliability, and safety.

Table 5.14: Describes the maintainability requirement of the application.

5.2.3 Performance

RNF03 Performace

Description The system must have a short response time both in the UI rendering and
in the interaction with the backend. It should be acting in the same way
with di�erent users' load. The database size and the length of the path
for the tour to calculate don't have to a�ect signi�cantly the response
time that should be under 5 seconds.

Table 5.15: Describes the performance requirement of the application.

35

Requirement

5.2.4 Platform compatibility

RNF04 Platform compatibility

Description The software execution isn't a�ected by the platform where it runs. The
system must work well on every web browser. This non-functional re-
quirement also includes the portability one, in terms of abstraction be-
tween the application logic and the system interface to reduce the devel-
opment cost.

Table 5.16: Describes the platform compatibility requirement that also satis�es the portability one.

5.2.5 Reliability

RNF05 Reliability

Description The system can work under a de�ned condition for a speci�ed period.
It re�ects design perfection and resistance to failure of a component or
the whole application in terms of probability of success. It is strictly
related to availability and the users' behaviors. The possible failure of
the system can be related to human interaction, maintenance-induced
failure, and software failure.

Table 5.17: Describes the reliability requirement of the application.

5.2.6 Robustness

RNF06 Robustness

Description The system has to deal with errors during the execution and erroneous
input. It has to notify the user and continue without generate misleading
behaviors.

Table 5.18: Describes the robustness requirement of the application.

5.2.7 Operability

RNF07 Operability

Description All the system parts, frameworks, databases, and UI, have to work to-
gether to accomplish the common task. The system works without need-
ing application restart or any other non-automated interventions. It is
closely related to reliability and maintainability.

Table 5.19: Describes the operability requirement of the application.

36

5.2 � Non Functional Requirement

5.2.8 Security

RNF08 Security

Description The data integrity is mandatory for the security of all the information
stored in the database. The system has to implement access restrictions
and separation of jurisdiction between the users. Further, it has to im-
plement a mechanism to prevent informatic attacks.

Table 5.20: Describes the security requirement of the application.

37

Chapter 6

Architecture and Design

This chapter explains in detail the system architecture and the design with a focus on the
frameworks used. Section 6.1 describes �rst the general architecture of the project. Then
it reports the detailed architecture used for the back-end and the front-end development.
Section 6.2 includes the database schema and the data representation used in the project.

6.1 System architecture

The system architecture is composed of sub-systems that work together to implement the
overall system. This project is based on a client-server architecture, shown in the �gure
6.1, where clients can use any desktop computer with a modern browser. The server can
be unique or replicated, and it communicates with a PostgreSQL database and the OTP
service. The client-server architecture has several advantages that �t the project scope.

Figure 6.1: Client-server architecture of the project. It shows the connection between the components
and also includes the server connection with the PostgreSQL database and the OpenTrip-
Planner service. Each client has its instance of the OpenStreetMap.

First of all, the system ensures the separation between the presentation and business
logic. Business logic includes all the processes invisible to the user that are the core of
the application; the presentation logic consists of the UI representation instead. This
separation ensures uncomplicated maintainability because any changes in the back-end

39

Architecture and Design

don't a�ect the presentation layer, and the changes are centralized. Moreover, the client
can access the system without any speci�c con�guration. The front-end development can
be uncoupled because the communication between client and server should agree only on
the data representation and the communication protocol. It is a cheap architecture in
term of human cost, the security and the maintainability are centralized, so fewer support
sta� is required [15].

6.1.1 Back-end architecture

The REST architectural style is the foundation for the back-end development. The repre-
sentation state transfer de�nes a set of constraints for web services creation that provides
interoperability between systems over the internet [16] [17]. A RESTful API is based on
the following guideline:

Separation of concern between client and server enables the components to grow au-
tonomously. It improves client portability across di�erent platforms, and it increases
the server scalability by streamlining its components.

Responses cacheability can be enabled by clients or servers to improve performance
or disabled to avoid to receive stale data.

Stateless server protocol binds the session state to the client. In each request sent,
the client must include all the information required for the communication.

Layered system used to improve scalability and security. This feature is liked to the
separation of concern explained before. The client is not aware of who he is commu-
nicating with because additional layers can be added to the server to improve load
balance, security policies, or caching mechanism. Furthermore, the server can call
other web services to introduce additional functionality.

Uniform interfaces to simplify and decouple the architecture. Unique URI identi�es
individual resources that are conceptually separated by the data representation re-
turned. The message returned includes enough metadata information to be manip-
ulated or deleted. A standard interface like HTTP is used for communication.

RESTful systems aim for fast performance, reliability, and scalability, as explained be-
fore. Following this architectural style, components can be managed and updated without
a�ecting the system even while it is running.

6.1.2 Front-end architecture

The implicit connection between React and the Model-View-Controller design pattern
described in chapter 4 leads to think of embracing the MVC design style. The problem
with MVC is the bidirectional communication that made the code less maintainable and
challenging to debug. Facebook, which developed React, presented a new architecture
called Flux for building React web application with unidirectional data �ow [10]. Four
elements are the basis of Flux: Action is an object with property and data, Store contains

40

6.2 � Data representation

the application state and logic, View listen to store changes and re-render accordingly,
and dispatcher is a process implementing actions and callback functions [?]. Based on
this architecture, the thesis is developed using Redux, an architecture based on Flux that
di�ers from it for the absence of the dispatcher and the concept of data immutability.

In the project, React is the View layer, and Redux is the Store.The overall architecture
with components and relationships is represented in �gure 6.2.

Figure 6.2: React+Redux architecture details with highlights on the components and the relations be-
tween them.

The container is an abstraction layer that allows Redux and React to be decoupled,
therefore, to change and grow autonomously. It translates the changing in the Redux
state to React props, and when in React, an event happens, it triggers the corresponding
action in Redux. A Component is a piece of code that renders and uses a set of props
passed by its parent that can be a component or a template. A template is merely an
additional abstraction level. The Action is an object containing the type of action, and
the state changed because of the action. It communicates with the server to execute the
action required by the React event, and it sent the result to the Reducer. The Reducer
is the only component allowed to change the state creating a new one. The selector is an
abstraction level between the Store and the Container [19].

6.2 Data representation

The data used by the application is stored in a relational database. An ORM technique can
be used to simplify the development and increase maintainability. The Object Relational
Mapping technique allows the developer to manipulate and query the data in the database
using an object-oriented approach. It implements a data layer that creates a "virtual
object database" and acts as a translator between the object-oriented language and the

41

Architecture and Design

database, reducing the need for SQL language. The ORM translates the logical object
representation in a suitable form that can be stored in the database preserving the object
properties [14].

This project uses Sequelize, an ORM promise-based for Postgres, MySQL, and other
relational databases [13]. The �rst step is to create a Sequelize instance to connect to the
database. Then the developer has to de�ne for each database table a model in Sequelize.
By default, the createdAt and updateAt �eld are inserted in the model to track the mod-
i�cation done on the table. The application will interact with the database directly with
this model. After the model creation, it must be deployed in the database using the
Sequelize migration.

Figure 6.3: Schema of the project database.

Figure 6.3 shows the database model created using the migration. The Categories
and Places tables are linked with the Users one through a foreign key on the user email.
The Places table also has two more foreign keys referring to the categories and subcate-
gories stored in the Categories table. The Categories table includes both categories and
subcategories that are de�ned using a foreign key applied between the id and parentId

attributes.

42

Chapter 7

Development

This chapter details the implementation of the project, explaining the functionality and
the most signi�cant element employed. It includes UML diagrams and snapshots of the
application both of code and UI. Before entering the implementation details, let's intro-
duce the development environment.

The development environment is a set of processes and tools used to develop source
code and debug it. WebStorm is the JavaScript IDE created by JetBrains that covers
all the modern JavaScript languages as React and Node.js. It provides to the developer
intelligent code completion and on-the-�y error detection. For these features and the
built-in integration with Git and GitHub, it was chosen for the development of the entire
project. Git is a revision control system and a source code management that was used in
the project to keep track of its history. It was used together with a GitHub account where
the project information was stored. GitHub is a web-based hosting service that uses Git.

7.1 Homepage

The �rst view presented to the user is a map showing the point of interest, inserted and
already validated, as markers on the map. This is a public page where both registered
and non-registered users can access it. In the top-right corner, there are the Sign-in and
Sign-up button to allow access to the restricted part of the system. In the development,
Lea�et was used to show the OSM map in the application. Lea�et is an open-source
JavaScript library designed to ensure simplicity, performance, and usability. It is highly
customizable and supports several plug-ins to extends its features. When a user navigates
to the homepage, the browser asks him to allow the localization. If it is enabled, the
map will zoom in on his position, and a localization marker appears. Otherwise, nothing
happens, but the system could not work correctly in the next phase of tour creation. The
user can navigate on the map, and when he goes on a marker, the system shows the place
name as shown in �gure 7.1.

The system to render the point of interest on the map, interact with the server. The
only API call that can be executed by an unregistered user is the getAll one showed in
�gure 7.2. The system asks for the points of interest already validated by the authorized
user. Since this page is public, the server returns only the name and the geographic

43

Development

Figure 7.1: App registration page. The user has pointed his mouse on the Plaça d'España marker and
the label is shown

coordinates of the point without any information about who inserted it.

Figure 7.2: Sequence diagram for points of interest retrieval.

7.2 User login

As said before, the user to access all the application features has to log in and start a
new session. To handle the authentication, a speci�c service was developed using JSON
Web Tokens. JWT is a compact and self-contained solution for transmitting information
between parties that can be veri�ed and trusted because it is digitally signed. JWT is
composed of three di�erent parts: header, payload, and signature. The header contains
the speci�cation for the type of token and the algorithm used. User-related information
and token metadata are stored in the payload. The signature is used to verify the token,
and it is created trough the encoded header, the encoded payload, and the secret known
by the token issuer. Any changes in the token modi�es its signature and invalidate it.
The JWT is used as an access token for the protected features of the system.

44

7.2 � User login

Figure 7.3: Sequence diagram of the login process. The �rst lifeline on the left it the one related to the
client. The others are all calls within the server.

Every time the user enters the application, he receives an access token. For design
choices, the client stores the access token and sent it to the server through cookies. Figure
7.3 shows all the calls executed by the system in the login process. This scenario represents
the login of an already registered user that inserts all the correct parameters, explained
afterward. The signInValidation function validates the data inserted by the user and
returns the error if it founds some illegal data. It the case represented, the user has
inserted the correct ones, so the validation returns an unde�ned error that means success.
The JTW token and the user email are stored by Redux in the client-side.

Figure 7.4: App login page

The user interface showed in �gure 7.4 follows the style of the most popular software
to make the user comfortable with a familiar scenario. The user as to insert the username

45

Development

and the password, then he selects the SignIn button. In case he miswrote any of the two
�elds, leaves one of them empty, or inserts illegal code in them, he is noti�ed with an
alert. In case the login succeeds, the main page connected with his state of normal or
authorized user is automatically rendered.

7.3 User Registration

During the registration process, the user must follow some speci�cations for username
and password creation. The username must be at least 6 characters long and contain only
alphanumeric characters and underscores. The password requires at least 8 characters,
including an uppercase letter, a digit, and a special symbol. It has to be repeated another
time for safety. The form used for the registration process also uses a structure similar
to the other popular website. In case any �eld showed in �gure 7.5 is empty or doesn't
respect the constraint explained before, the user is noti�ed.

Figure 7.5: App registration page

When the user hits the SignUp button, the client sends a POST request to the server.
The input validation process is called and permit to proceed with the new user insertion.
This process showed in �gure 7.6 is practically the same described in �gure 7.3. The only
di�erences are the URI of the request, and the parameter send with it. If the user inserted
a username already taken or the email already exists, the user is noti�ed to allow him to
change them and start the process again. When the process is completed successfully, the
user is directly redirected to his homepage and receives with the response the JWT and
his email.

7.4 Token Validation

The system has to validate the token every time the user requests a private route. The
system speci�es three functions to verify the di�erent access privileges. The verify.normal

46

7.4 � Token Validation

Figure 7.6: Sequence diagram of the registration process.

is used to check if the user that wants to access the resource is registered and is a standard
user. The verify.authorized one examine if the user has the authorized privilege. There is
also a general function called verify.general, used to check only if a user is registered in
the system because both types of users can access some resources in di�erent contexts.

Figure 7.7 reports the sequence diagram for the token validation. First, the server has
to retrieve the JWT from the request cookies. In case the function found it, the token
is validated with a proprietary function of JWT that decrypts the payload and takes the
userId previously stored there. The server then queries the database to �nd if the user
corresponding with that id is registered and noti�es the user accordingly. If the user tries
to access unauthorized resources, the system automatically redirect him to the login page.

Figure 7.7: Sequence diagram of the authentication process.

47

Development

7.5 Standard user features

The standard user is the one that can add valuable information on the application and
the one with more sophisticated features. On his homepage can choose three di�erent
activities explained in the following subsections, or he can logout using the SignOut button
in the header showed in �gure 7.8, 7.11, 7.14 and 7.16 using a straightforward process.
The SignOut button triggers an action on the Redux reducer and sets the global state to
the initial state before the login.

7.5.1 Insertion of a new Category

The �rst feature of the software is the categorization of point of interest. By default, the
system already has six categories: Building, Museum, Business, People, Outdoor, and
Artistic movement. Each of them has several subcategories that can be liked to one or
more categories. Even if the categories cover many touristic aspects, the possibility for
the user to add a new one was inserted.

Figure 7.8: Add new Category tab of the application. The user has already selected the subcategory
�eld, and the system has rendered the possible parent categories.

The user to insert the category selects the Add new category tab in the left navigation
bar showed in �gure 7.8. He can choose between the insertion of a category or a subcat-
egory. In the category case, he inserts the name, selects the Category button, and clicks
on Insert. The sequence diagram, �gure 7.9, exposes the API calls executed. First, the
system checks if the user is a standard one and is registered, and it validates the input.
Then it queries the database three times to ensure that there isn't any category with that
name, to count the existing categories to give a sequential id to the categories, and if any
error occurs, it inserts the new category. In case of success or error, the user is noti�ed.

For the subcategory insertion, the user has to select the subcategory button; the system
requests the main categories through a GET request following the steps reported in �gure
7.10. The user then selects one or more categories and continues as explained for the

48

7.5 � Standard user features

Figure 7.9: Sequence diagram of the category insertion process.

category insertion. To get the categories, the system checks �rst if the user is registered
in the system, and afterward, it retrieves from the database the category already validated.
The process to insert a subcategory is the same; the only di�erence is the request URI,
and the parameters passed with it.

Figure 7.10: Sequence diagram of the process for get the categories already validated by the authorized
user.

7.5.2 Insertion of a new point of interest

One of the central purposes of the application is giving value to user knowledge and
ensure the most trustworthy and free journey. The idea is to insert points of interest that
cover not only the major sightseeing but also hidden or less know places. The user can

49

Development

do it within the website, selecting the tab Add new point of interest. If he has enabled
the localization, it sees a map zoomed on his position; otherwise, he sees the general
map, as explained in section 7.1. In this case, the points of interest already validated are
represented with orange markers; the new point selected by the user is a blue marker.

Figure 7.11: Add new point of interest tab of the application. The user has already selected the point
on the map and the Outdoor category. The subcategory rendered by the system are the
one related to the Outdoor category already selected. The user has also inserted the name
and the description and selected the Fountain subcategory.

When the user selects a point on the map, the system blocks the map and renders a
popup form, as in �gure 7.11, where the user can insert name, categories, subcategories,
and a description. Between them, the name and at least one category must be inserted.
The system shows in the form latitude and longitude where the user clicked and store
them with the user email and all the other information in the database, as reported in
�gure 7.12.

Figure 7.12: Sequence diagram of the point of interest insertion process.

50

7.5 � Standard user features

A POST request is sent to the server that validates token and input and creates an
instance on the database. The �ow of the process is similar to others already explained in
the previous sections. But this one requires two other API calls. The �rst one is included
in the map creation, as explained in the 7.1 section, for the retrieval of point of interest
already validated. The second API call, described in �gure 7.13, can be repeated every
time the user selects a category button to retrieve the subcategories linked to the selected
category. There is a POST request to the server that veri�es the token and asks the
database for the subcategories validated that have as parent the one stored in the request
body.

Figure 7.13: Sequence diagram of subcategory request process.

7.5.3 Tour Creation

Figure 7.14: Creates point of interest tab of the application. The user has already selected the Business
category and the system renders the subcategory related to it. The user selects Shopping
and Restaurant subcategories

51

Development

The last, but not least feature available for a non-privileged user is the customized
tour creation. The user navigates to the Create points of interest tab on his homepage.
The system renders the �rst screen, reported in �gure1, where the user sees and chooses
the validated categories. To do so, it executes the GET call explained in section 7.5.1
�gure 7.10. For each category selected by the user, the system executes the same call to
the API explained in section 7.5.2 �gure 7.13. The user can choose many subcategories
as well. To help the user in the visualization of the categories chosen, the system renders
them with a di�erent color. The user can select and deselect each category manually or
undo all by selecting the Clear choice button.

When the user is satis�ed with the �lter selection, it clicks on the Generate points

button, and the system executes the API call reported in �gure 7.15. As usual, the server
checks if the user has the right privileges to execute that call. It queries the database
to found the places that were categorized with the tag selected by the user. The result
of the database aren't returned directly to the user because it is a waste of bandwidth
to execute another call to the server for the tour generation. The server automatically
calls the sortPoint function passing the data retrieved from the database and the current
position of the user. In this scenario, the user must allow the localization to use the
service.

Figure 7.15: Sequence diagram of the tour creation process.

The sort function uses a brute force approach because during the design was assumed
that point categorization was focused and careful to give the best performance possible.
This function computes in the �rst iteration, the distance between the current user position
and all the points returned by the database. The nearest point goes in the array as
the second element, and the process iterate again. This time the system computes the
distance between the second element of the array and the remaining point, putting the
new solution in the third position. The function ends when there aren't any more points
on which iterate.

52

7.6 � Authorized user features

The OTP service can create the itinerary only between pairs, so it can't receive the
array as a whole. Therefore, the system passes the sorted array to the generateItinerary
function that iterates on the array, takes a point and its following one, and sends them
to the OTP. To work the OTP also needs the time and date of departure, which are set
in our system by default with the current date and time, the maximum walking distance
between the di�erent bus transit, set to 500 meters, and the transport modes to consider,
in this case, walk and public transportation. The function creates a new array with the
itinerary linked together and returns it �nally to the user.

If the research of points didn't produce any result, the user is noti�ed. Otherwise, the
system renders a new screen with a map and a description box, as shown in �gure 7.16.
In the map are present only the point of interest received back from the server and not all
the points as in sections 7.1 and 7.5.2. The user can navigate the map and see the point
name as in section 7.1. The system renders with two di�erent colors, the bus path and
the path where he has to walk, and when he passed over a path with the mouse, the line
name is shown. To make the user comfortable was inserted a description box where the
journey is described in a discursive way. If the user is not satis�ed with the tour, he can
select the Create points of interest tab on his homepage again.

Figure 7.16: Creates point of interest tab of the application after the tour creation. The user navigates
on the map and points on the bus line 59.

7.6 Authorized user features

The administrator of the system gives privileges to the authorized user. It has to ensure
the data quality in the application employing the feature described in the following sub-
sections. He can logout as well as the standard user using the SignOut button displayed
in �gures 7.17 and 7.20 that follow the process described in section 7.5.

53

Development

7.6.1 Validation of a category

The authorized user has di�erent privileges compared to the standard one. It ensures the
quality of the system data; for this reason, his job needs a di�erent environment and a
di�erent homepage in the application. The system administration gives his privileges at
the registration time. The �rst task and the one rendered by default on the homepage is
the category review showed in �gure 7.17.

Figure 7.17: Application tab for the category reviews.

The main page is divided in two columns, the left one for the categories validation
where the user can see the category name and the two buttons for validate or invalidate the
corresponding category. The right column contains the subcategories following the same
schema, but we must also have the parent category for each of them in order to complete
the validation rightly.The user to validate a category clicks on its Validate button and
�res the process described in �gure 7.18.

Figure 7.18: Sequence diagram of the validation process of a category.

54

7.6 � Authorized user features

There is a POST request that sends the category id to the server that checks the
user privilege, and in case of success, it updates the corresponding entry in the database.
When the success message is sent back to the client, the page re-renders automatically
and doesn't show the validated category anymore. The same process is executed to
invalidate the category or to validate and invalidate subcategories with the only di�erence
of the request URI. Below the Review categories tab, there are two more tabs related
to categories: Validated categories where the user can invalidate an already validated
category and Invalidated category where the user can execute the opposite task on an
invalid category. This process can be executed for subcategories as well and uses the
schema presented in �gure 7.18.

Figure 7.19: Sequence diagram of the category review process.

The system to show the categories and subcategories to be validated has to execute
before the page rendering an API call represented in �gure 7.19. The client asks �rst for
the categories inserted by the user but not yet reviewed. The server validates the user
token to check his privileges, executes the query, and returns the data to the client. The
latter sends another request for the subcategories that follows the same pattern. This
process is executed every time the user hits one of the buttons between Review categories,
Validated categories, and Invalidated categories.

7.6.2 Validation of a point of interest

The second task of the authorized user is the validation of points of interest and can be
accessed through the navigation bar on the left on the screen, selecting the Review points
tab. the user has to check several parameters, so the page was designed using a table, as
reported in �gure 7.20.

The authorized user has to check �rst of all if the name and coordinates are the
right one, then if the point was correctly categorized. Each row represents an entry in the
database that is still not reviewed and has associated the Validate and Invalidate buttons.

55

Development

Figure 7.20: Application tab for the points of interest reviews.

The columns are the corresponding attribute stored in the database model. To validate
a point of interest, the user has to select the Validate button correspondent. This action
executes the API call to update the corresponding entry in the database. The process is
similar to the one explained in section 7.6.1, and the sequence diagram for the validation
process is reported in �gure 7.22.The same schema of the UI is used for the Validated

points and Invalidated points tabs. The process is the same as explained in �gure 7.22 for
both the actions with di�erent URI.

Figure 7.21: Sequence diagram of the point validation process.

To �ll the review table, the system executes a GET request. The server checks the
user token and then executes the query on the database, as reported in �gure 7.22. This
time the query includes two joins on the Categories table to have the categories and
subcategories name instead of the id. As showed in �gure 7.22, this time was impossible
to use the Sequelize methods due to the length and complexity of the query, so a pure

56

7.6 � Authorized user features

SQL query was executed. This decision made the UI more readable and user-friendly and
was applied to all the points of interest tab.

Figure 7.22: Sequence diagram of the points of interest review process.

57

Chapter 8

Conclusion and future works

The project idea was, since the beginning, appealing for the challenges presented and the
possibility as a future user. First of all, it is a project that �ts in a trending market
because traveling is a pleasant step in everyone's life, and several applications are trying
to jump out as market leaders, as explained in chapter 2. Another critical point in the
project was the cutting-edge technologies proposed that were challenging but incredibly
interesting. As explained in chapter 4, the technologies used are new and widely adopted
by the most important world software companies.

During the design and implementation, the project evolved with the emerging of new
ideas. At its creation, the project included the iBeacon technologies to create a proximity
advertising of the application, but the idea was then shelved for privacy and spam creation
problems. Some ideas were valuable and other too di�cult for the limited amount of time
and resources available, so they are presented as future work.

At the end of the project, ful�lled all the requirements stated in chapter 5 and reached
all the goals established even if it is still a demo. The project retrieves, categorizes, and
validates the point of interest inserted by the user employing categories focused on the
touristic market. Moreover, it creates thematic tours putting together the fetch of points
of interest and the journey creation in an individual solution complying with the expected
non-functional requirements.

Further upgrades can be done to improve the application quality or automatize it:

Modi�cation user pro�le to insert additional information and manage the pro�le.
Some functionality as password change or retrieve the one forgot are not inserted in
the application because the project is in its embryonic stage, and it needs additional
improvements.

Improvement of the authorized user interface mostly for the points of interest re-
view. The system could show the point to review on a map to facilitate the localiza-
tion and the validation of its coordinates and add the possibility to change the data
inserted by the user to correct spelling error or categorization without invalidating
the categories.

Translation in di�erent languages to reach more users and leave them the possibility

59

Conclusion and future works

to choose which language to use. Even though English is the undisputed global
language, there are users that prefer their native one.

Creation of a mobile application to use it on the go, reach more users, and expand
the market.

Change People category to match the name of the public �gure instead of the profes-
sion. This kind of categorization is more accurate than the one chosen and creates
a more specialized tour.

Usage of data crawling techniques to execute the data validation instead of the man-
ual validation executed by the authorized user.This functionality of the app is a
bottleneck, if the insertion number is low, the reviewer can manage the validation,
but with the increase of the application's usage, the reviewer can be very slow com-
pared to the input data �ow. A data crawling technique can automate and speed
up the validation process, but it needs more research and trials of how much it was
possible to execute in the project timeline.

60

Bibliography

[1] https://www.businessmodelsinc.com/data-is-the-new-currency/

[2] https://www.wired.com/story/wired-guide-personal-data-collection/

[3] https://www.predictiveanalyticstoday.com/google-public-data-explorer/

[4] https://datos.gob.es/en/catalogo/

[5] https://data.europa.eu/euodp/en/data/

[6] https://en.wikipedia.org/wiki/OpenStreetMap

[7] N. Borolea, D. Routa, N. Goela, Dr. P. Vedagirib, Dr. Tom V. Mathewb, �Multimodal
Public Transit Trip Planner with Real-Time Transit Data �, Procedia - Social and

Behavioral Sciences, No. 104 , 2013, pp. 775 � 784

[8] https://beyondtransparency.org/chapters/part-2/pioneering-open-data-standards-
the-gtfs-story/

[9] https://github.com/CanalTP/navitia/wiki/OpenTripPlanner-and-Navitia-
comparison

[10] https://facebook.github.io/�ux/

[11] https://www.techeconomy.it/2016/03/25/openstreetmap-e-google-maps/

[12] https://developers.google.com/maps/documentation/javascript/

[13] https://sequelize.org/master/

[14] https://en.wikipedia.org/wiki/Object-relational_mapping

[15] https://en.wikipedia.org/wiki/Client%E2%80%93server_model

[16] https://searchapparchitecture.techtarget.com/de�nition/RESTful-API

[17] https://en.wikipedia.org/wiki/Representational_state_transfer

[18] https://medium.com/of-all-things-tech-progress/understanding-mvc-architecture-
with-react-6cd38e91fefd

[19] https://medium.com/mofed/react-redux-architecture-overview-7b3e52004b6e

[20] https://reactjs.org/

[21] https://en.wikipedia.org/wiki/React_(web_framework)

61

https://en.wikipedia.org/wiki/React_(web_framework)

Bibliography

[22] https://www.html.it/guide/react-la-guida/

[23] https://reacttraining.com/react-router/web/guides/quick-start

[24] https://redux.js.org/api/api-reference

[25] https://medium.com/the-web-tub/managing-your-react-state-with-redux-
a�ab72de4b1

[26] http://expressjs.com/en/api

[27] https://nodejs.org/en/docs/

[28] https://nodejs.dev

[29] https://www.postgresql.org/docs/

[30] https://medium.com/@purposenigeria/using-postgresql-and-sequelize-to-persist-
our-data-c86854a3c6ac

[31] https://en.wikipedia.org/wiki/PostgreSQL

[32] http://www.postgresqltutorial.com/what-is-postgresql/

[33] https://agilemanifesto.org/

[34] https://agilemanifesto.org/principles.html

62

	List of Tables
	List of Figures
	Introduction
	Data retrieval and validation
	Data categorization
	Tour creation
	Thesis Structure

	State of the art
	Existing Data Set
	Data collection
	Map creation tools
	Trip planning

	Methodologies
	Agile
	Scrum

	Technologies
	React
	React Redux
	React Router
	Node.js
	Express
	PostgrSQL

	Requirement
	Functional Requirement
	Use Case UC01: Register
	Use Case UC02: Login
	Use Case UC03: Add new category
	Use Case UC04: Add new subcategory
	Use Case UC05: Add new point of interest
	Use Case UC06: Generate a touristic tour
	Use Case UC07: Review and validation of categories and subcategories
	Use Case UC08: Review valid categories and subcategories
	Use Case UC09: Review invalid categories and subcategories
	Use Case UC10: Review and validate points of interest
	Use Case UC11: Review valid points of interest
	Use Case UC12: Review invalid points of interest

	Non Functional Requirement
	Usability
	Maintainability
	Performance
	Platform compatibility
	Reliability
	Robustness
	Operability
	Security

	Architecture and Design
	System architecture
	Back-end architecture
	Front-end architecture

	Data representation

	Development
	Homepage
	User login
	User Registration
	Token Validation
	Standard user features
	Insertion of a new Category
	Insertion of a new point of interest
	Tour Creation

	Authorized user features
	Validation of a category
	Validation of a point of interest

	Conclusion and future works
	Bibliography

