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Fault tolerance in cloud computing is considered as one of the most vital issues to deliver reliable services. Checkpoint/restart is
one of the methods used to enhance the reliability of the cloud services. However, many existing methods do not focus on virtual
machine (VM) failure that occurs due to the higher response time of a node, byzantine fault, and performance fault, and existing
methods also ignore the optimization during the recovery phase.+is paper proposes a checkpoint/restart mechanism to enhance
reliability of cloud services. Our work is threefold: (1) we design an algorithm to identify virtual machine failure due to several
faults; (2) an algorithm to optimize the checkpoint interval time is designed; (3) lastly, the asynchronous checkpoint/restart with
log-based recovery mechanism is used to restart the failed tasks.+e valuation results obtained using a real-time dataset shows that
the proposedmodel reduces power consumption and improves the performance with a better fault tolerance solution compared to
the nonoptimization method.

1. Introduction

Cloud computing has emerged as a prominent paradigm
over the past decade and its use has seen substantial growth
[1]. Not only small scale users but also large scale com-
mercial business and scientific applications are getting
benefited by the use of cloud. With minimal effort, users can
get services from the cloud as it enables ubiquitous, on
demand access to a shared pool of computing resources.
Resources like software, hardware, and apps are shared
resources. +e three main layers of cloud architecture are
Software as a Service, Infrastructure as a Service, and
Platform as a Service. Fault may occur on all these three
layers; nevertheless, software based algorithms are identified
and applied to recover from faults.

Fault tolerance is described as a system’s capacity to
continue executing its intended purpose in the face of errors

or faults [2, 3]. Even a well-designed system with the greatest
components and services cannot be called dependable
without fault tolerance capabilities [4]. Because a large
number of delay-sensitive (real-time) applications must be
run, reliability is a critical aspect of cloud computing.
Furthermore, service dependability is critical to the cloud’s
wider acceptance. As a result, fault tolerance has gotten a lot
of attention in research. +ere are various fault tolerance
mechanisms—replication, checkpointing, Self-Healing, Task
Migration, Retry, Safety-Bag Checks, Reconfiguration, Task
Resubmission, Masking, etc. [5–8]—to tackle faults at var-
ious levels either in reactive or proactive fashion.

Cloud computing entails the dynamic allocation of re-
sources and the use of data centers that are often dispersed
geographically. +e hypervisor, also known as the virtual
machine monitor (VMM), is a high-level monitoring unit
that splits the server’s available resources into virtual
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machines (VMs) or virtual nodes (VNs) and monitors their
performance and availability. Single or many VMs are
assigned to run the submitted application based on the user’s
request. +e benefit of utilizing a virtual machine is that it
allows users to run applications on a variety of operating
systems, IDEs, and software environments. In most cases,
the virtual infrastructure management (VIM) module of
cloud computing manages resource pooling, physical and
virtual resource management, and other tasks [7].

A cluster is formed using a group of different hosts or
servers. Here, we consider clusters as assets of servers for
better generalization. Cluster allows cloud service providers
to assign VMs to virtual clusters in a dynamicmode based on
SLA or user request. Such prior knowledge for cloud service
providers is very much necessary to handle dynamic allo-
cation of virtual machines.

In this work, we propose an intelligent fault-tolerant
mechanism that performs the following tasks: (a) detecting
VM failure due to the higher response time of a node,
byzantine fault, and performance fault; (b) optimizing
checkpoint interval time; and (c) using asynchronous
checkpoint/restart method to model the cloud service ex-
ecution. In our cloud model, fault tolerance procedure is
illustrated in Figure 1. At the beginning, tasks are submitted
by the users. +e cloud supervisor forms the virtual clusters
of hosts and performs allocation of tasks to virtual machines
(VM) along with monitoring of VMs and hosts. Virtual
machines will start executing the allotted tasks along with
checkpointing it at the optimized regular interval of time
that is derived from the optimization algorithm.

If a node response time exceeds the response time de-
fined in the QoS requirement, it is halted and all the tasks are
restarted on another host. If a virtual machine fails, all the
tasks running on the virtual machines will be restarted on
other virtual machines from their most consistent check-
points. Byzantine faults are detected as described in Section
3.1.1. +e node in which byzantine fault is detected will be
halted, and another virtual machine is launched. Log-based
recovery mechanism is implemented to optimize the restart
process of the tasks. It is noted that there will be overhead in
identifying different types of faults and finding the most
consistent checkpoint to restart the tasks.

+e rest of the paper is organized as follows: Section 2
presents literature survey, the proposed method is discussed
in Section 3, Section 4 gives evaluation of the proposed
method with experimental setup and results, and lastly
conclusion is provided in Section 5.

2. Literature Review

+is section presents some of the work done by researchers.
Authors in [9] proposed a fault-tolerant VM placement,

where fault tolerance is implemented using VM replication
technique. Here, based on VM requirements, different
numbers of replicated copies are used. Each physical ma-
chine has its own requirement or constraint, and the rep-
licated copies of the same VM cannot be placed on the same
physical machine. +e integer linear programing method is
used here to handle VM replica placement. In [10], to

increase the reliability of the system, a checkpointing/restart
mechanism was proposed along with a replication scheme.
+e development of a fault-tolerant system assures the re-
liability and continuity of services. Checkpointing is the
most susceptible in the event of a higher failure rate since the
checkpointing file will become inaccessible if the computer
that stores it fails, rendering the failed job unrecoverable.
Hence, a replica of the checkpointing file is maintained to
improve the reliability. A checkpoint and replication based
fault tolerance technique was developed [11]. +e work
focuses onMapReduce framework in cloud, where proactive
based fault tolerance is used to recover from the fault.

Cloud service reliability enhancement through optimi-
zation of VMP was developed by Zhou et al. +ree algo-
rithms are used in this method. Based on the network
topology, the first algorithm chooses an acceptable selection
of VM-hosting servers from a potentially large collection of
possible host servers. With K-fault-tolerance assurance, the
second algorithm develops an appropriate strategy for
placing the primary and backup VMs on the specified host
servers. Finally, to solve the task-to-VM reassignment op-
timization issue, which is defined as finding the greatest
weight matching in bipartite graphs, a heuristic is utilized. In
[13], an (m, n)-fault tolerance virtual machine placement for
cloud data center was proposed.m represents the number of
edge switches, and n denotes the host servers. K-fault-tol-
erant replication strategy was used to enhance reliability of
the application or services. +e first step is to recast the issue
as an integer linear programming problem and demonstrate
that it is NP-hard. Second, to address the integer linear
programming issue, the differential evolution (DE) tech-
nique is implemented. Authors in [14] proposed a unique
execution time prediction model that takes into account
execution events that other multilevel checkpointing models
did not include. +e relationship between the system failure
rates, checkpoint/restart overhead, and time between con-
secutive checkpoints is complicated, and determining the
ideal time between checkpoints is a difficult task. +e work
explains how the proposed model can be used to set
checkpoint intervals and why these execution events are
essential to consider.

In [16], a fault-tolerant cloud computing service based
on checkpointing is proposed. +e fault tolerance service
employs semicoordinated checkpointing, which reduces the
time spent in the coordination phase and thereby reduces
the amount of energy consumed and overhead. Results
showed that the proposed approach also lowers the expense
of a rollback. Bansal et al. [17] introduced theWQR-FTfault-
tolerant WQR method, which employs a group manager to
guarantee the existence of a certain number of copies in the
system. Checkpointing adds overhead, which might
lengthen the execution time [18, 19]. +e checkpointing
method (protocol), checkpointing storage, or recovery
process can contribute to this cost [20].

3. Proposed Work

Many existing methods do not focus on virtual machine
(VM) failure that occurs due to multiple factors like higher
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response time of a node, byzantine fault, and performance
fault, and existing methods also ignore the optimization
during the recovery phase. +e proposed approach for fault
tolerance in the cloud data center involves three phases.
Phase 1 focuses on finding VM failure. Here, few algo-
rithms are proposed to detect VM failure due to higher
response time that occurs at the virtualization layer of the
cloud, and even the byzantine faults are also detected.
Phase 2 also describes the proposed algorithm for intelli-
gent fault-tolerant mechanism cloud data center which also
involves the checkpoint interval time calculation process.
In phase 3, asynchronous checkpoint and optimized re-
covery process using log-based mechanism is discussed.
Figure 2 shows the working principle of the proposed
model.

3.1. Phase 1: Detection of Different Types of Faults

3.1.1. Byzantine Fault Detection Using Checksum Validation.
To detect byzantine faults, we have used the SHA-2 algo-
rithm. SHA-2 is one of the novel hash functions used in
different fields. SHA-256 uses a 256-bit hash value. Hash
value is computed using eight 32-bit words. SHA-256
checksum can also be used in cloud platforms.

In cloud environment, when a node uses the TCP/IP
protocol to connect to another node, it is expected to
produce a checksum, so such nodes are automatically
equipped with SHA-256. +e nodes which are connected
to other nodes through IP protocol are termed as
internodes.

In this work, every node in the cloud environment
performs the checksum. +e checksum of a particular data
block is always unique and does not clash with the result of
another data block. As a result, when a node is provided with
a message and fails to produce the necessary checksum, the
node can be identified as erroneous and compromised.
Malicious nodes are discouraged from altering the checksum
findings because reconstructing the original data from the
checksum or conducting collision analysis is generally a
time, space, and cost constrained task. SHA-256 checksum
computation on arbitrary datasets is simple, easy, and fea-
sible. Byzantine nodes frequently produce genuine-looking
output that is incorrect owing to byzantine fault-induced
miscalculation.

3.1.2. Checksum Prerequisites. In the cloud environment, a
cloud monitoring (supervisor) node is expected to send the
message M to k number of internodes automatically and

Tasks
Submission

T1 T2 Tn

Cloud
Supervisor

(Tasks execution &
Checkpoint)

Restart
Process

Physical
Node

Running
VM

Failed
VM

Process
Restart

Figure 1: Fault tolerance procedure.
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receive the checksum C1, C2, . . . , Ck  in time
T1, T2, . . . , Tk . 512 bits is the size of the standard message
for SHA-256, and the resultant checksum is 256 bits. We
consider a supervisor node that has a precomputed
checksum C in time T. Next, we compare set P C{ } with
Q C1, C2, . . . , Ck .

To compare checksum, if P and Q are the sets and Q’s
every element is also P’s element, then Q⊆P; i.e.,Q is a subset
of P; hence,

Q⊆P, if ∀y(y ∈ Q⟶ y ∈ P). (1)

If Q is not a subset of P, then one or more elements of Q
exhibit processing error, hence the difference in the
checksum.

If the set Q contains no element of P, then it is a null set
{ } represented by ∅; i.e., P∩Q � ∅ . +is means that the
entire set of observed checksums is incorrect, so the entire
set of observed nodes is compromised. +is also may reflect
that the supervisor node itself is compromised.

If there exist set of checksums in setQ which is produced
by erroneous nodes, then

P

Q
� y: y ∈ P|y ∉ Q ⟶ set of wrong checksums.

(2)

Before any application begins execution in cloud, su-
pervisor node selects message M, generates checksum P C{ },
sends it to k nodes automatically, and receives the checksum
Q C1, C2, . . . , Ck  in time T1, T2, . . . , Tk .

If Q⊆P, if ∀y(y ∈ Q⟶ y ∈ P), then we record the
response time, i.e., transit time + processing time as the set R
T1, T2, . . . , Tk .

3.1.3. Algorithms for Detection of Different Types of Faults.
Cloud computing delivers services to users maintaining QoS
as mentioned in the SLA. Response time and QoS delay are
among the QoS metrics which are associated with all the
cloud nodes. Supervisor nodes monitor the set of nodes that
meets the SLA.

In Algorithm 1, if the response time for any node exceeds
QoS response time, then node is checkpointed and Algo-
rithm 2 is called.

Algorithm 2 submits the message M to the operating
node. If the operating node produces a checksum which is
not matching the C, then it shows a checksum error
denoting byzantine fault. If the fault is detected, the algo-
rithm will shut down the node and start a new virtual
machine. If no fault is detected, then the set
S T1, T2, . . . , Tj  is compared with R T1, T2, . . . , Tk .

Consider a function f with set R and partially ordered set
S as subset, an element s of S is upper bound of f if S≥ f(R)

for each r in R. If this holds good for at least one value of r,
then it indicates that variation in the delay experienced is
high or extreme, and it indicates performance fault; hence,
the node is shut down after the transfer of workload at
previous checkpoint as depicted in Algorithm 3.

3.1.4. State Transition for Checksum. Figure 3 shows the
state transition diagram for the virtual node. A node, after
receiving the message M from the supervisor, calculates the
checksum. Here, the initial state of the node is considered as
0. If the node fails to compute the expected checksum after
receiving message M, there is an error and it enters a
byzantine state (i.e., 1). From the byzantine state, it reaches
state 2 with probability p� 1 where the node is shut down

Monitoring all the
nodes in the data

center

Virtual Machine/Node
Failure

Cloud
Monitoring/Supervisor

Node

Checkpoint Interval
Calculation

Asynchronous
Checkpointing

Restart Tasks from
consistent

checkpoints on other
nodes

Set of
consistent

checkpoints

Phase 2Phase 1

Phase 3

Figure 2: Work Process of the proposed model.

4 Mathematical Problems in Engineering



Input: N operating nodes N1, N2, . . . , Nk 

Output: faulty node or normal node
for all operating nodes (N)
if response_time of Nj≥ response time in QoS
then
take the checkpoint
call checksum_compare()

else
continue supervise

end if
end for

ALGORITHM 1: Node failure due to higher response time.

Input: Message M to all operating nodes N
for each Nj in N
if Cj ≠ C//byzantine fault
then
halt Nj
start new node as Nj from recent
consistent checkpoint

else
call delay_deflection_compare()
end if

end for

ALGORITHM 2: checksum_compare() for byzantine fault detection.

for each operating node Nj
Choose Ti in S
Copy corresponding Ti in R

if Ti in S<Ti in R
no fault//minimal delay variation
call checkpoint_optimization()

else if Ti in S� Ti in R
no fault//call checkpoint_optimization()

else if Ti in S ≥ upper bound in R
shut down Nj
start new node as Nj from recent
consistent checkpoint

else
call checkpoint_optimization()

end if
end if
end if

end for

ALGORITHM 3: delay_deflection_compare().

0 1 2

NE

M E P

Figure 3: State transition for checksum.
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and a new VM is started. If no error is detected, it remains in
the same state. Here, E indicates the error, and NE indicates
no error.

3.1.5. State Transition with Delay Variation. We consider
three delay variations: (Δ) normal, high, and extreme. As
shown in Figure 4, the initial state of the node is 0. If the
delay variation is normal (N), the node remains in the
same state; if the delay variation is high (H) or extreme
(Ex), it denotes byzantine or performance failure, so the
node takes transition to state 1. After this, the node is
transited to state 2 where a shutdown of the node takes
place.

3.1.6. Delay-Sensitive Server Scheduling (DSSS). +e DSSS
algorithm’s goal is to maintain track of all of the servers that
make up the virtual cluster. It is a lightweight model and can
be integrated into cloud supervisor.

DSSS keeps track of the number of failed delay-sensitive
tasks that surpass the QoS delays, as well as faults caused by
VM failures, resource contention, and other factors. +e
count is then used to rank the server after each state interval,
with the server with the fewest fault counts being at the top
of the list. As a result, DSSS can help with dynamic job
placement based on the server’s performance. It may be also
used to rate servers based on their prior performance and to
keep track of the status of previous cluster implementation.
Having such knowledge of prior performance can aid the
management model in selecting the server for forming
clusters to execute sensitive applications in an appropriate
and dynamic manner. Notations used in DSSS algorithm are
depicted in Table 1.

After the selection of the suitable server for processing
the job, the next step is to apply an appropriate fault tol-
erance mechanism.

3.2. Phase 2: Checkpoint Interval Optimization.
Checkpoint/restart optimization is a challenging task
keeping checkpoint intervals at the optimal value. It aims at
finding the time interval that is necessary to take checkpoints
for the tasks. Let α represent the preset initial state moni-
toring interval. +e optimization algorithm works in the
following way: if a node does not exhibit delay variation or
checksum error that happens when a node stays in the same
state (0) as shown in Figure 5, then the interval value is
incremented. If a node exhibits high or extreme delay
variation and checksum error, the state interval is reset to
initial.

3.2.1. Proposed Algorithm. To execute the tasks generated by
users, our proposed algorithm (intelligent fault-tolerant
mechanism, IFTM) uses several algorithms that have been
discussed in Sections 3.1, 3.2, and 3.3 of this paper. +e
proposed algorithm identifies the VM failure due to higher
response time, byzantine fault, and performance fault. It also
calculates the optimal checkpoint interval time and restarts

0 1 2

N

Ex
P

H

Figure 4: State transition for delay variation.

Table 1: Notations used in DSSS.

Notation Meaning
R User request/application
S List of available servers
Ji Task or job
FVM Failed virtual machine
C Count of failed task
VM Virtual machine
LDSSS List of servers sorted in ascending order
SI State interval for fault tolerance

Input: R, S
Output: LDSSS
Divide R� J1, J2, . . . , Jn 

for all s is S do
if sj is assigned to Ji then
if sj not in LDSS then

sj⟶ LDSS
LDSSS � LDSSS + 1

end if
end if

end for
for each sj in LDSSS
if VM � FT
C � C+ 1

else if VM � FVM
C � C+ 1

else VM � FVM
C � C+ 1
end if

end if
end for
sort LDSSS(s, C)

for j� 0 to n−1
if sj.c ≤ sj-1.c then
swap (LDSSS[sj-1], LDSSS[sj])

end if
end for

ALGORITHM 4: DSSS.

0 1 2

NE
Ex

P

H

M E

N

Figure 5: State transition for checksum and delay variation.
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the failed tasks using an asynchronous checkpoint/restart
mechanism.

3.3. Phase 3: Asynchronous Checkpointing and Recovery.
+ere are two types of VM fault-tolerant methods that are
often utilized. One is based on checkpoint-based and log-
based rollback techniques. +e other is based on the pri-
mary-backup paradigm, with incremental checkpoints as a
feature [15].

In this work, fault tolerance is modeled using the
asynchronous checkpoint and log-based rollback. +e ap-
plications or the processes/tasks getting executed on the
allocated VMs running concurrently were checkpointed
independently. +ese checkpoints are taken independently
without any synchronization among the processes, hence the
lower runtime overhead during normal execution. If VM
failure is detected or some of the tasks fail, then the recovery
process is activated. Recovery process needs to iterate to find
a consistent set of checkpoints, which is one of the limi-
tations of this method. Figure 6 shows an example of
checkpoints and global consistent recovery points for dif-
ferent processes. +e recovery algorithm must search for the

most recent consistent set of checkpoints before it initiates
recovery.

As shown in Figure 4, three processes, Pi, Pj, and Pz, take
checkpoint at {{Ci, 0}, {Ci, 1}}; {{Cy, 0}, {Cy, 1}}; and {{Cz, 0},
{Cz, 1}} respectively. When the process Pi fails, it rolls back
to the previous consistent checkpoint {Ci, 1}. Rollback of
process Pi to {Ci, 1} creates an orphan message M7, and it
forces Pj to roll back to checkpoint {Cy, 1}. Since asyn-
chronous checkpoints face a domino effect during recovery,
to overcome that effect and to optimize recovery, we have
used a log-based recovery mechanism.

During checkpoint and recovery, few assumptions are
taken into account. Communication channels are consid-
ered to be reliable, having infinite buffers, and deliver
messages in FIFO order.ff Triplet (S, M, MSG_SENT)
represents the state of P. Process at state S receives the
message M, and it moves to the state S1 and sends the
message out. Two types of log storages, volatile and stable
log, are used. After the execution of an event, the triplet is
recorded without any synchronization with other processes.
Local checkpoints consist of a set of records that are first
stored in volatile log and then moved to stable log. During
recovery, Algorithm 7 is used.

Set I� α
Set s� 0
for each node Nj in state 0
if ΔC� {NE or N}
α← α + I

Call delay_deflection_compare()
Call checksum()

else if ΔC� { Ex or H or E}
α � I

shut down Nj
start new node as Nj

end if
end for

ALGORITHM 5: Checkpoint_Interval_Optimization().

for each Ji
for each VMi

do
supervise (Checksum, Delay Variation)
DSSS()
Checkpoint_Interval_Optimization()
Asynchronous_checkpoint()
Checksum_compare()
delay_deflection_compare()
if (FVM)
recovery_algorithm()

end if
end for

end for

ALGORITHM 6: IFTM.

Mathematical Problems in Engineering 7



Notations used in the algorithm are as follows:

RCa ←b (CPa) indicates the number of messages re-
ceived by process Pa from Pb, from the beginning of the
computation to checkpoint CPa.
SDa⟶ b (CPa) indicates the number of messages sent
by process Pa to Pb, from the beginning of the com-
putation to checkpoint CPa.
R is the number of process recovered after failure.

K is the number of processes.
Oc is orphan message.

Here, a set of consistent checkpoints are selected from
the set of checkpoints based on the number of messages sent
and received.

3.4. Model Execution with Checkpoint Mechanism. +e
checkpoint procedure is regarded as deterministic, and the

Pi

Py

Pz

Ci,0 Ci,1

Cy, 0 Cy, 1

Cz,0 Cz,1

Failure

Recovery
Line

M1

M2

M3

M4

M5

M6

M7

Figure 6: Asynchronous checkpointing and recovery.

Process Pa accomplishes the following:
part 1

if Ra then
CPa:� latest event logged in stable storage

else
CPa:� latest event that took place in Pa {can be in volatile storage or stable storage}
end if

part 2
for i� 1 to K

do
for each neighbor process q do
calculate SDa ⟶ b (CPa)
send a ROLLBACK(a, SDa ⟶ b (CPa))
message to Pb

end for
for every ROLLBACK (b, Oc) message
received from a neighbor b do
if RCa ←b (CPa)>Oc // indicates presence // of orphan message
then
find the latest event e such that
RCa ←b (e)�Oc

CPa:� e
end if

end for
end for

ALGORITHM 7: Rollback recovery.

8 Mathematical Problems in Engineering



cost of a checkpoint is solely determined by the amount of
work already completed. Let W be the workload and v be the
number of checkpoints. W1, W2, W3, . . . , Wv are the
amount of work between each checkpoint such that


v
q�1 W q � w/βm, where ß represents the overhead factor

(0 ≤ β≤ 1) and m denotes the number of virtual machines.
Wq is the amount of work done between checkpoint number
q−1 and q. Let C(Fq) represent the checkpoint cost after
quantity of work Fq, where Fq � 

q

i�1 Wi, where Wi denotes
the quantity of work that must be completed prior to each
checkpoint. R represents the restart process cost before qth
checkpoint, denoted as R(Fq-1), where Fq−1 � 

q−1
i�1 Wi.

It is assumed that no failure happens during the rollback
recovery process. +e total execution time can be repre-
sented as

E Pk(  � E Pwf  + 
k

t�1


v

q�1
uq · E Ptf , (3)

where

k is the number of processes.
Pwf is a process without failure.
Ptf is a process with failure and recovery.
uq � Wq + C (Fq) + R(Fq−1).

4. Simulation Results

Experimental setup, performance metrics, and experimental
results are discussed in this section.

4.1. Experimental Setup. CloudSim toolkit simulator is used
to evaluate the proposed method. We have used real
workload traces (log) files from PlanerLab which is part of
CoMon project having CPU utilization frommore than 1000
VMs running on different hosts in more than 500 locations
across the world.We have used 4 types of VMs, micro, small,
medium, and large instances. 800 heterogeneous hosts,
which belong to HP ProLiant G4 and HP ProLiant G5
category, are used.+e number of tasks generated is between
100 and 1000.

Faults are generated using the FaultGenerator class in
CloudSim. VM fault is induced by shutting down the VM,
resource contention fault is simulated by reducing the re-
source capacity, and a modified FaultGenerator class is used
to simulate byzantine fault or performance fault.

4.2. Performance Metrics and Results. In the proposed
method (intelligent fault-tolerant mechanism), BFD is used
as a VM placement technique. Here, the active hosts are
categorized according to their power efficiency, and themost
efficient ones are favored. In BFD, the host is better than
other host if its power efficiency is greater than the other host
and lesser in fault counts.+e proposed method is compared
with checkpointing technique without FCFS..

+e following metrics are used to evaluate the perfor-
mance of the proposed and other methods.

4.2.1. Power Consumption. It represents the total amount of
energy utilized by all of the data center’s physical machines
(PMs). +e linear cubicle power consumption model is used
to calculate the energy consumption of PMs. In this power
paradigm, the physical host’s power consumption climbs
linearly as CPU use rises. For the power model, we consider
the following parameters.

Pmax
k : maximum power consumed when the host k is

completely utilized.
Pidle

k : idle power value of the host k.
Uk : current CPU utilization of the host k.
T : total number of hosts in the data center.

+e power consumption of host Pk can be expressed as

Pk � P
idle
k + P

max
k + P

idle
k ∗U

3
k . (4)

Our goal is to reduce data center power usage, and
subsequently we aim to minimize



T

k�1
Pk � 

T

k�1
P
idle
k + P

max
k − P

idle
k ∗U

3
k . (5)

Figure 7 shows the power consumption of both the
methods. Here, the average power consumption of the
proposed method is lesser compared to the nonoptimization
method for the dataset planetlab/20110303 to planetlab/
20110420.

4.2.2. Makespan. It is the total execution time required to
process all the tasks. Since the faults are simulated, few
tasks may fail and get restarted from the identified
checkpoint, causing the completion of the tasks to take
more time than expected. Makespan is one of the key
performance metrics to evaluate the algorithms/methods.
Figure 8 shows the execution time of the proposed method
and nonoptimization method. As shown in the figure,
average execution time of the proposed method using
optimization technique is less by 25% compared to
nonoptimization method.

Figure 9 and 10 show standard deviation of execution
time of the proposed method and nonoptimization method
with VM selection. +e standard deviation value falls within
the range of 0.005 to 0.012 seconds in the proposed method,
and in the nonoptimization method it ranges from 0.009 to
0.021 seconds.

+e comparison of number of tasks completed by the
proposed method and nonoptimization method is
replesented in Figure 11 by varying the number of tasks
from 100 to 1000. Total number of tasks completed by the
proposed method is higher compared to nonoptimization
method. Consequently, reliability is high because of a
lesser number of failed tasks in the proposed method.
Reliability can be measured as the inverse of the failure
probability. +e more number of tasks completed sig-
nifies that the reliability of the system is high.
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Figure 9: Proposed method execution time, VM selection standard deviation.

Proposed Optimization Method
Without Optimaztion

M
ak

es
pa

n 
(m

se
c)

16000

14000

12000

10000

8000

6000

4000

2000

0
100 200 400 500 750 1000

No.of Tasks

Figure 8: Makespan of different methods.

Proposed Optimization Method

En
er

gy
 C

on
su

m
pt

io
n 

(k
w

h)

Algorithms
Without Optimization

180

160

140

120

100

80

60

40

20

0
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5. Conclusion

+is paper aims at enhancing the reliability of cloud services
through fault-based mechanism. +e proposed approach is a
three-phase process: phase 1 is the detection of virtual machine
(VM) failure due to the higher response time of a node, byz-
antine fault, and performance fault. +e checkpoint optimi-
zation algorithm in phase 2 finds the suitable time to mark
checkpoints periodically while executing the tasks. Finally, in
the checkpoint and recovery phase, in case of failure, the backup
and recovery algorithm finds the optimal global checkpoint to
restart the failed tasks. +e evaluation result using a real-time
dataset shows that the proposed method gives a better fault-
tolerant solution decreasing the execution time and energy
consumption and increasing reliability compared to the non-
optimization method. Our future work includes developing
fault tolerance mechanism using other reactive techniques and
testing on different workload traces [12].
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