

Node-based Native Solution to

Procedural Game Level Generation

Guilherme Silva Gama | UP202100735

Master in Multimedia at Universidade do Porto

Advisor: António Fernando Vasconcelos Cunha Castro Coelho (PhD)

Co-Advisor: Diana Quitéria Teixeira de Sousa (MSc)

June of 2023

© Guilherme Silva Gama, 2023

Node-based Native Solution to
Procedural Game Level Generation

Guilherme Silva Gama | UP202100735

Master in Multimedia at Universidade do Porto

Advisor: António Fernando Vasconcelos Cunha Castro Coelho (PhD)

Co-Advisor: Diana Quitéria Teixeira de Sousa (MSc)

“A good idea is something that does not solve just one single problem, but rather can
solve multiple problems at once.” — Shigeru Miyamoto

Resumo

A Geração Procedural de Conteúdo (PCG) aplicada ao domínio do desenvolvimento de

jogos tem se tornado um tópico proeminente com um número crescente de

implementações e aplicações. Soluções de PCG standalone e plugin, regidas por

interfaces baseadas em nós e outras abordagens de alto nível, enfrentam limitações em

termos de integração, interatividade e responsividade quando inseridas no processo de

desenvolvimento de jogos. Essas limitações afetam a experiência do utilizador e inibem

o verdadeiro potencial que estes sistemas podem oferecer.

Adotando uma metodologia de Action-Research, realizou-se um estudo preliminar com

entrevistas a especialistas da área. A avaliação da relevância e da interface mais

adequada para a solução proposta foi concretizada através de uma série de protótipos

visuais. Posteriormente, foi implementado um protótipo funcional e conduzido um

estudo de caso para uma amostra mais ampla, incluíndo especialistas e

desenvolvedores de jogos. Os participantes realizaram uma série de exercícios

orientados, operando com o protótipo. Após a conclusão dos exercícios propostos, os

participantes avaliaram a relevância da solução e da experiência do utilizador através

de um questionário.

No desenvolvimento de uma metodologia nativa de PCG baseado em nós, integrado no

motor de jogo, identificámos limitações e concluímos que existem diversos desafios

ainda por superar no que diz respeito a uma implementação completa de um sistema

complexo e amplo.

Palavras-chave: Geração Procedural, Desenvolvimento de jogos, Interface

baseada em nós, Experiência de utilizador

Abstract

Procedural Content Generation (PCG) applied to game development has become

a prominent topic with increasing implementations and use cases. However, existing

standalone and plugin PCG solutions, which use Node-based interfaces and other high-

level approaches, face integration, interactivity, and responsiveness limitations within the

game development pipeline. These limitations hinder the overall user experience and

restrain the true potential of PCG systems.

Adopting an Action-Research methodology, a preliminary interview was conducted

with experts in the field. The evaluation of the solution's relevance and the identification

of the most suitable interface approach was carried out using a series of visual

prototypes. Subsequently, a functional prototype was implemented, and a case study

was conducted using a broader sample, joining PCG experts and game developers.

Participants engaged in a series of guided exercises, operating with the implemented

solution. After completing the exercises, the solution's relevance and user experience

was evaluated through a questionnaire.

In developing a native node-based PCG methodology integrated into the game

engine, we identified limitations. We concluded that several challenges are yet to be

overcome regarding fully implementing a complex and extensive system.

Keywords: Procedural Content Generation, Game Development, Node-based

Interfaces, User Experience

Acknowledgements

I would like to express my deepest appreciation to everyone who helped and

contributed to the completion of this thesis work and the culmination of my Master's

degree.

To my esteemed supervisor, Prof. António Coelho, for whom I am immensely

grateful for believing in my ambitious vision for this thesis project. Your guidance and

support have been instrumental in bringing this project to its successful completion.

To Diana Sousa, my co-supervisor, I am profoundly grateful for the countless

hours dedicated to this dissertation. Your relentless patience and meticulous attention to

detail demonstrated your genuine care for my academic growth and success. Your

careful observations and suggestions helped shape this work to its fullest potential.

To João Jacob, Martinus Suijkerbuijk, Nélson Rodrigues, and Pedro Silva for their

expertise, guidance, and invaluable feedback during this research. Your contributions

have greatly influenced the development and strength of this project.

To Pedro Silva, once again, I want to express my deepest gratitude. Your

exceptional PhD work served as the core foundation for the implementation of this

project, without it, this work would not have achieved the heights it reached.

To my friends, Afonso, Fábio, João, Lucas, Rita, Tiago, and all others, I am

sincerely grateful for the joy, help, and patience you had to endure my frustrations. Above

all, thank you for the memories we created together.

Last but not least, I am immensely grateful to my beloved parents, my caring

sister, my sweet girlfriend Inês, and my dear grandma. Their love, support, and

unwavering presence have brought immeasurable joy and strength to my journey. In the

toughest moments, their guidance and understanding have been vital. I am forever

blessed to have their love and support in my life.

Table of Contents

1 Introduction .. 1

1.1 Problem Specification .. 1

1.2 Objectives... 2

1.3 Research Questions .. 3

1.4 Methodology ... 3

1.5 Dissertation Structure .. 4

2 State of The Art .. 6

2.1 Level Design .. 6

2.2 Taxonomy and Challenges .. 6

2.2.1 Gameplay-Centred Approaches ... 7

2.2.2 Objects .. 8

2.2.3 Semantics ... 10

2.3 Procedural Content Generation ... 11

2.3.1 Origins ... 11

2.3.2 Advantages and Disadvantages .. 12

2.3.3 Use-cases ... 13

2.3.4 Interior Levels ... 14

2.4 Node-based Interfaces ... 15

2.4.1 Visual Programming Language .. 15

2.4.2 Graph Structure .. 16

2.5 Existing Solutions ... 16

2.5.1 Houdini .. 16

2.5.2 Blender.. 17

2.5.3 Sceelix .. 18

2.6 Summary ... 18

3 Methodology .. 20

3.1 Research Methodology .. 21

3.2 Research Instruments .. 22

3.2.1 Study I - Interview ... 22

3.2.2 Study II – User experience questionnaire .. 24

3.3 Summary .. 26

4 Analysis & Design ... 27

4.1 Solution Domain ... 27

4.1.1 Unity Engine ... 27

4.1.2 Sceelix .. 28

4.1.2.1 Graph Concepts in Sceelix .. 28

4.1.2.2 Node Overview in Sceelix .. 29

4.2 Functional & Non-Functional Requirements.. 30

4.2.1 Functional Requirements ... 30

4.2.2 Non-Functional Requirements ... 32

4.2.2.1 Usability .. 32

4.2.2.2 Reliability .. 32

4.2.2.3 Performance .. 33

4.2.2.4 Supportability ... 33

4.3 Software Architecture ... 34

4.4 Visual Identity ... 35

4.4.1 Name and Logo .. 35

4.4.2 Visual Interface ... 37

4.5 Summary .. 40

5 Implementation .. 41

5.1 Base UI & Graph Features .. 41

5.2 Generation Features .. 42

5.2.1 Sceelix Integration .. 42

5.2.2 Graph Processing ... 42

5.2.3 Content Population ... 44

5.3 Context Features.. 45

5.4 File Features .. 46

5.5 Gizmo Features .. 46

5.6 Summary .. 47

6 Results and Discussion .. 48

6.1 Study I .. 48

6.1.1 Central Question I ... 49

6.1.2 Central Question II .. 49

6.1.3 Open-ended Question .. 50

6.1.4 Discussion .. 50

6.2 Study II ... 50

6.2.1 Quantitative Questions ... 51

6.2.2 Written Feedback ... 63

6.2.3 Observational Notes ... 64

6.2.4 Discussion .. 65

6.3 Game Jam Usage .. 66

6.3.1 Game Description ... 66

6.3.2 Game Implementation .. 67

6.3.3 Discussion .. 69

7 Conclusions ... 70

8 Future Work.. 73

9 References ... 74

10 Appendices .. 76

10.1 Appendix 1 ... 76

10.2 Study II Presentation ... 91

List of Figures

Figure 1 –Work pipeline process of current PCG systems.. 1

Figure 2 - The order and context of the two conducted Studies.................................. 4

Figure 3 - Gameplay centred Level Design Approaches. ... 8

Figure 4 – Gameplay footage of “Shadow of The Tomb Raider” Jungle

Mission. ... 9

Figure 5 – A dungeon from Rogue (1980). ... 12

Figure 6 – (Left) A small generation tree. An overhead (Middle) view of a

completely generated floor. (Right) The building’s first-person view of its

generated contents. .. 14

Figure 7 - A bubble diagram (left), generated by a Bayesian network trained

on real-world data. A set of generated floor plans (middle). A 3D model

(right), generated from the floor plans. .. 15

Figure 8 - Gantt Chart of the dissertation project’s tasks. ... 20

Figure 9 – Gantt Chart of the project’s tasks... 20

Figure 10 - Action-Research Cycle. In FIGL, Kathrin et al. (2005). 21

Figure 11 - PCG Solution portrayed in Unity engine ... 23

Figure 12 - Visual prototype containing two distinct UI approaches.......................... 24

Figure 13 - Various frames of the Quickstart Guide .. 25

Figure 14 - The three PCG exercises contained in the Quickstart Guide 25

Figure 15 - Use Case diagram of the project. ... 31

Figure 16 - Class Diagram of the overall solution's structure 34

Figure 17 - PCG tool main logo design. .. 35

Figure 18 - PCG tool description image. ... 36

Figure 19 – Sceelix’s Nod-based (Bottom) and Project (Top) windows. 37

Figure 20 – Unity Shader Graph’s Node-based (Bottom) and Project (Top)

windows. ... 38

Figure 21 – Lazy Builder file icons. ... 38

Figure 22 – Lazy Builder’s Node-based (Bottom) and Project (Top) windows. 39

Figure 23 - Node-based interface with placeholder data. ... 41

Figure 24 - Example portraying the flow of a Depth-first Search algorithm. 43

file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221035
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221036
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221037
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221038
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221038
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221039
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221040
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221040
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221040
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221041
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221041
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221041
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221042
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221043
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221044
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221045
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221046
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221047
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221048
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221049
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221050
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221051
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221052
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221053
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221054
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221054
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221055
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221056
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221057
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221058

Figure 25 - Example portraying the process of creating a matrix of Node

execution orders.. 44

Figure 26 - Example of two different Context Window exposing their Node's

parameters. ... 46

Figure 27 – Implemented Path and Point Gizmo components. 47

Figure 28 -Data obtained for question 0.1 Age ... 52

Figure 29 - Data obtained for question 0.2 Current Academic Degree 52

Figure 30 - Data obtained for question 0.3 Experience in Game Development 53

Figure 31 Data obtained for question 0.4 Experience with Procedural Tools 54

Figure 32 - Data obtained for question 1 Future Usage .. 54

Figure 33 - Data obtained for question 2 Complexity .. 55

Figure 34 - Data obtained for question 3 Ease of use ... 56

Figure 35 - Data obtained for question 4 Support necessity 57

Figure 36 - Data obtained for question 5 Functionalities ... 57

Figure 37 - Data obtained for question 6 Consistency .. 58

Figure 38 - Data obtained for question 7 Learning Curve ... 59

Figure 39 - Data obtained for question 8 Speed of Interactivity 59

Figure 40 - Data obtained for question 9 Confidence in use 60

Figure 41 - Data obtained for question 10 Learning entry barrier 61

Figure 42 - Data obtained for the final question Overall Interface Experience 62

Figure 43 - Gameplay of the “00:11” Game Jam title,Main Game scene (Top),

Game Over scene (Bottom). ... 67

Figure 44 - Mountains created for the “00:11” Game Jam title.................................. 68

Figure 45 - Construction of Perlin noise based terrains for”00:11”. 68

file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221059
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221059
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221060
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221060
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221061
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221062
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221063
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221064
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221065
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221066
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221067
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221068
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221069
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221070
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221071
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221072
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221073
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221074
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221075
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221076
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221077
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221077
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221078
file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139221079

List of Tables

Table 1 - Comparision summary of identified PCG systems 19

Table 2 - Implemented Entity Populators .. 45

Table 3 - Study I Interviewees' overall answers systematized 48

file:///C:/MM/Thesis/MsC_GuilhermeGama.docx%23_Toc139110603

xv

Abbreviations and Symbols

FURPS Functionality, Usability, Reliability, Performance, and Supportability

NPC Non-playable Character

PCG Procedural Content Generation

UI User Interface

USS Unity Style Sheet

UX User Experience

UXML Unity Extensible Markup Language

VPL Visual Programming Language

1 Introduction

Video games have evolved from being a mere form of entertainment to becoming

an integral part of multiple domains including education, commerce, and healthcare. The

Game Development industry has witnessed remarkable expansion, driven by the

increasing complexity and intricacy of the levels created. This growth highlights the

increasing importance placed on the field, as developers aim to design immersive and

stimulating gaming experiences.

Designing levels for these intricate worlds is a challenging process, as it requires a

unique set of strategies and techniques to tackle all the requirements for each game.

However, specific metrics such as variety, cohesion, and clarity can be considered

essential components for any well-designed level. This has led to the development of

advanced modelling techniques that allow for a high-level approach to creating game

worlds in a manageable and controllable manner. These techniques are inherently

procedural, which means that they use algorithms to generate data as opposed to a

manual creation process. Also known as Procedural Content Generation, these

algorithms have clear advantages over a manual approach in level design. The

advantages range from the potential of nearly unlimited content variation to a higher

game designer’s autonomy. However, it is crucial to acknowledge that there are also

certain drawbacks and limitations inherent in their usage.

1. Introduction 1

1.1 Problem Specification

Procedural Content Generation (PCG) provides a valuable approach to level design,

facilitating rapid experimentation through the creation of flexible systems. By leveraging

PCG, complex levels can be rapidly regenerated with minimal effort. This approach

enables level designers and developers to iterate as needed, gaining a deeper

understanding of the level's fundamental elements.

However, despite the benefits provided by the current PCG systems, they present

several challenges once integrated into the complete game development pipeline. Since

most PCG systems are standalone software, substantial friction between the developer

and the generated level is depicted. This reduced interactivity is caused by the large

reload times and constant switching between software during each iteration cycle,

making it difficult for designers and developers to implement an iterative level design

approach effectively.

Although PCG systems offer plugin software as a solution to this issue, it does not

fully resolve it, introduces complexity, and demands additional computational resources.

The limited ease of use of PCG systems is another noticeable problem. These

systems are undoubtedly complex software and require a high level of technical

expertise to be used effectively, which can be daunting for level designers and

Figure 1 –Usage cycle of current PCG systems.

1. Introduction 2

developers who are already familiar with the game engine's logic and structure. It is

usually necessary to relearn naming conventions, symbols, and workflows to use the

system effectively. Additionally, the provided plugin solutions require a previous setup

on both software ends that involves unintuitive manual directory paths and component

naming specifications to work correctly.

In summary, current limitations of interactivity and ease of use present significant

obstacles to using PCG systems in game development. Addressing these issues is

crucial for maximising the benefits of PCG systems and streamlining the game

development process.

1.2 Objectives

The main objective of this thesis is to design and develop a node-based PCG

methodology natively integrated into a game engine. This objective aims to contribute to

the field of study by addressing the limitations of the current PCG workflow and providing

game developers with an optimized process for generating content procedurally. The

focus is on developing a robust and intuitive framework that enhances the user

experience and streamlines its development process.

Additionally, the following goals must be addressed to reach the main objective:

1. Identify the fundamental metrics of User-Experience in a PCG system;

2. Apply the best evaluation process of a PCG system User-Experience;

3. Understand the most relevant User-Interface approaches for a node-based

PCG systems.

The above objectives seek to ensure a solid foundation for developing a native

node-based PCG system and improving its respective interface workflows.

1. Introduction 3

1.3 Research Questions

This project aims to answer the central research question: “Does developing a PCG

system natively in a Game Engine provide significant advantages for the Level Design

process?”. However, it also raises additional questions such as:

1. What are the key interactivity and user experience metrics that hold the

most significance in a PCG system?

2. What are the potential approaches for designing the interface of a PCG

system?

1.4 Methodology

To address the study’s specified objectives, this research adopts the Action-

Research Methodology, which follows a cyclical process involving planning, action,

observation, and reflection. This methodology facilitates continuous iteration through the

stages of design, implementation, and evaluation, allowing for the gradual refinement

and improvement of the proposed solution. The iterative nature of this approach allows

for the collection of feedback, making necessary adjustments, and enhancing the overall

effectiveness of the PCG system under investigation.

In order to practically apply the Action-Research Methodology, two distinct studies

were planned and conducted (Figure 2):

Study I involved a semi-structured online interview conducted with a sample group

of experts in the field of Game Development who have experience in working with PCG

systems. The focus of this study was to evaluate a series of low-fidelity prototypes and

gather feedback on the User Experience (UX) of the initial approach for the PCG

system’s User Interface (UI).

Study II consisted of a digital questionnaire that was provided after the

implementation of the native functional prototype. This study aimed to measure the user

experience of the system and validate or corroborate the benefits associated with the

proposed solution. The questionnaire allowed users to provide feedback on their

1. Introduction 4

experience with the integrated PCG system, for further assessment of the solution’s

usability, functionality, and overall effectiveness.

1.5 Dissertation Structure

This document contains a total of eight chapters, along with a section of references

and annexes. Following this order, the subsequent paragraphs provide an overview of

the content covered in each chapter:

Chapter 1 (Introduction) contextualizes the thesis domain and motivation,

highlighting the addressed problem, objectives, and research questions.

Chapter 2 (State of the Art) offers theoretical contextualization on the central

subjects and performs a comparative analysis of current external PC systems. It

concludes by discussing the possible technologies for the solution’s development.

Chapter 3 (Methodologies) outlines the action-research methodology applied in the

project's context, including the task roadmap, and the structure of each case study.

Chapter 4 delves into the process of software requirement analysis and design. It

covers the analysis and documentation of technological backbones such as the target

Game Engine and the PCG base library. Additionally, it enumerates functional and non-

functional use cases using the FURPS model and presents the class diagrams of the

designed structure.

Chapter 5 (Implementation) chronologically addresses the implementation of the

specified use cases based on the initial requirements and designs.

Chapter 6 (Results and Discussion) presents and discusses the results of the

research instruments, providing detailed insights into each conducted study.

Figure 2 - The order and context of the two conducted Studies

1. Introduction 5

Chapter 7 (Conclusions) condenses all the significant conclusions from the work

and studies, considering the encountered obstacles, difficulties, and feedback collected.

Finally, chapter 8 (Future Work) takes into account and enumerates potential future

tasks for subsequent iterations.

2 State of The Art

2.1 Level Design

Level design is a crucial game development component, often regarded as an art

form in its own right. According to (Adrian & Ana Luisa, 2013), “The level design is an

art which consists of creating the combination of challenge, competition, and interaction

that players call fun and involves a careful and deliberate development of the game

space (...)”. To fully comprehend such complex and multilayered process, it is necessary

to define Game Level and what it encompasses.

2.1.1 Taxonomy and Challenges

Levels are defined play spaces where players advance by overcoming obstacles,

interacting with non-playable characters (NPCs), and collecting items. They are

segments of a larger game world and thus inherit its problems and challenges in an

atomic scope. These spaces comprise many interconnected components, and it is

important to consider the bigger picture when designing them. Therefore, designing a

level should take into account all of its elements, their global significance, and how they

behave within the context of the game as a whole.

2. State of The Art 7

According to Jong (2008) in his book "The How’s and Whys of Level Design", the

process of level design is centred on six pillars:

Firstly, "Optimization and Polish" is a crucial aspect of level design, requiring the

level to be optimized for smooth performance and playability. Additionally, a certain level

of polish is essential to maintain the player's suspension of disbelief and avoid frustrating

gameplay.

Secondly, "Gameplay" plays a central role in keeping players actively engaged and

immersed in the game. Ensuring enjoyable gameplay is vital to retain the players' interest

and motivation throughout their gaming experience.

Thirdly, "Immersion" is key to creating a captivating and believable game world. The

level must be designed to fully envelop the player, enhancing their overall gaming

experience.

Fourthly, the "Visuals" of the level are of utmost importance in attracting the

audience and setting the desired atmosphere. The presentation and aesthetics

contribute significantly to the overall appeal of the game.

Fifthly, "Functional Design" is integral to level design, as it aligns the level's narrative

and overarching theme with the game mechanics. All elements within the level must

appear to belong and serve logical purposes, enhancing the overall gameplay

experience.

Finally, "The Combination" of all these pillars is essential to achieve a harmonious

balance and ensure a high-quality level design. By successfully integrating and balancing

these elements, game developers can create compelling and immersive gaming

experiences for their players.

2.1.2 Gameplay-Centred Approaches

Level design is a vital component of game development, as it contributes to shaping

the player's experience and entertainment level while exploring it. As a level designer, it

is crucial to put him/herself in the player's perspective and comprehend their point of

view to identify what key elements shape the experience. According to Galuzin (2011),

there are three leading approaches to planning a game level based on a gameplay

perspective:

2. State of The Art 8

A. Linear: This approach is characterised by a straightforward, hard-locked

path the player must follow to progress from point A to point B. This type of

level design is particularly suited for story-driven games, emphasising a

linear progression of events. Examples of such games include the Crash

Bandicoot and Super Mario Bros series.

B. Open World: Unlike the linear approach, open-world levels give the player

complete freedom to explore the vast, detailed universe without restrictions

or physical barriers. This level design requires significant planning and

thought, but the outcome is frequently an immersive and highly replayable

game. Examples of such games include the Grand Theft Auto and Elder

Scrolls series.

C. Mixed: The third approach is a blend of the first two, allowing the player to

traverse a planned and soft-locked path while exploring the level and

completing it as they choose. This approach gives the player more freedom

of choice while maintaining partial control of the chronological order of the

game events. Titles like Dark Souls and The Legend of Zelda series

effectively use this approach.

2.1.3 Objects

Interactivity is a defining facet of games, that sets them apart from static virtual

worlds. To craft an engaging experience, it is crucial to comprehend the desired

interactivity and the means to achieve it effectively.

Based on Jong (2008) and considering the following the jungle-level setting in

"Shadow of The Tomb Raider" (Figure 4) as an example. To design such level, the

designer must be aware of its overall scope, such as how the jungle will look and the

Figure 3 - Gameplay centred Level Design Approaches.

2. State of The Art 9

path the player will navigate. On a more granular level, he must plan which objects from

the environment will react with the player, with the Non-playable Characters (NPCs with

other objects, and if the game engine can simulate these degrees of interaction

complexity.

According to Short Tanya and Adams Tarn (2017), a set of generic properties can

describe the objects that make up a game level. These properties include:

(1) Topological: Properties based on the underlying structure of the content,

independent of its appearance. For the game logic, these properties may

include the presence of loops and cycles or the branching of the player's

path. For the narrative structure, these properties may include the story's

length or the shape of the narrative arc.

(2) Experimental: Properties which describe how the player interacts with and

experiences its content. It includes the pace of the player’s movement

through the space, the level of difficulty, and the desired number of

solutions/strategies the player can achieve.

(3) Aesthetic: Properties that describe the generated content’s graphic and

audio qualities. These include using a specific colour palette, the proportion

of warm and cool colours, and the tempo of the background music.

(4) Semantic: Focuses on the objects’ significance, their contextual relevance

within the game, and the methods used to represent and communicate these

elements to the player.

Figure 4 – Gameplay of “Shadow of The Tomb Raider” jungle level.

2. State of The Art 10

2.1.4 Semantics

The previous chapter discussed the importance of objects and how they shape the

level’s experience. However, to achieve a fully immersive experience, it is necessary to

delve deeper into semantics applied to the game objects and their universe.

Semantics, as defined in linguistics, refers to the study of meaning in language and

communication. It encompasses the meaning of words, phrases, sentences, and even

actions, focusing on understanding the purpose behind their inherited phenomena

(Kearns, 2017; Löbner, 2013).

Analogously to object semantics, game world semantics explores the meaning

behind game elements, including objects, interactions, and events. They play a crucial

role in creating behaviorally cohesive and believable worlds by establishing clear and

consistent relationships between objects and interactions. Moreover, semantics can help

players understand and make sense of the world and their actions within it.

In Tutenel et al. (2008), three levels of world semantics in games were specified:

(1) Object semantics: Referring to an object’s physical and functional properties

that are specific to it. Physical properties include material, dimensions, and mass.

On the other hand, functional properties comprehend the behaviours of

interaction in which they can impact other objects, as introduced in the concept

of "smart objects"

(2) Object relationships: Describing relationships between instances of objects

(e.g., due to proximity) or between object classes. Inheritance is a key type of

relationship that can be expressed in a taxonomy to classify and group objects

with similar properties. Other relationship types include ownership, causality,

aggregation, and inclusion, commonly found in ontologies.

(3) World semantics: Designating the highest level of specification in the game

environment, affecting all entities. Factors such as daylight, weather, seasons,

and contextual information (e.g., demographic and economic) globally impact

game development, particularly in games' business and urban simulation genre.

2. State of The Art 11

2.2 Procedural Content Generation

Procedural Content Generation (PCG) is the algorithmic generation of data as

opposed to a manual input process. The first attempts at PCG can be traced back to the

mathematician Benoît Mandelbrot's introduction of the term "Fractal" in his work. Fractals

are a class of shapes that repeatedly produce seemingly complex and unexpected

models when following a set pattern. So, it is achieved through an iterative and recursive

approach to a defined equation, and the result has strong atomic level similarities to the

singular rule shape but produces a distinguished result in its overall composition.

2.2.1 Origins

PCG algorithms, applied to game development, started to take shape in 1980, with

the classic dungeon crawler Rogue, one of the first examples of this type of dynamic

content generation. In Rogue, the maps were randomly generated, providing a unique

experience for each game playthrough. Later, this concept gave birth and rise to the

"Roguelike" genre of games, characterised using randomised levels and permanent

player death.

With the advancement of technology and the growing need for increasingly complex

and comprehensive virtual worlds, the area of PCG has grown to include a diverse set

of approaches and tools. Today, PCG is widely used in the game development industry

to generate all forms of content, including terrains, maps, levels, narratives, puzzles, and

characters.

2. State of The Art 12

2.2.2 Advantages and Disadvantages

PCG is a powerful tool that can help developers create replayable and enjoyable

games. However, it is important to note that it is not a one-size-fits-all solution, and its

effectiveness depends on the specific use case. In this subchapter, we will explore the

general advantages and disadvantages of PCG in game development.

Advantages:

(1) Increased replayability: PCG allows for the generation of different levels,

enemies, and items each time the game is played, providing a new

experience for the player.

(2) Reduced development time and costs: With PCG, developers can automate

creating content, allowing for faster and cheaper development.

(3) Greater control over the game's difficulty: PCG can create adaptive difficulty

levels that adjust to the player's skill level, making the game more accessible

to a wider range of players.

(4) Greater Designer’s autonomy: PCG allows artists and designers to create

their own stories and experiences, giving them control over the whole level

development process.

Figure 5 – A dungeon from Rogue (1980).

2. State of The Art 13

Disadvantages:

(1) Quality assurance: PCGs can generate unexpected results and are usually

challenging to debug, making it a significant risk for game development if

manual validation and fine-tuning processes are not employed.

(2) Reduced authored experience: PCGs can be less suitable for games that rely

heavily on an authored experience, as it can be difficult to control the

generated content at a granular level.

2.2.3 Use-cases

 Regarding implementing PCG in game development, it is imperative to carefully

consider the scope of its involvement in achieving the game's objectives. The amount of

time required for generating most of the game content through procedural methods

cannot be overlooked and significantly impacts project planning. As changes to project

direction are common in game development, they may result in substantial implications

for the codebase (Short Tanya & Adams Tarn, 2017). The preceding work highlights that

implementations in the field of PCG can be categorised into:

Integral - In the best-known examples, the decision to incorporate PCG is part of the

game's basic Design. Most games that heavily rely on PCG also rely completely on it to

be the kind of games they are. Rogue and Spelunky are two games that heavily rely on

randomness for their basic gameplay.

Drafting Content - PCG is, in many cases, utilised in game improvement to deliver much

content that is then cleaned later. The normal illustration of this is an open-world game,

for example, Skyrim, which has a huge explorable guide. Major segments of this are

created utilising procedural strategies and are then changed and cleaned by hand later.

Different models incorporate riddle games where a generator can create many instances

of resolvable riddles, and afterwards, a human physically chooses or sorts the additional

interesting ones.

Modal - Some games have a modest PCG need yet have a unique gameplay mechanic

that uses procedurally generated material. This outstanding piece of ancillary content to

the main game story can be referred to as "infinity mode."

Segmented - To employ PCG, specific game sections may be divided apart from the

rest of the game's Design. For example, procedural music might still be used in a linear,

hand-crafted game. Interesting random components could be present in a particular

2. State of The Art 14

graphical effect. A particular chamber in a single gaming area may provide unique

procedural guidelines.

2.2.4 Interior Levels

Within the realm of PCG, Interior Level Generation has its specific challenges and

requirements, mostly based on the architectural intricacy of designing spaces. Several

academic attempts to tackle this challenge have been made with vastly different

approaches.

Case 1: Office Building PCGS

Hahn et al. (2006) developed a system for generating persistent game interior

architecture. Their system focuses on generating huge rectangular office buildings

through a space partitioning method based on architectural principles. This system was

designed to generate in real-time by only creating subregions of a building that contain

rooms visible to the player. Achieved using a persistent random seed, it allows sections

of the building to be discarded and later re-generated as needed. The system's

limitations, however, are that it generates rooms and hallways with limited architectural

detail.

Case 2: House Layout PCGS

Merrell et al. (2010) created a PCG system to generate more realistic house layouts

based on the process used by human architects. Their approach consisted of two stages,

first generating an architectural program from high-level requirements through training a

network on real architectural programs and second generating a layout from the

Figure 6 – (Left) A small generation tree. An overhead (Middle) view of a completely

generated floor. (Right) The building’s first-person view of its generated contents.

2. State of The Art 15

architectural program through an optimisation system based on a function measuring

room accessibility, area, aspect ratio, and shape. This system can generate houses with

multiple storeys and in multiple styles, resulting in a more realistic representation of

interior spaces compared to other PCG systems.

2.3 Node-based Interfaces

Node-based interfaces fall under the domain of Visual Programming Languages

(VPLs). To understand the significance and principles of node-based interfaces, it is

necessary first to define what VPLs are and what they encompass.

2.3.1 Visual Programming Language

Visual Programming Languages (VPLs), as defined in (Ates et al., 2006), are

programming languages that provide the means to specify and execute programs in two

or more dimensions. This approach differs from textual programming, where the

programmer edits a one-dimensional stream of characters. With VPLs, the user interacts

with a two-dimensional representation, making it easier to understand and visualise the

program's structure and flow.

VPLs are also referred to as flow-based interfaces, as they display complex

processing structures as a flow of information. This higher interpretation capability is

believed to result from cognitive psychology, as visual information can be processed with

two hemispheres of the human brain in parallel rather than just one (Preidel & Borrmann,

2016). Due to VPLs’ features and potential have been widely introduced as a higher-

level addition to programming languages to lower the entry barrier for new programmers

Figure 7 - A bubble diagram (left), generated by a Bayesian network trained on real-world

data. A set of generated floor plans (middle). A 3D model (right), generated from the floor plans.

2. State of The Art 16

(Shin et al., 2014). Most VPLs belong to one of two categories: programs that reside

entirely in the virtual world or programs with a physical counterpart but with a relatively

abstract connection between hardware and software.

2.3.2 Graph Structure

As stated previously, node-based interfaces are a subset of the domain of VPLs,

and their Design is constructed around a graph.

According to Singh (2014), graphs are discrete mathematical structures that model

the pairwise relations between objects. Graphs provide a convenient representation of

various mathematical objects, consisting of two sets: a set of vertices (also referred to

as nodes) and a set of edges. The restrictions imposed on the edges can vary depending

on the problem, with directed edges used in some situations and undirected edges in

others. This flexibility and versatility make graphs a useful tool for solving real-life

problems.

Translating onto a software representation, nodes correspond to procedures that

execute a series of program instructions that perform transformations, analyses, or filters

on the incoming data conveyed through edges. The ability to link nodes together allows

complex tasks to be broken down into atomic units that are easier to understand.

Referencing the work of Pedro Silva in "Procedural Content Graphs" (Silva, 2015),

the implementation of nodes includes inputs and outputs represented by derived classes

from base classes. These inputs and outputs are interconnected through pointers,

allowing nodes to reference and retrieve data from other nodes. During execution, a node

retrieves its inputs by following the pointers stored in its inputs, performs its operation on

the retrieved inputs, and generates corresponding outputs.

2.4 Existing Solutions

2.4.1 Houdini

Houdini, created by SideFX, is a standalone 3D animation and visual effects

software that features numerous PCG systems. The software is known for its robust and

efficient node-based interface, which allows users to easily create, edit, and manage

complex 3D assets (Holub et al., 2020; Naiman et al., 2017). It is widely adopted by

professional game, film, and television studios, establishing its significant presence in

the industry.

2. State of The Art 17

Houdini's node-based interface operates by organising the creation process into a

series of interconnected nodes, each corresponding to a specific operation or set of

operations. The nodes can be linked to create a graph representing the functional data

flow of operations required to generate the final output. It allows users to visualize the

logical steps involved in the whole graph easily.

From simple asset production to intricate simulations and visual effects, Houdini is

capable of a multitude of tasks. The software's flexibility and robustness make it a

popular choice for game development, where it is used to generate terrain,

environments, characters, and other game assets. So, Houdini's node-based interface

also makes it an ideal tool for film and TV visual effects, where it is used to create

complex simulations and effects that would be difficult or impossible to achieve using

other methods.

In addition to its main application, Houdini also contains a plugin integration software

entitled Houdini Engine. This middleware software allows users to make changes directly

inside the game engine (compatible with Unity and Unreal Engine) and generate

procedural results without leaving the engine.

2.4.2 Blender

Blender is an open-source 3D computer graphics software, developed by the

Blender Foundation. This software encompasses an extensive range of features that

allow for 3D modelling, animation, compositing, and simulation. With its lightweight

versatility and continuous support, Blender has established itself as a preferred software

tool for many indie studios and independent artists. Additionally, the software benefits

from a large, collaborative user community that provides support, resources, and

knowledge.

Blender recently introduced a new tool for modifying geometry entitled Blender

Geometry Nodes. This node-based procedural content generation system provides a

flexible and intuitive way of generating, modifying and transforming 3D geometry. With

Blender Geometry Nodes, users can create complex and dynamic shapes by connecting

various nodes in a visual graph interface. Exposed graph parameters allow for quick

adjustments and subsequent 3D models' customization by influencing the node network.

Blender Geometry Nodes have sparked much interest and popularity within its

community, as it allows for a procedural 3D modelling process, which can lead to more

complex and flexible results than using traditional modelling methods.

Viga Entertainment, a software development company, has developed a plugin

integration software called "Livelink for Blender" that bridges the technological gap

between Blender and the Unreal Engine. Then, it allows Blender Geometry Nodes to be

2. State of The Art 18

used within the Unreal Engine, making it easier for game developers to import and use

the generated 3D models and assets within their games.

2.4.3 Sceelix

Sceelix is a standalone procedural generation software for automating 2D/3D

content creation using algorithms, rules, and mathematical models. Developed by Pedro

Silva in an academic context (Silva, 2015), this software offers a unique approach to

content generation that does not focus on a single type of content or structure. Sceelix

can produce various types of content, including terrains, vegetation, roads, cities, props,

game objects and many more, thus making the content generation process simpler, fluid,

efficient, and complete.

The nature of Sceelix's node-based language is unique in that it focuses on high-

level operations, such as creation, loading, modification, and export, which encapsulate

a lot of complexity, such as best fit algorithms, constraint-based programming, or growth

simulations. This complexity can be easily implemented using the underlying

programming language, C#. In addition, small mathematical expressions, such as

addition, multiplication, or trigonometric functions, are performed on the node

parameters themselves, reducing the need for clutter in the graphs. Furthermore, with

features such as encapsulation, which allows the reuse of full graphs as nodes within

other graphs, the visual language becomes easier to navigate, understand, and manage.

Sceelix's team has developed a Unity plugin allowing direct communication with the

Unity Editor. This integration allows data generated in the Sceelix Designer to be directly

transmitted to an open Unity Scene or a prefab, providing a seamless integration of

content generated in Sceelix into Unity’s game engine.

2.5 Summary

The State of the Art chapter examines Level Design, Procedural Content

Generation, and Node-based Interfaces. The Level Design section discusses the

development process and key pillars: optimization, gameplay, immersion, visuals, and

functional design. PCG explores its origins, advantages, and different usages in games,

while highlighting challenges in generating interior levels. The Node-based Interfaces

section focuses on Visual Programming Languages (VPLs) and their use of graphs. The

chapter concludes with a review of existing PCG solutions like Houdini, Blender, and

Sceelix, all featuring plugins to address the problem.

2. State of The Art 19

Table 1 - Comparison summary of identified PCG systems.

PCG SYSTEM HOUDINI BLENDER GEOMETRY
NODES

SCEELIX

PRICING Free for non-commercial
use, starts at $269/year

for an Indie license

Free Free

GAME ENGINE
PLUGIN

Supports Unity & Unreal
Engine

(requires paid license)

Paid 3rd party Unreal plugin Supports Unity Engine

SOURCE
CODE

C++ and Python Python C#

LICENSE Closed-source Open-source Open-source

SIMULATION
NODES

✔️ ✔️

TOTAL NUM
OF NODES

More than 300 nodes, can
create custom nodes
using VEX language

Over 150 nodes, can create
custom nodes using Python

language

Over 60 nodes, can
create custom nodes
using C# language

3 Methodology

A Gantt chart was used to plan and visualize tasks in this master's thesis. The

project was divided into six tasks. The first task involved conducting a literature review

on Game Level Design, Procedural Content Generation (PCG), and Node-based

interfaces. The second task focused on creating visual prototypes using Figma to

explore interface approaches for the proposed PCG solution. Study I (Task 3) involved

interviews with PCG specialists to gather feedback on the prototypes and optimal user

interface. Task 4 included designing the software architecture and implementing the

solution in C#. Study II (Task 5) involved hands-on experimentation and user feedback

through a questionnaire. The final task was dedicated to ongoing documentation of the

research processes and results.

Figure 8 - Gantt Chart of the dissertation project’s tasks.

3. Methodology 21

3.1 Research Methodology

The chosen methodology for this research is the Action-Research Methodology, which

follows a cyclical process of planning, acting, observing, and reflecting. It is a widely used

approach that emphasizes active involvement and collaboration with stakeholders

throughout the research process (Stringer et al., 2014)

In this methodology, the research is conducted in iterative cycles, involving the Design,

implementation, and evaluation phases. Each cycle builds upon the insights gained from

the previous one, leading to continuous improvement and refinement of the PCG system

being developed.

The iterative nature of the Action-Research Methodology is particularly relevant in

the context of this project. By involving game developers as stakeholders, this approach

facilitates the identification of design flaws at an early stage and the incorporation of

feedback-driven features in subsequent iterations (Brydon-Miller et al., 2003). It allows

for a more comprehensive understanding of the needs and preferences of the end-users,

ensuring that the user interface of the PCG system meets their expectations.

Furthermore, the Action-Research Methodology helps bridge the gap between

theory and practice by actively involving the target users in the research process. In this

case, game developers are not only the participants but also key collaborators, providing

valuable insights and expertise to inform the development of the PCG system (Coghlan

Figure 10 - Action-Research Cycle. In FIGL, Kathrin et al. (2005).

3. Methodology 22

& Bannick, 2015). This participatory approach raises a sense of ownership among the

target users and increases the likelihood of the system's successful implementation and

adoption within the game development community.

By adopting the Action-Research Methodology, this project aims to create a PCG

system that is not only theoretically grounded but also practical and user-centred. This

methodology’s iterative and collaborative nature enabled the inclusion of real user

perspectives, leading to a more refined and effective solution for game developers.

3.2 Research Instruments

3.2.1 Study I - Interview

The first study, Study 1, consisted of individual semi-conducted interviews with a

sample group of PCG experts. The interviews aimed to identify the system’s focus and

assess the potential benefits of a native PCG solution based on their experiences. The

interviews, ranging from 20-30 minutes, were conducted in person or remotely via Zoom.

Participants were gathered through academic recommendations and community

Discord Channels. The study spanned over two weeks and aimed to gather in-depth

qualitative data. The interviews were audio recorded for accurate data analysis, with

participants providing initial GPD permission consent.

Concurrently with the interviews, a guiding presentation was created to clarify the

central research problem, and the proposed solution, and showcase two distinct visual

interface approaches (Figure 11).

3. Methodology 23

The interview began with an introduction, explaining the purpose of the interview.

Participants were invited to introduce themselves and briefly describe their game

development experience. Questions then explored participants' familiarity with PCG

software, such as Houdini or Blender Geometry nodes, and its application context.

Key questions concerned the existing technological gap between PCG software and

the development pipeline. Participants shared their perspectives on a potential native

engine solution using a node-based approach and its benefits, specifically in which

phase of game development it would be most useful.

UI feedback questions involved presenting visual representations of different UI

approaches (Figure 12) for the node-based PCG solution. Participants were asked to

provide feedback on the most suitable interface approach and express their preferences

regarding attributes and global parameters handling within the selected approach.

The interview concluded with a summary of the key points discussed, allowing

participants to provide additional comments or insights.

Figure 11 - PCG Solution portrayed in Unity engine

3. Methodology 24

3.2.2 Study II – User experience questionnaire

The second study was conducted to assess the user experience of the native PCG

system through the usage of the System Usability Scale (SUS) questionnaire (Appendix

10.1). This widely recognized questionnaire is designed to measure the usability of a

software system and gather feedback on its effectiveness, intuitiveness, and ease of use.

Participants, who were game developers, engaged with the software by following a

quick start guide (preview in Figures 13 and 14, full content in Appendix 10.2) that

provided an overview of working with the PCG. The guide familiarized them with the

theoretical foundations of the generated data types and demonstrated the various

essential interface operations and windows.

Figure 12 - Visual prototype containing two distinct UI approaches

3. Methodology 25

After completing the guide, participants were presented with a series of three

practical exercises accompanied by video tutorials. These exercises focused on

essential procedural concepts of the PCG, such as geometry creation, translation, copy,

and randomisation, as well as the usage of custom expressions as parameters.

Figure 13 - Various frames of the Quickstart Guide

Figure 14 - The three PCG exercises contained in the Quickstart Guide

3. Methodology 26

After completing the exercises, participants were presented with the SUS

questionnaire. The questionnaire consisted of 10 statements, and participants rated their

level of agreement with each statement on a Likert scale ranging from 1 (Strongly

Disagree) to 5 (Strongly Agree). The statements covered usability aspects, including

learnability, efficiency, user satisfaction, and error prevention.

Additionally, the SUS questionnaire included an overall score that participants could

assign using the Likert scale. This score provided a summary evaluation of the overall

usability of the PCG system. Furthermore, an open-ended question was included to allow

participants to provide more detailed feedback and offer insights on currently

implemented features that could be further tested and improved, as well as suggestions

for new features that could enhance the user experience.

By combining quantitative ratings from the SUS questionnaire with qualitative

feedback from the open-ended question, a comprehensive evaluation of the system's

usability and user experience was obtained. The data collected from the questionnaire

served as a valuable measure of the tool's effectiveness and provided meaningful

insights for refining and enhancing the native PCG solution.

This questionnaire format played an essential role in measuring the user experience

of the implemented PCG system and visualising the user’s solution direction for further

improvements/refinements.

3.3 Summary

This chapter introduces the central research methodology and instruments used

throughout the project’s research. The chosen methodology is the Action-Research

Methodology, emphasizing active stakeholder involvement and collaboration. Two

studies were conducted: Study I involved interviews with PCG experts to gather feedback

on prototypes and user interface preferences, while Study II used a user experience

questionnaire to assess the usability of the native PCG system. The iterative and

collaborative approach ensures the practical and user-centred development of the PCG

solution.

4 Analysis & Design

4.1 Solution Domain

4.1.1 Unity Engine

The Unity Engine provides a solid foundation for implementing additional custom

tools/functionalities using the C# programming language. The namespaces

UnityEngine and UnityEditor namespaces offer essential classes and functionalities

for runtime and editor-mode development, respectively. For this PCG system, the

UnityEditor namespace becomes particularly relevant as it focuses on editor-mode

development.

Unity's UIElements namespace is employed to build the detailed interfaces of this

system. UIElements is a modern UI framework that uses a structure similar to HTML and

CSS. It allows for the creation of dynamic and responsive UIs by utilizing a combination

of UXML (UI XML) and USS (UI Style Sheet) files.

UXML is an XML-based language that describes the structure and hierarchy of UI

elements, defining their layout and interconnections. It provides a declarative approach

to UI creation, allowing developers to specify the composition of the interface visually.

On the other hand, USS is a style sheet language used to define UI elements’ visual

appearance and style. It provides a set of rules and properties that determine how the

UI elements are rendered, allowing for consistency and customization across the

interface.

The GraphView library within Unity's UIElements namespace is especially relevant

for this solution as it provides a powerful framework for creating node-based interfaces

and interactions. The GraphView structure consists of various classes, including:

4. Analysis & Design 28

• GraphView: The GraphView class is the main container for the node-based

interface. It handles the rendering and interaction of nodes, connections, and

other graphical elements within the graph.

• Node: The Node class represents individual nodes within the graph. It

contains methods for rendering the node, handling user input, and managing

connections to other nodes.

• Port: The Port class represents input or output ports on nodes. It enables

the connection of nodes by providing connection points for links.

• Edge: The Edge class represents connections between nodes. It handles

the rendering and management of links between nodes.

4.1.2 Sceelix

Sceelix is divided into several components that work together to enable procedural

generation. The Sceelix Core component provides the fundamental functionality for

managing graphs, nodes, and their connections. It forms the backbone of the software

and handles the execution and evaluation of the graph. Sceelix Designer is the

graphical user interface (GUI) component that allows the users to create and edit graphs

visually.

4.1.2.1 Graph Concepts in Sceelix

Entities: In Sceelix, entities represent the objects or elements that the user wants

to generate procedurally. Entities can be anything from buildings and landscapes to

characters or textures. A graph represents each entity and contains nodes that define its

characteristics and properties.

Ports: Ports are the connection points within nodes that allow data flow between

nodes. They represent the inputs or outputs of a node and serve as the means to transfer

information or values from one node to another. Ports enable the creation of a data flow

network within the graph.

4. Analysis & Design 29

Flow: The flow in Sceelix refers to the order in which nodes are executed within the

graph. It defines the sequence of operations and ensures that the dependencies between

nodes are properly resolved. The flow concept ensures that nodes are evaluated in the

correct order, considering any data dependencies.

Parameters: Parameters in Sceelix are used to control and customize the

generation process. They allow users to define variables that can be adjusted to

influence the outcome of the procedural generation. Parameters can be linked to nodes,

enabling users to modify their values dynamically and observe the impact on the

generated content.

4.1.2.2 Node Overview in Sceelix

Nodes are the building blocks of Sceelix graphs and represent individual operations

or functions within the procedural generation process. Each node has a specific purpose

and contributes to the overall generation process. Some common types of nodes include:

Generator Nodes: These nodes are responsible for generating content, such as

shapes, textures, or patterns. They define the core elements of the procedural system

and play a crucial role in shaping the final output.

Modifier Nodes: Modifier nodes alter or transform existing content generated by

other nodes. They provide a means to modify the properties or characteristics of entities

or introduce variations to the generated content.

Utility Nodes: Utility nodes perform auxiliary functions and provide additional

capabilities to the procedural system. They can include nodes for noise generation,

mathematical calculations, or other specialized operations.

Control Nodes: Control nodes enable the creation of branching logic and

conditional operations within the graph. They allow users to control the data flow and

introduce decision-making processes during generation.

4. Analysis & Design 30

4.2 Functional & Non-Functional Requirements

This subsection presents the functional and non-functional requirements based on

the FURPS classification system. FURPS stands for Functionality, Usability, Reliability,

Performance, and Supportability.

Starting with the enumeration of functional requirements within the scope of

functionality (letter F), actors and their interrelationships are depicted using a use case

diagram. For each use case, its function and purpose are described in greater detail,

taking the form of user stories. Finally, the non-functional requirements are outlined,

encompassing the remaining fields (letters URPS). These requirements identify physical,

implementation, interface, and design constraints that the solution demands.

4.2.1 Functional Requirements

A possible definition of “functional requirement" is the realisation of a need that a

solution (software) should meet. These requirements are essential in the project design

as they specify all the solution's functionalities.

Typically, when using the agile Scrum methodology, the term "use case" is adopted

in gathering functional requirements. Subsequently, the solution's functionalities to be

implemented are represented through a use case diagram (Figure 15). This diagram not

only enumerates the established use cases but also specifies the actors to whom each

case is intended and how they relate to each other.

4. Analysis & Design 31

The use case diagram reveals that the use cases can be categorized into six distinct

groups:

• File Features: These features involve creating, loading, and saving graph

files. They encompass use cases associated with graph persistence and file

visualisation, as the graph file serves as the foundation for all interactions

within the tool.

• UI Features: This category includes features that pertain to common user

interface interactions, such as zooming and panning the graph, creating

node groups, and browsing and searching for available nodes to add.

• Graph Features: These features are centred around modifying the graph’s

structure. Use cases in this group include creating or deleting a node,

establishing or removing links between node ports, and duplicating nodes.

• Context Features: This group encompasses features related to a side

helper window that displays information about the selected node and its

parameters. Use cases in this category involve visualizing and modifying

node parameters, converting a node into an expression, and adding or

removing subparameters within an addable parameter list.

Figure 15 - Use Case diagram of the project.

4. Analysis & Design 32

• Generation Features: These features are associated with generating the

content of the created graph. Use cases within this group involve executing

the generation process visualising the processed nodes, and muting

individual node ports.

• Gizmo Features: This group covers use cases related to the debug

visualisation of generated data that lacks an inherent visual representation,

such as paths and points.

4.2.2 Non-Functional Requirements

The remaining constraints on the development of the solution, imposed by the

software and hardware context, which do not represent any tangible functionality, are

classified as non-functional requirements.

Continuing with the remaining letters and symbols of the FURPS classification

system, the non-functional requirements of each category are presented accordingly.

4.2.2.1 Usability

The PCG tool aims to provide a user-friendly and intuitive interface to enhance the

usability and accessibility of procedural content generation. The user interface (UI)

design should align with the overall default UI ecosystem of Unity while incorporating

elements from the Sceelix library to ensure a consistent and cohesive user experience.

The actions required to create and modify procedural graphs should be clear and well-

guided, allowing users to navigate and interact with the tool easily. The PCG tool should

provide informative tooltips, contextual help, and documentation to assist users in

understanding the functionality and purpose of each node, port, and parameter.

4.2.2.2 Reliability

The PCG tool must exhibit high reliability to ensure consistent and accurate content

generation. It should handle changes to the graph structure and parameter values

changes, without data corruption or unexpected behaviour. The tool should prevent the

creation of infinite loops within the graph by enforcing safeguards and validation

mechanisms to detect and prohibit cyclic connections. Furthermore, it should include

mechanisms to handle errors and exceptions gracefully, providing informative error

4. Analysis & Design 33

messages to users when issues occur during graph generation or data processing. The

PCG tool should prioritise stability and robustness, minimising crashes, freezes, and

other unexpected failures.

4.2.2.3 Performance

The PCG tool should be optimised for performance to enable efficient and

responsive content generation. It should aim for fast reload times when modifying the

graph structure or adjusting parameter values, allowing users to iterate quickly during

content creation. The tool should leverage caching and parallelisation techniques, where

applicable, to expedite content generation and improve overall performance.

4.2.2.4 Supportability

To ensure the long-term support and maintenance of the PCG tool, it should adhere

to industry-standard practices and guidelines. The tool should be compatible with the

recommended specifications of the Unity engine, ensuring optimal performance and

compatibility with the target platform. It should specifically support the Unity LTS versions

(2020.3 and 2021.3), as these are widely adopted and known for their stability. The PCG

tool should also consider the compatibility of the libraries it depends on, as not all C#

libraries are compatible with Unity. It should prioritise using libraries that are well-

maintained and actively supported by the developer community to minimise compatibility

issues and ensure ongoing support.

4. Analysis & Design 34

4.3 Software Architecture

As described above, this solution relies on the underlying structures of both Unity

and the Sceelix libraries. Unity serves as the foundation for the user interface (referred

to as the "front-end"), while the Sceelix libraries handle the generation and processing

of data (referred to as the "back-end"). The construction of this solution is centred around

integrating and utilising these two components.

Figure 16 provides a class diagram showcasing the overall code architecture of the

PCG system, offering a visual representation of how the central components are

organised and interconnected.

Starting from the WindowManager class, this class is responsible for creating and

managing all the editor windows of this system, especially creating GraphWindow. This

class is the container of all the visual components within the node-based editor with their

respective layout. This window has various child windows, that serve as auxiliary panels

to this system’s interface (such as the ContextWindow, AddNodeWindow, and

GlobalParametersWindow). However, the central window that holds the major and

Figure 16 - Class Diagram of the overall solution's structure

4. Analysis & Design 35

central graph interactions is the Graph class (that inherits from the Unity

GraphView.Graph base class). This class contains a list of Node instances and all the

information, which in turn have the necessary visual information of its position, ports, and

connections. Each Node class contains a Procedure class which is the Sceelix data

necessary for the execution/generation of the PCG.

4.4 Visual Identity

The visual identity of a software tool plays a crucial role in its success, as it serves

as the face and representation of the tangible solution. In the context of the PCG tool

developed in this project, a well-designed visual identity is necessary to enhance its

visibility, establish a strong brand presence, and make it more approachable to users.

This chapter delves into the process of designing the visual identity of the PCG tool,

highlighting the importance of creating a clear and compelling brand that aligns with the

visual aesthetics of the game engine.

4.4.1 Name and Logo

The central name chosen for the PCG tool is "Lazy Builder," which embodies the

concept of effortless level construction. The name itself conveys the idea of building

without excessive effort or complexity. By selecting this name, the intention is to attract

users who seek a user-friendly and efficient tool for creating game levels.

Figure 17 - PCG tool main logo design.

4. Analysis & Design 36

The "Lazy Builder" logo serves as a visual representation of this concept. It features

a construction worker avatar holding a blueprint sheet, symbolizing the node-based

editor and signifying the planning and organization involved in the level construction

process. This combination of elements effectively communicates the tool's core

functionality and highlights its ease of use.

The "Zyzol" font exhibits a playful yet professional style, evoking a sense of warmth

and approachability. Additionally, the color palette employed in the visual identity

revolves around orange hues. The incorporation of orange colors within the visual

identity establishes a strong connection to building bricks, a concept reinforcing the tool's

core purpose.

Figure 18 - PCG tool description image.

4. Analysis & Design 37

4.4.2 Visual Interface

The visual interface of the PCG tool draws inspiration from two key sources: the

structure of Sceelix's Editor and the popular node-based tool in Unity Engine known as

Shader Graph. By incorporating elements from these established tools, the PCG tool's

interface benefits from familiarity and aligns with standard practices, facilitating user

adoption and ease of use.

While the structure of Sceelix's Editor provides a foundation for the PCG tool's

interface, it has been further refined and optimized to meet the specific requirements of

level design. This ensures that users familiar with Sceelix will find commonalities and

recognize certain features, allowing for a smooth transition and integration into their

workflow.

Figure 19 – Sceelix’s Nod-based (Bottom) and Project (Top) windows.

4. Analysis & Design 38

Additionally, the PCG tool's interface takes cues from the Shader Graph, a widely

used and respected node-based tool within the Unity Engine ecosystem. By adopting

similar interface elements and design patterns, the PCG tool benefits from the intuitive

and user-friendly nature of Shader Graph. This familiarity allows users already

experienced with Shader Graph or other node-based tools in Unity Engine to quickly

grasp the PCG tool's interface and leverage their existing knowledge.

The graph icons used in the PCG tool's interface have been carefully designed to

resemble a variant of the Shader Graph, incorporating the brand's colour palette. This

deliberate choice not only maintains visual consistency with the overall visual identity but

also ensures that the interface feels cohesive and aligned with the tool's purpose.

Figure 20 – Unity Shader Graph’s Node-based (Bottom) and Project (Top) windows.

Figure 21 – Lazy Builder file icons.

4. Analysis & Design 39

By blending elements from Sceelix's Editor and taking inspiration from Shader

Graph, the PCG tool's visual interface strikes a balance between familiarity and

innovation. Users will find a comfortable and intuitive environment that encourages

creativity and productivity while being visually consistent with industry-standard

practices. This cohesive and thoughtfully designed visual interface enhances the overall

user experience and contributes to the successful adoption and usage of the PCG tool.

Figure 22 – Lazy Builder’s Node-based (Bottom) and Project (Top) windows.

4. Analysis & Design 40

4.5 Summary

This chapter provides an overview of the solution domain, focusing on the Unity

Engine and Sceelix components. Unity Engine offers essential functionalities for

development, including UIElements for dynamic UI creation. Sceelix enables procedural

generation with graph-based entities, ports, flow, and parameters. Nodes play a vital role

in the generation process, categorized as generators, modifiers, utility, and control

nodes. The chapter outlines functional and non-functional requirements based on the

FURPS+ classification system, covering usability, reliability, performance, and

supportability. The software architecture integrates Unity and Sceelix components,

facilitating interactions within the node-based editor. Finally, the chapter explores the

visual identity of the PCG tool, encompassing the name, logo, icons, and visual interface

design, which aim to enhance brand recognition, user experience, and alignment with

industry standards.

5 Implementation

This chapter presents the implemented use cases chronologically, grouped by their

respective feature subset. Each subchapter provides insights and explanations on the

implementation process, aligned with the initial design made.

5.1 Base UI & Graph Features

The first set of tasks focused on establishing the foundation for the base and graph-

specific UI interactions. A functional prototype containing placeholder content was

developed with the essential graph data structures (Nodes, Ports, and Edges). The base

UI features such as zooming and panning, and the graph functionalities of Node

creation/deletion, Edge creation/deletion, and Node duplication were implemented.

 To enhance user error prevention, a validation function was implemented during

the edge connection process. This exact implementation disables Ports that either have

incompatible data types or could form an infinite closed loop.

Figure 23 - Node-based interface with placeholder data.

5. Implementation 42

5.2 Generation Features

The second set of tasks encompasses all features related to the complete

procedural generation process, including the PCG algorithms to transform the graph

network into geometry data and subsequently its materialization into Unity objects.

5.2.1 Sceelix Integration

Before proceeding with the generation classes' development, the Sceelix Core

library was integrated into the Unity Engine. The source code was added to the project,

and during this process, compatibility issues arose concerning external library

dependencies and code compatibility. While Sceelix was developed using C# and .NET,

it was initially designed as standalone software using the .NET Framework, a subset of

.NET. Consequently, certain adjustments were made to the source code to ensure the

successful compilation of Sceelix within the Unity environment.

5.2.2 Graph Processing

For the graph processing, it is portrayed in Sceelix’s documentation that every

Procedure (attached to a Node in a 1:1 proportion) can be executed individually, resulting

in a list of Entity instances. In a case of a Node that contains inputs, it is necessary to

execute beforehand the Procedures of all inputs Nodes and attach the result to the

current Procedure. Only then the current Node’s Procedure can be performed correctly.

When integrating Sceelix, a specific Procedure type entitled IndependentGraph

Procedure was discovered. This Procedure enables the appending of Graph data to

encapsulate the generation process. Similar to the implemented UI class, this Graph

comprises a list of Sceelix Nodes, each containing Ports and their respective

connections. To utilise this Procedure type, Sceelix Nodes need to be created from each

Procedure and connected.

However, challenges arise when dealing with this Procedure type, particularly in a

scenario that frequently adjusts Procedure parameter values. The Sceelix Nodes created

from each Procedure do not reflect the modifications made to the source Procedure, nor

can they be directly modified. Consequently, the Graph needs to be reconstructed for

every minor modification, leading to a significant delay between the parameter value

change and the Graph execution.

5. Implementation 43

 Considering that responsiveness and rapid feedback are the central points of this

native solution, this approach was discarded and a new generation process needed to

be implemented. There were four essential rules for this generation process:

1. Execute all valid Procedures.

2. Execute Procedures with inputs only after the respective Inputs have been

executed.

3. Store the outputs of the final Procedure, as they represent the result of the

Graph's execution.

4. Ensure that this implementation achieves faster execution compared to

IndependentGraph’s approach.

For very simple graph scenarios a Depth-first search algorithm (DFS) can comply

with the established rules. This algorithm involves traversing each branch individually

from its root Node, executing its Procedure and appending the result to the input of the

next Node’s Procedure. However, when the graph contains multiple branches that merge

into a single one, a limitation arises with the DFS approach.

In the provided diagram (Figure 24), the DFS algorithm would traverse the nodes in

the order "A, B, C, D, E, F, D, G, D". Since the Procedure of Node D requires input data

that is not yet available during the first and second visits, executing it becomes

impossible. To address this, a simple validation can be implemented to prevent execution

and exit the branch in case of missing inputs.

Figure 24 - Example portraying the flow of a Depth-first Search algorithm.

5. Implementation 44

Considering the specified fourth rule and the fact that the DFS algorithm has a time

complexity of O(N+E), where N represents the number of Nodes and E of Edges, further

improvements can be made. Instead of running this algorithm every time, on every

parameter value change, a matrix of Node execution orders can be calculated only when

the graph structure changes. The first-pass algorithm groups and sorts Nodes based on

their maximum visited depth, resulting in a matrix-like 1-(A, E, G); 2-(B, F); 3-(C); 4-(D),

as shown in Figure 25. Subsequently, the second pass, triggered by a parameter value

change, iterates linearly (with a time complexity of O(N)) over all Nodes and appends

the results of the last execution order group. This optimization reduces the computational

effort required for the Graph execution.

5.2.3 Content Population

After the graph is processed and a list of Entities is obtained, it is necessary to

materialise the results into tangible Unity objects and geometry data. This graph

population process initiates by identifying the Entity type and directing it to the respective

Populator. Table 2 provides an overview of the implemented Populators for different data

types.

Figure 25 - Example portraying the process of creating a matrix of Node execution orders.

5. Implementation 45

Table 2 - Implemented Entity Populators.

ENTITY TYPE MATERIALISED OUTPUT

ENTITY Empty Gameobject

MESH ENTITY Gameobject with MeshRenderer and MeshFilter components

PATH ENTITY Gameobject with the custom Path component

POINT ENTITY Gameobject with custom Point component placed on its

specified position

SURFACE

ENTITY

Gameobject with Terrain component

GAMEOBJECT

ENTITY

Gameobject containing a cloned instance of the specified

source Gameobject

Considering that generation performance is highly important for a rapid response to

parameter adjustments, it becomes impractical for graph Populators to constantly create

and destroy Gameobjects for every minor change.

To address this issue, a GameObject recycling system was implemented. This

system stores all previously created objects, and, during a new graph regeneration, it

attempts to find the best-fitting existing objects one by one. The selection is based on

the minimum number of components that need to be added or removed. When a perfect

component match is not made, the method creates and removes the necessary

components to align with the new requirements; while generating any missing

Gameobjects. Finally, any surplus objects that are no longer recycled are respectively

destroyed.

5.3 Context Features

A context window and its interactions were implemented to facilitate the visualisation

and editing of Node parameters. This window dynamically displays the parameters

based on the selected node. A recursive UI builder method was implemented because

these Node parameters can have subparameters, which can further contain additional

subparameters.

5. Implementation 46

When a parameter contains subparameters, a foldout is created to group all the

child parameters. The parameter types encompass a wide range, including primitive

types such as floats, integers, booleans, and strings as well as more complex types such

as GameObjects, Textures, Colors, and Materials.

5.4 File Features

To preserve the graph's structure and progress, a custom file type named

".GeoGraph" was created. This file format serves as a container for all the essential

graph data, which is serialised into JSON (JavaScript Object Notation). Using JSON

allows for lightweight and efficient storage/retrieval of its information. By implementing

this custom file type, users can save and load their graph projects, enabling seamless

continuity and persistence of their work.

5.5 Gizmo Features

As previously mentioned, the procedural graph can produce Path and Point Entities

that do not have a direct counterpart in Unity's components. These data serve as

intermediary representations for placing or generating geometry data. To address this,

custom components were developed for both types of Entities. These components utilise

Gizmos to visually represent their respective spatial data (see Figure 27).

Figure 26 - Example of two different Context Window exposing their Node's parameters.

5. Implementation 47

5.6 Summary

This chapter explains the overall implementation process of the use cases in

chronological order, grouped by their respective feature subset. It covers the

establishment of the base UI and Graph features, the integration of the Sceelix Core

library, the generation process and its optimization, the content population, the Node

context window, the file persistence, and gizmo features for additional visual data

representation. All the designed functional requirements were successfully implemented,

and the overall non-functional requirements were also met.

Figure 27 – Implemented Path and Point Gizmo components.

6. Results and Discussion 48

6 Results and Discussion

6.1 Study I

As referred to in section 3.2.1, study I involved conducting semi-structured

interviews in PCG. Four specialists were interviewed, and their responses were

systematized through a careful analysis of the audio-recorded data. By comparing the

backgrounds of each interviewee and summarizing their responses to the two central

questions, the overall answers were organized into Table 4.

Table 3 - Study I Interviewees' overall answers systematized.

6. Results and Discussion 49

6.1.1 Central Question I

Regarding the first central question, experts unanimously acknowledged the

existence of the identified research problem and agreed that a native solution would

effectively respond to it. Notably, participants with backgrounds in art or technical art

emphasized the proposed solution’s potential, particularly for runtime procedural content

generation, as it mitigates the requirement for programming skills to modify geometry

data during runtime since standalone solutions cannot provide such control. Additionally,

one interviewee highlighted the absence of a PCG system that can effectively utilize the

native assets of game engines, which they consider a fundamental gap currently in the

industry.

6.1.2 Central Question II

Regarding the second question, all experts agreed that as the graph size scales up,

it becomes challenging to manage and visually cluttered. Some participants even

humorously referred to the phenomenon as "spaghetti code," drawing a parallel to Unreal

Engine's Blueprint system. However, two interviewees acknowledged the benefits of the

full node approach, especially for users with limited knowledge of procedural tools and

workflows or when working with minimal and straightforward graphs. The first interviewee

noted that understanding graph dependencies can be challenging with a context-free

approach since one needs to delve into the node's content to ascertain them. The second

interviewee attributed the context-free interface in their PCG implementation (Sceelix) to

numerous options within a single node, leading to visual clutter. The third interviewee

expressed concerns about the UI space required for writing expressions in a full graph

approach, which they considered disruptive.

6. Results and Discussion 50

6.1.3 Open-ended Question

The interviewees provided diverse responses regarding the open-ended question

about fundamental user experience features that would benefit by being implemented.

However, several recommendations emerged as common themes among them,

including the following:

• “It would be useful to have a system that could convert from Houdini and

other popular PCG systems to the internal ones.”

• “What I would like to see is an error report based on the Nodes and not on

a global console.”

• “In Unreal Blueprints allows creating a certain point of control to organize

spatially the connection that would be a useful feature to have.”

• “On a project that uses versioning it is a must that graphs are serialized into

readable text.”

6.1.4 Discussion

The insights gathered from the study indicated a consensus among the specialists

regarding the reality of the identified problem and the necessity to address it. Most

participants favoured a context-free user interface approach, considering its usability and

accessibility. Additionally, the challenges associated with managing complex graphs

were acknowledged, with the metaphor of "spaghetti code" humorously highlighting the

confusion and visual clutter that can arise.

6.2 Study II

The second study was conducted later to the completion of the solution’s

implementation, as referenced in Section 3.2.2. This study involved ten participants with

diverse backgrounds in the game development field. While most participants completed

the exercises in person during the "Game Dev Meet" event, where game developers

gather to share projects and establish connections, some participants opted to complete

the exercises remotely. Remote participants were required to install the PCG system in

advance and follow the tutorial guide and exercises through an online version. To ensure

consistency and gather honest feedback, no additional assistance was provided apart

from the content presented in the guide. However, if participants encountered obstacles

6. Results and Discussion 51

or errors that hindered their progress, limited support was given to address those issues.

The study's data-gathering process consisted of three distinct formats:

1. Quantitative questions: Participant backgrounds and the System Usability

Scale (SUS).

2. Written feedback: Open-ended questions where participants provided

justifications and highlighted software features and issues.

3. Observational notes: Documentation of user actions and behaviours during

in-person exercises.

The following subchapters will discuss the results of each format accordingly.

6.2.1 Quantitative Questions

This subchapter delves into the quantitative questions used to gather data in Study

2. The first set of questions focuses on gathering background and experience information

from the participants in the game development field.

The next set of questions revolves around the System Usability Scale (SUS), a

widely used questionnaire designed to assess the usability of a system. These ten

questions aim to evaluate various usability aspects, including learnability, efficiency, and

satisfaction with the PCG system. Participants were asked to rate their agreement with

each statement on a Likert scale ranging from 1 (Strongly Disagree) to 5 (Strongly

Agree).

Lastly, the participants were asked to provide an overall rating for the PCG system.

This question aimed to capture their overall impression and satisfaction with the system.

In the following sections of this chapter, we will address each question individually and

provide detailed commentary on the results obtained from the quantitative data.

6. Results and Discussion 52

Question 0.1 - Age

Based on the age distribution of the participants (Figure 28), the majority (44.4%)

fall within the age range of less than 25 years. The second largest group consists of

participants aged between 25 to 35 years, accounting for 33.3% of the respondents.

Participants aged from 35 to 45 years old make up 22.2% of the sample, while there

were no respondents above the age of 45. These results suggest that the study gathered

a relatively younger sample audience, which could have impacted the interpretation of

the findings regarding generational perspectives and preferences in the game

development field.

Question 0.2 - Current Academic Degree

Figure 28 -Data obtained for question 0.1 Age

Figure 29 - Data obtained for question 0.2 Current Academic Degree

6. Results and Discussion 53

For the second contextual question, 40% of the interviewees answered that they

have a Bachelor's degree, while another 40% have a Master's degree, and 20% of the

participants hold a Doctorate. There were no respondents with a high school education.

These findings suggest that the study attracted participants with various levels of

academic knowledge, including both undergraduate and postgraduate qualifications.

This academic diversity should contribute to a more nuanced understanding of the

results, including perspectives from different educational backgrounds.

Question 0.3 - Experience in Game Development

The results show that the participants' experience in game development varies. 10%

of the respondents reported having no experience in game development. 40%

mentioned having worked on a few projects occasionally. Another 30% indicated having

more than three years of experience either as a hobbyist or professional. The remaining

20% reported having considerable professional experience in game development. These

results suggest diverse experience levels among the participants, which could provide

valuable insights from different technical perspectives.

Figure 30 - Data obtained for question 0.3 Experience in Game Development

6. Results and Discussion 54

Question 0.4 - Experience with Procedural Tools

“Do you have any experience with Procedural Modelling Software (such as Houdini,

Blender Geo Nodes, etc...) or have you implemented any custom Procedural Systems?”

The results indicate that 30% of the participants reported having no experience with

procedural modelling software or implementing custom procedural systems. 50%

mentioned having used one of these software tools a couple of times, indicating

moderate familiarity. Interestingly, 20% of the participants reported having considerable

experience with one of these software tools or having implemented custom procedural

systems, suggesting a higher level of expertise in this area. These findings suggest a

mix of participants with varying degrees of experience with PCG systems, which

contributes to a more comprehensive understanding of the system's intuition in different

degrees of familiarity with similar systems.

Question 1 - Future Usage

“I think that I would like to use Lazy Builder frequently.”

Figure 31 Data obtained for question 0.4 Experience with Procedural Tools

Figure 32 - Data obtained for question 1 Future Usage

6. Results and Discussion 55

The results of SUS Question 1 indicate that 30% of the participants felt neutral about

their likelihood of using Lazy Builder frequently. However, 50% agreed or strongly agreed

that they would like to use it frequently, indicating a positive inclination towards future

usage. Interestingly, 20% strongly agreed with the statement, suggesting high interest in

incorporating Lazy Builder into their workflow. These findings indicate a generally

positive perception of the system's potential for future usage among the participants. The

high percentage of agreement and strong agreement suggests that Lazy Builder can

potentially be a valuable tool in the participants' game development processes.

Question 2 - Complexity

“I found Lazy Builder unnecessarily complex”

The results of Question 2 indicate that 10% of the participants strongly disagreed

and 20% disagreed that Lazy Builder was unnecessarily complex. On the other hand,

50% of the participants felt neutral about the system’s complexity. Additionally, 20%

agreed that Lazy Builder was unnecessarily complex. Interestingly, none of the

participants strongly agreed with this statement. These results suggest that there is a

mixed perception among the participants regarding the complexity of Lazy Builder. While

a portion of the participants found it to be complex, the majority had a neutral view. This

indicates that there might be room for improvement in simplifying the user experience

and reducing complexity.

Figure 33 - Data obtained for question 2 Complexity

6. Results and Discussion 56

Question 3 - Ease of use

“I thought Lazy Builder was easy to use”

The results of Question 3 show that none of the participants strongly disagreed or

disagreed that Lazy Builder was easy to use. 40% of the participants felt neutral about

the ease of use, while 30% agreed and 30% strongly agreed that Lazy Builder was easy

to use. These results indicate a positive perception of the system's usability, with a

significant portion of participants finding it easy or very easy to use. However, a notable

proportion of participants also had a neutral stance. This suggests that while Lazy Builder

is generally considered user-friendly, there may still be areas for improvement to

enhance the overall usability.

Figure 34 - Data obtained for question 3 Ease of use

6. Results and Discussion 57

Question 4 - Support necessity

“I think that I would need the support of a technical person to be able to use Lazy Builder.”

The results of SUS Question 4 indicate that 10% of participants strongly disagreed,

40% disagreed, and 30% felt neutral about the need for technical support to use Lazy

Builder. On the other hand, only 10% agreed and 10% strongly agreed that they would

require technical assistance. These results suggest that a majority of participants felt that

they did not necessarily need the support of a technical person to use Lazy Builder.

However, a significant portion still expressed uncertainty or need for assistance. This

highlights the importance of providing clear and accessible user documentation and

better UI clarity in this system.

Question 5 - Functionalities

“I found the various functions in Lazy Builder were well integrated.”

Figure 35 - Data obtained for question 4 Support necessity

Figure 36 - Data obtained for question 5 Functionalities

6. Results and Discussion 58

The results of SUS Question 5 indicate that none of the participants strongly

disagreed or disagreed that the various functions in Lazy Builder were well integrated.

20% of participants felt neutral, while 60% agreed that the functionalities were well

integrated. Additionally, 20% strongly agreed with this statement. These results suggest

that the participants found the functions in Lazy Builder to be effectively integrated, which

is a positive outcome.

Question 6 - Consistency

“I thought there was too much inconsistency in Lazy Builder.”

The results of Question 6 show that 40% of the participants both strongly disagreed

and disagreed that there was too much inconsistency in Lazy Builder. Another 10%

agreed, while 10% felt neutral on this statement. Notably, none of the participants

strongly agreed that there was too much inconsistency. These results indicate that most

participants did not perceive significant issues with inconsistency in the system.

Figure 37 - Data obtained for question 6 Consistency

6. Results and Discussion 59

Question 7 - Learning Curve

“I would imagine that most people would learn to use Lazy Builder very quickly.”

The results of Question 7 indicate that 70% of the participants agreed that most

people would learn to use Lazy Builder very quickly. Meanwhile, 30% felt neutral on this

statement, and none of the participants strongly disagreed or disagreed. These results

suggest that most participants perceived the system as having a relatively low learning

curve, implying that it was intuitive and easy to grasp for new users.

Question 8 - Speed of Interactivity

“I found Lazy Builder very cumbersome to use.”

Figure 38 - Data obtained for question 7 Learning Curve

Figure 39 - Data obtained for question 8 Speed of Interactivity

6. Results and Discussion 60

Based on the results of SUS Question 8, 20% of the participants strongly disagreed

that they found Lazy Builder cumbersome to use, and 60% disagreed. Finally, another

20% felt neutral. None of the participants agreed or strongly agreed. These results

suggest that most participants did not perceive Lazy Builder as cumbersome, indicating

that the system was generally considered user-friendly and not overly difficult to interact

with.

Question 9 - Confidence in use

“I felt very confident using Lazy Builder.”

Based on the results of Question 9, none of the participants strongly disagreed or

disagreed that they felt confident using Lazy Builder. 30% of the participants felt neutral,

while 50% agreed and 20% strongly agreed with the statement. These results point out

that the majority of the participants had a positive perception of their confidence in using

Lazy Builder, suggesting that the system inspired a sense of competence and technical

assurance in its users.

Figure 40 - Data obtained for question 9 Confidence in use

6. Results and Discussion 61

Question 10 - Learning entry barrier

“I needed to learn a lot of things before I could get going with Lazy Builder.”

Based on the results of SUS Question 10, 20% of the participants strongly

disagreed, 40% disagreed, 20% felt neutral, and 20% agreed that they needed to learn

a lot of things before they could get going with Lazy Builder. These results suggest that

a significant percentage of the participants perceived a moderate to high learning entry

barrier with the system. It indicates that some participants may have found the initial

learning curve or the amount of knowledge required to start using Lazy Builder to be

relatively high. This feedback highlights the importance of providing clear and accessible

learning resources and tutorials to help users overcome this entry barrier and quickly get

started with the PCG system.

Figure 41 - Data obtained for question 10 Learning entry barrier

6. Results and Discussion 62

Final Question - Overall Interface Experience

Considering all the contact you've made with tool and the key points addressed earlier.

How can you describe the overall User-Experience of this node-based tool?

Based on the results of the final question on the overall interface experience, 20%

of the participants rated the user experience as considerably good (5), indicating a

positive evaluation. The majority, 60%, rated it as good (4), further highlighting a

generally favourable user experience. No participants rated it as considerably bad (1) or

bad (2). However, 20% of the participants provided a neutral (3) rating, suggesting that

there is room for improvement and fine-tuning to enhance the overall user experience of

the node-based tool.

Figure 42 - Data obtained for the final question Overall Interface Experience

6. Results and Discussion 63

6.2.2 Written Feedback

At the end of the questionnaire, participants were given the opportunity to provide a

brief justification for their overall scores and share suggestions for improvement. Some

participants provided detailed feedback on current features and proposed new ones to

enhance the tool's usability. Answers from the open feedback question have been

categorized into: justifications, new feature suggestions, and bug reporting.

Justifications/Comments

• "The tool needs documentation. Each function could have a small

description of what it does."

• "I find the tool to be on the right track, but there are quite a few bugs that

affect the experience."

• "I really liked the visuals of the graph and the speed of execution, which

provided a smooth experience."

New Feature Suggestions

• "If there was the possibility of doing Undo, that is, Ctrl+Z, it would help to

improve the experience."

• "Maybe turning the expressions used into something node-based like the

input of Values in the respective parameters."

• "There should be a way to open the 'Create Node' window in the interface

via a button."

• "An easier way to convert parameters to expressions/fixed values and delete

parameters."

• "A way to change the seed on several random nodes without manually

changing each one."

• "Try to have more than one colour scheme."

• "Some pre-made examples to use or start with."

6. Results and Discussion 64

Bug Reporting

Various bugs were reported regarding the Context window, Node search window,

Node Parameter folding, Node duplication, and Graph persistence.

6.2.3 Observational Notes

The feedback in this section, gathered from participants’ oral comments and non-

verbal actions during the exercises, complements the written feedback provided earlier.

These observations capture additional insights that were not explicitly mentioned. This

feedback was collected from users who participated in presential sessions of this study.

Based on participant feedback and observations during the study sessions, the following

patterns were identified:

• 5 participants did not use the search window in the Add Node window, opting

to search for nodes within the categories manually.

• 4 participants, despite being instructed otherwise, attempted to open the

“Add Node” window using the right mouse click.

• 3 users leaned closer to the screen when entering an expression parameter,

suggesting difficulties in reading the text.

• 3 users were confused about an error still being displayed in the console

after its resolution.

• 3 users reported difficulties distinguishing between the node type and node

name fields.

• 2 users attempted to use the standard right mouse click "Copy" and "Paste"

functions, which lead to confusion.

• 2 users experienced confusion when connecting multiple edges to a single

port, causing the identification numbers in each port to become cluttered and

unreadable.

• 2 users noted that the Add Node window contents did not fill the entire

window size, leading to confusion.

• 1 user pointed out that the visual order of Node Name and Node Type in the

Context window differed from that displayed in the Node block itself.

• 1 user suggested the inclusion of a node for executing custom scripts.

6. Results and Discussion 65

• 1 user was confused when not all search results were displayed in the “Add

Node” window since the previous search term remained in the search bar.

6.2.4 Discussion

Study II aimed to evaluate the usability of the PCG system through a combination

of quantitative questions, written feedback, and observational notes. A total of ten

participants took part in the study, providing valuable insights into their experiences with

the tool.

The quantitative questionnaire followed the SUS structure and assessed various

aspects of the perceived usability of the PCG system. Overall, the results showed

positive feedback with participants generally finding the tool useful and easy to use.

Participants provided additional justifications and comments regarding their overall

score in the written feedback section. Some participants highlighted the need for

improved documentation, while others reported specific bugs or suggested

enhancements for some existing features. New feature suggestions included undoing

actions, improving the node search function, and providing pre-made examples.

Participants also raised concerns about the learning curve associated with node-based

tools.

Observational notes were gathered to support the written feedback and provide

additional insights into user behaviour and areas of confusion. Some participants

struggled with certain interactions, such as opening the Add Node window, distinguishing

between node types and names, and reading expression parameters.

6. Results and Discussion 66

6.3 Game Jam Usage

This section presents a usage case that emerged during the course of the research,

providing a more complete usage scenario with tangible results. It is important to note

that this study was not initially planned as a structured case study but rather as an

opportunity to explore more of the practical application of the implemented PCG tool.

6.3.1 Game Description

A team of game developers, consisting of one programmer and one designer,

participated in the Instituto Superior de Engenharia do Porto (ISEP) Level Up Game Jam

of 2023. During this event, participants come together to create games within a limited

timeframe (for this case 48h), with the added challenge of incorporating a specific theme

into their game design.

The Game Jam’s theme, "Death is a new beginning," inspired the team to create a

2.5D game entitled “00:11” with strong reference to games such as Alto's Journey and

Tiny Wings.

In "00:11," players take on the role of an explorer named Sunny, embarking on a

challenging adventure in a mysterious world. The game features treacherous mountains

and valleys with obstacles that must be traversed, all while being pursued by a wall of

light. Sunny possesses the ability to harness the power of orbs, which can be to increase

its movement speed. When the player is caught by it, triggering the game over state, the

player discovers that the main game scene was part of a near-death experience in

heaven, that offers the game’s character a chance to reunite with their ancestors.

6. Results and Discussion 67

6.3.2 Game Implementation

From a technical and development standpoint, the team employed Sceelix as a

hybrid procedural approach to generate each mountain segment of the game level. The

Surfaces data type was utilized to generate Unity terrains, with each segment being

nearly one-dimensional, having a width of 1 pixel.

Figure 43 - Gameplay of the “00:11” Game Jam title,Main Game scene (Top), Game Over

scene (Bottom).

6. Results and Discussion 68

Sceelix parameters such as scale, roughness, frequency, and seed were adjusted

to produce different results for various mountain sections, influencing their level of

difficulty. Although the primary focus was not on generating the entire map, the team

created individual sections using this approach, allowing for multiple iterations tested via

gameplay.

Figure 44 - Mountains created for the “00:11” Game Jam title.

Figure 45 - Construction of Perlin noise based terrains for”00:11”.

6. Results and Discussion 69

6.3.3 Discussion

The team provided oral feedback on the overall experience of using the native PCG

tool. While acknowledging the presence of a few usability bugs that hindered the tool's

full utilization of the original features and the robustness of Sceelix, it highlighted the

need for various additional features when dealing with surfaces. Consequently, some

workarounds and manual operations were employed to achieve the desired final map.

However, it is important to note that despite these challenges, the PCG tool enabled the

team to develop a functional game featuring smooth and custom sliding mountains, a

task that would have been considerably more difficult with a PCG system built entirely

from scratch.

7 Conclusions

This research aimed to address the limitations faced by current PCG systems in

game development, specifically regarding integration, interactivity, and ease of use. A

thorough exploration of state of the art in Level Design, PCG, and Node-based Interfaces

provided the foundation for understanding the challenges and existing solutions.

The first study involved interviews with PCG experts who gathered general feedback

and in-depth advice on the preferable UI approach for this node-based interface. The

insights obtained from this study confirmed the relevance of the identified problem and

the presented native solution. The experts’ preferences gravitated towards the context-

free user interface approach, where each Node’s information is only displayed upon its

selection. Challenges associated with managing large-scale graphs were also

acknowledged, emphasizing the importance of addressing its visual organization to

reduce visual clutter and maintain readability.

A comprehensive analysis and design process covered various aspects, including

the structure of Unity Engine, and Sceelix library, which led to a steered implementation

of the identified solution requirements. By taking advantage of Unity Engine’s

functionalities and using the Sceelix library as the Procedural Generation backbone, the

implementation fulfilled both functional and non-functional requirements, ensuring the

system's usability, reliability, performance, and supportability.

Study II focused on evaluating the usability of the native PCG system through a

combination of quantitative questions, written feedback, and observational notes. The

results showed positive feedback overall, with participants finding the tool useful and

easy to use. However, the written feedback and observational notes highlighted areas

for improvement, such as documentation, bug fixes, and feature enhancements.

7. Conclusions 71

As for the usage case of the Game Jam, despite some usability issues and the need

for additional features when dealing with terrains, the PCG tool allowed the team to

develop a functional game through an iterative hybrid procedural approach. The tool’s

efficiency surpassed building a custom PCG algorithm from scratch, enabling the level

of concretization within the jam's timeframe.

The obtained results indicate that the developed native PCG methodology presents

a substantial benefit to the level design process. The positive feedback from participants

in Study II indicates that the system was generally useful and easy to use, fulfilling the

objective of providing a fluid user experience for game developers. The iterative and

user-centred methodology employed throughout the research contributed to the system's

effective development and refinement.

Answering to the central research question “Does developing a PCG system

natively in a Game Engine provide significant advantages for the Level Design

process?”. Within the limited amount of time to develop a functional prototype and to

collect feedback from both specialists and game developers, results indicate that it

provides a seamless experience with minimal friction between the user and the playable

level.

In response to the question "What are the key interactivity and user experience

metrics that hold the most significance in a PCG?", a variety of metrics were identified

based on participant feedback. While a definitive answer could not be determined,

certain metrics were consistently emphasized by the participants, including visual

clearance to manage graph visual clutter, contextual documentation to ease the learning

curve of the PCG system, and precise error reporting for easy identification and

understanding of errors.

Answering the last question “What are the potential approaches for designing the

interface of a node-based PCG system?”. Based on existing PCG solutions and other

node-based systems the two main UI approaches are the full graph and the abstracted

approach. But due to the limited time frame of design and implementation of the

prototype, other more experimental UI approaches were not explored.

The implementation and research of this project faced several limitations due to the

complex nature of PCG systems and the project's duration. One limitation pertained to

the robustness of the functional prototype, which did not encompass all data types and

operations and required further testing.

7. Conclusions 72

Two significant features of PCG, namely graph data encapsulation (allowing for

subgraphs and reusing dense graph operations) and runtime generation, were not

integrated into the prototype. This necessitated restructuring to create a separation

between the graph structure and its visual editor component.

Moreover, the development of this PCG system could not be applied to a more

specific usage case, such as dungeons, islands, or urban environments, as originally

planned. Collaborating with the "Edscape" project to design educational escape rooms

was intended, but due to the extensive time dedicated to the PCG integration, a more in-

depth usage case could not be explored.

In conclusion, this research contributed to addressing the current limitations of PCG

systems in the game development pipeline by proposing a successful solution.

8 Future Work

This research lays the groundwork for further exploration and development in the

field of PCG systems integrated into game engines. However, it is important to

acknowledge that several challenges still need to be overcome in fully implementing a

complex and extensive PCG system, to fully answer this research problem.

The feedback received from participants in Study II has provided valuable directions

for future improvements, such as enhancing documentation, addressing bugs, and

implementing suggested features. The identified learning curve associated with node-

based tools should also be addressed through improved onboarding and user support.

The development of the PCG system is still ongoing and its current focus is on

incorporating the suggested improvements and fixing the identified issues and

expanding the system's capabilities. Its codebase is open-source (on GitHub) to help

future contributors to be part of this project and the game development community has

picked some interest in the project.

The subsequent research work on this project should focus on conducting more

extensive user testing with a broader set of participants. Through continuous iteration

and refinement of this native system, its full potential can be materialized, maximizing

the benefits of PCG and elevating the overall game development process to new heights.

9. References 74

9 References

Adrian, D. F. H., & Ana Luisa, S. G. C. (2013). An approach to level design using

procedural content generation and difficulty curves. IEEE Conference on

Computatonal Intelligence and Games, CIG.

https://doi.org/10.1109/CIG.2013.6633640

Ates, K., Kukluk, J., Holder, L., Cook, D., & Zhang, K. (2006). Graph grammar induction

on structural data for visual programming. Proceedings - International Conference

on Tools with Artificial Intelligence, ICTAI, 232–239.

https://doi.org/10.1109/ICTAI.2006.61

Brydon-Miller, M., Greenwood, D., & Maguire, P. (2003). Why action research? Action

Research, 1(1), 9–28.

Coghlan, D., & Bannick, T. (2015). Doing action research in your own organization.

Action Learning: Research and Practice, 12(2), 237–241.

https://doi.org/10.1080/14767333.2015.1049453

Galuzin, A. (2011). Ultimate level design guide by Alex.

https://www.goodreads.com/book/show/20944485-ultimate-level-design-guide

Hahn, E., Bose, P., & Whitehead, A. (2006). Persistent realtime building interior

generation. Proceedings - Sandbox Symposium 2006: ACM SIGGRAPH Video

Game Symposium, Sandbox ’06, 179–186.

https://doi.org/10.1145/1183316.1183342

Holub, O., Moiseienko Mykhailo, & Moiseienko Natalia. (2020). Fluid Flow Modelling in

Houdini. 1–9.

Jong, S. de. (2008). The Hows and Whys of Level Design.

Kearns, K. (2017). Semantics (2nd ed., Vol. 1).

https://books.google.pt/books?id=WJNKEAAAQBAJ

https://doi.org/10.1109/CIG.2013.6633640
https://doi.org/10.1109/ICTAI.2006.61
https://doi.org/10.1080/14767333.2015.1049453
https://www.goodreads.com/book/show/20944485-ultimate-level-design-guide
https://doi.org/10.1145/1183316.1183342
https://books.google.pt/books?id=WJNKEAAAQBAJ

Löbner, S. (2013). Understanding Semantics. In Understanding Semantics, Second

edition: Vol. Vol 1 (2nd ed.). Taylor and Francis.

https://doi.org/10.4324/9780203528334/UNDERSTANDING-SEMANTICS-

SEBASTIAN-LOEBNER

Merrell, P., Schkufza, E., & Koltun, V. (2010). Computer-generated residential building

layouts. ACM Transactions on Graphics, 29(6).

https://doi.org/10.1145/1866158.1866203

Naiman, J. P., Borkiewicz, K., & Christensen, A. J. (2017). Houdini for Astrophysical

Visualization. Publications of the Astronomical Society of the Pacific, 129(975),

058008. https://doi.org/10.1088/1538-3873/AA51B3

Preidel, C., & Borrmann, A. (2016). Towards code compliance checking on the basis of

a visual programming language. Journal of Information Technology in

Construction (ITcon), 1–20. http://www.itcon.org/2016/25

Shin, J., Siegwart, R., & Magnenat, S. (2014). Visual Programming Language for

Thymio II Robot. 2–5. https://doi.org/10.3929/ethz-a-010144554

Short Tanya, & Adams Tarn. (2017). Procedural Generation in Game Design - Google

Livros. https://books.google.pt/books? id=Rj4PEAAAQBAJ

Silva, P. A. B. da. (2015). Improving Expressiveness, Integration and Manageability in

Procedural Content Generation. https://repositorio-

aberto.up.pt/handle/10216/99064

Singh, R. P. (2014). Application of Graph Theory in Computer Science and

Engineering. International Journal of Computer Applications, 104(1), 1–4.

Tutenel, T., Bidarra, R., Smelik, R. M., & de Kraker, K. J. D. (2008). The role of

semantics in games and simulations. Computers in Entertainment (CIE), 6(4).

https://doi.org/10.1145/1461999.1462009

https://doi.org/10.4324/9780203528334/UNDERSTANDING-SEMANTICS-SEBASTIAN-LOEBNER
https://doi.org/10.4324/9780203528334/UNDERSTANDING-SEMANTICS-SEBASTIAN-LOEBNER
https://doi.org/10.1145/1866158.1866203
https://doi.org/10.1088/1538-3873/AA51B3
http://www.itcon.org/2016/25
https://doi.org/10.3929/ethz-a-010144554
https://books.google.pt/books?hl=pt-PT&lr=&id=Rj4PEAAAQBAJ&oi=fnd&pg=PP1&dq=procedural-generation-in-game-design&ots=HDuX3E4i-E&sig=0x7KBCyQnPQP8HthylXWj9vYPek&redir_esc=y#v=onepage&q=procedural-generation-in-game-design&f=false
https://repositorio-aberto.up.pt/handle/10216/99064
https://repositorio-aberto.up.pt/handle/10216/99064
https://doi.org/10.1145/1461999.1462009

10. Appendices 76

10 Appendices

10.1 Appendix 1

User Experience Assessment

Before beginning this questionnaire please try to complete the following tutorial

exercises:

https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/

This questionnaire is part of a thesis project for the Master in Multimedia at FEUP.

The thesis, entitled "Node-based Native Solution to Procedural Level Generation",

aims to provide a native engine solution for procedural level generation in the Unity

Engine.

Your feedback will help evaluate the tool's clarity, interactivity, usability, and

overall user experience. It is an opportunity to share your thoughts on the features,

challenges, and suggestions for improvement.

Following GDPR guidelines, this anonymous questionnaire data will only be

used for research purposes. If you agree in sharing the information prompted below

please proceed with the questionnaire.

Thank you for taking the time to provide your insights!

* Indicates a mandatory question

https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true
https://docs.google.com/presentation/d/1rUGbXzxXKXIvSs6e_vvyMhGzZoylVPB5/edit?usp=sharing&ouid=103036217734597223823&rtpof=true&sd=true

10. Appendices 77

Age

Please choose only one option

0-25

25-35

35-45

45+

Current academic degree

Please choose only one option

Highschool

Bachelor

Major

Doctorate

Experience in Game Development

Please choose only one option

Zero experience

I've made some projects here & there

+3 years as a hobbyist or any professional experience

10. Appendices 78

Considerable professional experience

Experience with Procedural Tools

Do you have any experience with Procedural Modelling Software (such as

Houdini, Blender Geo Nodes, etc...) or have you implemented any custom

Procedural Systems?

Please choose only one option.

Zero experience

Used one of these software a couple of times

Considerable experience in one of these software or implemented custom

systems

Rating System

Your honest and unbiased feedback is essential in assessing the usability/user

experience of this tool. Please keep in mind the next responses should reflect your

initial impressions, independent of the additional instructional materials provided.

Please rate the following statements regarding your experience using "Lazy

Builder" on a scale from 1 to 5, as specified below:

1 Strongly Disagree | 2 Disagree | 3 Neutral | 4 Agree | 5 Strongly Agree

10. Appendices 79

Future Usage *

I think that I would like to use Lazy Builder frequently

Please choose only one option

10. Appendices 80

Complexity *

I found Lazy Builder unnecessarily complex

Please choose only one option

10. Appendices 81

Ease of use *

I thought Lazy Builder was easy to use

Please choose only one option

10. Appendices 82

Support necessity *

I think that I would need the support of a technical person to be able to use Lazy Builder

Please choose only one option

10. Appendices 83

Functionalities *

 I found the various functions in Lazy Builder were well integrated

Please choose only one option

10. Appendices 84

Consistency *

I thought there was too much inconsistency in Lazy Builder

Please choose only one option

10. Appendices 85

Learning Curve *

I would imagine that most people would learn to use "Lazy Builder" very quickly

Please choose only one option

10. Appendices 86

Speed of Interactivity *

I found "Lazy Builder" very cumbersome to use

Please choose only one option

10. Appendices 87

Confidence of use *

I felt very confident using Lazy Builder

Please choose only one option

10. Appendices 88

Learning entry barrier *

I needed to learn a lot of things before I could get going with Lazy Builder

Please choose only one option

10. Appendices 89

Final Questions

The last 2 final questions aim to better understand your overall opinion on the

previous answers. Express your thoughts below!

Overall Interface Experience *

Considering all the contact you've made with tool and the key points

addressed earlier How can you describe the overall User-Experience of this

node-based tool?

Please choose only one option

10. Appendices 90

Problems, Improvements & New Features

Can you provide a brief justification behind the above overall score?

Suggestions that you can point out:

• Current implemented features do you think could be further

tested and improved

• New features that could be added and would greatly benefit the

overall tool usage

This content was created using Google Forms

10. Appendices 91

10.2 Study II Presentation

10. Appendices 92

10. Appendices 93

10. Appendices 94

10. Appendices 95

10. Appendices 96

10. Appendices 97

10. Appendices 98

10. Appendices 99

10. Appendices 100

10. Appendices 101

10. Appendices 102

10. Appendices 103

10. Appendices 104

10. Appendices 105

10. Appendices 106

10. Appendices 107

10. Appendices 108

10. Appendices 109

10. Appendices 110

10. Appendices 111

10. Appendices 112

10. Appendices 113

10. Appendices 114

10. Appendices 115

	1 Introduction
	1.1 Problem Specification
	1.2 Objectives
	1.3 Research Questions
	1.4 Methodology
	1.1
	1.5 Dissertation Structure

	2 State of The Art
	2.1 Level Design
	2.1.1 Taxonomy and Challenges
	2.1.2 Gameplay-Centred Approaches
	2.1.3 Objects
	2.1.4 Semantics

	2.2 Procedural Content Generation
	2.2.1 Origins
	2.2.2 Advantages and Disadvantages
	2.2.3 Use-cases
	2.2.4 Interior Levels

	2.3 Node-based Interfaces
	2.3.1 Visual Programming Language
	2.3.2 Graph Structure

	2.4 Existing Solutions
	2.4.1 Houdini
	2.4.2 Blender
	2.4.3 Sceelix

	2.5 Summary

	3 Methodology
	3.1 Research Methodology
	3.2 Research Instruments
	3.2.1 Study I - Interview
	3.2.2 Study II – User experience questionnaire

	3.3 Summary

	4 Analysis & Design
	4.1 Solution Domain
	4.1.1 Unity Engine
	4.1.2 Sceelix
	4.1.2.1 Graph Concepts in Sceelix
	4.1.2.2 Node Overview in Sceelix

	4.2 Functional & Non-Functional Requirements
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements
	4.2.2.1 Usability
	4.2.2.2 Reliability
	4.2.2.3 Performance
	4.2.2.4 Supportability

	4.3 Software Architecture
	4.4 Visual Identity
	4.4.1 Name and Logo
	4.4.2 Visual Interface

	4.5 Summary

	5 Implementation
	5.1 Base UI & Graph Features
	5.2 Generation Features
	5.2.1 Sceelix Integration
	5.2.2 Graph Processing
	5.2.3 Content Population

	5.3 Context Features
	5.4 File Features
	5.5 Gizmo Features
	5.6 Summary

	6 Results and Discussion
	6.1 Study I
	6.1.1 Central Question I
	6.1.2 Central Question II
	6.1.3 Open-ended Question
	6.1.4 Discussion

	6.2 Study II
	6.2.1 Quantitative Questions
	6.2.2 Written Feedback
	6.2.3 Observational Notes
	6.2.4 Discussion

	6.3 Game Jam Usage
	6.3.1 Game Description
	6.3.2 Game Implementation
	6.3.3 Discussion

	7 Conclusions
	8 Future Work
	9 References
	10 Appendices
	10.1 Appendix 1
	10.2 Study II Presentation

