9,407 research outputs found

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects

    Final design report of a personnel launch system and a family of heavy lift launch vehicles

    Get PDF
    The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket

    Future cities and autonomous vehicles: analysis of the barriers to full adoption

    Get PDF
    The inevitable upcoming technology of autonomous vehicles (AVs) will affect our cities and several aspects of our lives. The widespread adoption of AVs repose at crossing distinct barriers that prevent their full adoption. This paper presents a critical review of recent debates about AVs and analyse the key barriers to their full adoption. This study has employed a mixed research methodology on a selected database of recently published research works. Thus, the outcomes of this review integrate the barriers into two main categories; (1) User/Government perspectives that include (i) Users' acceptance and behaviour, (ii) Safety, and (iii) Legislation. (2) Information and Communication Technologies (ICT) which include (i) Computer software and hardware, (ii) Communication systems V2X, and (iii) accurate positioning and mapping. Furthermore, a framework of barriers and their relations to AVs system architecture has been suggested to support future research and technology development

    A Hybrid Intelligent Multisensor Positioning Methodology for Reliable Vehicle Navigation

    Get PDF
    With the rapid development of intelligent transportation systems worldwide, it becomes more important to realize accurate and reliable vehicle positioning in various environments whether GPS is available or not. This paper proposes a hybrid intelligent multisensor positioning methodology fusing the information from low-cost sensors including GPS, MEMS-based strapdown inertial navigation system (SINS) and electronic compass, and velocity constraint, which can achieve a significant performance improvement over the integration scheme only including GPS and MEMS-based SINS. First, the filter model of SINS aided by multiple sensors is presented in detail and then an improved Kalman filter with sequential measurement-update processing is developed to realize the filtering fusion. Further, a least square support vector machine- (LS SVM-) based intelligent module is designed and augmented with the improved KF to constitute the hybrid positioning system. In case of GPS outages, the LS SVM-based intelligent module trained recently is used to predict the position error to achieve more accurate positioning performance. Finally, the proposed hybrid positioning method is evaluated and compared with traditional methods through real field test data. The experimental results validate the feasibility and effectiveness of the proposed method

    Low-cost navigation and guidance systems for unmanned aerial vehicles - part 2: Attitude determination and control

    Get PDF
    This paper presents the second part of the research activity performed by Cranfield University to assess the potential of low-cost navigation sensors for Unmanned Aerial Vehicles (UAVs). This part focuses on carrier-phase Global Navigation Satellite Systems (GNSS) for attitude determination and control of small to medium size UAVs. Recursive optimal estimation algorithms were developed for combining multiple attitude measurements obtained from different observation points (i.e., antenna locations), and their efficiencies were tested in various dynamic conditions. The proposed algorithms converged rapidly and produced the required output even during high dynamics manoeuvres. Results of theoretical performance analysis and simulation activities are presented in this paper, with emphasis on the advantages of the GNSS interferometric approach in UAV applications (i.e., low cost, high data-rate, low volume/weight, low signal processing requirements, etc.). The simulation activities focussed on the AEROSONDE UAV platform and considered the possible augmentation provided by interferometric GNSS techniques to a low-cost and low-weight/volume integrated navigation system (presented in the first part of this series) which employed a Vision-Based Navigation (VBN) system, a Micro-Electro-Mechanical Sensor (MEMS) based Inertial Measurement Unit (IMU) and code-range GNSS (i.e., GPS and GALILEO) for position and velocity computations. The integrated VBN-IMU-GNSS (VIG) system was augmented using the inteferometric GNSS Attitude Determination (GAD) sensor data and a comparison of the performance achieved with the VIG and VIG/GAD integrated Navigation and Guidance Systems (NGS) is presented in this paper. Finally, the data provided by these NGS are used to optimise the design of a hybrid controller employing Fuzzy Logic and Proportional-Integral-Derivative (PID) techniques for the AEROSONDE UAV
    corecore