26,754 research outputs found

    Industrial implementation of intelligent system techniques for nuclear power plant condition monitoring

    Get PDF
    As the nuclear power plants within the UK age, there is an increased requirement for condition monitoring to ensure that the plants are still be able to operate safely. This paper describes the novel application of Intelligent Systems (IS) techniques to provide decision support to the condition monitoring of Nuclear Power Plant (NPP) reactor cores within the UK. The resulting system, BETA (British Energy Trace Analysis) is deployed within the UK’s nuclear operator and provides automated decision support for the analysis of refuelling data, a lead indicator of the health of AGR (Advanced Gas-cooled Reactor) nuclear power plant cores. The key contribution of this work is the improvement of existing manual, labour-intensive analysis through the application of IS techniques to provide decision support to NPP reactor core condition monitoring. This enables an existing source of condition monitoring data to be analysed in a rapid and repeatable manner, providing additional information relating to core health on a more regular basis than routine inspection data allows. The application of IS techniques addresses two issues with the existing manual interpretation of the data, namely the limited availability of expertise and the variability of assessment between different experts. Decision support is provided by four applications of intelligent systems techniques. Two instances of a rule-based expert system are deployed, the first to automatically identify key features within the refuelling data and the second to classify specific types of anomaly. Clustering techniques are applied to support the definition of benchmark behaviour, which is used to detect the presence of anomalies within the refuelling data. Finally data mining techniques are used to track the evolution of the normal benchmark behaviour over time. This results in a system that not only provides support for analysing new refuelling events but also provides the platform to allow future events to be analysed. The BETA system has been deployed within the nuclear operator in the UK and is used at both the engineering offices and on station to support the analysis of refuelling events from two AGR stations, with a view to expanding it to the rest of the fleet in the near future

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Graphite core brick crack detection through automated load trace analysis

    Get PDF
    This presentation looks at graphite core brick crack detection through automated load trace analysi

    Selection of sensors by a new methodology coupling a classification technique and entropy criteria

    Get PDF
    Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the works on fault detection and diagnosis found in literature emphasis more on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the "Open Plate Reactor (OPR)", developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Investigation of gas circulator response to load transients in nuclear power plant operation

    Get PDF
    Gas circulator units are a critical component of the Advanced Gas-cooled Reactor (AGR), one of the nuclear power plant (NPP) designs in current use within the UK. The condition monitoring of these assets is central to the safe and economic operation of the AGRs and is achieved through analysis of vibration data. Due to the dynamic nature of reactor operation, each plant item is subject to a variety of system transients of which engineers are required to identify and reason about with regards to asset health. The AGR design enables low power refueling (LPR) which results in a change in operational state for the gas circulators, with the vibration profile of each unit reacting accordingly. The changing conditions subject to these items during LPR and other such events may impact on the assets. From these assumptions, it is proposed that useful information on gas circulator condition can be determined from the analysis of vibration response to the LPR event. This paper presents an investigation into asset vibration during an LPR. A machine learning classification approach is used in order to define each transient instance and its behavioral features statistically. Classification and reasoning about the regular transients such as the LPR represents the primary stage in modeling higher complexity events for advanced event driven diagnostics, which may provide an enhancement to the current methodology, which uses alarm boundary limits

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Data mining reactor fuel grab load trace data to support nuclear core condition monitoring

    Get PDF
    A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described

    Alternative sweetener from curculigo fruits

    Get PDF
    This study gives an overview on the advantages of Curculigo Latifolia as an alternative sweetener and a health product. The purpose of this research is to provide another option to the people who suffer from diabetes. In this research, Curculigo Latifolia was chosen, due to its unique properties and widely known species in Malaysia. In order to obtain the sweet protein from the fruit, it must go through a couple of procedures. First we harvested the fruits from the Curculigo trees that grow wildly in the garden. Next, the Curculigo fruits were dried in the oven at 50 0C for 3 days. Finally, the dried fruits were blended in order to get a fine powder. Curculin is a sweet protein with a taste-modifying activity of converting sourness to sweetness. The curculin content from the sample shown are directly proportional to the mass of the Curculigo fine powder. While the FTIR result shows that the sample spectrum at peak 1634 cm–1 contains secondary amines. At peak 3307 cm–1 contains alkynes
    corecore