In this work, a nonlinear model predictive controller is developed for a
batch polymerization process. The physical model of the process is
parameterized along a desired trajectory resulting in a trajectory linearized
piecewise model (a multiple linear model bank) and the parameters are
identified for an experimental polymerization reactor. Then, a multiple model
adaptive predictive controller is designed for thermal trajectory tracking of
the MMA polymerization. The input control signal to the process is constrained
by the maximum thermal power provided by the heaters. The constrained
optimization in the model predictive controller is solved via genetic
algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference