283 research outputs found

    A component-based middleware framework for configurable and reconfigurable Grid computing

    Get PDF
    Significant progress has been made in the design and development of Grid middleware which, in its present form, is founded on Web services technologies. However, we argue that present-day Grid middleware is severely limited in supporting projected next-generation applications which will involve pervasive and heterogeneous networked infrastructures, and advanced services such as collaborative distributed visualization. In this paper we discuss a new Grid middleware framework that features (i) support for advanced network services based on the novel concept of pluggable overlay networks, (ii) an architectural framework for constructing bespoke Grid middleware platforms in terms of 'middleware domains' such as extensible interaction types and resource discovery. We believe that such features will become increasingly essential with the emergence of next-generation e-Science applications. Copyright (c) 2005 John Wiley & Sons, Ltd

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    A Survey on Service Composition Middleware in Pervasive Environments

    Get PDF
    The development of pervasive computing has put the light on a challenging problem: how to dynamically compose services in heterogeneous and highly changing environments? We propose a survey that defines the service composition as a sequence of four steps: the translation, the generation, the evaluation, and finally the execution. With this powerful and simple model we describe the major service composition middleware. Then, a classification of these service composition middleware according to pervasive requirements - interoperability, discoverability, adaptability, context awareness, QoS management, security, spontaneous management, and autonomous management - is given. The classification highlights what has been done and what remains to do to develop the service composition in pervasive environments

    Model-based provisioning and management of adaptive distributed communication in mobile cooperative systems

    Get PDF
    Adaptation of communication is required to maintain the reliable connection and to ensure the minimum quality in collaborative activities. Within the framework of wireless environment, how can host entities be handled in the event of a sudden unexpected change in communication and reliable sources? This challenging issue is addressed in the context of Emergency rescue system carried out by mobile devices and robots during calamities or disaster. For this kind of scenario, this book proposes an adaptive middleware to support reconfigurable, reliable group communications. Here, the system structure has been viewed at two different states, a control center with high processing power and uninterrupted energy level is responsible for global task and entities like autonomous robots and firemen owning smart devices act locally in the mission. Adaptation at control center is handled by semantic modeling whereas at local entities, it is managed by a software module called communication agent (CA). Modeling follows the well-known SWRL instructions which establish the degree of importance of each communication link or component. Providing generic and scalable solutions for automated self-configuration is driven by rule-based reconfiguration policies. To perform dynamically in changing environment, a trigger mechanism should force this model to take an adaptive action in order to accomplish a certain task, for example, the group chosen in the beginning of a mission need not be the same one during the whole mission. Local entity adaptive mechanisms are handled by CA that manages internal service APIs to configure, set up, and monitors communication services and manages the internal resources to satisfy telecom service requirements

    A survey on engineering approaches for self-adaptive systems (extended version)

    Full text link
    The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore, it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation

    Dynamic adaptation of interaction models for stateful web services

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWireless Sensor Networks (WSNs) are accepted as one of the fundamental technologies for current and future science in all domains, where WSNs formed from either static or mobile sensor devices allow a low cost high-resolution sensing of the environment. Such opens the possibility of developing new kinds of crucial applications or providing more accurate data to more traditional ones. For instance, examples may range from large-scale WSNs deployed on oceans contributing to weather prediction simulations; to high number of diverse Sensor devices deployed over a geographical area at different heights from the ground for collecting more accurate data for cyclic wildfire spread simulations; or to networks of mobile phone devices contributing to urban traffic management via Participatory Sensing applications. In order to simplify data access, network parameterisation, and WSNs aggregation, WSNs have been integrated in Web environments, namely through high level standard interfaces like Web services. However, the typical interface access usually supports a restricted number of interaction models and the available mechanisms for their run-time adaptation are still scarce. Nevertheless, applications demand a richer and more flexible control on interface accesses – e.g. such accesses may depend on contextual information and, consequently, may evolve in time. Additionally, Web services have become increasingly popular in the latest years, and their usage led to the need of aggregating and coordinating them and also to represent state in between Web services invocations. Current standard composition languages for Web services (wsbpel,wsci,bpml) deal with the traditional forms of service aggregation and coordination, while WS-Resource framework (wsrf) deals with accessing services pertaining state concerns (relating both executing applications and the runtime environment). Subjacent to the notion of service coordination is the need to capture dependencies among them (through the workflow concept, for instance), reuse common interaction models, e.g. embodied in common behavioural Patterns like Client/Server, Publish/- Subscriber, Stream, and respond to dynamic events in the system (novel user requests, service failures, etc.). Dynamic adaptation, in particular, is a pressing requirement for current service-based systems due to the increasing trend on XaaS ("everything as a service") which promises to reduce costs on application development and infrastructure support, as is already apparent in the Cloud computing domain. Therefore, the self-adaptive (or dynamic/adaptive) systems present themselves as a solution to the above concerns. However, since they comprise a vast area, this thesis only focus on self-adaptive software. Concretely, we propose a novel model for dynamic interactions, in particular with Stateful Web Services, i.e. services interfacing continued activities. The solution consists on a middleware prototype based on pattern abstractions which may be able to provide (novel) richer interaction models and a few structured dynamic adaptation mechanisms, which are captured in the context of a "Session" abstraction. The middleware was implemented and uses a pre-existent framework supporting Web enabled access to WSNs, and some evaluation scenarios were tested in this setting. Namely, this area was chosen as the application domain that contextualizes this work as it contributes to the development of increasingly important applications needing highresolution and low cost sensing of environment. The result is a novel way to specify richer and dynamic modes of accessing and acquiring data generated by WSNs.Este trabalho foi parcialmente financiado pelo Centro de Informática e Tecnologias da Informação (CITI), e pela Fundação para a Ciência e a Tecnologia (FCT / MCTES) em projectos de investigaçã

    A model-based approach for supporting flexible automation production systems and an agent-based implementaction

    Get PDF
    158 p.En esta Tesis Doctoral se plantea una arquitectura de gestión genérica y personalizable, capaz de asegurar el cumplimiento de los requisitos de calidad de servicio (QoS) de un sistema de control industrial. Esta arquitectura permite la modificación de los mecanismos de detección y recuperación de los requisitos de QoS en función de diversos tipos de ésta. Como prueba de concepto, la arquitectura de gestión ha sido implementada mediante un middleware basado en sistemas multi-agente. Este middleware proporciona una serie de agentes distribuidos, los cuales se encargan de la monitorización y recuperación de las QoS en caso de su perdida.La incorporación de los mecanismos de reconfiguración incrementa la complejidad de los sistemas de control. Con el fin de facilitar el diseño de estos sistemas, se ha presentado un framework basado en modelos que guía y facilita el diseño de los sistemas de control reconfigurables. Este framework proporciona una serie de herramientas basadas en modelos que permiten la generación automática del código de control del sistema, así como de los mecanismos de monitorización y reconfiguración de los agentes del middleware.La implementación de la arquitectura ha sido validada mediante una serie de escenarios basados en una célula de montaje real
    • …
    corecore