
Department of Automatic Control and System Engineering
UNIVERSITY OF THE BASQUE COUNTRY (UPV/EHU)

PhD Thesis

A Model-based Approach for supporting Flexible
Automation Production Systems and an Agent-

based Implementation

AUTHOR

Rafael Priego Rementeria

Supervised by

Marga Marcos Muñoz
Birgit Vogel-Heuser

This dissertation is submitted for the degree of Doctor of Philosophy
Bilbao, Abril de 2017

(c)2017 RAFAEL PRIEGO REMENTERIA

 ACKNOWLEDGMENT

I would like to express my gratitude to Prof. Marcos and Prof. Vogel-Heuser, which

have provided guidance and help during the development of the PHD thesis. I will

also would like to thank the people of the Department of Automatic Control and

System Engineering who have participated in this work, especially Aintzane, Dario

and Unai, as well as Eli from the university of Jaen.

I would not want to forget any of my colleagues, they have all had provided words

and gestures of encouragement during this process, thank you all. A special thanks to

Pablo, Aitziber, Sara, Ekaitz, Victor, Villa and Oier.

A special thanks to my parents, my brother and sister and my girl friend Bea that have

suffered my ups and downs during these last years.

Thanks to all

This PHD thesis has finance by the Government of the Basque Country under the

grand BFI-2011-251.

And has been developed as part of the projects:

INTEGRACION DE INTELIGENCIA DISTRIBUIDA Y SEMANTICA EN LA FACTORIA

INTELIGENTE (MINECO REF DPI2015-68602-R (subprograma DPI)) Ministerio de

Economía y Competitividad, FROM: 01/01/2016 TO: 31/12/2018

APLICACIONES DE FABRICACION RECONFIGURABLES DIRIGIDAS POR REQUISITOS

DE QoS (MINECO REF DPI2012-37806-C02-01 (subprograma DPI)) Ministerio de

Economía y Competitivida, FROM: 01/01/2013 TO: 31/12/2015

Control Inteligente e Integración de Energías Renovables en Sistemas Eléctricos

(CINIERSE). (Unidad de Formación e Investigación (UFI) REF UFI1128) Universidad

del País Vasco (UPV/EHU), FROM: 1/01/2011 TO: 31/12/2014

SUBVENCIÓN GENERAL A GRUPOS DE INVESTIGACIÓN (REF GIU07/36) Universidad

del País Vasco (UPV/EHU), FROM: 12/05/2008 TO: 11/05/2011

ABSTRACT

Modern manufacturing systems are expected to be flexible and efficient in order to

cope with challenging market demands. Thus, they must be flexible enough as to meet

changing requirements such as changes in production, energy efficiency, performance

optimization, fault tolerance to processes or controller faults, among others.

Demanding requirements can be defined as a set of Quality of Service (QoS)

requirements to be met.

This research work proposes a generic and customizable management architecture to

deal with QoS loss during runtime. The QoS loss detection and reaction performed by

the architecture can be customized for different QoS goals. As a proof of concept, the

architecture has been implemented using a Multi Agent System middleware that

makes use of distributed agents for monitoring QoS and triggering, if needed, a

reconfiguration of the control system to recover the QoS.

However, the introduction of these mechanisms leads to more a complex designs and

implementation of the control system. For this reason, this work tries to deal with

this complexity by means of a model-based framework that helps and guides the

definition and development of flexible automation systems. The framework provides

a series of model-based tools that allow the automatic generation of control code

extensions aiming at adding flexibility to the automation production system.

The prototype has been tested in a case study consisting of an assembly cell where

assessment of the approach has been conducted.

INDEX

Content Index

i

Content Index

1 Introduction

1.1 Motivation ..1-1

1.2 Research Goals ...1-3

1.3 Structure ...1-4

2 Related work

2.1 Introduction ..2-1

2.2 Manufacturing System Reconfiguration ..2-3

2.3 Model Driven Engineering in Manufacturing System ... 2-10

2.4 Conclusions ... 2-13

3 QoS managEment architecture

3.1 Introduction ..3-1

3.2 General Scenario ..3-1

3.3 Production system information model ..3-3

3.3.1 MC information model ...3-3

3.3.2 Controller information model ..3-8

3.3.3 Run-time platform model .. 3-12

3.4 Conclusions ... 3-15

4 Agent based middleware Architecture

4.1 Introduction ..4-1

4.2 Middleware Manager ...4-4

4.3 QoS Supervisor ...4-6

4.3.1 QoS Monitor (QM) Agents ..4-6

4.3.2 Diagnosis & Decision (D&D) Agent ...4-6

4.4 Application Agents ..4-7

4.4.1 Controller Agent ...4-7

4.4.2 Mechatronic Component Implementation ..4-8

4.5 QoS Management Ontology .. 4-12

4.5.1 Registration messages .. 4-13

4.5.2 Information messages ... 4-15

4.5.3 QoS loss messages .. 4-17

4.5.4 Negotiation messages ... 4-18

4.5.5 Diagnosis messages.. 4-19

4.5.6 Reconfiguration messages .. 4-20

Content Index

ii

4.5.7 State message ... 4-21

4.6 Assuring QoS .. 4-21

4.6.1 Availability QoS .. 4-22

4.6.2 System Efficiency QoS ... 4-24

4.7 Conclusions ... 4-27

5 The Flexible Automation Framework

5.1 Introduction ..5-1

5.2 Generation of tool-independent automation projects ...5-2

5.3 Flexible Automation Production System Model ...5-5

5.4 AML-based System definition (FAPS Editor) ...5-6

5.5 Flexible Automation Projects .. 5-10

5.5.1 MCid_Control .. 5-11

5.5.2 Serialization and de-serialization of the MC’s state .. 5-14

5.6 Application Agents ... 5-16

5.6.1 MC Agent Templates .. 5-17

5.6.2 Controller Agent Template ... 5-18

5.6.3 Diagnosis File. ... 5-20

5.7 Conclusions ... 5-21

6 Proof of Concept

6.1 Introduction ..6-1

6.2 Manufacturing Demonstrator ..6-1

6.3 Modular Automation System ..6-4

6.4 Flexible Automation System Design ..6-5

6.5 Run-time Performance ..6-9

6.5.1 Availability QoS ...6-9

6.5.2 System Efficiency QoS ... 6-12

6.6 Conclusions ... 6-13

7 Conclusions and future works

7.1 Conclusions ..7-1

7.2 Future works ...7-4

References

Glossary

 Figure Index

iii

Figure Index

Fig. 2-1 eCEDAC-Approach for Distributed Online Change (Schimmel & Zoitl, 2011) 2-9

Fig. 2-2 A Transfer FB moving an Agent FB from the origin device to the desired target device

(Yan & Vyatkin, 2013) .. 2-10

Fig. 3-1 Flexible Automation Production System .. 3-2

Fig. 3-2 Example of critical interval ... 3-5

Fig. 3-3 Software View: concepts and their relationships ... 3-10

Fig. 3-4 Meta-model of the hardware concepts and their relationships 3-11

Fig. 3-5 Run-time platform .. 3-12

Fig. 3-6 QoS characterization meta-model .. 3-15

Fig. 4-1 Middleware Implementation .. 4-2

Fig. 4-2 Middleware Manager System Repository .. 4-4

Fig. 4-3 MCA Finite State Machine (FSM) .. 4-8

Fig. 4-4 Execution control code template ... 4-10

Fig. 4-5 Middleware Message Ontology .. 4-13

Fig. 4-6 Availability QoS Monitoring and QoS loss detection .. 4-22

Fig. 4-7 Availability loss detection ... 4-23

Fig. 4-8 Service recovery through negotiation phase .. 4-24

Fig. 4-9 System Efficiency QoS Monitoring and QoS loss detection.. 4-25

Fig. 4-10 System efficiency loss detection ... 4-26

Fig. 4-11 Relocation Service... 4-26

Fig. 5-1 General Scenario of Flexible Automation Framework.. 5-1

Fig. 5-2 UML class diagrams and UML profiles for the different domain views 5-3

Fig. 5-3 General scenario of the UML modeling tool .. 5-5

Fig. 5-4 MC Meta-Model ... 5-6

Fig. 5-5 CAEX libraries for Flexible Automation Systems... 5-8

Fig. 5-6 Flexible Automation control system design example ... 5-9

Fig. 5-7 Execution control program generation example. ... 5-14

Fig. 5-8 Example of Flexible Automation Project .. 5-16

Figure Index

iv

Fig. 5-9 General Structure of System MCAs .. 5-17

Fig. 5-10 General Structure of System CAs .. 5-19

Fig. 5-11 General Structure of Diagnosis.xml files ... 5-20

Fig. 6-1 Manufacturing System Demonstrator .. 6-1

Fig. 6-2 Modular Automation Project Controller1 .. 6-4

Fig. 6-3 AML controller definition ... 6-5

Fig. 6-4 definition of MC1 in FAPS Model Editor ... 6-6

Fig. 6-5 Critical intervals and replication information of MC1 .. 6-7

Fig. 6-6 Flexible automation project for controller 1 .. 6-8

Fig. 6-7 Controller agent for Controller1 ... 6-8

Fig. 6-8 MC agent for MC1... 6-8

Fig. 6-9 Diagnosis file for MC1 ... 6-9

Fig. 6-10 Recovery Time vs. Number of Controllers Involved in the Negotiation 6-10

Fig. 6-11 Recovery Time vs. Number of MCs to be recovered .. 6-10

Fig. 6-12 Diagnosis time vs Number of critical interval masks .. 6-11

Fig. 6-13 Reconfiguration Time vs Number of MCs ... 6-13

Table Index

v

Table Index

Table 2-1 Control System Reconfiguration Approaches ... 2-14

Table 3.1 MC reconfiguration .. 3-6

Table 3.2 QoS Management Mechanism .. 3-13

Table 5-1 Summary of XMIToPLCopen tranformation .. 5-4

Table 5-2 General structure of MCid_Control program .. 5-12

Table 5-3: General structure of MCid_Serialize and MCid_Deserialize programs 5-15

Table 6-1 critical intervals of Station 1 .. 6-2

Table 6-2 recovery time for each MCs .. 6-11

Table 6-3 Re-distribution algorithm and reconfiguration times ... 6-12

1 INTRODUCTION

Chapter 1 - Introduction

1-1

1.1 Motivation

In recent years, there has been an increase in the investment effort from public

institutions to reinforce or recover the manufacturing industries. This sector offers a

suitable opportunity for driving innovation, economic growth and job creation.

Initiatives such as Factory of the Future in the European Union, Industrie 4.0 driven

by the German Federal Government and Advanced Manufacturing launched by the US

Government are clear examples. All these initiatives pursue the implementation of

high-tech manufacturing processes based on the use of adaptive and smart

manufacturing equipment and systems, aiming at automating, controlling and

optimizing the processes, ensuring plant availability while providing high quality

production with zero defects.

Traditionally, manufacturing systems use hierarchical control structures, which

concentrate the processing power of a shop-floor control under one central node. A

centralized automation may perform well in terms of production, but respond

inadequately under changes in conditions, or with respect to scalability and

unpredictability issues. These monolithic, rigid control structures are insufficient to

meet the flexibility, robustness, reconfigurability and responsiveness requirements

identified as a must by the previous initiatives. As a result of this, new manufacturing

systems are being designed with a decentralization and distribution of processing

power over several entities, which allows the introduction of mechanisms like

dynamic reconfiguration as a way of fulfilling these new requirements.

The introduction of dynamic reconfiguration mechanisms enables a manufacturing

system to switch as quick and cost-effectively as possible from one configuration to

another while continuing with its normal operation. These changes are performed in

response to new production demands and/or unpredictable events, like failures or

disruptions.

In the field of industry automation, it is possible to distinguish between different uses

of the reconfiguration concept:

Chapter 1 - Introduction

1-2

 Product reconfiguration understood as the flexibility to change or modify the

final product.

 Schedule reconfiguration in the sense of being able to change the order of

execution from the different operations in a plant in order to improve the

efficiency or productivity. There are different proposals aiming at achieving

these goals that differ on how they perform the reconfiguration: changing the

workload of machines, the material handling, the operational time or the

operation sequence, among others. This reconfiguration can also be used for

other purposes like reducing global energy consumption or avoiding

previously detected situations, such as failures or conflictive operations.

 Machine operation reconfiguration. In this case, the goal is to modify the

functionality of a machine in order to perform other type of operations.

 Control System Reconfiguration understood as the ability to relocate the

different functionalities over the distributed control system. This allows to

cope with controller failures, network failures or to optimize certain Quality of

Service (QoS) criteria (such as workload or energy consumption).

From the analysis of the literature it can be concluded that most of the works present

smart solutions for ensuring specific QoS (such as production optimization, process

fault tolerance, controller failure tolerance or workload balance, among others) by

offering an ad-hoc solution for that concrete issue. However, looking at the strategies

and mechanisms they propose, it is possible to find similarities, meaning that it might

be possible to integrate the strategies within a single reconfiguration architecture

providing mechanisms for dealing with different QoS. This work focuses on providing

a generic architecture that can be customized to assure different QoS during the

system operation.

Chapter 1 - Introduction

1-3

1.2 Research Goals

The QoS requirements of a production system are also known as non-functional

requirements. These requirements can be seen as properties that make the product

more attractive, usable, precise, safe or reliable. In other words, the non-functional

requirements do not modify the product functionality. That is, the functional

requirements remain the same no matter the non-functional requirement is, but they

add desirable characteristics to the final product, such as reliability, availability,

power consumption, task allocation, response time, among others.

Having in mind that a flexible manufacturing system may have to exhibit a sub-set of

non-functional properties, the main goal of this work is to propose a generic

management architecture that could be customized for meeting the particular set

of QoS requirements of the automation production system. Ideally speaking, this

architecture should offer non-intrusive mechanisms that work transparently to the

application and that could be easily customized and/or extended to meet the specific

QoS requirements of any application.

To guide the design and development of the management architecture, a set of partial

objectives has been defined:

 Identification of QoS requirements that automation production systems

typically must meet at run time.

 Analysis of the information needed to measure QoS demands as well as the

actions to be done in order to recover QoS in case of non-fulfillment.

 To propose a generic architecture that manages the execution of the

automation production system offering mechanisms for detecting loss of QoS

and QoS recovery.

Chapter 1 - Introduction

1-4

 Model-based tool support for developing flexible automation systems to be

executed under the control of the run-time platform that implements the

architecture.

1.3 Structure

Once the motivation and objectives of this research work have been stated in this

first chapter, the second chapter is dedicated to analyse the state of the art divided

in two main blocks: 1) dynamic reconfiguration strategies proposed for automation

systems and 2) modelling technologies that help in the definition and generation of a

reconfigurable automation control system. The chapter conclude with an assessment

of what is currently available from which the research challenges are derived.

Chapters three, four and five constitute the main contribution of the work. Jointly

offer the concept and implementation of a generic run-time platform architecture that

can be customized for assuring several QoS requirements in production automation

systems.

In particular, in chapter three the generic architecture is proposed, describing its

components, the offered mechanisms and the information model managed by the

architecture.

Chapter four is dedicated to the implementation of the architecture as an agent-

based platform (build over the JADE framework) that manages run-time entities for

measuring QoS and making reconfiguration decisions in case of non-fulfillment.

On the other hand, chapter five focuses on a model-based framework consisting of

the information model implementation based on the Automation ML (AML) standard

that supports the development of the flexible automation production systems.

Finally, chapter six is dedicated to the validation of the framework through a case

study, as well as to the research assessment.

Chapter 1 - Introduction

1-5

The last chapter, chapter seven, outlines the most important conclusions and

contributions of the work and future research lines are commented.

2 RELATED WORK

Chapter 2 – Related Work

2-1

2.1 Introduction

As commented in Chapter 1, there exists a growing interest in obtaining more

competitive manufacturing systems. The guidelines for this evolution have been

defined by the US government, the European Union and the German Federal

Government in the projects Advanced Manufacturing (Science & Council, 2016),

Factory of the Future (European Commission: Research and Innovation, 2013) and

Industrie 4.0 (Blanchet et al., 2014), respectively. All these initiatives pursue the

integration, reuse, flexibility and optimization of manufacturing processes by

implementing high-tech features based on the use of adaptive and smart equipment

and systems (Association, 2012).

In the literature, three concepts that guide the flexibility of a manufacturing system

can be found:

 Restart(ability): to cause a computer program to resume execution after a

failure, using status and results recorded at checkpoint (Standards Board,

1990).

 Recovery: recovery typically includes two phases, error correction and restart,

where “correction” is the process of removing the original problem (the fault)

and correcting its manifestation (the error), and “restart” is the process of

moving the system to a normal state (Andersson et al., 2011).

 Reconfiguration: provides the ability to switch from one configuration to

another by creation, removal, replacement and migration of elements

(Wegdam et al., 2003).

In the realm of manufacturing systems, the reconfiguration is performed when a

change of the software or the hardware is produced either by the user, an automatic

process or an external entity. Normally, these changes are brought about by an

Chapter 2 – Related Work

2-2

update of the system (i.e. addition of new software components, incorporation of new

control equipment or machinery, and so on) or a contingency for an event (i.e.

failures of a hardware component, a machine or a controller, error in the execution of

the software, or changes in the production) (Brennan et al., 2008).

Current works use reconfiguration to provide self-adaptive automation systems,

which are able to automatically modify themselves in response to changes in the

operation environment (Oreizy et al., 1999; Kephrt & Chess, 2003).

Self –adaptive systems provide so called self-management properties like self-

configuration, self-healing in the presence of failures, self-optimization, and self-

protection against threats (Huebscher & McCann, 2008; Kephrt & Chess, 2003). For

achieving adapting behaviours, basic system properties are self-awareness and

context-awareness (Salehie & Tahvildari, 2009). The concept of self-awareness

describes the ability of a system to be aware of itself, i.e., to be able to monitor its

resources, state, and behaviour (Hinchey & Sterritt, 2006). Context-awareness means

that the system is aware of its operational environment, the so called context (Schilit

et al., 1994).

In this context and according to different reviews and surveys (Leitão et al., 2016;

Krupitzer et al., 2014; Leitão et al., 2013; Wang et al., 2012; Vrba et al., 2011; Shen et

al., 2006) the concept of ‘reconfiguration’ is used to represent different situations:

when applied to product, it is understood as the flexibility to change or modify the

final product. Schedule reconfiguration commonly denotes the ability to change the

execution order of a plant operation in order to improve the efficiency or productivity

(Nouri, 2015; Urban & Chiang, 2016) or overcoming machine failures (Legat & Vogel-

Heuser, 2014). Sometimes it also refers to the modification of a machine functionality

in order to perform another type of operations (machine operation reconfiguration)

(Ribeiro et al., 2015; Rocha et al., 2014). Finally, control system reconfiguration is

understood as the ability to relocate the different functionalities over the distributed

control system, as a way of optimizing controller performance (Botygin &

Chapter 2 – Related Work

2-3

Tartakovsky, 2014) or assuring the execution despite controller or network failures

(Merz et al., 2012; Streit et al., 2014).

The following sections present different approaches that tackle the reconfiguration in

manufacturing systems.

2.2 Manufacturing System Reconfiguration

Many of current manufacturing control applications follow the IEC 61131-3 standard

(International Electrotechnical Commission, 2003). This standard, however, has been

optimized for the use of a centralized control system and global variables, hindering

the development of distributed control systems and the integration of reconfiguration

mechanisms (Vyatkin et al., 2005).

Nevertheless, the IEC 61131-3 is not the unique standard defined for manufacturing

control applications. There also exists the IEC 61499 standard (Commission, 2004),

which was developed in order to cope with distributed systems. It focuses on an

extended definition of Functional Blocks (FB) and it provides the requirements for

software tools to support the specification, analysis and validation of distributed

control systems.

The IEC 61499 has been widely accepted by the academic community; a big number

of publications has been produced and a debate on pros and cons is active

(Thramboulidis, 2006) and (Thramboulidis, 2013). Interestingly, the standard has not

been accepted by the industry (Basile et al., 2013). This is due to many reasons

including the absence of support by the currently dominating tools and environments

in industry and the absence of a variety of new mature tools and run-time

environments to support the new standard. The lack of “mature engineering tools,

reliable embedded control hardware, proven design methodologies, and trained

engineers” is considered in Vyatkin, (2011) as the main barrier that prevents

practitioners from using the IEC 61499. Even if the IEC 61499 standard is not widely

Chapter 2 – Related Work

2-4

used in the industry, many reconfiguration works still use it as a basis for their

approach.

In fact, current reconfiguration approaches are based on the collaboration of control

applications implemented in any of the standards, the IEC 61131 or the IEC 61499

and the so called Multi Agent Systems (MAS) (Wooldridge, 2009; Ferber, 1999). This

latter is a computational paradigm introduced in the distributed artificial intelligence

field. The MAS is characterized by the decentralization and parallel execution of

activities based on autonomous agents. MAS solutions replace the centralized control

by a distributed functioning where the interactions among agents lead to the

emergence of an “intelligent” global behaviour, being able to react and adapt to

condition changes without external intervention (Wooldridge, 2009). The

decentralization of control functions over distributed autonomous and cooperative

agents facilitates modularity, autonomy, flexibility, robustness and adaptability. An

agent can be defined as an “autonomous component that represents physical or

logical objects in the system, capable to act in order to achieve its goals, and being

able to interact with other agents, when it does not possess knowledge and skills to

reach alone its objectives” (Leitão, 2009).

Besides, an agent can sense its environments and make decisions according to its

internal behaviour, knowledge and objectives. Aiming to address the emerging

challenges of self-optimization, self-healing and self-organization, an agent is

required to provide a set of self-X properties (Onori et al., 2011; Leitão, 2008; Bousbia

& Trentesaux, 2002). All these properties given, the agents play a key role in the

implementation of self-reconfigurable systems.

As presented in (Babiceanu & Chen, 2006; Leitão, 2009; Leitão et al., 2013; Vrba et al.,

2011; Leitão et al., 2016), over the last three decades several agent methodologies

and architectures have been implemented for manufacturing rescheduling and

reconfiguration. Duffie and Piper (1986), for instance, were the first ones to discuss

and to introduce the heterarchical control approach, using agents to represent

Chapter 2 – Related Work

2-5

physical resources, parts and human operators, and implementing scheduling

oriented to the parts.

The product-resource-order-staff architecture (PROSA) (Brussel et al., 1998) is,

meanwhile, one of the first holonic reference architectures used for the rescheduling

of manufacturing systems. The introduction of holons allows optimizing the use of the

resources in system. A holon, as Koestler devised the term, is an identifiable part of a

(manufacturing) system that has a unique identity, yet is made up of sub-ordinate

parts, and in turn is part of a larger whole (Koestler, 1969). The PROSA architecture is

based on three types of basic holons that represent the products, orders and

resources of the system. These holons are implemented in a specific agent in a MAS.

The resource holon contains the control logic and the information of a certain

resource. The product holon holds the process and product knowledge, as well as all

information about the product. The order holon represents the tasks in

manufacturing systems. Additionally, the architecture defines staff holons, whose

mission is to assist and advise the other holons. The collaboration of the order and

resource holons is used to accommodate the client demands. In addition, order

holons use negotiation techniques to ensure fast and reliable production. On the

other hand, the main aim of resource holons is to maximize the return on the

execution of their services.

The ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing

systems) (Leitão & Restivo, 2006) manufacturing control architecture addresses the

agile reaction to emergencies and changes. It increases the agility and flexibility of the

system when presented with volatile environments, which are characterized by the

frequent occurrence of disturbances. For this purpose, it introduces an adaptive

control approach that evolves in time to combine the global production optimization

with the agile reaction to disturbances, where the supervisor entities and the self-

organization and learning capabilities associated to the holons are the key roles that

support the dynamic evolution and reconfiguration of the organizational control

structure. Barbosa et al. (2015) present ADACOR2, which extends the evolutionary

Chapter 2 – Related Work

2-6

process allowing the architecture to find a multitude of dynamic reconfigurations,

instead of the two defined in ADACOR.

The CoBASA (Coalition Based Approach for Shop floor Agility) architecture (Barata &

Camarinha-Matos, 2003) focuses on the shop floor re-engineering, using agents to

represent the physical components which are aggregated into consortia regulated by

contracts, achieving agility in the shop floor life-cycle. Lastra (2004), on the other

hand, proposes the actor-based assembly system (ABAS) architecture to develop

reconfigurable assembly systems in an easy way.

Zhou et al. (2007) also proposed a three level MAS that coordinates the product order

by distributing the work to the different cells and machines. The System Optimal

Agent (higher level) distributes the production order by means of a negotiation with

the cell agent (intermediate level). Every time a new order is assigned, the Cell Agent

generates a new Job Agent in its lower level. These Job Agents negotiate with the

Machine and Material Handling Device agents to determine the distributions of the

operations.

Other approaches use MAS to optimize the production process based on production

and order information. Morenas et al. (2012), for instance, use the information

regarding the client, the deadline, and the arrival date, to define the priority of each

product as well as to optimize the production. On the other hand, Nouri (2015) uses

other parameters such as machine workload, material handling, operational time and

operation sequence of the parts, among others.

The ARUM project (Marín et al., 2013) combines MAS and SOA (Service Oriented

Architecture) to develop knowledge-based applications that support re-scheduling to

respond faster to unexpected events (sudden increase of process instances, off-sick

staff, broken machines, etc.) in ramp-up production of complex and highly customized

products, such as airplanes or shipyards. The optimisation process considers the

available resources, timing, constraints, and unexpected events.

Chapter 2 – Related Work

2-7

The PRIME project (Rocha et al., 2014) proposes a MAS framework to enhance

assembly systems with standardized plug and produce process and control solutions

to allow rapid reconfiguration and deployment of new machines. During the plug-in

process, a Skill Management Agent (SMA) extracts the skills of the new machine,

which are later used by the Production Management Agent to reschedule the

production. Plug and produce is also provided by the IDEAS project (Ribeiro et al.,

2015) that focuses on the application of key enabling technologies, and particularly

MAS, to enable instant/plug and produce deployment of modular equipment without

reprogramming.

Works like SOCRADES (Colombo et al., 2010; Colombo et al., 2015) focus on the use of

service-oriented architecture and agent systems to provide cooperation among

different devices in order to achieve a specific goal. The collaborative automation

units are able to expose and/or consume services, for each production scenario in a

defined production domain, e.g., electronics assembly, manufacturing, continuous

process, etc. A collaborative unit can be a simple intelligent sensor or a

part/component of a modular machine, a whole machine and also a complete

production system.

However, rescheduling processes can also be used to deal with machine and

operation failures. Legat and Vogel-heuser (2014) present for example a two level

MAS that re-schedules a monolithic manufacturing system (one controller) when

failure of an operation is detected or when a new order arrives. The high-level agent

provides the rescheduling, while the lower level agents oversee the execution of

operations and detect possible failures based on operation execution time.

In the realm of component failures, (Schütz, Wannagat, et al., 2013; Wannagat &

Vogel-Heuser, 2008) presents the use of multi agent systems to assure dependability

of the production in presence of sensor failures. Agents are dedicated to physical

equipment, e.g. machine parts, to be controlled (Schütz, Wannagat, et al., 2013).

Agents exchange their knowledge about related sensor data in real-time to calculate

Chapter 2 – Related Work

2-8

virtual sensors in case of sensor degradation or faults; this serves to increase machine

availability by operating with the virtual sensor with lower precision instead. Thus,

automation agents are closely related to the physical layer of a plant.

The previous works provide the reconfiguration based on the assumption that each

machine provides a fixed number of control functionalities, which can be activated to

perform an operation of the production plan. However, the reconfigurations

presented in manufacturing systems also extend to the modifications that affect these

functionalities.

In this context, (Olsen et al., 2005) propose a MAS architecture that reconfigures a IEC

61499 control system by means of adding, removing or re-connecting the Functional

Blocks (FB) of the application. Each FB is extended with mechanisms to monitor and

control the configuration of the system. These FBs communicate with a series of

external agents that collaborate to determine the new configuration. The

reconfiguration actions to cope with the different situations, like machines or

controller failures, must be previously defined by the user. Other works like

Lepuschitz et al. (2011) provide more flexibility to this concept by dynamically

generating the new configuration of the control application. In a same manner, Yang

et al. (2013) use these functionalities to provide a plug and play functions for a

distributed HMI.

Works like (Khalgui & Mosbahi, 2010) and (Zhang et al., 2015) extend the concept of

adding and removing FB to allow the relocation of FBs into other controllers. This

relocation is based on moving the code of the FB as well as its execution data (its

state). This type of reconfiguration is known as stateful reconfiguration. These

authors propose an external MAS that provides the relocation of the FBs.

In a similar manner, the eCEDAC approach (Schimmel & Zoitl, 2011) implements the

reconfiguration through the so-called Reconfiguration Execution Control Function

Block, which is able to generate a copy of an FB in some other controller, as well as

Chapter 2 – Related Work

2-9

restoring their data, rearrange their communications and remove the old FB. This

process is divided in three phases:

(1) RINIT, in which the initial preparation of the necessary elements is done. Here the

instances of the FBs and their communication FB are generated (in stop state) as well

as the event and data connections associated to each one of them. This task is not

time critical.

(2) RECONF, which encapsulates all operations necessary to change from the old state

to the new one. All FBs affected by the online changes must be stopped. Afterwards all

events and data connection from old FBs can be deleted and the state of these FBs is

transferred to the corresponding FBs. Finally, the FBs can be restarted and the

application can resume. This sequence is time critical since it denotes the switching

from the old application to the new one.

(3) RDINIT, which is a non-time critical task responsible for cleaning up after

reconfiguration by deleting the old FBs (see Fig. 2-1).

Fig. 2-1 eCEDAC-Approach for Distributed Online Change (Schimmel & Zoitl, 2011)

The previous approaches deal with an external entity, which provides the

reconfiguration mechanism. However, works like the one presented by Yan and

Chapter 2 – Related Work

2-10

Vyatkin (2013) define new types of FBs which contain the reconfiguration

mechanism. They present the Agent FB that executes control code and the Transfer

FB that is an extended communication FB that can move the code and state of the

Agent FB to the new controller.

Fig. 2-2 A Transfer FB moving an Agent FB from the origin device to the desired target

device (Yan & Vyatkin, 2013)

Nevertheless, there are works like (Strasser & Froschauer, 2012) in which the FBs are

duplicated in different controllers. In this approach, one of the controllers acts as a

master, being in charge of storing the state of the applications and monitoring other

slave controllers. The slave controllers are the ones that are running the different

control logics (FBs). In the cases of a controller failure, the master selects a new slave

controller and restarts the execution of the FBs from their last execution state. In the

same manner (Merz et al., 2012) and (Streit et al., 2014) provide a reconfiguration

based on controller and/or network failures in which the master controller also

executes part of the control logic.

2.3 Model Driven Engineering in Manufacturing

System

The introduction of reconfiguration mechanisms increases the complexity of the

automation system in terms of size, functionality and distribution, making the design

Chapter 2 – Related Work

2-11

and development processes more complex as well. In this context, the use of Model-

Driven Engineering (MDE) has been proved suitable to guide and help in the design,

development and implementation phases of complex systems (Selic, 2003). These

techniques have been applied to provide comprehensive system description,

characterization of QoS requirements and even generation of the system

implementation.

In the realm of industrial automation, some authors have used the Unified Modelling

Language (UML (Booch et al., 2015)) to describe IEC 61131 control systems (Estevez

et al., 2005; Hästbacka et al., 2011) and IEC 61499 control systems (Thramboulidis et

al., 2006; Vyatkin & Hanisch, 2009). More recently, Systems Modeling Language

(SysML, 2007) has been adopted (Thramboulidis, 2011; Schütz, Obermeier, et al.,

2013; Jamro, 2014). Other works also use model techniques and design patterns (Fay

et al., 2015), aspects (Wehrmeister et al., 2014) or Petri-nets (Basile et al., 2013). All

of them integrate model-based techniques into the development process.

On the other hand, for the concrete case of IEC 61131 standard, PLCopen, which is a

vendor- and product-independent worldwide association, has defined a common

representation format for defining the IEC 611313-3 software model (Marcos et al.,

2009; Van der Wal, 2009). Although the aim was to provide interoperability among

programming tools, it also provides a model for describing the application software of

automation systems, allowing easy code generation.

Modeling techniques have also been used to support the development of the overall

automation system. Thramboulidis (2010) propose the “3+1” architecture in which

the system is designed from three different domains (software engineering,

mechanical engineering and electrical engineering) using specific domain tools. The

“+1” model relates the other three acting as a link to form the whole system.

Following this ideas, works like Estevez et al., (2005) propose a MDD approach that

uses domain languages based on UML profile definition. From the complete UML

model the software architecture is automatically generated in PLCopen XML format,

importing the functional code from PLC libraries. In the same manner, the approach

Chapter 2 – Related Work

2-12

presented in (Vogel-Heuser et al., 2014) proposes SysML-AT, a specialized profile that

extends SysML for defining the hardware and software of the automation & control

system. In this case, the modeling approach is integrated into the commercial tool

CODESYS.

Other works use models to extend the definition of the system elements (FB, machine,

controller, component, among others) in order to allow system reconfiguration. For

example, the research project Functional Application Design for Distributed

Automation Systems (FAVA) (Fay et al., 2015; Anon, n.d.) characterizes the software

view with information related to resource demands (amount of memory and number

of bytes exchanged with other Function Blocks-FB) and this information is used to

decide the deployment of FBs in system nodes. Although in this work the deployment

is defined at development time, authors point out that it could be used at runtime in

order to launch system reconfiguration.

Vogel-Heuser and Rösch (Vogel-Heuser & Rösch, 2014) introduce functional and non-

functional requirements as constraints to the different views of the production

automation system, starting from a sensor or an actuator up to the entire plant, and a

tolerance model that traces whether the required reliability will be maintained, and if

the required probability of a given quality will be reached. This information is used by

an agent system to provide sensor failure tolerance, by replacing a measurement of

sensor with a calculated one (Schütz, Wannagat, et al., 2013).

On the other hand, the AMoDE-RT approach (Wehrmeister et al., 2014) presents an

aspect based characterization of the non-functional requirements of the functional

components, allowing the run-time monitoring of these requirements and the

reconfiguration in case of non-fulfillment. The approach is applied in (Binotto et al.,

2013) to embedded control systems.

The SOCRADES project (Cândido et al., 2011) uses a model based definition of the

functionalities of a machine. This information is used by a holonic architecture to

distribute the job to machines at runtime. Another interesting work is presented in

(Legat et al., 2013), where both, the operations of machines and the operations

Chapter 2 – Related Work

2-13

required by a product are modelled. This information is used a novel modelling

approach which enables describing what a plant is able to do. This information is

used to automatically derive an optimal operation sequence. A continuation of the

previous works is presented in (Bergagård, 2015), which deals with the calculation of

the control state from which the production can be restarted.

2.4 Conclusions

After researching many works dealing with reconfiguration, some conclusions have

been reached regarding flexible manufacturing systems.

The use of MAS technologies has simplified the implementation of reconfiguration

mechanisms, since multiple agents with specific functionalities can be generated; for

instance, machine agents, optimization agents, job agents, management agents,

supervisor agents, reconfiguration agents and so on. The interaction of these different

agents can be used to ensure the optimization and availability of the system.

As a summary, Table 2-1 groups the previous works based on different

characteristics of the reconfiguration mechanism:

 Context-awareness: are those works that take into account the state of its

operational environment in order to launch or not a reconfiguration decision.

 Stateful reconfiguration: these works launch the system from the last known

state following a reconfiguration.

 Reconfiguration Trigger: present the different types of non-functional

requirements that are managed by this reconfiguration mechanism.

 Language: standard and technologies used in the definition of the

reconfiguration mechanism.

 Tool support: provide mechanism for defining the reconfiguration scheme

during the design phase.

Chapter 2 – Related Work

2-14

Table 2-1 Control System Reconfiguration Approaches

Works
Context

awareness
Stateful
Reconf.

Reconfiguration Trigger

Lang.
Tool

Support
Production
Resource

Optimization

Machine or
Component

Failure

Machine
operation

Controller
Optimization

Network
Failure

Controller
Failure

PROSA; ADACOR;
ADACOR2;
CoBASA; (Zhou et
al., 2007);
(Morenas et al.,
2012); (Nouri,
2015); PRIME;
IDEAS;

X X

 MAS

ARUM; X X

 MAS;

SOA

ABAS; X X MAS X

SOCRADES; X X

 MAS;

SOA
X

(Legat & Vogel-
Heuser, 2014);
(Legat et al.,
2013);
(Bergagård,
2015);

X X X

MAS;
IEC

61131
X

(Vogel-Heuser &
Rösch, 2014);
(Schütz,
Wannagat, et al.,
2013);

 X

MAS;
IEC

61131
X

(Olsen et al.,
2005);
(Lepuschitz et al.,

X

IEC

61499

Chapter 2 – Related Work

2-15

2011)
(Khalgui &
Mosbahi, 2010);
(Zhang et al.,
2015); (Schimmel
& Zoitl, 2011);
(Yan & Vyatkin,
2013)

 X

X
MAS;
IEC

61499

(Strasser and
Froschauer 2012);

 X

 X C

(Merz et al.,
2012); (Streit et
al., 2014)

 X

 X X C

FAVA;

X
IEC

61499
X

(Wehrmeister et
al., 2014);
(Binotto et al.,
2013);

X X
C and
Java

X

.

Chapter 2 – Related Work

2-16

As it can be seen, most of the works that deal with changes of the control system

emphasize the importance of a stateful reconfiguration, in order to continue the

execution of the control logic. However, the stateful reconfiguration presented by

these works does not consider the effect that the reconfiguration process has on the

production, i.e. the cases of reconfiguration in which the whole state of the

production system is not known, commonly associated to faults. These approaches

directly recover the execution from the last known state of the control logic, without

taking into account of the physical system before the reconfiguration process.

The state of the physical system can generate situations in which the reconfiguration

cannot be performed. So, before launching a reconfiguration, it is necessary to

determine the actions to be done on the production system before and after the

reconfiguration takes place to prevent inconsistency states. Lepuschitz et al. (2011)

and Bergagård (2015) presents a solution to this problem in the case of process

instrumentation failures by defining two sequences of operation that surround the

reconfiguration process (before and after); this helps in the preparation of the system

for the reconfiguration, and prepares the machine for the new configurations

respectively.

Another big drawback of the current reconfiguration approaches has to do with the

QoS they ensure and the implementation of the reconfiguration mechanism. As far as

authors know, these works ensure specific QoS (production optimization, process

fault tolerance, controller failure tolerance or workload balance, among others) by

offering a custom solution to the concrete issue and most of them are mainly based on

implementation languages that are not commonly used in the factory automation

area. While the re-scheduling works use industrial standards for the control of the

machine, the works on control logic reconfiguration mechanism use the IEC 61499

standard and C programming languages.

The present work takes these ideas and goes beyond integrating them into a generic

architecture that provides QoS management, thus achieving production unaware

reconfiguration for IEC 61131 automation production systems.

3 QOS MANAGEMENT ARCHITECTURE

Chapter 3 – QoS Management Architecture

3-1

3.1 Introduction

Ensuring non-functional requirements of a manufacturing system are responsibility

of the control and automation system and deal with very different aspects, such as

availability, energy efficiency, system performance or production system flexibility. In

this context, the present work proposes a customizable and extensible architecture

for assuring QoS requirements automation production systems, by means of dynamic

reconfiguration.

This chapter focuses on identifying the key concepts and mechanisms needed to deal

with:

 Monitoring the fulfilment of a QoS and detecting QoS loss.

 Recovering the QoS, if possible, by means of control system reconfiguration.

It is important to remark that the monitoring and recovery processes depend on the

type of QoS. The goal of the architecture is to provide the basic components and

information model from which the different processes can be implemented.

The following sections present the key concepts of the architecture, describing its

main components and their responsibilities. The information managed by the generic

architecture is formalised and structured based on the knowledge about the

production process acquired during the design phase. This information defines the

relevant operating conditions of the production automation system.

3.2 General Scenario

Fig. 3-1 illustrates the proposed flexible automation production process:

Chapter 3 – QoS Management Architecture

3-2

Fig. 3-1 Flexible Automation Production System

It contains the set of relevant elements that are described in detail in the following

sections. A flexible automation production system comprises:

i. A set of distributed controllers, in charge of controlling the process. From now

on, it is assumed that they can access different sets of I/O via a network

controller, i.e., every controller may control different parts of the process.

ii. A set of the so-called mechatronic components (MCs). A mechatronic

component is an atomic part of the plant that can run autonomously

coordinated with others through logical inputs and outputs. In this work a MC

is constituted by:

 A part of the process (mechanics, electrics and electronics).

 A set of instrumentation and control hardware (sensors, actuators and

their corresponding controller I/O).

 A consistent piece of control software that can reside in a number of

controllers. At run-time, every MC will only be active in one controller.

Chapter 3 – QoS Management Architecture

3-3

iii. A run-time-platform that tracks the overall system operation detecting QoS

losses, acting consequently to meet the requirements as soon as possible. It

comprises two main components:

 The so-called QoS monitor component, which is in charge of verifying

the fulfilment of the QoS at runtime. The monitor might have multiple

functionalities if multiple QoS have to be managed. For instance,

monitoring Performance means tracking workload, while Availability

monitors the liveliness of controllers.

 Diagnosis and Decision component. It is responsible for analysing the

loss of QoS triggers, combining the different trigger events to make a

decision based on the current state of the manufacturing process. As a

result, it issues control commands to the MCs involved in the

reconfiguration process. Such commands de-activate / activate MCs in

the indicated controllers, sometimes after executing pre-determined

actions in case of controller failure.

3.3 Production system information model

The information model of the production automation system comprises the

information model of every element in Fig. 3-1. The following subsection presents the

description of each of these elements.

3.3.1 MC information model

The concept of mechatronic component (MC) was first proposed by Thramboulidis

(2005) as a component having a physical electromechanical part, and a software part.

Pang and Vyatkin (2010) have further divided the definition of a MC into a

mechanical part (physical functional device with sensors, actuators, and electronic

circuits), an embedded control device (computing device with interfaces to the

Chapter 3 – QoS Management Architecture

3-4

sensors, actors, and networks) and a software components: (a set of data and control

logics).

Other works like separate the MC from the embedded controller in which it runs.

Lüder et al. (2010) define mechatronical units as containers of relevant information

related to its mechanical part, electronic part, and software part. In this work, the

concept is extended to represent run-time information: In particular the situations in

which the current state of the mechatronic component can be derived from the

current values of the controller variables. Besides, the software and the physical part

can be dynamically assigned to different control devices.

This information is fundamental to enable dynamic reconfiguration. The use of

dynamic reconfiguration for assuring some type of QoS (such as, for instance, system

availability or efficiency) requires not only to monitor such QoS (using specific

techniques such as for instance heart beat or work load, respectively, in all

controllers) but also assuring that the reconfiguration is possible and the

manufacturing process will not suffer unpredictable effects. For instance, if the work

of controllers is unbalanced and it is necessary to transfer control tasks among

controllers, the transference of workload must be performed at instants in which the

production process not be affected. This means that the operation state of the process

must be known by the controller.

Depending on the manufacturing process and the design of the automation

production system, it is possible to distinguish the following run-time situations:

An operation state of the MC is non-critical if it may be activated directly in another

controller (after de-activation in the current controller or after a controller failure)

having as initial state the last known state of the MC. On the contrary, critical states

are those not fully represented by the current values of the software variables of the

MC, preventing activation/de-activation of the MC in order to avoid unpredictable

process behaviour.

Chapter 3 – QoS Management Architecture

3-5

As an example, let us analyse the different critical states present in the movement of a

piece using/by a crane. In this case, the critical states are related to the lifting,

transporting or placing of the piece. These states are defined as critical since the lost

of the control during these operations can mean the release of the piece, which

prevents the continuation of the production. These states (lifting, transporting and

placing) are defined as critical interval during which the corresponding MC should

not be de-activated.

Fig. 3-2 Example of critical interval

During the design of the automation production system, it is possible to identify the

critical states of the process from the point of view of the control system. Thus, it is

possible to know in advance if MCs can be activated and de-activated at runtime.

Table 3.1 summarizes when a MC reconfiguration is possible, attending at the MC

state. Note that recovering a MC from a controller failure is a special case in which a

critical state has two variants: those cases in which even the state is not completely

known, the MC could be re-started from a checkpoint state and those in which the

state is unpredictable and thus the MC cannot be re-started.

Chapter 3 – QoS Management Architecture

3-6

Table 3.1 MC reconfiguration

MC State
Reconfiguration (MC de-activation

/activation)
Controller failure recovery

Non-critical

Always possible (from last known

state)

(reconfiguration enabled)

Always possible (from last

known state).

(reconfiguration enabled)

Critical state

Wait until non-critical state is

reached

(reconfiguration disabled)

MC can be launched from a

previous known state

(checkpoint), possibly after

executing recovery actions.

(reconfiguration enabled)

MC recovery is not possible.

Action: safe stop. Operator

warning.

(reconfiguration disabled)

This extension of the MC concept leads to the following formulation:

The overall control system is composed by a set of MCs that in turn comprise a set of

elements containing relevant information about the operating part of the system:

Sys={MCi}, i=1..n
MCi={typesi,maini,Si,VIi,VOi,,Σi,Ψi,δi} (1)

where:

 typesi={Di,Pi} represents the set of derived data types (Di) and Program

Organisation Units (POU in the context of IEC 61331-3 standard software

model) types (Pi) that compose the control logic of the MCi.

 maini ∈ typesi is the POU type of the main program from which the rest of POU

types of the MCi are instantiated and used.

Chapter 3 – QoS Management Architecture

3-7

 Si is the set of variables corresponding to the MCi. The variables are

characterized by their name, type, and in the case of inputs and outputs, they

are also characterized by its physical address (2).

si j =(name, type,[address]); si j∈ Si;
j=1..m state variables (2)

 VIi ⊂ Si is the set of inputs coming from the external world (process, operator,

HMI, …) that correspond to global variables.

 VOi ⊂ Si is the set of outputs associated to the physical variables related to the

physical part of the MCi, corresponding to global variables.

The rest of elements that compose the MC define the critical states of the production

system in which the MC must not be activated / de-activated as this action may lead

to an inconsistent state of the MC. As commented above, critical states can be

represented as the values of selected variables in Si. Note that a controller failure in

any of these states will lead to a non-direct recovery.

Critical intervals are defined as the set of critical states that have associated the same

recovery method (checkpoint state and/or recovery actions). The critical interval is

characterized by:

i. An expression involving values of variables of the MC state.

ii. A recovery action and/or a recovery state (checkpoint) needed to resume the

execution. Note that a state that not belongs to a critical interval can be

directly recovered.

Therefore,

Chapter 3 – QoS Management Architecture

3-8

 ΣI ={Σik}, k=1..l critical intervals is the input alphabet that defines all the

expressions associated to critical intervals of the set of MCs. Every critical

interval has its own expression, Σik, that allows determining if an execution

state belongs to the interval. It is a Boolean expression composed by

arithmetic and logical operations of state values following the grammar

<Exp>∷=<Var><arithmetic><Value> | <Exp><logic><Exp>
<arithmetic>∷=≤ | ≥ | < | > | =
<logic>∷= OR | AND
<Var>∈ S
<Value>∈ ℝ

 Ψi={Ψik, ∅}/ Ψik={ξik,λik}; k=1..l critical intervals represents the output alphabet

that defines all possible recovery methods. The recovery methods for critical

states include an action (ξik∈ Pi), a checkpoint (λik⊂ Si) or both. The checkpoint

is the state value from which the execution must be resumed.

 δi:Si×Σi→Ψi is the output function that assigns to a critical interval an element

of the output alphabet.

3.3.2 Controller information model

A distribution automation system is constituted by a set of controller equipped with

I/O hardware to acquire process data (I) and to act on the process (O). Without loss of

generality, in this work it is assumed that the access to the process is performed via a

network protocol, which can be re-assigned to a different controller dynamically. i.e.

the inputs and outputs of a controller can vary dynamically following a

reconfiguration trigger (in the validation of the work in chapter 5 this is

implemented, as a proof of concept, by having one unique PROFIBUS master

communicating with the rest of the controller in order to update the current value of

the I/Os).

Every controller can be described from a hardware and software point of view. The

hardware definition follows the recommendations of ISO 15745-3 that allows

Chapter 3 – QoS Management Architecture

3-9

describing hardware elements from different views: vendor or manufacturer

information; the generic functionality of the device; and the behaviour of the device in

the application process. On the other hand, the software of a controller describes the

control logic of different MCs of the system, following the IEC 61131-3 standard

software model.

According to the IEC 61131-3 standard software model, the software architecture is

built upon the following elements: the Configuration represents a PLC, the Resource

provides support for program execution (a CPU or a virtual machine), and the

optional concept of Task allows the designer to define the execution rate of different

parts of the target code (International Electrotechnical Commission, 2003). The task

is characterized by its priority and period. In this work it is assumed that the MC

control is performed by a Program instance of the corresponding MC POU Program.

The POUs are defined by their interface and they could be programmed in any of the

programming languages provided by the standard. The Function Block POUs can be

used to program the control strategies and they can be used as variables of more

complex POUs, for example to define the main program of a MC. Each POU is

characterised by its body and formal parameters (interface).

As commented above the input and output variables of the MCs are part of the global

variables. The IEC 61131-3 variables are characterized by their name, type, value and

physical address (at).

The meta-model corresponding to the software view is illustrated in Fig. 3-3.

Chapter 3 – QoS Management Architecture

3-10

Fig. 3-3 Software View: concepts and their relationships

The hardware view deals with the selection of the equipment needed to start-up the

control system. The hardware architecture of industrial control systems uses specific

hardware equipment. It commonly consists of a set of network nodes that correspond

to industrial controllers (PLCs) or data acquisition devices (nodes) connected

through a set of network segments that are called industrial communication systems

(buses). The concepts of this domain are illustrated in Fig. 3-4.

Chapter 3 – QoS Management Architecture

3-11

Fig. 3-4 Meta-model of the hardware concepts and their relationships

Fig. 3-4 depicts the characterization of the devices, taking into account the elements

defined by the ISO 15745 part 3 standard (FDCML, 2002), namely: (1) device

identification: the set of properties that identify the device; (2) device manager: the

set of properties used to configure and to monitor a device belonging to the

application (3) device function: description of the intrinsic function in terms of its

technology and (4) application process: description of the behaviour of the device

from the application point of view.

Devices (nodes and boards) are characterized by three types of information:

manufacturer, serial number and version. The information needed for the equipment

start-up and maintenance is collected in the device manager, for instance, information

about I/O signals. Description defines the intrinsic function of device’s technology.

Finally, the application process information is defined by the behaviour property.

On the other hand, the different signals of an I/O board are characterized by their

name, type, I/O board and physical address.

Chapter 3 – QoS Management Architecture

3-12

With respect to the software and hardware relationships, configurations and

resources will be mapped to the corresponding processing node, and each I/O signal

of the hardware architecture must correspond to a global variable in the software

architecture.

These models are used in Chapter 4 to automate the generation of the automation

projects corresponding to the controllers in the system.

3.3.3 Run-time platform model

An important component of the general scenario is the run-time platform which

making use of the information model of MCs and controllers, monitors QoS fulfilment,

triggering if needed reconfiguration processes.

The run-time platform also manages information about the controllers that are

present in the system, the controllers in which each MC is deployed (at least in one)

and the controller in which each MC is active. In order to track system QoS, detecting

QoS loss and making decisions to recover the system as soon as possible, the

management platform comprises as many QoS Monitor components as QoS must be

assured and one Diagnosis&Decision (D&D) component, as Fig. 3-5 illustrates.

Fig. 3-5 Run-time platform

Each QoS Monitor is in charge of measuring specific QoS, triggering internal events to

the D&D component in case of QoS loss. D&D receives QoS loss triggers and making

Chapter 3 – QoS Management Architecture

3-13

use of the MCs current state and system state makes a decision on the actions to be

performed to recover QoS. Finally, these actions may imply MC relocation, possibly

after the execution of recovery actions. Table 3.2 illustrates the mechanisms for

different QoS as well as the use of MC state.

Table 3.2 QoS Management Mechanism

QoS type Monitoring
mechanism

Diagnosis and
decision goals

Use of the state

Availability Liveliness
Re-assignment of

MCs of failed
controller if possible

To obtain the
recovery method

Energy
efficiency

Workload,
N° of controller

running

Minimum active
controllers

To wait for direct
recovery state

Performance
Workload,

N° of controller
running

Minimum controller
workload

To wait for direct
recovery state

QoS measurements tracks the system operation from run-time information that

depends on the type of QoS. For instance, QoS Monitor for Availability must track the

liveliness of the controllers, while Load Balancing may monitor current workload of

all controllers. Note that if a new controller containing a particular set of MCs is

plugged-in and the workload balance QoS is set, the corresponding QoS Monitor

should trigger a reconfiguration event that will eventually launch some of the MCs in

the new controller, after de-activating them in current controllers.

The D&D processes reconfiguration events resolving possible simultaneous triggers

and, depending on the problem detected, launches negotiation processes in order to

recover the system. Diagnosis is necessary to assure that the system state is known

and the QoS can be restored.

Two different situations are possible: hard QoS loss, meaning that the system is not

operating globally, as in the case of controller failure and soft QoS loss, meaning that

the operation is not optimal. In the first case, the analysis of the current execution

state (Si) of the involved MCs informs about the possible direct launch of MCs in other

controllers (direct recovery), the possible launch from a known previous state

Chapter 3 – QoS Management Architecture

3-14

(checkpoint recovery) or a safe stop procedure is needed. Critical intervals are

defined in Σi - Expression element of the MC model and recovery actions in the output

alphabet and assigned by the output function, δi:Si×Σi→Ψi It is important to note that,

in order to be able to perform the diagnosis of the execution state, the D&D needs to

have updated information of all MC state.

For the case of soft QoS loss, like in the case of load balancing, the recovery is not time

sensitive as the system is operating. Commonly, the decision implies MC

redistribution that is carried out at direct recovery states. This reconfiguration

prevents the appearance of unpredictable process behaviours.

The information required by the D&D for re-distributing of the MCs, is not limited to

the critical interval of the MCs. Depending on the QoS to recover, the re-distribution

algorithm may need specific information regarding the MCs and/or the controllers of

the system. To illustrate this, let us assume the case of load balancing or energy

efficiency. In such cases, it is essential to know the maximum workload a MC can

introduce into a controller that derives from the MC load in a reference computer and

the controller CPU factor with respect to a reference CPU. Thus, depending on the QoS

type it is necessary to define information needed by the decision algorithm that must

be included in the MC or controller models.

This characterization of the controllers and MCs is done using the meta-model

presented in Fig. 3-6. In this meta-model, each QoS is defined as a QoS type and

contains a set of QoS Variables that may extend the controller and/or MC models. For

instance in the case of load balancing, all MCs will have a workload value

corresponding to the reference CPU and the controllers are extended with the CPU

factor.

Chapter 3 – QoS Management Architecture

3-15

Fig. 3-6 QoS characterization meta-model

3.4 Conclusions

This chapter presents a customizable and extensible architecture able to assure the

fulfilment of multiple types of QoS of a manufacturing control system. The proposed

architecture consists of a series of modules and mechanisms that provide the

monitoring, diagnosis, and recovery needed to maintain QoS during the execution of

the system.

Different methods for recovering multiple QoS have been presented as part of the

architecture. These methods are based on the existence of critical and non- critical

execution states, which allows determining when and how a mechatronic component

can be recovered. The information required to provide this type of recovery is

integrated as part of the complete definition of the manufacturing control system,

including the extension of the concept of mechatronic component.

This information has been formalized and included in the control system information

model. The definition method for the information model is also presented. This

method describes the different steps and requirements that help and guide the

Chapter 3 – QoS Management Architecture

3-16

definition of the different elements that compose the control system information

model.

4 AGENT BASED MIDDLEWARE ARCHITECTURE

Chapter 4 – Agent Based Middleware Architecture

4-1

4.1 Introduction

This chapter presents the definition of a flexible automation middleware (FAM),

which implements the runtime platform of the QoS management architecture

presented in Chapter 3.

The FAM extends JADE (Java Agent DEvelopment Framework) (Bellifemine et al.,

2001; Bellifemine et al., 2008) with a set of agents that allow managing the whole

system QoS requirements for manufacturing control applications. JADE is a software

framework that aids developers to build agent applications in compliance with FIPA

(Foundation for Intelligent Physical Agents) specifications (Intelligent Physical

Agents, 2015) for inter-operable intelligent multi-agent systems.

FIPA is based on the assumption that only the external behaviour of system

components should be specified, leaving implementation details and internal

architectures to platform developers. Based on this assumption, FIPA identifies the

roles of some key agents necessary for managing the platform, and describe the agent

management content language and ontology. These roles are implemented in the

three mandatory agents illustrated at the bottom part of Fig. 4-1:

 The Agent Management System (AMS), responsible for agent creation, removal

and migration mechanisms.

 The Agent Communication Channel (ACC), in charge of interoperability within

and among different platforms.

 The Directory Facilitator (DF) that supplies a yellow page service to the agent

platform where agents can register services or look for required services.

The purpose of JADE is to simplify development while ensuring standard compliance

through a comprehensive set of system services and agents. To achieve such a goal,

JADE offers the following list of features to agent programmers:

Chapter 4 – Agent Based Middleware Architecture

4-2

 FIPA-compliant Agent Platform, which includes the AMS, the DF, and the ACC

 Distributed agent platform. The agent platform can be split on several hosts;

where a Java Virtual Machine represents each host.

 Programming interface to simplify registration of agent services with one or

more domains (i.e. DF).

 Light-weight transport mechanism and interface to send/receive messages

to/from other agents.

 Library of FIPA interaction protocols ready to be used;

 Automatic registration of agents within the AMS;

 FIPA-compliant naming service: at start-up agents obtain their GUID (Globally

Unique Identifier) from the platform.

 Multiple types of Behaviours (SimpleBehaviour, TickerBehaviour,

ComplexBehaviour, FSMBehaviour, …) an agent can use to engage in different

simultaneous conversations and activities.

Fig. 4-1 Middleware Implementation

Chapter 4 – Agent Based Middleware Architecture

4-3

The proposed architecture adds four types of agents (top part of Fig. 4-1). Some of

them are part of the basic architecture while there are specific agents for managing

specific QoS. Finally, a set of agents that depends on the particular application are in

charge of collecting information from the current operation state of the automation

system.

 The Middleware Manager (MM) agent is unique on the system (although it can

be redundant using the services provided by JADE. This extension is out of the

scope of this work). It is the main orchestrator and manages the System

Repository (SR), containing dynamic information about current state of the

automation system (controllers and MCs).

 The QoS Supervisor that is composed by QoS Monitor (QM) agents, existing as

many as QoS to be handled, and one Diagnosis & Decision (D&D) agent. Jointly,

they supervise QoS fulfilment and launch diagnosis and decision algorithms

when needed.

These latter comprise the basic MAS-based architecture for a set of QoS. In addition,

there exists a set of agents representing the actual manufacturing application, the so-

called application agents:

 There are as many Controller Agents (CA) as number of controllers in the

system.

 Every MC in the application has associated as many MC agents (MCA) as the

number of controllers in the system can run it. At runtime, only one of them,

the active MCA, is responsible for controlling the execution of the

corresponding MC. It is also in charge of managing MC reconfiguration using

the information about the MC formulated in section 3.3.1.

The following sections describe the function of each agent, its role in the architecture

and the interaction ontology.

Chapter 4 – Agent Based Middleware Architecture

4-4

4.2 Middleware Manager

The MM is responsible for maintaining the System Repository that contains the

current state of the automation system: current active controllers and active MCAs.

This is performed through get_info and set_info ontology commands. This

information is updated and read by the supervisor agents (QoS monitors and D&D

agents). At system start-up, the model of the automation system is registered:

controllers characterized by resources (MCs a CA can run and their corresponding

MCAs, memory, CPU factor with respect to the reference controller, etc.) and the set

of MCs in the whole automation system. Fig. 4-2 depicts the SR Meta-Model.

Fig. 4-2 Middleware Manager System Repository

Chapter 4 – Agent Based Middleware Architecture

4-5

The flexible automation system is characterized by its unique ID, a textual description

of the system and the different QoS to be monitored (QoS can be activated or

deactivated at run-time).

As part of the definition of the system, each MC is defined by their:

 ID: unique identifier

 description.

 maxCPULoad: maximum CPU load introduced by the MC in a reference

controller.

 memoryConsumption: storage space of the control code.

On the other hand, the controllers (CAs) of the system are characterized by:

 ID: unique identifier

 description.

 CPUfactor: with respect to the reference controller.

 memory: storage space provided by the controller

 AssignedMC: ids of the MCs that can be executed in the controller.

 alive: activity variable that defines whether the controller is active or not.

Finally, the CAs have a MCA for each of the MCs assigned to them. These MCAs are

defined by:

 ID: unique identifier

Chapter 4 – Agent Based Middleware Architecture

4-6

 manageMC: id of the MC whose execution is managed by the agent

 running: activity variable that informs whether or not the execution of MC is

being performed by this agent.

To provide access to the SR, at boot time the MM registers in the DF the service

“SystemRepository”.

4.3 QoS Supervisor

The supervisor is responsible for tracking a set of system QoS, detecting QoS losses

and making decisions in order to recover the lost QoS as soon as possible. Its

functionality is performed by a set of QM agents and one D&D agent.

4.3.1 QoS Monitor (QM) Agents

Each QM is responsible for monitoring specific QoS meeting and registers itself in the

DF as a monitoring service (e.g. Monitoring_Availability or Monitoring

_SystemEfficiency).

The monitoring is performed by means of the collaboration between QM and

application agents (MCAs and CAs). Application agents are in charge of detecting

situations that can lead to QoS loss (for instance, loss of controller heartbeat in

Availability or maximum workload overtaken in case of system efficiency) and inform

to the corresponding QM accordingly. Upon the reception of QoS loss events, the QM

sends confirmation requests to avoid false positives, registers the type of QoS lost to

handle subsequent events of the same type and launches reconfiguration events.

4.3.2 Diagnosis & Decision (D&D) Agent

The D&D is responsible for recovering QoS if it is possible and registers itself in the

DF as such (“DiagnosisDecision”). It receives reconfiguration events from QMs. As

Chapter 4 – Agent Based Middleware Architecture

4-7

multiple reconfiguration events corresponding to different QoS can be issued, D&D

analyses the global system state and makes decision to recover QoS by priority. Each

QoS requires specific analysis but reconfiguration actions always involved the

activation of MCs in other controllers, sometimes after de-activation of MCs and / or

execution of recovery actions, depending on the situation.

To perform analysis processes, the D&D involves application agents (CAs and MCAs)

while to make a decision it launches negotiation processes to get the CA in which a

MC will be activated. Finally, it uses diagnosis processes performed by MCAs to

launch the reconfiguration or stop the MC, warning the operator in case of severe

errors.

4.4 Application Agents

The application agents are in charge of monitoring resources and managing the

execution of the MCs. There are as many AS, as controller in the system and as many

MCAs per MC as controllers are able to run the MC.

4.4.1 Controller Agent

When a controller joins the system, the corresponding Controller Agent (CA) is

launched and it registers the controller and associated resources in the SR. It also

registers itself in the DF offering as services the set of MCs that can run in the

controller. Finally, it launches an MCA for each MC.

As part of its functionality, CAs may perform QoS monitoring functions. For instance,

for system efficiency QoS, the CA can monitor the current workload of the controller,

issuing QoS loss when the workload is less than the minimum or greater than the

maximum allowed. It may also be involved in negotiation processes launched by D&D.

Chapter 4 – Agent Based Middleware Architecture

4-8

4.4.2 Mechatronic Component Implementation

Since not all commercial IEC 61131-3 execution environments allow changing the

source code of the controller at run-time, the solution proposed is to deploy in the

controllers the set of MCs they can eventually run. The MCA controls the execution of

the PLC code and the run-time platform. It assures that at any time only one of the MC

replicas is running. To do that the MC code is instrumented.

Thus, a MC is implemented as an agent, the MCA, running under JADE and a piece of

instrumented code running in the PLC virtual machine. The following sub-sections

describes both, the agent functionality and the MC code instrumentation.

4.4.2.1 Mechatronic Component Agent

As commented above, MCAs are in charge of managing the execution of the

corresponding MC control code. Each MCA is able to activate / de-activate the MC,

launch the execution of recovery actions as well as collect, transmit, store and make

diagnosis on the current state of the MC. MCA operation is defined by the Finite State

Machine (FSM) depicted in Fig. 4-3. States correspond to JADE agent behaviours and

transitions between states are triggered by the D&D as a result of a decision.

Fig. 4-3 MCA Finite State Machine (FSM)

Chapter 4 – Agent Based Middleware Architecture

4-9

 Boot state: It corresponds to the start-up where initialization actions are

performed as well as self-registration in the SR.

 Active state: While in this state, the MC is executed in the PLC runtime and

MCA collects periodically the MC current sate accessing to the PLC memory

and transmits it to the rest of MCAs that are tracking the active one. Note that

only one MCA of the set corresponding to each MC can be in the active state.

 Tracking state: While in this state, the MCA receives and stores the current

state of the MC, sent by the active MCA.

 Wait decision state: During the reconfiguration process the MCA remains in

this state attending requests from the D&D, such as MC state diagnosis or stop

MC execution in the next noncritical state (in order to perform a direct MC

reconfiguration from such state). To perform MC state diagnosis, MCAs make

use of a set of masks derived from the critical interval expressions (see Section

3.3.1).

 End state: When the MCA enters this state, the agent is removed after clean-up

tasks are executed.

Note that the functionality executed in every state may be extended to handle

different type of QoS. For instance, while in the tracking state, MCAs can monitor a

problem in service availability if the current MC state is not received within a timeout.

As part of the functionality of this state, the MCA can issue a QoS loss event due to a

possible failure in the active MCA.

4.4.2.2 MC code

In order to perform MC code instrumentation, source code insertion (SCI) technology

is used. It is necessary to integrate three different programs:

Chapter 4 – Agent Based Middleware Architecture

4-10

1. A serialization program that collects the value of the variables that compose

the state of the MC, allowing the MCA to access the current execution state.

2. A de-seralization program that extracts the values of the state variables from

the state provided by the MCA and writes them into the PLC memory.

3. An execution manager program in charge of receiving orders from the MCA to

activate/deactivate the execution of the MC PLC program as well as executing

recovery and stop actions. This functionality is achieved through management

variables written by the MCA and read by the MC code. Fig. 4-4 illustrates this

program that distinguishes three different situations: MC in execution, MC

activation, with possibly recovery actions or safe stop and MC de-activation.

Fig. 4-4 Execution control code template

Chapter 4 – Agent Based Middleware Architecture

4-11

 Executing (isActive=TRUE and wasActive=TRUE): this situation corresponds

to the MC execution. Thus, the control logic of the MC is executed

(MC1_Control_ST1) followed by the serialization of the state program

(MC1_Serialize), enabling the state reading from the MCA.

 MC Activation (isActive=TRUE and wasActive=FALSE): This situation occurs

when the MC in this controller was inactive and receives an activation order.

The MCA indicates if it is a direct activation, activation after executing a

recovery action or a safe stop action. There exists three different code

sequences depending on the type of action required:

o Direct Launch: It happens when the MC can execute from the current

state (recoveryAction=0). This situation is also valid for the case of

checkpoint recovery, as the MCA will have written the checkpoint state.

Thus, after state de-serialization, the MC control logic executes and the

new state is serialize. Finally, wasActive is set to TRUE in order to

indicate to the next cycle that the MC was active in the previous one.

o Launch with Recovery Action: this is used when a recovery action

must execute first. The execution state is only de-serialized when the

recovery action is finished; then, the MC control logic executes and

the new state is serialized. Finally, for preparing the next cycle,

wasActive is set to TRUE.

o Launch Safe Stop: This situation means that a failure has occurred

during a critical interval and the MC cannot be recovered. Thus, the

corresponding stop action is performed. After finishing this execution,

the MC is de-activated by setting isActive to FALSE.

 MC De-activation (isActive=FALSE): this situation means that the MC in this

controller is not in execution. It will remain in this situation until a new order

from the MCA is received.

Chapter 4 – Agent Based Middleware Architecture

4-12

4.5 QoS Management Ontology

Agent communication is based on message passing, where agents communicate by

sending individual messages to each other. Each message needs to follow a specific

syntax and semantics enabling agent interaction. The concepts, syntax and semantics

are known as message ontology.

The particular format of JADE messages is fully compliant with FIPA Agent

Communication Language (ACL). Each message includes the following fields:

 The sender of the message.

 The list of receivers.

 The communicative act (also called the ‘performative’) indicating what the

sender intends to achieve by sending the message. For instance, if the

performative is REQUEST, the sender wants the receiver to perform an action,

if it is INFORM the sender wants the receiver to be aware of a fact, if it is a

PROPOSE or a CFP (Call for Proposals), the sender wants the receiver to enter

into a negotiation.

 The content containing the actual information to be exchanged by the message

(e.g., the action to be performed in a REQUEST message, or the fact that the

sender wants to disclose in an INFORM message, etc.).

 The ontology identifying the format and meaning of the content. Both, the

sender and the receiver must understand the same meaning for the

communication to be effective.

 The conversation-id which presents the unique identifier of a conversation

thread.

Chapter 4 – Agent Based Middleware Architecture

4-13

 Some additional fields used to control several concurrent conversations and to

specify timeouts for receiving a reply such as reply-with, in-reply-to and

reply-by.

The characterization of these fields provides the definition of the message ontology

used during agent communication.

Fig. 4-5 illustrates the different messages used by the middleware and the agent that

generates them.

Fig. 4-5 Middleware Message Ontology

The following subsections present the syntax and semantics of the different messages

that form the ontology.

4.5.1 Registration messages

These messages allow registering and de-registering of the application agents in the

SR and the middleware services in the DF.

Chapter 4 – Agent Based Middleware Architecture

4-14

register_ApplicationAgent: message used to register a CAs and MCAs in the SR

performative Request

content register_ApplicationAgent(agentType; {parameter=value})

- agentType: type of agent to be register

- {parameter=value}: list of names and values of the

parameters to of the new element

example register_ApplicationAgent(CA;ID=CA1;description=controller1;ip=

192.168.1.101;CPUfactor=1;memory=250;MC=MC1,MC2,MC3)

register_ApplicationAgent(MCA;ID=MCA1;parentCA=CA1;manage

MC=MC1)

deregister_ApplicationAgent: message used to de-register a CAs and MCAs from the

SR

performative Request

content deregister_ApplicationAgent(agentID)

- agentID: Identifier of the agent to de-register

example deregister_ApplicationAgent(CA1)

deregister_ApplicationAgent(MCA1)

register: message used to register a service in the DF

performative Request

content register(service;agentID)
- service: name of the service to be register

- agentID: identifier of the agent that provides the service

example register(SystemReository;MM)

register(DiagnosisDecision; DD)

register(QoS_Availability;QM1)

register(QoS_SystemLoad;QM2)

Chapter 4 – Agent Based Middleware Architecture

4-15

de-register: message used to de-register the services associated to an agent

performative Request

content de-register(agentID)
- agentID: identifier of the agent to de-register

example de-register(MM)

de-register(DD)

de-register(QM1)

de-register(QM2)

4.5.2 Information messages

These messages are used by the different agents to access and modified the

information contained in the SR and the DF.

set_Info: message used to request the modification of a parameters in a specific

element of SR.

performative Request

content set_Info(elementID; parameter=value)

- elementID: Identifier of the element to be modified

- parameter=value: name and value of the parameter to be

modified

example set_Info(CA1; alive=false)

set_Info(MCA1; running=true)

get_Info: message used to request the value of a certain parameter of an element.

performative Request

content get_Info(elementID; parameter)

- elementID: Identifier of the element to access

- parameter: name of the parameter that has been requested

reply-with result message

conversation id Generate

Chapter 4 – Agent Based Middleware Architecture

4-16

example get_Info(CA1; CPUfactor)

get_Info(MCA1; manageMC)

get_Elem: message used to request the elements whose parameters match the ones

specified in the message.

performative Request

content get_Elem(elementType; {parameter=value})

- elementType: type of elements to be compared

- {parameter=value}: list of names and values of the

parameters to use in the comparison.

reply-with result message

conversation id Generate

example get_Elem(MCA; parentCA=CA1;running=true)

get_Elem(CA; MC=MC1)

result: reply message containing the value of required information

performative Inform

content result(data)

- data: reply information

conversation id Reference

example result(MCA1)

result(MCA2,MCA3)

search: search for the agent associated to a service or the service associated to an

agent

performative inform

content search(searchParameter)

- searchParameter: name of the agent or service to be

located

Chapter 4 – Agent Based Middleware Architecture

4-17

example search(MiddlewareManager)

search(DiagnosisDecision)

search(QoS_Availability)

search(QoS_LoadBalancing)

4.5.3 QoS loss messages

Group of messages used during the detection of a QoS loss, the verification and launch

of the reconfiguration.

QoS_Loss_Event: message used by the application agents to inform of a situation that

can lead to QoS loss.

performative inform

content QoS_Loss_Event(situation; elementID)

- situation: type of situation

- elementID: identifier of the element involved in this

situation

conversation id generate

example QoS_Loss_Event(MC_failure; MC1)

QoS_Loss_Event(upperLimit_reach; CA1)

QoS_Loss_Event(lowerLimit_reach; CA1)

QoS_Loss_Confirmation: request issued by QM to confirm the situation of a

application agent. The reply to this request is done using a result message.

performative request

content QoS_Loss_Confirmation(situation)

- situation: type of situation to verify

reply-with result message

conversation id generate

example QoS_Loss_Confirmation(is_active)

QoS_Loss_Confirmation(upperLimit_reach)

Chapter 4 – Agent Based Middleware Architecture

4-18

QoS_Loss_Confirmation(lowerLimit_reach)

QoS_Reconfiguration_Event: message use by QM to trigger the reconfiguration.

performative inform

content QoS_Reconfiguration_Event (QoSType, reconfigurationType,

agentID)

- QoSType: QoS that has failed

- reconfigurationType: type of reconfiguration to be

performed

- agentID: agent to be reconfigured

reply-with start_Monitoring message

conversation id generate

example QoS_Reconfiguration_Event(availability, MCA_recovery, MCA1),

QoS_Reconfiguration_Event(availability, CA_recovery, CA1)

QoS_Reconfiguration_Event(systemLoad, upperLimit_recovery,

CA1)

QoS_Reconfiguration_Event(systemLoad, lowerLimit_recovery,

CA1)

4.5.4 Negotiation messages

These messages are used during CAs negotiation processes.

negotiation: message used by D&D to start a negotiation between different CAs.

performative request

content negotiation(negotiationCriteria; participants)

- negotiationCriteria: define the winning criteria

- participants: list of CAs involved in the negotiation

reply-with negotiation_Result message

conversation id generate

example negotiation(minimum workload; CA2,CA3)

Chapter 4 – Agent Based Middleware Architecture

4-19

negotiation_Data: message used by CAs to exchange information during the

negotiation process.

performative inform

content negotiation_Data(data)

- data: information to be exchanged

conversation id generate

example negotiation_Data(15.64)

negotiation_Result: message use by winner CA to inform the D&D of the result of the

negotiation.

performative inform

content negotiation_Result(data)

- data: information to be exchanged

conversation id reference

example negotiation_Result(15.64)

4.5.5 Diagnosis messages

Message used during the diagnosis of the execution state.

diagnose_State: message used by the D&D to request the diagnosis of the execution

state

performative request

reply-with recovery_Method message

conversation id generate

example diagnose_State()

Chapter 4 – Agent Based Middleware Architecture

4-20

recovery_Method: message use by MCA to inform the D&D of the result of the

diagnosis.

performative inform

content recovery_Method(recoveryType)

- recoveryType: type of recovery associated to the current

execution state.

conversation id reference

example recovery_Method(direct)

recovery_Method(checkpoint)

recovery_Method(non-recovery)

4.5.6 Reconfiguration messages

These messages are related to the action used by the D&D to recover the QoS and the

normal execution of the system.

change_State: message used by D&D to request a state change to a MCA. This

message can contain additional information related to actions to be performed at

state entrance. For example, perform a direct recovery, wait for a noncritical state,

among others.

performative request

content change_State(FSMstate; stateAction)

- FSMstate: name of the target state

- stateAction: action to be performed before entering the

state

conversation id reference

example change_state(active)

change_state(active, direct)

change_state(active, checkpoint)

change_state(tracking)

change_state(waitDecision)

change_state(waitDecision, nonCriticalStop)

change_state(stop)

change_state(stop, nonRecovery)

Chapter 4 – Agent Based Middleware Architecture

4-21

start_Monitoring: message use by D&D to inform the QM of the end of a

reconfiguration process

performative request

conversation id reference

example start_Monitoring()

4.5.7 State message

This message syntax is used by the active MCAs to send the state to the tracking

MCAs.

execution_State: message use by active MCAs to send the state to the tracking MCAs

performative inform

content execution_State(state)

- state: current value of the execution state.

example execution_State([0,0,1,0,0,0,0,…])

4.6 Assuring QoS

This section presents the customization middleware agents and the use of message

ontology to ensure the fulfilment of system QoS based on QOS monitoring, loss

detection and recovery. To test out this middleware two different QoS have been

selected:

 Service availability: which is able to detect service interruptions and analyze

whether or not service can recover.

 System Efficiency: in the sense of ensuring that, all controllers work with the

smallest time cycle as possible.

These two types of QoS are representative enough as to illustrate the flexibility the

middleware can provide. The first provides a recovery based on the last known state

Chapter 4 – Agent Based Middleware Architecture

4-22

of the execution, while the latter focuses on a reconfiguration during non-critical

states.

4.6.1 Availability QoS

Availability implies the service continuity or service recovery as soon as possible and

transparently to the application. The following sub-sections illustrate the middleware

operation in case of controller failure from availability monitoring, loss detection

under a controller failure up to recovering the service on other controllers.

Customized sequence diagrams (to include timeouts) are used to show the messages

exchange and the agents involved in each phase.

4.6.1.1 QoS monitoring

As commented above, depending on the QoS to be handled, there are application

agents (CAs, MCAs) responsible for monitoring QoS meeting and issuing QoS loss

events to the QM. Thus, the agent code has been extended to handle such

functionality. In the case of service availability, MCAs in tracking state are responsible

for availability monitoring. They receive the current state of the MC from the active

MCA. The reception of the state represents the active MCA heartbeat. If tracking MCAs

do not receive the state within a timeout, they issue Availability QoS loss to QM

through QoS_Loss_Event message. The message contains the situation detected (in this

case MC service unavailability) and the affected resource (MC1). Fig. 4-6 illustrates

the functionality extension of the tracking state.

cycle

Controller 2 Controller 3Controller 1

CA1
MCA1 (MC1)

active
CA2

MCA3 (MC1)
tracking

CA3
MCA5 (MC1)

tracking
Availability

QoS Monitor

xx
execution_State([state])

QoS_Loss_Event(MC failure;MC1)timeout

timeout

Fig. 4-6 Availability QoS Monitoring and QoS loss detection

Chapter 4 – Agent Based Middleware Architecture

4-23

4.6.1.2 QoS loss detection

Upon the reception of the Availability loss event, QM registers MCA failure to avoid

multiple reactions to the same event. Then QM confirms the QoS loss issuing a

confirmation message to the CA. In case a controller failure is confirmed, the failure is

registered to avoid reacting to several events triggered by other tracking MCAs or

other MCs in failure. Next, a reconfiguration event is issued to the D&D through the

QoS_Reconfiguration_Event, characterized by the QoS affected (availability), type of

reconfiguration (controller service recovery), and the agent involved (CA1). Fig. 4-7

illustrates this situation.

Controller 2 Controller 3Controller 1

CA1
MCA1 (MC1)

active
CA2

MCA3 (MC1)
tracking

CA3
MCA5 (MC1)

tracking
Availability

QoS Monitor
Diagnosis &

Decision
Middleware

Manager

QoS_Loss_Event(MC failure;MC1)
get active MCA associated to MC1

QoS_Loss_Event(MC failure;MC1)
get CA in which the MC1 is running

x
QoS_Loss_Confirmation(is_active)

x

QoS_Reconfiguration_Event(Availability; Controller service recovery; CA1)

set CA1 to failed

Fig. 4-7 Availability loss detection

Note that if a controller failure is not confirmed the QM request the state to the active

MCA in order to confirm MC failure or a false positive.

4.6.1.3 Diagnosis, Decision and Recovery Actions

The D&D resolves concurrent reconfiguration events corresponding to different QoS

by priority (for instance service availability has higher priority than system

efficiency). If it corresponds to a controller failure, D&D gets from the SR the MCs to

recover and issues messages to all their MCAs to provoke a state transition to the

wait_decision state. Next, it proceeds to sequentially recover each of the failed MCs

(active MC in the failed controller). The recovery process starts by launching a

negotiation process in all CAs containing MC. Once the negotiation finishes, D&D

requires the diagnosis of MCs state to the winner MCA. After the recovery method for

the MC is known, the D&D proceeds to recover (direct /checkpoint) or stop (non-

recovery) the execution of the MC. When all failed MCs have been recovered, the D&D

Chapter 4 – Agent Based Middleware Architecture

4-24

informs the QM about the finalization of the recovery process (start_monitoring). This

is illustrated in Fig. 4-8.

Controller 2 Controller 3

CA2
MCA3 (MC1)

tracking
CA3

MCA5 (MC1)
tracking

Availability
QoS Monitor

Diagnosis &
Decision

Middleware
Manager

get MCs executing in CA1

deregister_AplicationAgent(CA1)

[MCs running in CA1] get CA that can recover the MC1for

get tracking MCAs of MC1
change_State(waitDecision)

negotiation(CA2,CA3; minimal workload)

negotiation_Data(workload)
negotiation_Result(CA3)

diagnose_State()

recovery_Method(direct/checkpoint/nonrecovery)

[direct/checkpoint]alt

get MCA located in CA3

change_State(active;direct/checkpoint)

set MCA5 as running

get MCA located in CA2

change_State(tracking)

[non-recovery] change_State(stop;non-recovery)

change_State(stop)

start_monitoring()

get MCA located in CA2

QoS_Reconfiguration_Event(Availability; Controller service recovery; CA1)

Fig. 4-8 Service recovery through negotiation phase

4.6.2 System Efficiency QoS

To illustrate a soft reconfiguration, those characterized by a non-critical situation and

not affected by an urgent action, this sub-section presents how assuring system

efficiency.

Let us assume a definition of system efficiency as to try to get the best execution cycle

for all controllers. In such a case, reconfiguration is launched when the execution

cycle of controllers are very different and the goal of the reconfiguration decision is to

redistribute the MCs among the different controllers to obtain an optimized workload

distribution. In this case, as the management platform is pro-active, the

reconfiguration will always be performed during a no-critical state.

Chapter 4 – Agent Based Middleware Architecture

4-25

The following sub-sections illustrate the middleware operation in case of new

controller arrival to the system (controller plug-in), from the QoS monitoring, loss

detection under a controller addition up to recovering the workload balance of all

controllers.

4.6.2.1 QoS monitoring

As commented above, in the case of system efficiency, the CAs monitors the current

workload of their corresponding controllers, issuing a QoS loss event when the

workload is less than the minimum or greater than the maximum workload allowed.

The QoS loss event message provides information regarding the situation detected (in

this case the workload is lower than the limit) and the affected resource (CA3).

Upper Limit

Lower Limit

W
o

rk
lo

ad

Controller 3

MCA7 (MC1)
tracking

MCA8 (MC2)
tracking

MCA5 (MC3)
tracking

Efficiency
QoS Monitor

QoS_Loss_Event(lowerLimit_reach;CA3)

CA3

Controller 1 Controller 2

Fig. 4-9 System Efficiency QoS Monitoring and QoS loss detection

4.6.2.2 QoS loss detection

Upon the reception of the QoS loss event, the QM proceeds to verify the situation by

issuing a confirmation message to the CA. Upon the reception of this request, the CA

verifies if the workload is lower than the defined limit and informs of the result. In

case of confirmation, a QoS reconfiguration event is issued to the D&D. This event is

characterized by the affected QoS (system load), the type of reconfiguration (lower

limit recovery) and the agent involved (CA3). Fig. 4-10 illustrates this situation.

Chapter 4 – Agent Based Middleware Architecture

4-26

Efficiency
QoS Monitor

Diagnosis &
Decision

CA3

Controller 3

MCA7 (MC1)
tracking

MCA8 (MC2)
tracking

MCA5 (MC3)
tracking

QoS_Loss_Event(lowerLimit_reach;CA3)

QoS_Loss_Confirmation(is_active)

result(true)

QoS_Reconfiguration_Event(systemLoad;lowerLimit_recovery;CA1)

Fig. 4-10 System efficiency loss detection

4.6.2.3 Diagnosis, Decision and Recovery Actions

The D&D proceeds to resolve the reconfiguration event. It takes the CPU factors of the

CAs, current distribution of the MCs, as well as the maximum CPU load introduce by

the MCs (maxCPUload) from the SR and proceeds to balance the workload of the

controllers. After obtaining the new distribution, the D&D start relocating the

execution of the MCs. The relocation process begins by issuing transition messages to

the MCAs of the MC to provoke a state change to the wait_decision state. During this

state the running MCA will stop the execution of the control code in a noncritical state

and sends the current state. Once the execution stops, the D&D starts the execution in

the new location. This is illustrated in Fig. 4-11.

Controller 1 Controller 2 Controller 3

CA2
MCA4 (MC1)

tracking
CA3

MCA7 (MC1)
tracking

Efficiency
QoS Monitor

Diagnosis &
Decision

Middleware
Manager

get MCs and CAs in the system

get location of the active MCs

get active and tracking MCAfor

get the CPUfactor of the CAs

change_State(active;direct)

recovery_Method(direct)

change_State(tracking)

start_monitoring()

QoS_Reconfiguration_Event(systemLoad;lowerLimit_recovery;CA1)

get the maxCPUload of the MCs

Workload Optimization
Process

CA1
MCA1 (MC1)

active

[MCs to be relocated]

change_State(waitDecision;nonCriticalStop)

change_State(waitDecision)

Fig. 4-11 Relocation Service

Chapter 4 – Agent Based Middleware Architecture

4-27

4.7 Conclusions

This chapter focuses on the implementation of the QoS management architecture

using an agent based middleware. The basic middleware offers a set of agents to

monitor the QoS, resolve multiple QoS loss events and recover the QoS if it is possible.

Guidelines to include other QoS include defining monitoring functions using

application agents as well as recovery actions. Besides, information exchange through

ontology commands has to be also defined. If necessary, the ontology could be

extended with new commands. Thus, the architecture can be instanced to include

different monitoring and diagnosis functions by extending the agent’s functionality.

As an example of the extension of the QoS, two different test cases have been

presented, which exemplify the extension of the application and supervisor agents, as

well as the different reconfiguration mechanism the middleware can provide.

However, this implementation presents some drawbacks, which need to be

highlighted:

1. As previously commented the controller must contain the code related to each

of the MCs associated to it; since most of the commercial controllers do not

allow a dynamic download of the control code.

2. The use of a multi-agent system adds to the controller an overhead related to

the execution of the CA and MCAs, as well as their communications.

3. The architecture can only run in IEC61131 commercial controllers that

provide an operating system in which the JADE can be executed.

5 THE FLEXIBLE AUTOMATION FRAMEWORK

Chapter 5 – The Flexible Automation Framework

5-1

5.1 Introduction

This chapter presents a framework aiming at facilitating the developer tasks. The goal

of the framework is to automatically generate the so-called flexible automation

projects. These are the automation projects to deploy that contain the set of MCs the

corresponding controller can run, including the activation / de-activation

mechanisms as well as the recovery actions to start from checkpoint states or to

perform a safe stop. Additionally, the framework also customizes the templates

corresponding to the appropriate MCAs and CAs.

To achieve this goal the framework requires different type of information: the

characterization of the controller running both, the PLC virtual machine and the Java

virtual machine, the original automation projects containing the control of the

process organized in MCs and the information related to the critical intervals of each

MC.

The proposed framework, illustrated in Fig. 5-1, makes use of the models of Chapter 3

and uses model transformation techniques to achieve its goal. It is based on

automation standards. In particular, PLCopen (Van der Wal, 2009) is used for

defining the MCs and Automation ML (Lüder et al., 2011; Anon, 2016) is used to

define the system information in terms of controller characterization, MC

identification within PLCopen files (code and variables) and the corresponding

critical intervals.

PLC Virtual Machine

Operating System

Flexible Automation Projects

Flexible Automation Framework

FAPS Model Editor

Modular Automation
Projects

FlexAutSyst
SUC Library

Import

FAPS
Model

M2M and M2T
Transformation MCAs

Controllers

Developer

Fig. 5-1 General Scenario of Flexible Automation Framework

Chapter 5 – The Flexible Automation Framework

5-2

The framework is composed of two main modules: The Flexible Automation

Production System (FAPS) Model editor and the code generator. There are two types

of generated code; on the one hand the so-called Flexible Automation Projects that

contain the instrumented MCs each PLC can run, the activation / de-activation code

and the recovery / safe stop actions. On the other hand, it also generates the code

corresponding to the application agents: MCAs and CAs.

Although the MCs are one of the inputs to the framework, in order to facilitate the

tasks of defining the automation system modularly, an automatic generation tool has

been designed, based on the controller information model presented in Chapter 3.

This tool is presented in section 5.2.

The rest of the chapter details the FAPS model editor as well as the automatic

generation of the Flexible Automation Projects and application agents using model to

model (M2M) and model to text (M2T) transformations. Due to the FAPS model is

expressed in XML, XML stylesheet technology has been selected to perform M2M and

M2T transformations (Schmidt, 2006).

5.2 Generation of tool-independent automation

projects

The developer is required to design and develop the automation system modularly,

i.e. as a set of MCs (they control part of the process, use a set of input and outputs and

their control logic is as a set of POUs and variables). The POUs of the control logic are

develop in a PLC programming tool and exported in PLCopen format, if the

programming tool supports some type of exportation function, such as the PLCopen

interface. In order to guide the definition of the modular automation project, a UML-

based modeling tool has been developed that directly generates the PLCopen

automation projects.

The UML modeling tool allows the definition of the automation control system from a

functional, hardware and software point of view (Control Engineering Domain View,

Chapter 5 – The Flexible Automation Framework

5-3

Electrical-Electronic Engineering Domain View and Software Engineering Domain

View). Each view is characterized by its lexicon, defined as a set of three UML profiles

and UML class diagrams. The UML profiles are imported into the UML modelling tool.

Fig. 5-2 presents the syntax (lexicon and relationships) for each of the views.

Fig. 5-2 UML class diagrams and UML profiles for the different domain views

The definition of the automation project relies on a series of previously defined POUs.

These POUs are programmed and tested within the PLC programming tool (Twincat

3.0, Phoenix Contact, CODESYS 3.5, among others). Once they are validated, the POUs

are exported and stored in a repository in PLCopen XML format (step 1).

To integrate the POUs used by the automation project under definition in the UML

modeling tool, it is necessary to perform a model transformation. This transformation

has as input the POUs used in the automation project (that are in PLCopen format)

and it generates a XMI file containing the POUs interface. This file is imported into the

UML tool (PLCopenToXMI). Three UML elements enriched with a set of stereotypes

define a specific POU. In particular, a UML class with POU stereotype having a

properties: the name, pouType and language that are directly captured from the

PLCopen model. An interface element with FormalParameter stereotype is added for

Chapter 5 – The Flexible Automation Framework

5-4

each type of variable (e.g. local, input, output….). Finally, variables are defined as

properties of the interface enriched with a stereotype that fix their type. The class

with POU stereotype uses those interfaces that collect its input formal parameters and

realizes the interface that collect output formal parameters (step 2).

After defining the overall automation project, its model is exported into a XMI file

(step 3). The next step is the generation of the different system automation projects

(XMIToPLCopen) and the hardware configurations (XMItoHwModel).

The XMIToPLCopen transformer filters the software engineering information and

transforms it in order to obtain the complete automation project in PLCopen format.

Two main parts can be distinguished: firstly, the skeleton of automation project in

terms of Configuration(s), Resource(s), Task(s), Variable(s) and PouInstansce(s) in

PLCopen format have to be generated. Secondly, the code of the required POUs has to

be included to obtain the final PLCopen model. This latter requires accessing to the

POU repository to recover the functionality of the POUs (see step 4). Table 5-1

presents the six transformation templates used by the XMIToPLCopen.

Table 5-1 Summary of XMIToPLCopen tranformation

UML elements+IEC 61131-3 PLCopen XML element

Component +

<<Configuration>>

Configuration

Component + <<Resource>> Resource

Component + <<Task>> Task

Interface + <<globalVar>> globalVars

Interface +

<<formalParameter>>

Formal parameters of

POUs

Class + <<POU>> POU

Finally, the XMItoHwModel processes the Electrical-Electronic Engineering Domain

view and separates the hardware configuration of each controller into different XML

Chapter 5 – The Flexible Automation Framework

5-5

files (one for each controller) that follow the model presented in section 3.3.2 (step

5).

Fig. 5-2 illustrates the general scenario and the different steps of the development

phases.

Fig. 5-3 General scenario of the UML modeling tool

5.3 Flexible Automation Production System Model

The whole system meta-model from which the generation is derived is illustrated in

Fig. 5-4. The system consists of a set of PLCs represented by their automation projects

that contain a set of MCs defined (note that a tool to facilitate the modular definition

has been presented in Section 5.1). The original MCs are replicated in a number of

controllers (replicated in in Fig. 5-4). Additionally, each MC is characterized by a set of

critical intervals defined by a condition the MC variables meet. The condition is

expressed as logical expressions of MC variables. The critical intervals prevent

reconfiguring the automation system except in case of controller failure. Under a

controller failure, it is necessary to diagnose if the automation system is

Chapter 5 – The Flexible Automation Framework

5-6

unrecoverable (a safe stop action is required) or its execution can be resumed at a

known previous state (checkpoint), possibly after executing recovery actions (action

and/or checkpoint).

IEC 61131-3

Fig. 5-4 MC Meta-Model

This information is fundamental in order to enable dynamic reconfiguration. Thus,

MCAs use this information for diagnosis purposes before starting a reconfiguration.

For instance, if a new controller joins the system and transference of workload must

be performed, it has to be done at instants in which the production process not be

affected, i.e. the system execution state must not belong to a critical interval.

5.4 AML-based System definition (FAPS Editor)

The FAPS Editor implements the meta-model of Fig. 5-4 in Automation ML. This

standard uses: (1) COLLADA (Anon, 2011) files as a way of defining the geometry and

Chapter 5 – The Flexible Automation Framework

5-7

kinematic information; (2) PLCopen XML files (Marcos et al., 2009) to store the

control logic information, and finally (3) the Computer Aided Engineering eXchange

(CAEX) (Fedai & Drath, 2005) as the technical basement for the top level format

(topology). CAEX is the backbone of the AML standard, since it provides flexible

syntactic mechanisms for defining specific semantics and structure of an automation

system. These semantics also incorporate information described in other files

(COLLADA, PLCopen, among others), which provide a relationship between the

different elements of the automation system.

Specifically, the proposal is to follow the guidelines in (Estévez & Marcos, 2012) to

implement the meta-model of the system MCs.

 The System Unit Class Library defines the concepts involved in the definition of

a flexible automation system: It is composed by a series of System Unit Classes

(SUC), which represent the elements of the meta-model. Each SUC is

characterized by its attributes. If an element is composed of other elements,

the complex SUC can contain an Internal Element (IE), which is an instance of

another previously defined SUC. Fig. 5-5 depicts the case of the MC definition.

 The Interface Class Lib offers a set of interfaces, which allow a SUC or an IE to

be linked to an element on an external file. By itself, AML provides a PLCopen

interface that provides access to the different elements (POUs and variables)

contained in a PLCopen automation project. A new interface, the hardware

interface, enables the definition of the controllers and automation projects in

PLCopen.

 The Role Class Lib contains a series of roles that define the different structure

possibilities of the model elements (choice, sequence, all and any roles), which

are characterized by two attributes (minnOccurs and maxOccurs) that fix their

multiplicity.

A more complete explanation of each of these libraries and their corresponding

concepts can be found in (Estévez & Marcos, 2012).

Chapter 5 – The Flexible Automation Framework

5-8

Fig. 5-5 CAEX libraries for Flexible Automation Systems

These libraries are integrated into the AML editor (see FlexAutSyst SUC library in Fig.

5-5) allowing the definition of the flexible automation system model. Two external

files corresponding to the modular automation project (software) and the hardware

description file (hardware) characterize each controller. The basic attributes of the

MCs are their name and the controller in which the control logic is described.

Additionally, links to POUs and global variables define the control logic of a MC.

Finally, the critical intervals are defined making use of expressions involving MC

Chapter 5 – The Flexible Automation Framework

5-9

variables. Fig. 5-6 shows an example of the use of the editor that defines a

mechatronic component named MC1.

Fig. 5-6 Flexible Automation control system design example

Chapter 5 – The Flexible Automation Framework

5-10

On the other hand, the FAPS editor offers means for characterizing the critical

intervals of MCs, defining the expressions relating MC variables that identify

checkpoint or unrecoverable critical intervals as well as the recovery actions and the

checkpoint state (values of the variables that define the checkpoint state) if needed.

The expressions evaluate to a Boolean expression composed by a set of arithmetic

and logical operations of some state variables values. Fig. 5-6 uses the AML editor for

defining the expression:

“(Control_ST1.Sequence1_1.E23.Q1=1 AND Control_ST1.Insert_P1.E73.Q1=1)”.

5.5 Flexible Automation Projects

Due to current IEC 61131-3 standard execution environments do not allow dynamic

code deployment, the generated automation projects contain all MCs the controller

can eventually run. This explains why a reconfiguration means de-activation of an MC

in a controller and its activation in another.

On the other hand, in order to manage MC execution, MC code is enriched with a

wrapper, which allows the MCA to activate/deactivate its execution. Additionally, the

current state of the MC (current values of its variables) needs to be read or written by

the MCA.

The interaction between the MCA and its corresponding MC is performed via specific

sections of the controller memory. This requires the use of specific libraries, provided

by the corresponding vendors. For instance, an external access to Beckhoff

controllers at run time can be done using ADS (Automation Device Specification)

(Beckhoff, 2016). In the same way, Siemens manufacturer provides libnodave and

s7netplus libraries to an external access of S7-300 stations at runtime (Hergenhahn,

2014; Heiser, 2013).

In summary, the Flexible Automation Projects contain not only the functionality of the

MCs but also the control code that provides their flexibility. Hence, each MC is

composed of three different POUs:

Chapter 5 – The Flexible Automation Framework

5-11

a) MCid_Control: a program that manages the execution of the MC.

b) MCid_Serialize: a program that collects and serializes the value of the variables

that compose the state of the MC;

c) MCid_Deserialize: a program that de-serializes and fixes the values to initialize

the state of a MC when it changes from not active to active in a controller.

5.5.1 MCid_Control

This program allows the MCA to activate/deactivate the execution of the logic and

recovery/stop actions of the corresponding MC. In fact, this POU acts as a wrapper

and provides to MCA an external access required to manage the execution of the MC.

The program interface is a set of application dependent variables and other local

static variables that allow MCA to manage it (Table 5-2). These local variables are:

 isActive and wasActive: boolean variables for managing the

activation/deactivation of the MC.

In order to support the availability, the following additional local variables are

required:

 recoveryAction: It is related to the recovery code to execute for the critical

interval if necessary..

 Action_CriticalIntervalID: It corresponds to the actual recovery code (POU

instance).

On the other hand, Table 5-2 illustrates the general structure and the templates to be

applied by the generator.

Chapter 5 – The Flexible Automation Framework

5-12

Table 5-2 General structure of MCid_Control program

Section Description

Interface

Actions (POU instance variables)

Body

General structure

IF isActive=TRUE and wasActive=TRUE THEN

MCid();

MCid_Serialize();

ELSE IF isActive=TRUE and wasActive=FALSE THEN

CASE recoveryAction OF /* the list value depends on the MC*/

 /* the list cases depends on the critical intervals of the MC */

 END_CASE

ELSE IF isActive=FALSE and wasActive=TRUE THEN

 wasActive=FALSE;

END_IF

Direct recovery Check Point Recovery Save Stop

MCid_Deserialize();

MCid ();

MCid_Serialize();

wasActive=TRUE;

MCid_Action_id();

IF(MCid_Action_id.end)

THEN

MCid_Deserialize();

MCid ();

MCid_Serialize();

wasActive=TRUE;

recoveryAction=0;

END_IF

MCid_Action_id();

IF(MCid_Action_id.end)

THEN

recoveryAction=0;

isActive=FALSE;

END_IF

To generate MCid_Control program from FAPS model three main transformation

rules are required:

 Rule 1: Interface definition. This transformation rule is applied to every

InternalElement having RefBaseSystemUnitPath property with

MechatronicComponent value. First, it adds the common part with the fixed

Chapter 5 – The Flexible Automation Framework

5-13

local variables with their initial values. Then, it adds as many POU instance

variables as actions defined in the CriticalInterval elements of the MC.

 To add POU Instances, this transformation rule search for those inherited

InternalElements having RefBaseSystemUnitPath property with Action and gets

the value of its ExternalInterface. This will be the type of the new added

variable. The name will be the same as the InternalElement’s name.

 Rule 2: Body. This transformation rule is applied to every InternalElement

having RefBaseSystemUnitPath property with MechatronicComponent value.

First, adds the common minimal structure (see Table 5-2). Note that MCid is

the name of the ExternalElement in a POUInstance. Furthermore, this template

applies Rule 3 to complete the list of the possible cases when one MC is

activated.

 Rule 3: Recovery Actions. This transformation rule is applied to every

InternalElement having RefBaseSystemUnitPath property with CriticalInterval

value. According to the value of recoveryType property, the code to add varies

(see Table 5-2). Note that, the MCid is customized following the procedure

commented above.

Fig. 5-7 illustrates the generation process for the control program corresponding to a

MC (MC1_ST_Control). The left side of the figure presents the flexible model that

defines the flexible manufacturing system and the right one presents the

corresponding control program, MCid_Control, in PLCopen XML format.

Chapter 5 – The Flexible Automation Framework

5-14

Fig. 5-7 Execution control program generation example.

5.5.2 Serialization and de-serialization of the MC’s state

The serialization program is able to gather the execution states into a byte array,

which is accessible by the MCA. The use of byte array is due to most IEC 61131-3

environments offer transformation functions that encompass all other data types

(TypeOfVariable_TO_BYTE), e.g. BOOL_TO_BYTE, WORD_TO_BYTE …

The de-serialization program follows the same structure, but instead of collecting the

information into an array, it extracts the information from an array provided by the

MCA and rewrites the value of the state variables.

Table 5-3 illustrates the general structure and the templates the generator

customizes in order to generate MCid_Serialize and MCid_Deserialize programs.

Chapter 5 – The Flexible Automation Framework

5-15

Table 5-3: General structure of MCid_Serialize and MCid_Deserialize programs

Section Description

Interface

Body

Serialize

state[0] := TypeOfGlobalVariable_TO_BYTE(GlobalVariable);

…

state[NumberOfBytes] :=

 TypeOfGlobalVariable_TO_BYTE(GlobalVariable);

De-serialize

GlobalVariable=BYTE_TO_TypeOfGlobalVariable(state[0]);

…

GlobalVariable = BYTE_TO_TypeOfGlobalVariable (state[NumberOfBytes]);

Three main transformation rules are required:

 Rule1: Interface Definition. This transformation rule is applied to every

InternalElement having RefBaseSystemUnitPath property with POUInstance.

First, it computes the number of bytes required for defining the state

(NumberOfBytes of Table 5-3). To do this, the POU that implements the control

logic of MC is analysed to look for local and global variables and input and

output parameters. This POU is located in the name of the ExternalElement.

Finally, this transformation rule applies the next rules (Rule 2, Rule 3) for

generating the body of MCid_Serialize or MCid_Deserialize, respectively.

 Rule 2: Serialize Body. This transformation rule requires the MC state and the

variables that compose it (see Table 5-3).

Chapter 5 – The Flexible Automation Framework

5-16

 Rule 3: De-Serialize Body. This transformation rule requires the state and the

variables related to it. The result of the transformation is the writing of the

new state (see Table 5-3).

It is important to note, that not all PLC environments allow changing the interval

variables of a POU from an external program, preventing the use of a de-serialization

program (like in the case of Beckhoff). In these cases, the de-serialization program is

implemented in the MCA.

Fig. 5-8 illustrates an example of a Flexible Automation Project that contains the

POUs, data types, global variables and tasks associated to three MCs (MC1- MC3).

Fig. 5-8 Example of Flexible Automation Project

5.6 Application Agents

The Flexible Automation Framework generates CAs and MCAs corresponding to the

different controllers and MCs in the system. It is also in charge of generating the MC

Chapter 5 – The Flexible Automation Framework

5-17

diagnosis files, which contain the critical intervals used by the MCA to diagnose the

MC state.

5.6.1 MC Agent Templates

As established in section 4.5.1 MCAs implement a Finite Machine State consisting of a

set of states: Boot, Active, Tracking, Wait decision and End states. Each MCA is linked

to a different MC residing in a PLC and it performs state diagnosis when required in

order to determine if the current state belongs to a critical interval. Hence, in order to

offer a generic and customizable solution, a MCA Template, illustrated in Fig. 5-9, is

proposed. It has two customizable parameters:

 MC ID, which is the ID of the corresponding MC.

 state_diagnosis: it addresses the set of masks that define the critical intervals of

the MC.

Fig. 5-9 General Structure of System MCAs

Chapter 5 – The Flexible Automation Framework

5-18

Fig. 5-9 depicts the MCA Class Diagram as well as the general structure of the MCA

template (MCA) that is implemented as a Jade FSM. Each state is associated to the

corresponding functionality implemented as two JADE behaviours (SimpleBehaviour):

one that implements the functionality (Boot, Active, Tracking, WaitDecision and End)

and a second in charge of receiving messages from the middleware agents

(Message_Queue). Meanwhile, MCaccess provides access to the MC code in the PLC.

Fig. 5-9 also shows the skeleton of the setup method, responsible for the FMS

generation. Additionally, the bottom part of Fig. 5-9 presents the skeleton of the

Functionality behaviour for the Active state to illustrate how the default methods of

JADE Simple Behaviour, onStart and action methods are customized for the different

states.

5.6.2 Controller Agent Template

Following the same philosophy as for MCAs, to offer a generic and customizable

solution, a CA Template with a set of customizable parameters is proposed:

 ID, which identifies the agent in the system.

 A textual Description

 CPUfactor, with respect to a reference controller.

 Memory resources.

 AssignedMC: a list of MCs, whose control logic is executed in the controller.

Fig. 5-10 presents the Class Diagram corresponding to the CA template as well as the

parameterization for every CA of the system. The basic functionality of the CA is

implemented in a cyclic behavior (functionality) in order to process the messages

from the middleware agents. These messages correspond to queries about the

controller resources or negotiation messages. The reception of a negotiation message

provokes the generation of a negotiation behavior that lasts until the negotiation

Chapter 5 – The Flexible Automation Framework

5-19

ends. On the other hand, the CA can implement resource monitoring behaviours that

allow monitoring a specific resource of the controller as part of the QoS monitoring

process.

The registration of the CA and the creation of resource monitoring and functionality

behaviours are performed during the setup method of the CA.

Fig. 5-10 General Structure of System CAs

Chapter 5 – The Flexible Automation Framework

5-20

5.6.3 Diagnosis File.

A relevant task in MCA generation is to transform critical interval information into a

set of masks to diagnose the MC state. This information is generated and stored into

the so-called Diagnosis XML file having the following structure:

Fig. 5-11 General Structure of Diagnosis.xml files

This file contains the information of the variables that form the state (name and type),

the masks for performing the diagnosis as well as the checkpoint states.

The diagnosis masks filter the state variables related to the condition and allow

determining the type of critical state: checkpoint or unrecoverable.

To generate MCid_Diagnosis.xml file from FAPS model the following transformation

rules are required:

 Rule 1: State characterization generates the list of variables that form the state.

To do this, every InternalElement having RefBaseSystemUnitPath property

with RefVariable and the InternalElement having RefBaseSystemUnitPath

property with POUinstance in MC are processed.

 Rule 2: Critical Interval. This transformation rule applies to every

InternalElement having RefBaseSystemUnitPath property with CriticalInterval

Chapter 5 – The Flexible Automation Framework

5-21

in a MC and generates the Critical Interval information stored in diagnosis

XML file.

 Rule 3: Diagnosis. This rule processes the Condition to obtain the list of the

state variables involved in the condition. This rule applies to every

InternalElement having RefBaseSystemUnitPath property having an Expression

in a CriticalInterval.

 Rule 4 Checkpoint. This rule processes the CheckpointState from which the MC

can be restarted. This rule applies to every InternalElement having

RefBaseSystemUnitPath property with CheckPointVariable in a Critical Interval.

5.7 Conclusions

The section has presented a series of model-based tools used to help in the definition

of a flexible automation system. The first of these tools focuses on the definition of a

modular automation system; while the second one is used to add flexibility to the

automation system. Automatic code generation is used to generate extended MC

control code able to reconfigure MC execution as well as diagnosis information and

application agents used at runtime to decide reconfiguration instants.

The model-based approach presented in this work demonstrates the advantages of

using models and model transformation not only to automate code generation but

also to collect relevant information about the system that is fundamental in order to

achieve dynamic reconfiguration.

6 PROOF OF CONCEPT

Chapter 6 – Proof of Concept

6-1

6.1 Introduction

This chapter focuses on the validation of the Flexible Automation Framework (FAF)

through a case study, as well as the customization of the Flexible Automation

Middleware (FAM) for two different QoS (availability and load balancing). The run-

time performance of the FAM is also evaluated.

6.2 Manufacturing Demonstrator

The prototype of the architecture proposed in this work has been applied to the

flexible assembly cell FMS-200, located in the Department of Automatic Control and

System Engineering of the Basque Country University. As it is depicted in the bottom

part of the Fig. 6-1, the cell consists of four stations and a modular conveyor system

(Transport Station) that is in charge of assembling a set of four pieces (base, bearing,

shaft and lid). In the first station, the base is fed, its orientation is verified and, if

correct it is moved to the pallet located on the transfer system. In the second one, the

bearing and shaft are placed on the base, and the cap is put in the third station. In the

final station, the set mounted on the pallet is stored in the warehouse.

Fig. 6-1 Manufacturing System Demonstrator

Capítulo 6 – Casos de estudio

6-2

The cell is divided into five MCs, one for each of the four stations and one for the

transport station. However, to simplify the assessment, only the MCs associated to the

first three stations are going to be considered, MC1, MC2 and MC3 respectively.

As illustrated in Fig. 6-1 the three MCs have been assigned to three different Beckhoff

CX1020 controllers. These are commercial off the shelf Programmable Automation

Controllers (PAC), which run a Windows XP embedded operating system in parallel

with the Beckhoff PLC runtime. The Controller Agents (CAs) and Mechatronic

Component Agents (MCAs) associated to MCs will execute in the operating system,

while the control code of MCs will execute in the PLC runtime. The demonstrator is

also equipped with a supervisor PC in which the Middleware Manager and the QoS

Manager will run (see Fig. 6-1).

Table 6-1 critical intervals of Station 1

Station 1

Critical Interval 1:
Placement of the
base in the station
is unknown

Condition
Control_ST1.Sequence1_1.E23.Q1=1 AND
Control_ST1.Insert_P1.E73.Q1=1

Recovery Action Action1_ST1: Remove the base from the station

Checkpoint:
Extract a new base

Control_ST1.S_SEC_EXT2=1

Control_ST1.S_SEC_INS2=0

Control_ST1.Sequence_1.E21.Q1=1

Control_ST1.Sequence_1_1.E23.Q1=0

Control_ST1.Insert_P1.E70.Q1=1

Control_ST1.Insert_P1.E73.Q1=0

Control_ST1.Insert_P1.AUX1.Q1=0

Critical Interval 2:
Base may be
obstructing the

Condition

(Control.Sequence1_1.E23.Q1=1 AND
Control.Insert_P1.E74.Q1=1) OR
(Control.Sequence1_1.E23.Q1=1 AND
Control.Insert_P1.E75.Q1=1)

Stop Action
Action2_ST1: return component to initial positions and
inform the operator

In first station (MC1) the placement of the base is done by a pneumatic actuator

which grippes the base and moves it from the station to the pallet. This movement is

considered a critical operation since it must be executed without interruptions. If a

reconfiguration is performed during this operation, different actions need to be taken

Chapter 6 – Proof of Concept

6-3

in order to re-start the execution, depending on where the base falls. This leads to

two critical intervals: the first one covers the initial lifting of the base from the

station. The loss of control at this point requires the base to be removed from the

station and a new one to be introduced. The second interval encompasses the rest of

the movements from the station to the pallet. The loss of control during this interval

causes the base falling into the system and blocking it, so the system must be stopped

and the operator should be informed of the failure. Table 6-1 presents the different

critical interval actions and/or checkpoint associated to the station.

On the other hand, the third station (MC3) insets the lid on the piece. The different

operations performed by this station are distributed around a turning table, which

leads to multiple control sequences executing in parallel. There are different lids that

can be placed into the assembly. These lids differ on the material, colour and height.

The introduction of lids into the plate, the extraction of those that do not correspond

to the current assembly and the placement of the lid are considered critical

operations. Therefore, the critical interval encompasses all the parallel execution

state of the control sequence. The station has five critical intervals, with their

corresponding actions that allow the station to continue extracting the lids from the

warehouse.

On the other hand and as commented above, current industrial communication

protocols do not allow dynamic assignment of inputs and outputs (sensors and

actuators) to a controller during execution. This prevents moving MCs between

controllers. In order to solve this technological problem, the demonstrator uses a

unique PROFIBUS master for all the distributed I/Os. This master is responsible of

transferring MC input data to the corresponding controller and the received data

from the controllers to MC outputs. The distributed I/O master is a S7-300 Siemens

PLC connected to the Beckhoff controllers using an Ethernet connection and having a

set of Profibus slaves (MC I/Os).

The distributed I/O reads the input variables form the Profibus bus and sends them

to the different controllers using a broadcast message. Each controller takes the

information corresponding to their MCs and writes it down into its input variables. In

the same way, controllers take the value of the output variables and send them to the

Capítulo 6 – Casos de estudio

6-4

master (TCP/IP message), in charge of distributing them to the corresponding

stations.

6.3 Modular Automation System

The generation of modular automation system follows the methodology presented in

Chapter 5 which allows the definition of modular automation projects as well as the

hardware components of the controllers in the system.

The control logic for station 1 and 2 have been defined as part of the automation

project related to Controller1. Meanwhile, the control logic of station 3 is defined in

Controller2. For the case of this demonstrator, Controller3 is defined as an empty

automation project, used for illustrating the work balance QoS reconfiguration.

Fig. 6-2 illustrates part of the automation project for Controller1 in PLCopen format.

In particular, it depicts the POUs, configuration and resource related to the first and

second station.

Fig. 6-2 Modular Automation Project Controller1

Chapter 6 – Proof of Concept

6-5

6.4 Flexible Automation System Design

Following the generation of the modular automation projects, the Flexible

Automation Framework (FAF) is used for describing the Flexible Automation

Production System (FAPS) and for generating the flexible automation projects, as well

as the application agents and system information used by the Middleware.

As previously commented in section 5.3 the FAPS model is defined using an AML

editor. The controllers are defined by linking them to their corresponding automation

project and hardware specification file. Fig. 6-3 illustrates this definition.

Fig. 6-3 AML controller definition

After defining the controllers in the system, MC information is defined. Each MC is

mapped to one of the modules of the automation project. The control logic, input

variables and output variables of a MC are defined as links to the POUs and the

Capítulo 6 – Casos de estudio

6-6

corresponding global variables of the automation project in which they are defined

(defined in). Fig. 6-4 illustrates this process for MC1.

Fig. 6-4 definition of MC1 in FAPS Model Editor

After the MCs, their critical intervals and the controllers in which they may run are

specified. For instance, station 1 has two critical intervals, as presented in Table 6-1,

which are described using links to variables and POUs contained in the automation

project of the controller. Besides, the controllers in which it must be deployed are

controller2 and controller3. Fig. 6-5 presents the definition of the critical intervals

and replication information of MC1.

Chapter 6 – Proof of Concept

6-7

Fig. 6-5 Critical intervals and replication information of MC1

Following the definition of the flexible automation system model, the generation of

the automation projects is launched. The results of the transformation are three

flexible automation projects that contain the POUs, data types and global variables

associated to each of the MCs they may run. At the same time, the execution

management and serialization programs for each MC are generated. Fig. 6-6 shows

part of the flexible automation project to be download on controller1.

Capítulo 6 – Casos de estudio

6-8

Fig. 6-6 Flexible automation project for controller 1

With respect to the middleware application agents, the FAF generates a Controller

agent for each of the three controllers (see example in Fig. 6-7), a MCA for the MCs

(see example in Fig. 6-8) as well as their corresponding diagnosis file (see example in

Fig. 6-9).

Fig. 6-7 Controller agent for Controller1

Fig. 6-8 MC agent for MC1

Chapter 6 – Proof of Concept

6-9

Fig. 6-9 Diagnosis file for MC1

6.5 Run-time Performance

The performance of the proposed middleware architecture has been assessed

measuring the time it takes the FAM to recover the QoS in the case of availability and

system efficiency.

6.5.1 Availability QoS

In the case of availability, the recovery time is measured starting from the first QoS

loss received by the QM up to the first execution of the MCs in their new locations.

The first test makes a comparison of the recovery time based on the number of

controllers involved in the negotiation. The result is shown in Fig. 6-10. As expected,

as the number of controllers involved in the negotiation increases the time it takes

the QM and the D&D to reach a decision increases. This has led to the conclusion that

reducing the number of tracking MCs would be better for a faster recovery although it

would reduce the possibilities of redistribution.

Capítulo 6 – Casos de estudio

6-10

Fig. 6-10 Recovery Time vs. Number of Controllers Involved in the Negotiation

The second test compares the recovery time based on the number of MCs to be

recovered. The result of this test is presented in Fig. 6-11. As anticipated, the time

increases based on the number of the MCs, illustrating the scalability of the recovery

process.

Fig. 6-11 Recovery Time vs. Number of MCs to be recovered

Table 6-2 presents the time it takes for each of the MCs to recover its execution,

related to the number of MCs to be recovered. As it can be seen, that recovery time for

the MCs is nearly the same, except for the recovery time of the first MC (MC1). This is

Chapter 6 – Proof of Concept

6-11

due to this recovery time also contemplates the time it takes the D&D to change all

passive MCAs to the wait decision state.

Table 6-2 recovery time for each MCs

MCs

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6 MC 7 MC 8

1 401

2 630 317
 3 828 321 295

 4 998 379 335 341
 5 1194 448 364 320 320

 6 1393 284 425 366 289 381
 7 1603 288 332 330 321 310 308

 8 1761 309 284 419 317 291 354 307

The previous test presents the influence the number of MCs and controllers have over

the recovery. However, these tests have been performed in a system with a specific

number of critical intervals. To determine the influence the process of finding if the

current state belongs to a critical interval has over the recovery time, a new test is

performed. This test measures the time it takes the MCA to diagnose the execution

state based on the complexity and number of the critical interval expressions

(number of masks).

The results of the test are presented in Fig. 6-12. As expected, the diagnosis time

increases with the number of masks. However, this increase is minimal, making it

possible to implement big number of masks in order to diagnose the state.

Fig. 6-12 Diagnosis time vs Number of critical interval masks

Capítulo 6 – Casos de estudio

6-12

6.5.2 System Efficiency QoS

The performance of the middleware in the case of system efficiency is measured

using the time it takes the D&D to redistribute the MCs based on the number of MCs

to be distributed. For this test a basic redistribution algorithm has been used that

could be optimized.

Table 6-3 presents the results of this test. The first column represents the time the

D&D takes to calculate the new system distribution; meanwhile, the following

columns present the time it takes each of the MCs to relocate.

Table 6-3 Re-distribution algorithm and reconfiguration times

MCs

Re-distribution
algorithm

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6 MC 7 MC 8

2 5,29 604,75 604,75

3 6,14 604,52 605,43 606,61

4 8,36 603,83 609,32 608,84 606,65

5 11,67 604,90 620,01 607,06 606,79 606,54

6 12,72 604,70 605,12 605,07 604,78 633,43 621,56

7 16,98 608,54 604,80 607,30 606,76 606,37 606,47 605,43

8 17,49 605,50 619,59 608,67 605,25 606,49 604,55 608,21 604,81

Fig. 6-13 presents a graphical representation of the time it takes the D&D to

reconfigure the whole system with respect to the number of MCs.

Chapter 6 – Proof of Concept

6-13

Fig. 6-13 Reconfiguration Time vs Number of MCs

6.6 Conclusions

This section has presented the validation of the Flexible Automation Framework

(FAF) and the Flexible Automation Middleware (FAM).

To assess the use of the FAF the definition of three stations of a flexible automation

cell as MCs has been assumed. This process starts with the different modular

automation projects containing the code of the three stations, and shows the

definition of the different MCs, critical intervals, and backup controllers, presenting

the FAPS Model of the system and the output flexible automation projects and

application agents.

From the run-time assessment performed on the FAM, it can be concluded that the

middleware introduces an overhead that depends very much on design decisions:

number of replicas for MC and number of controllers containing replicas in the

system. These do not vary with the size of the MC (control logic) to be managed. Thus,

design decisions should be made based on the critical parts of the system, the

reliability and flexibility of the control logic and the level of quality assurance needed

in the different parts of the manufacturing process.

7 CONCLUSIONS AND FUTURE WORKS

Chapter 7 – Conclusions and future work

7-1

7.1 Conclusions

The main goal of this work was to assure the fulfilment of a set of QoS within

automation production systems. This work has focused on the identification and

definition of mechanisms that ensure the fulfilment of the QoS, the implementation of

these mechanisms in an agent based system and the generation of tool support by

means of the application of model based techniques. The set of tools generated allows

the definition and implementation of the management architecture.

The reconfiguration mechanisms presented in the work are based on the relocation of

parts of the automation system. Concretely, the automation system is divided in the

so called MCs in charge of controlling part of the process. However, as presented in

this work, the instant and actions needed to relocate parts of the automation system

are influenced by the operational state of the process. To this respect, two types of

states have been identified: a state is said non-critical if the MC can be relocated and

started from the last known state. Nevertheless, this work also focuses on the

recovery of the system in case of a failure during a critical state. This has led to two

types of actions: a recovery from previously known state or a safe stop.

This work not only focuses on the information needed for launching the

reconfiguration and recovery of the MCs, it also focuses on the mechanisms needed to

supervise the fulfilment of the QoS. This has led to the definition of two modules

which monitor the fulfilment of the QoS (QoS monitors) and which determine the best

way to recover these QoS when they are lost (Diagnosis and Decision).

The proposed architecture and associated mechanisms have been implemented using

an agent-based middleware. As commented in the related work chapter, agent based

middleware has been commonly used to introduce reconfiguration mechanisms into

distributed automation systems. The proposed middleware consists of a series of

agents (supervisor and application agents) that allow monitoring QoS, detecting QoS

loss and recovery of the QoS. The middleware is presented as a generic architecture

Chapter 7 – Conclusions and future work

7-2

that provides guidelines to include different monitoring and diagnosis functions by

extending the agents functionality.

This middleware has been used to ensure the availability of the control system and to

optimise the controller efficiency. These cases represent the different

reconfigurations and the flexibility the middleware can provide. The real-time

performance of these mechanisms shows that it is necessary to find a compromise

between the quality of the flexibility of the automation system and the overhead it

adds.

This work also contributes on the application of model-based techniques to generate

flexible code and customized middleware agents. This contribution includes tool

support, an aspect that is fundamental to achieve the adoption of model based

techniques in industry.

The main results of the work have been published in 7 international conferences and

3 papers in international Journals, as well as several national conferences.

In particular, related to the definition of the architecture and its implementation, the

results are the following:

Preliminary work on the QoS management architecture, which provides controller

fault tolerance by relocating the whole control system, as well as the different types of

recovery methods, was presented in Priego, R., Armentia, A., Orive, D. & Marcos, M.,

2013. Supervision-based reconfiguration of industrial control systems. In 18th IEEE

International Conference on Emerging Technologies & Factory Automation (ETFA).

Cagliari, Italy, pp. 1–4.)

The first drafts of the agent based middleware for assuring QoS was presented in

Priego, R., Gangoiti, U., Orive, D. & Marcos, M., 2014. Agent-Based Reconfiguration at

Controller Level. In 19th IEEE International Conference on Emerging Technologies &

Factory Automation (ETFA). Barcelona, Spain, pp. 1–4; Priego, R., Orive, D. & Marcos,

Chapter 7 – Conclusions and future work

7-3

M., 2014. Maintaining the Availability of the Control System in Industrial Automation.

In Agenten im Umfeld von Industrie 4.0. pp. 15–21).

(Priego, R., Agirre, A., Estévez, E., Orive, D. & Marcos, M., 2015. Middleware-based

Support for Reconfigurable Mechatronic Systems. In 2nd Conference on Embedded

Systems, Computational Intelligence and Telematics in Control (CESCIT). Maribor,

Slovenia: Elsevier Ltd., pp. 81–86.) This paper introduces the concept of Mechatronic

Component (MC) as the code in charge of controlling a part of the process and it

analyzes when it is possible to recover its functionality after a controller fault.

The final structure of the management architecture and the middleware are

presented in Priego, R., Iriondo, N., Gangoiti, U. & Marcos, M., 2017. Agent Based

Middleware Architecture for Reconfigurable Manufacturing Systems. The

International Journal of Advanced Manufacturing Technology, pp.1–20.

Other publications deal with the uses of model based techniques for the definition of

the flexible control systems:

In particular, the use of model based techniques for defining and implementing a

modular automation production systems was presented in Priego, R., Armentia, A.,

Estévez, E. & Marcos, M., 2016. Modeling techniques as applied to generating tool-

independent automation projects. At-Automatisierungstechnik, 64(4), pp.325–340.

The first drafts of the model based definition of the flexible control systems and the

development process was presented in Priego, R., Armentia, A., Orive, D., Estévez, E. &

Marcos, M., 2014. A Model-Based Approach for Achieving Available Automation

Systems. In B. Edward, ed. 19th World Congress of the International Federation of

Automatic Control (IFAC). Cape Town, South Africa, pp. 3438–3443.

Meanwhile, Priego, R., Armentia, A., Estevez, E. & Marcos, M., 2015. On applying MDE

for generating reconfigurable automation systems. In 13th IEEE International

Conference on Industrial Informatics (INDIN). Cambridge, UK, pp. 1233–1238 presents

Chapter 7 – Conclusions and future work

7-4

the basics of the model-based tool used for the description and code generation of the

flexible automation system.

The final model-based framework for the definition and automatic generation of the

flexible system is presented in (Priego, R., Estévez, E., Orive, D., Vogel-Heuser, B. &

Marcos, M., 2017. A MDE approach for supporting flexible automation. that is under

review in Mechatronics Journal.

Finally, during the development of this work a publication related to the use of the

proposed multi-agent system for providing run-time updates of the automation

system code was presented (Priego, R., Schütz, D., Vogel-heuser, B. & Marcos, M.,

2015. Reconfiguration Architecture for Runtime Updates of an Automation System. In

IEEE 20th International Conference on Emerging Technologies & Factory Automation

(ETFA). Luxembourg, Luxembourg,, pp. 1–8). This was the main result of the research

stay at AIS- TUM.

As a final remark, this work has fulfilled its main goal of ensuring the fulfilment of the

QoS of an automation system by means of a generic and customisable architecture

that can be extended to other QoS.

7.2 Future works

The development of this work has allowed detecting a series of interesting research

lines which can be investigated in the future:

 To define a methodology for the definition and implementation of new QoS

assurance. The current work has proposed the management architecture,

supervisor agents, and templates for the monitoring and recovery of a QoS, as

well as a model based framework for the definition of the flexible automation.

The proof of concept prototype has shown which agents are in charge of the

monitoring of the QoS implemented and how the functionality of the

monitoring and D&D agents has been extended. However, it would be

Chapter 7 – Conclusions and future work

7-5

interesting to define the generic methodology to follow in order to introduce

new QoS into the architecture.

 Other interesting line to explore is related to Machine To Machine

communication for achieving horizontal integration. The middleware

architecture presented here could be adapted to allow the set of plant

machines communicating among them in order to decide how to perform

manufacturing orders or how to recover from machine failures.

REFERENCES

Chapter 7 – Conclusions and future work

7-1

Andersson, K., Lennartson, B., Falkman, P. & Fabian, M.Ã., 2011. Generation of restart
states for manufacturing cell controllers. Control Engineering Practice, 19(9),
pp.1014–1022.

Anon, 2016. AutomationML. , p.http://www.automationml.org/.

Anon, 2011. COLLADA. , p.https://collada.org/ last.

Anon, Functional Application Design for Distributed Automation Systems (FAVA). ,
p.https://www.ais.mw.tum.de/en/research/current-rese.

Association, E.F. of the F.R., 2012. Factories of the Future PPP FoF 2020 Roadmap:
Consultation document,

Babiceanu, R.F.F.R.F. & Chen, F.F.F., 2006. Development and applications of holonic
manufacturing systems: a survey. Journal of Intelligent Manufacturing, 17(1),
pp.111–131.

Barata, J. & Camarinha-Matos, L.M., 2003. Coalitions of manufacturing components for
shop floor agility - the CoBASA architecture. International Journal of Networking
and Virtual Organisations, 2(1), pp.50–77.

Barbosa, J., Leitão, P., Adam, E. & Trentesaux, D., 2015. Dynamic self-organization in
holonic multi-agent manufacturing systems: The ADACOR evolution. Computers
in Industry, 66, pp.99–111.

Basile, F., Chiacchio, P. & Gerbasio, D., 2013. On the Implementation of Industrial
Automation Systems Based on PLC. Automation Science and Engineering, IEEE
Transactions on, 10(4), pp.990–1003.

Beckhoff, 2016. Automation Device Specification (ADS). ,
p.https://infosys.beckhoff.com/english.php?content=.

Bellifemine, F., Caire, G., Poggi, A. & Rimassa, G., 2008. JADE: A software framework
for developing multi-agent applications. Lessons learned. Information and
Software Technology, 50(1–2), pp.10–21.

Bellifemine, F., Poggi, A. & Rimassa, G., 2001. Developing multi-agent systems with a
FIPA-compliant agent framework. Software - Practice and Experience, 31(2),
pp.103–128.

Bergagård, P., 2015. On restart of automated manufacturing systems. CHALMERS
UNIVERSITY OF TECHNOLOGY.

Binotto, A.P.D., Wehrmeister, M.A., Kuijper, A. & Pereira, C.E., 2013. Sm@rtConfig: A
context-aware runtime and tuning system using an aspect-oriented approach for
data intensive engineering applications. Control Engineering Practice, 21(2),
pp.204–217.

Blanchet, M., Rinn, T., Von Thaden, G. & de Thieulloy, G., 2014. Industry 4.0 The new

Chapter 7 – Conclusions and future work

7-2

industrial revolution How Europe will succeed A. Dujin, C. Geissler, & D.
Horstkötter, eds.,

Booch, G., Rumbaugh, J. & Jacobson, I., 2015. The Unified Modeling Language User
Guide (2nd Edition), Addison-Wesley Professional.

Botygin, I.A. & Tartakovsky, V.A., 2014. The development and simulation research of
load balancing algorithm in network infrastructures. In 2014 International
Conference on Mechanical Engineering, Automation and Control Systems (MEACS).
IEEE, pp. 1–5.

Bousbia, S. & Trentesaux, D., 2002. Self-organization in distributed manufacturing
control: state-of-the-art and future trends. IEEE International Conference on
Systems, Man and Cybernetics, vol.5, p.6.

Brennan, R.W., Vrba, P., Tichy, P., Zoitl, A., Sünder, C., Strasser, T. & Marik, V., 2008.
Developments in dynamic and intelligent reconfiguration of industrial
automation. Computers in Industry, 59(6), pp.533–547.

Brussel, H. Van, Wyns, J., Valckenaers, P., Bongaerts, L. & Peeters, P., 1998. Reference
architecture for holonic manufacturing systems: PROSA. Computers in Industry,
37(3), pp.255–274.

Cândido, G., Colombo, A.W., Barata, J. & Jammes, F., 2011. Service-oriented
infrastructure to support the deployment of evolvable production systems. IEEE
Transactions on Industrial Informatics, 7(4), pp.759–767.

Colombo, A.-W., Karnouskos, S. & Mendes, J.-M., 2010. Factory of the Future: A
Service-oriented System of Modular, Dynamic Reconfigurable and Collaborative
Systems. In Artificial Intelligence Techniques for Networked Manufacturing
Enterprises Management. pp. 459–481.

Colombo, A.W., Karnouskos, S., Mendes, M., Leit, P., Controls, R., Control, S.,
Acquisition, D., Mendes, J.M. & Leitão, P., 2015. Industrial Agents in the Era of
Service-Oriented Architectures and Cloud-Based Industrial Infrastructures. In
Industrial Agents: Emerging Applications of Software Agents in Industry. Elsevier,
pp. 67–87.

Commission, I.E., 2004. International Standard IEC 61499 Part 1.

Duffie, N.A. & Piper, R.S., 1986. Nonhierarchical control of manufacturing systems.
Journal of Manufacturing Systems, 5(2), p.141.

Estévez, E. & Marcos, M., 2012. Model-Based Validation of Industrial Control Systems.
IEEE Transactions on Industrial Informatics, 8(2), pp.302–310.

Estevez, E., Marcos, M., Gangoiti, U. & Orive, D., 2005. A Tool Integration Framework
for Industrial Distributed Control Systems. In Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE, pp. 8373–8378.

Chapter 7 – Conclusions and future work

7-3

European Commission: Research and Innovation, 2013. Factories of the Future PPP:
towards competitive EU manufacturing,

Fay, A., Vogel-Heuser, B., Frank, T., Eckert, K., Hadlich, T. & Diedrich, C., 2015.
Enhancing a model-based engineering approach for distributed manufacturing
automation systems with characteristics and design patterns. Journal of Systems
and Software, 101, pp.221–235.

FDCML, F.D.C.M., 2002. FDCML 2.0 Specification,

Fedai, M. & Drath, R., 2005. CAEX - A neutral data exchange format for engineering
data. ATP International Automation Technology, 01/2005(3), pp.43–51.

Ferber, J., 1999. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence 1st ed. A. Wesley, ed.,

Hästbacka, D., Vepsäläinen, T. & Kuikka, S., 2011. Model-driven development of
industrial process control applications. Journal of Systems and Software, 84(7),
pp.1100–1113.

Heiser, D., 2013. S7netplus. , p.http://nugetstatus.com/packages/S7netplus.

Hergenhahn, T., 2014. LIBNODAVE - Exchange data with Siemens PLCs. ,
p.http://libnodave.sourceforge.net/.

Hinchey, M.G. & Sterritt, R., 2006. Self-managing software. IEEE Computer, 39(2),
pp.107–109.

Huebscher, M.C. & McCann, J. a, 2008. A survey of autonomic computing—degrees,
models, and applications. ACM Computing Surveys, 40(3), pp.1–28.

Intelligent Physical Agents, F. for, 2015. Standard FIPA Specifications. Available at:
http://www.fipa.org/repository/standardspecs.html.

International Electrotechnical Commission, 2003. IEC International Standard IEC
1131-3 Programmable Controllers, Part 3: Programming Languages.

Jamro, M., 2014. Automatic generation of implementation in SysML-based model-
driven development for IEC 61131-3 control software. In 2014 19th International
Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, pp.
468–473.

Kephrt, J.O. & Chess, D.M., 2003. The Vision of Autonomic Computing. IEEE Computer,
36(1), pp.41–50.

Khalgui, M. & Mosbahi, O., 2010. Intelligent distributed control systems. Information
and Software Technology, 52(12), pp.1259–1271.

Koestler, A., 1969. The Ghost in the Machine, Arkana Books.

Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G. & Becker, C., 2014. A survey on

Chapter 7 – Conclusions and future work

7-4

engineering approaches for self-adaptive systems. Pervasive and Mobile
Computing, 17(Part B), pp.184–206.

Lastra, J., 2004. Reference mechatronic architecture for actor based assembly systems.
Tampere University of Technology.

Legat, C., Schütz, D. & Vogel-Heuser, B., 2013. Automatic generation of field control
strategies for supporting (re-)engineering of manufacturing systems. Journal of
Intelligent Manufacturing, pp.1–11.

Legat, C. & Vogel-Heuser, B., 2014. A Multi-agent Architecture for Compensating
Unforeseen Failures on Field Control Level T. Borangiu, D. Trentesaux, & A.
Thomas, eds. Service Orientation in Holonic and Multi-Agent Manufacturing and
Robotics, 544, pp.195–208.

Leitão, P., 2009. Agent-based distributed manufacturing control: A state-of-the-art
survey. Engineering Applications of Artificial Intelligence, 22(7), pp.979–991.

Leitão, P., 2008. Self-Organization in Manufacturing Systems: Challenges and
Opportunities. In IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops. pp. 174–179.

Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T. & Colombo, A.W., 2016. Smart
Agents in Industrial Cyber-Physical Systems. Proceedings of the IEEE, 104(6),
pp.1086–1101.

Leitão, P., Marik, V. & Vrba, P., 2013. Past, Present, and Future of Industrial Agent
Applications. IEEE Transactions on Industrial Informatics, 9(4), pp.2360–2372.

Leitão, P. & Restivo, F., 2006. ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry, 57(2), pp.121–130.

Lepuschitz, W., Zoitl, A., Vallée, M. & Merdan, M., 2011. Toward Self-Reconfiguration
of Manufacturing Systems Using Automation Agents. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1), pp.52–
69.

Lüder, A., Estévez, E., Hundt, L. & Marcos, M., 2010. Automatic transformation of logic
models within engineering of embedded mechatronical units. The International
Journal of Advanced Manufacturing Technology, 54(9–12), pp.1077–1089.

Lüder, A., Estévez, E., Hundt, L. & Marcos, M., 2011. Automatic transformation of logic
models within engineering of embedded mechatronical units. International
Journal of Advanced Manufacturing Technology, 54(9–12), pp.1077–1089.

Marcos, M., Estevez, E., Perez, F. & Van der Wal, E., 2009. XML exchange of control
programs. IEEE Industrial Electronics Magazine, 3(4), pp.32–35.

Marín, C.A., Mönch, L., Leitão, P., Vrba, P., Kazanskaia, D., Chepegin, V., Liu, L. &
Mehandjiev, N., 2013. A Conceptual Architecture Based on Intelligent Services for

Chapter 7 – Conclusions and future work

7-5

Manufacturing Support Systems. In 2013 IEEE International Conference on
Systems, Man, and Cybernetics. pp. 4749–4754.

Merz, M., Frank, T. & Vogel-Heuser, B., 2012. Dynamic redeployment of control
software in distributed industrial automation systems during runtime. In 2012
IEEE International Conference on Automation Science and Engineering (CASE).
IEEE, pp. 863–868.

Morenas, J. de las, Higuera, A.G. & Alonso, P.G., 2012. Product Driven Distributed
control system for an experimental logistics centre. International Journal of
Innovative Computing, Informatics and Control, 8(10), pp.7199–7216.

Nouri, H., 2015. Development of a comprehensive model and BFO algorithm for a
dynamic cellular manufacturing system. Applied Mathematical Modelling, 40(2),
pp.1514–1531.

Olsen, S., Wang, J., Ramirez-Serrano, A. & Brennan, R.W., 2005. Contingencies-based
reconfiguration of distributed factory automation. Robotics and Computer-
Integrated Manufacturing, 21(4), pp.379–390.

Onori, M., Semere, D. & Lindberg, B., 2011. Evolvable systems: an approach to self-X
production. International Journal of Computer Integrated Manufacturing, 24(5),
pp.506–516.

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovc, N.,
Quilici, A., Rosenblum, D.S. & Wolf, A.L., 1999. An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems and Their Applications, 14(3),
pp.54–62.

Pang, C. & Vyatkin, V., 2010. IEC 61499 function block implementation of intelligent
mechatronic component. IEEE International Conference on Industrial Informatics
(INDIN), pp.1124–1129.

Ribeiro, L., Barata, J., Onori, M. & Hoos, J., 2015. Industrial Agents for the Fast
Deployment of Evolvable Assembly Systems. In P. Leitão & S. Karnouskos, eds.
Industrial Agents. Boston: Morgan Kaufmann, pp. 301–322.

Rocha, A., Orio, G. Di, Barata, J., Antzoulatos, N., Castro, E., Scrimieri, D. & Ribeiro, L.,
2014. An Agent Based Framework to Support Plug And Produce. In 12th IEEE
International Conference on Industrial Informatics (INDIN), 2014. pp. 504–510.

Salehie, M. & Tahvildari, L., 2009. Self-adaptive software: Landscape and research
challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2),
pp.1–42.

Schilit, B.N., Adams, N. & Want, R., 1994. Context-aware computing applications. IEEE
Workshop on Mobile Computing Systems and Applications, pp.85–90.

Schimmel, A. & Zoitl, A., 2011. Distributed online change for IEC 61499. In IEEE 16th
Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, pp. 1–

Chapter 7 – Conclusions and future work

7-6

7.

Schmidt, D.C., 2006. Guest Editor’s Introduction: Model-Driven Engineering.
Computer, 39(February), pp.25–31.

Schütz, D., Obermeier, M. & Vogel-heuser, B., 2013. SysML-Based Approach for
Automation Software Development – Explorative Usability Evaluation of the
Provided Notation. In A. Marcus, ed. Design, User Experience, and Usability. Web,
Mobile, and Product Design. Springer Berlin Heidelberg, pp. 568–574.

Schütz, D., Wannagat, A., Legat, C. & Vogel-Heuser, B., 2013. Development of PLC-
Based Software for Increasing the Dependability of Production Automation
Systems. IEEE Transactions on Industrial Informatics, 9(4), pp.2397–2406.

Science, N. & Council, T., 2016. ADVANCED MANUFACTURING : A Snapshot of Priority
Technology Areas Across the Federal Government Subcommittee for Advanced
Manufacturing. , (April).

Selic, B., 2003. The pragmatics of model-driven development. IEEE Software, 20(5),
pp.19–25.

Shen, W., Wang, L. & Hao, Q., 2006. Agent-based distributed manufacturing process
planning and scheduling: a state-of-the-art survey. IEEE Transactions on Systems,
Man and Cybernetics, Part C (Applications and Reviews), 36(4), pp.563–577.

Standards Board, I., 1990. IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610.12-1990IEEE Std 610.12-1990, pp.1–84.

Strasser, T. & Froschauer, R., 2012. Autonomous Application Recovery in Distributed
Intelligent Automation and Control Systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 42(6), pp.1054–1070.

Streit, A., Rösch, S. & Vogel-Heuser, B., 2014. Redeployment of Control Software
during Runtime for Modular Automation Systems Taking Real-Time and
Distributed I/O into Consideration. In IEEE 19th Conference on Emerging
Technologies Factory Automation (ETFA), 2014. pp. 1–4.

SysML, 2007. The SysML Specification, v 1.0. Available at: http://www.sysml.org.

Thramboulidis, K., 2006. Design alternatives in the IEC 61499 function block model.
IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA, pp.1309–1316.

Thramboulidis, K., 2013. IEC 61499 vs. 61131: A Comparison Based on
Misperceptions. arXiv, 2013(August), pp.3–5.

Thramboulidis, K., 2005. Model-Integrated Mechatronics—Toward a New Paradigm
in the Development of Manufacturing Systems. IEEE Transactions on Industrial
Informatics, 1(1), pp.54–61.

Chapter 7 – Conclusions and future work

7-7

Thramboulidis, K., 2010. The 3+1 SysML View-Model in Model Integrated
Mechatronics. Journal of Software Engineering and Applications, 3(2), pp.109–
118.

Thramboulidis, K., 2011. Towards a Model-Driven IEC 61131-Based Development
Process in Industrial Automation. Journal of Software Engineering and
Applications, 4(4), pp.217–226.

Thramboulidis, K., Perdikis, D. & Kantas, S., 2006. Model driven development of
distributed control applications. The International Journal of Advanced
Manufacturing Technology, 33(3–4), pp.233–242.

Urban, T.L. & Chiang, W.C., 2016. Designing energy-efficient serial production lines:
The unpaced synchronous line-balancing problem. European Journal of
Operational Research, 248(3), pp.789–801.

Vogel-Heuser, B. & Rösch, S., 2014. Integrated Modeling of Complex Production
Automation Systems to Increase Dependability. In Risk - A Multidisciplinary
Introduction. pp. 1–476.

Vogel-Heuser, B., Schütz, D., Frank, T. & Legat, C., 2014. Model-driven engineering of
Manufacturing Automation Software Projects - A SysML-based approach.
Mechatronics, 24(7), pp.883–897.

Vrba, P., Tichý, P., Mařík, V., Hall, K.H., Staron, R.J., Maturana, F.P. & Kadera, P., 2011.
Rockwell Automation’s Holonic and Multiagent Control Systems Compendium.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 41(1), pp.14–30.

Vyatkin, V., 2011. IEC 61499 as enabler of distributed and intelligent automation:
State-of-the-art review. IEEE Transactions on Industrial Informatics, 7(4),
pp.768–781.

Vyatkin, V., Christensen, J.H. & Lastra, J.M., 2005. OOONEIDA: An Open, Object-
Oriented Knowledge Economy for Intelligent Industrial Automation. IEEE
Transactions on Industrial Informatics, 1(1), pp.4–17.

Vyatkin, V. & Hanisch, H.-M., 2009. Closed-Loop Modeling in Future Automation
System Engineering and Validation. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 39(1), pp.17–28.

Van der Wal, E., 2009. PLCopen. IEEE Industrial Electronics Magazine, 3(4), p.25.

Wang, L., Adamson, G., Holm, M. & Moore, P., 2012. A review of function blocks for
process planning and control of manufacturing equipment. Journal of
Manufacturing Systems, 31(3), pp.269–279.

Wannagat, A. & Vogel-Heuser, B., 2008. Agent oriented software-development for
networked embedded systems with real time and dependability requirements in
the domain of automation. In 17th World Congress The International Federation

Chapter 7 – Conclusions and future work

7-8

of Automatic Control. Seoul, Korea, pp. 4144–4149.

Wegdam, M., Almeida, J.P.A., Sinderen, M.J. van & Nieuwenhuis, L.J.M., 2003. Dynamic
Reconfiguration for Middleware-Based Applications. IEEE Transactions on
Parallel and Distributed Systems, (Fall 2003), pp.1–30.

Wehrmeister, M.A., de Freitas, E.P., Binotto, A.P.D. & Pereira, C.E., 2014. Combining
aspects and object-orientation in model-driven engineering for distributed
industrial mechatronics systems. Mechatronics, 24(7), pp.844–865.

Wooldridge, M., 2009. An Introduction to Multi-Agent Systems J. W. & Sons, ed.,

Yan, J. & Vyatkin, V., 2013. Extension of reconfigurability provisions in IEC 61499. In
2013 IEEE 18th Conference on Emerging Technologies & Factory Automation
(ETFA). IEEE, pp. 1–7.

Yang, C.W., Yan, J. & Vyatkin, V., 2013. Towards implementation of Plug-and-Play and
distributed HMI for the FREEDM system with IEC 61499. IECON Proceedings
(Industrial Electronics Conference), pp.5347–5353.

Zhang, J., Khalgui, M., Li, Z., Frey, G., Mosbahi, O. & Salah, H. Ben, 2015. Reconfigurable
Coordination of Distributed Discrete Event Control Systems. In IEEE Transactions
on Control Systems Technology. pp. 323–330.

Zhou, B., Li, C. & Zhao, X., 2007. FIPA agent-based control system design for FMS. The
International Journal of Advanced Manufacturing Technology, 31(9–10), pp.969–
977.

GLOSSARY

Glossary

i

Glossary
ACC - Agent Communication Channel

ACL - Agent Communication Language

AML - Automation ML

AMS - Agent Management System

CAEX - Computer Aided Engineering eXchange

CA - Controller Agents

D&D - Diagnosis&Decision

DF - Directory Facilitator

FAF - Flexible Automation Framework

FAM - Flexible Automation Middleware

FAPS - Flexible Automation Production System

FB - Function Block

FIPA - Foundation for Intelligent Physical Agents

FSM - Finite State Machine

IE - Internal Element

JADE - Java Agent DEvelopment Framework

M2M - Model to Model

Glossary

ii

M2T - Model to Text

MAS - Multi Agent Systems

MC - Mechatronic Component

MCA - Mechatronic Component Agents

MDD - Model-Driven Design

MDE - Model-Driven Engineering

MM - Middleware Manager

QM - Quality of Service Monitor

QoS - Quality of Service

SCI - Source Code Insertion

SOA - Service Oriented Architecture

SUC - System Unit Classes

SysML - Systems Modeling Language

UML - Unified Modelling Language

XML - eXtensible Markup Language

