7,550 research outputs found

    The pros and cons of using SDL for creation of distributed services

    Get PDF
    In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic systemā€™ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the Kingā€™s College hospital accident and emergency (A&E) departmentā€™s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Consistency in Multi-Viewpoint Architectural Design of Enterprise Information Systems

    Get PDF
    Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coherent design this paper presents a framework that aids in specifying relations between such views. To help produce a consistent design the framework also aids in specifying consistency rules that apply to the view relations and in checking the consistency according to those rules. The framework focuses on the higher levels of abstraction in a design, we refer to design at those levels of abstraction as architectural design. The highest level of abstraction that we consider is that of business process design and the lowest level is that of software component design. The contribution of our framework is that it provides a collection of basic concepts that is common to viewpoints in the area of enterprise information systems. These basic concepts aid in relating viewpoints by providing: (i) a common terminology that helps stakeholders to understand each others concepts; and (ii) a basis for defining re-usable consistency rules. In particular we define re-usable rules to check consistency between behavioural views that overlap or are a refinement of each other. We also present an architecture for a tool suite that supports our framework. We show that our framework can be applied, by performing a case study in which we specify the relations and consistency rules between the RM-ODP enterprise, computational and information viewpoints

    Towards Model Checking Executable UML Specifications in mCRL2

    Get PDF
    We describe a translation of a subset of executable UML (xUML) into the process algebraic specification language mCRL2. This subset includes class diagrams with class generalisations, and state machines with signal and change events. The choice of these xUML constructs is dictated by their use in the modelling of railway interlocking systems. The long-term goal is to verify safety properties of interlockings modelled in xUML using the mCRL2 and LTSmin toolsets. Initial verification of an interlocking toy example demonstrates that the safety properties of model instances depend crucially on the run-to-completion assumptions

    Enriching OCL Using Observational Mu-Calculus

    Get PDF
    Abstract. The Object Constraint Language is a textual specificatio

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Model-driven design, simulation and implementation of service compositions in COSMO

    Get PDF
    The success of software development projects to a large extent depends on the quality of the models that are produced in the development process, which in turn depends on the conceptual and practical support that is available for modelling, design and analysis. This paper focuses on model-driven support for service-oriented software development. In particular, it addresses how services and compositions of services can be designed, simulated and implemented. The support presented is part of a larger framework, called COSMO (COnceptual Service MOdelling). Whereas in previous work we reported on the conceptual support provided by COSMO, in this paper we proceed with a discussion of the practical support that has been developed. We show how reference models (model types) and guidelines (design steps) can be iteratively applied to design service compositions at a platform independent level and discuss what tool support is available for the design and analysis during this phase. Next, we present some techniques to transform a platform independent service composition model to an implementation in terms of BPEL and WSDL. We use the mediation scenario of the SWS challenge (concerning the establishment of a purchase order between two companies) to illustrate our application of the COSMO framework

    Towards a design-by-contract based approach for realizable connector-centric software architectures

    Get PDF
    Despite being a widely-used language for specifying software systems, UML remains less than ideal for software architectures. Architecture description languages (ADLs) were developed to provide more comprehensive support. However, so far the application of ADLs in practice has been impeded by at least one of the following problems: (i) advanced formal notations, (ii) lack of support for complex connectors, and (iii) potentially unrealizable designs. In this paper we propose a new ADL that is based on Design-by-Contract (DbC) for specifying software architectures. While DbC promotes a formal and precise way of specifying system behaviours, it is more familiar to practising developers, thus allowing for a more comfortable way of specifying architectures than using process algebras. Furthermore, by granting connectors a first-class status, our ADL allows designers to specify not only simple interaction mechanisms as connectors but also complex interaction protocols. Finally, in order to ensure that architectural designs are always realizable we eliminate potentially unrealizable constructs in connector specifications (the connector ā€œglueā€)
    • ā€¦
    corecore