595 research outputs found

    Advanced predictive quality control strategy involving different facilities

    Get PDF
    There are many industries that use highly technological solutions to improve quality in all of their products. The steel industry is one example. Several automatic surface-inspection systems are used in the steel industry to identify various types of defects and to help operators decide whether to accept, reroute, or downgrade the material, subject to the assessment process. This paper focuses on promoting a strategy that considers all defects in an integrated fashion. It does this by managing the uncertainty about the exact position of a defect due to different process conditions by means of Gaussian additive influence functions. The relevance of the approach is in making possible consistency and reliability between surface inspection systems. The results obtained are an increase in confidence in the automatic inspection system and an ability to introduce improved prediction and advanced routing models. The prediction is provided to technical operators to help them in their decision-making process. It shows the increase in improvement gained by reducing the 40 % of coils that are downgraded at the hot strip mill because of specific defects. In addition, this technology facilitates an increase of 50 % in the accuracy of the estimate of defect survival after the cleaning facility in comparison to the former approach. The proposed technology is implemented by means of software-based, multi-agent solutions. It makes possible the independent treatment of information, presentation, quality analysis, and other relevant functions

    Clustering of Steel Strip Sectional Profiles Based on Robust Adaptive Fuzzy Clustering Algorithm

    Get PDF
    In this paper, the intelligent techniques are applied to enhance the quality control precision in the steel strip cold rolling production. Firstly a new control scheme is proposed, establishing the classifier of the steel strip cross-sectional profiles is the core of the system. The fuzzy clustering algorithm is used to establish the classifier. Secondly, a novel fuzzy clustering algorithm is proposed and used in the real application. The results, under the comparisons with the results obtained by the conventional fuzzy clustering algorithm, show the new algorithm is robust and efficient and it can not only get better clustering prototypes, which are used as the classifier, but also easily and effectively detect the outliers; it does great help in improving the performances of the new system. Finally, it is pointed out that the new algorithm's efficiency is mainly due to the introduction of a set of adaptive operators which allow for treating the different influences of data objects on the clustering operations; and in nature, the new fuzzy algorithm is the generalized version of the existing fuzzy clustering algorithm

    Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data

    Full text link
    [EN] Advanced statistical models can help industry to design more economical and rational investment plans. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing. Increasingly stringent quality requirements in the automotive industry also require ongoing efforts in process control to make processes more robust. Robust methods for estimating the quality of galvanized steel coils are an important tool for the comprehensive monitoring of the performance of the manufacturing process. This study applies different statistical regression models: generalized linear models, generalized additive models and classification trees to estimate the quality of galvanized steel coils on the basis of short time histories. The data, consisting of 48 galvanized steel coils, was divided into sets of conforming and nonconforming coils. Five variables were selected for monitoring the process: steel strip velocity and four bath temperatures. The present paper reports a comparative evaluation of statistical models for binary data using Receiver Operating Characteristic (ROC) curves. A ROC curve is a graph or a technique for visualizing, organizing and selecting classifiers based on their performance. The purpose of this paper is to examine their use in research to obtain the best model to predict defective steel coil probability. In relation to the work of other authors who only propose goodness of fit statistics, we should highlight one distinctive feature of the methodology presented here, which is the possibility of comparing the different models with ROC graphs which are based on model classification performance. Finally, the results are validated by bootstrap procedures.The authors are indebted to the anonymous referees whose suggestions improved the original manuscript. This work was supported by a grant from PAID-06-08 (Programa de Apoyo a la Investigacion y Desarrollo) of the Universitat Politecnica de Valencia.DebĂłn Aucejo, AM.; GarcĂ­a-DĂ­az, JC. (2012). Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data. Reliability Engineering and System Safety. 100:102-114. https://doi.org/10.1016/j.ress.2011.12.022S10211410

    A surface defect detection method of steel plate based on YOLOV3

    Get PDF
    At present, the steel plate surface defect detection technology based on machine vision and convolutional neural network (CNN) has achieved good results. However, these models are mostly two-stage methods, extracting features first and then classifying them, which is slow and inaccurate. Therefore, this paper proposes a single-stage surface defect detection method of steel plate based on yolov3, which can classify defects, determine the location of defects, and greatly improve the detection speed. It is of great significance to realize the automation of cold rolling production line. The experiment shows that the detection speed of this model reaches 62 fps and the accuracy reaches 73 %, which has a good prospect in industry

    A surface defect detection method of steel plate based on YOLOV3

    Get PDF
    At present, the steel plate surface defect detection technology based on machine vision and convolutional neural network (CNN) has achieved good results. However, these models are mostly two-stage methods, extracting features first and then classifying them, which is slow and inaccurate. Therefore, this paper proposes a single-stage surface defect detection method of steel plate based on yolov3, which can classify defects, determine the location of defects, and greatly improve the detection speed. It is of great significance to realize the automation of cold rolling production line. The experiment shows that the detection speed of this model reaches 62 fps and the accuracy reaches 73 %, which has a good prospect in industry

    Towards A Computational Intelligence Framework in Steel Product Quality and Cost Control

    Get PDF
    Steel is a fundamental raw material for all industries. It can be widely used in vari-ous fields, including construction, bridges, ships, containers, medical devices and cars. However, the production process of iron and steel is very perplexing, which consists of four processes: ironmaking, steelmaking, continuous casting and rolling. It is also extremely complicated to control the quality of steel during the full manufacturing pro-cess. Therefore, the quality control of steel is considered as a huge challenge for the whole steel industry. This thesis studies the quality control, taking the case of Nanjing Iron and Steel Group, and then provides new approaches for quality analysis, manage-ment and control of the industry. At present, Nanjing Iron and Steel Group has established a quality management and control system, which oversees many systems involved in the steel manufacturing. It poses a high statistical requirement for business professionals, resulting in a limited use of the system. A lot of data of quality has been collected in each system. At present, all systems mainly pay attention to the processing and analysis of the data after the manufacturing process, and the quality problems of the products are mainly tested by sampling-experimental method. This method cannot detect product quality or predict in advance the hidden quality issues in a timely manner. In the quality control system, the responsibilities and functions of different information systems involved are intricate. Each information system is merely responsible for storing the data of its corresponding functions. Hence, the data in each information system is relatively isolated, forming a data island. The iron and steel production process belongs to the process industry. The data in multiple information systems can be combined to analyze and predict the quality of products in depth and provide an early warning alert. Therefore, it is necessary to introduce new product quality control methods in the steel industry. With the waves of industry 4.0 and intelligent manufacturing, intelligent technology has also been in-troduced in the field of quality control to improve the competitiveness of the iron and steel enterprises in the industry. Applying intelligent technology can generate accurate quality analysis and optimal prediction results based on the data distributed in the fac-tory and determine the online adjustment of the production process. This not only gives rise to the product quality control, but is also beneficial to in the reduction of product costs. Inspired from this, this paper provide in-depth discussion in three chapters: (1) For scrap steel to be used as raw material, how to use artificial intelligence algorithms to evaluate its quality grade is studied in chapter 3; (2) the probability that the longi-tudinal crack occurs on the surface of continuous casting slab is studied in chapter 4;(3) The prediction of mechanical properties of finished steel plate in chapter 5. All these 3 chapters will serve as the technical support of quality control in iron and steel production

    Sliding window filter based strip breakage modelling for failure prediction

    Get PDF
    In the production of cold-rolled strip products, strip breakage is one of the most common failures during the cold rolling process. However, the existing prediction models on strip breakage use the conventional sliding window algorithm to process the time series data collected from the actual production, resulting in a massive amount of non-informative data, which increases the computational cost for data-driven modelling. In order to tackle this issue, this article proposed a sliding window filter method to optimise the data pre-processing of the strip breakage. Firstly, based on the existing research and understanding of strip breakage, the data characteristics in the process of strip breakage was analysed. Based on the analysis, sample variance (VAR) and length normalised complexity estimate (LNCE) were chosen to determine how informative the time window was related to strip breakage. Secondly, compared with the conventional sliding window approach, the sliding windows were classified through a filter using VAR and LNCE. Thirdly, the filtered data was fed into the Recurrent Neural Network (RNN) for strip breakage modelling. An experimental study based on actual production data collected by a cold-rolled strip manufacturer was conducted to verify this method's effectiveness. The results show that pre-processing data using the sliding window filter decreases the model's computational cost

    Approach for Improved Signal-Based Fault Diagnosis of Hot Rolling Mills

    Get PDF
    Der hier vorgestellte Ansatz ist in der Lage, zwei spezifische schwere Fehler zu erkennen, sie zu identifizieren, zwischen vier verschiedenen Systemzuständen zu unterscheiden und eine Prognose bezüglich des Systemverhaltens zu geben. Die vorliegende Arbeit untersucht die Zustandsüberwachung des komplexen Herstellungsprozesses eines Warmbandwalzwerks. Eine signalbasierte Fehlerdiagnose und ein Fehlerprognoseansatz für den Bandlauf werden entwickelt. Eine Literaturübersicht gibt einen Überblick über die bisherige Forschung zu verwandten Themen. Es wird gezeigt, dass die große Anzahl vorheriger Arbeiten diese Thematik nicht gelöst hat und dass weitere Untersuchungen erforderlich sind, um eine zufriedenstellende Lösung der behandelten Probleme zu erhalten. Die Entwicklung einer neuen Signalverarbeitungskette und die Signalverarbeitungsschritte sind detailliert dargestellt. Die Klassifikationsaufgabe wird in Fehlerdiagnose, Fehleridentifikation und Fehlerprognose differenziert. Der vorgeschlagene Ansatz kombiniert fünf verschiedene Methoden zur Merkmalsextraktion, nämlich Short-Time Fourier Transformation, kontinuierliche Wavelet Transformation, diskrete Wavelet Transformation, Wigner-Ville Distribution und Empirical Mode Decomposition, mit zwei verschiedenen Klassifikationsalgorithmen, nämlich Support-Vektor Maschine und eine Variation der Kreuzkorrelation, wobei letztere in dieser Arbeit entwickelt wurde. Kombinationen dieser Merkmalsextraktion und Klassifikationsverfahren werden an Walzkraft-Daten aus einer Warmbreitbandstraße angewendet.The approach introduced here is able to detect two specific severe faults, to identify them, to distinguish between four different system states, and to give a prognosis on the system behavior. The presented work investigates the condition monitoring of the complex production process of a hot strip rolling mill. A signal-based fault diagnosis and fault prognosis approach for strip travel is developed. A literature review gives an overview about previous research on related topics. It is shown that the great amount of previous work does not cope with the problems treated in this work and that further investigation is necessary to provide a satisfactory solution. The design of a new signal processing chain is presented and the signal processing steps are detailed. The classification task is differentiated into fault detection, fault identification and fault prognosis. The proposed approach combines five different methods for feature extraction, namely short time Fourier transform, continuous wavelet transform, discrete wavelet transform, Wigner-Ville distribution, and empirical mode decomposition, with two different classification algorithms, namely support vector machine and a variation of cross-correlation, the latter developed in this work. Combinations of these feature extraction and classification methods are applied to rolling force data originating from a hot strip mill
    • …
    corecore