
  

  

Abstract— In the production of cold-rolled strip products, 

strip breakage is one of the most common failures during the 

cold rolling process. However, the existing prediction models on 

strip breakage use the conventional sliding window algorithm to 

process the time series data collected from the actual production, 

resulting in a massive amount of non-informative data, which 

increases the computational cost for data-driven modelling. In 

order to tackle this issue, this article proposed a sliding window 

filter method to optimise the data pre-processing of the strip 

breakage. Firstly, based on the existing research and 

understanding of strip breakage, the data characteristics in the 

process of strip breakage was analysed. Based on the analysis, 

sample variance (VAR) and length normalised complexity 

estimate (LNCE) were chosen to determine how informative the 

time window was related to strip breakage. Secondly, compared 

with the conventional sliding window approach, the sliding 

windows were classified through a filter using VAR and LNCE. 

Thirdly, the filtered data was fed into the Recurrent Neural 

Network (RNN) for strip breakage modelling. An experimental 

study based on actual production data collected by a cold-rolled 

strip manufacturer was conducted to verify this method's 

effectiveness. The results show that pre-processing data using 

the sliding window filter decreases the model's computational 

cost. 

I. INTRODUCTION 

Cold rolling is an indispensable process in steel 
production. In this process, the steel strip enters the cold rolling 
mill, and its thickness is gradually reduced to the required size 
under the vast pressure of the rollers. In the production process 
of high silicon steel, cold rolling reduces the steel strip's 
thickness by 90% [1]. Because pressure on the steel strip and 
the amount of deformation during this process are enormous, 
strip breakage often occurs. Strip breakage (strip snap) is one 
of the most frequent failures in cold rolling [2]. This failure not 
only damages the working equipment and steel strip but also 
causes long-term work stagnation and ultimately reduces 
production efficiency [3].  

There have been many studies investigating strip breakage 
causes in recent years. However, these mainly focus on 
analysing the problem using metallurgy or mechanical theory 
[2, 4]. With the widespread use of sensors in the production 
process, it is now possible to use data analysis to detect and 
prevent failures [5]. Meanwhile, with the continuous 
development of information technology, analysis of big data 
has become very common [3, 6]. In large-scale industrial 
production such as the steel industry, data analysis has begun 
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to be widely used. However, because the amount of data 
collected in production is tremendous and contains a massive 
amount of irrelevant data, data analysis often requires a lot of 
computing time. At the same time, the data collected by 
sensors is usually time-series data. For the analysis of this type 
of data, studies using the sliding window algorithm were 
proposed. However, to better reflect the data's characteristics, 
these studies have selected many variables, which further 
increase the complexity of the data, thereby increasing the 
computing time and complexity. 

With the aim of analysing big data in industrial production 
and eliminate irrelevant data, this paper proposes a method of 
pre-processing data using a sliding window filter to reduce the 
computing time. Regarding the failure analysis, typically, the 
amount of failure data is often much less than that of normal 
operation data, which results in a data imbalance problem. In 
previous studies, the sliding window algorithm was used to 
solve the data imbalance problem [7]. By adding a sliding 
window filter, the balance of data can be better improved [8]. 
Since the failure occurs suddenly, it will bring a sudden change 
in the data. Therefore, selecting a suitable filter based on this 
mutation can effectively eliminate data with nothing to do with 
the fault and reduce the total data amount [9].  

The structure of this article is as follows. In Section 2, a 
review of strip breakage in cold rolling and strip breakage 
modelling is addressed, followed by a review on using the 
sliding window for data filtering. Subsequently, the 
methodology of using a sliding window filter to modelling and 
analysing strip breakage in the cold rolling process is proposed 
in Section 3. A case study using real-world cold rolling process 
data is reported in Section 4. This case study's primary purpose 
is to evaluate through experiments whether the performance of 
data analysis and computing time has been improved after 
using the sliding window filter. Finally, Section 6 presents the 
conclusions and future work of this article. 

II. LITERATURE REVIEW 

A. Strip breakage in cold rolling 

Cold rolling is a steel manufacturing process. This 
process's primary purpose is to reduce the thickness of the steel 
strip entering the machine to achieve a required thickness [4]. 
This process can create anisotropy for the steel in the rolling 
direction and increase the material's strength by 20% [10].
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 Moreover, this method can improve the material's surface 
roughness, thereby increasing the material's dimensional 
tolerance. Compared with hot rolling, cold rolling can produce 
thinner and more precise plates, bars and materials. 

Cold rolling processes the incoming strip into a thinner 
material by applying tremendous pressure. However, due to 
the enormous stress imposed on the material, sometimes there 
is an uneven force problem. Simultaneously, the material 
undergoes massive deformation during this process, so the 
strip often breaks. This phenomenon is called strip 
breakage [11].  

This failure will have a severe impact on the production 
process. First of all, due to the steel's fracture, the steel's 
mechanical properties are significantly reduced, which cannot 
meet the production requirements, and the entire steel coil 
needs to be reheated, which causes serious waste [12]. 
Secondly, when a strip breakage occurs, the steel plate 
subjected to enormous pressure and tension will instantly fly 
out of the rolling mill, which will cause serious safety hazards 
and cause severe damage to work equipment. To ensure 
smooth production, after the strip breakage occurs, the factory 
needs to conduct a comprehensive inspection of all equipment 
to remove hidden dangers, which further reduces production 
efficiency [13]. 

Since strip breakage is the most common failure in the cold 
rolling process, there have been many studies on its causes. 
These studies mainly divided the causes of strip breakage into 
four categories: equipment failure, improper setting of rolling 
parameters, material defects and improper operation [14]. 
These studies identified equipment failure as the leading cause 
of strip breakage. In the production process, when the servo 
valve fails, unbalanced tension will be generated between the 
machine frames, causing the steel strip to be squeezed and 
broken [15]. Rolling parameters will have a significant impact 
on the entire process. For example, the feed parameters in the 
cold rolling process will seriously affect the smoothness of the 
material, which is also one reason for strip breakage. Material 
defects are mainly reflected in flatness defects. When the steel 
enters the rolling equipment, if its flatness is not high enough 
and the material cannot wholly contact the rolling mill, 
shifting, strip breakage, and axial forces will occur. At present, 
most of the rolling mills used in production are automated. In 
this case, there are fewer strip breakages caused by improper 
operation. However, some failures caused by workers not 
aligning the steel strip into the machine have also occurred. 

B. Previous studies on strip breakage modelling 

In the past few decades, many models of cold rolling 
processes have been developed and proposed. Most of the 
earliest cold rolling process models are constructed based on 
rolling parameters, such as rolling force, strip tension and 
some operating parameters [16]. The cold-rolling model based 
on rolling parameters developed by Orowan is a 
representative.  These models analyse the productivity, quality 
and failures in cold rolling based on the conventional rolling 
force formula [10].  

However, due to the cold rolling process's complexity, 
especially with the widespread application of sensors, more 
and more relevant data collected during the cold rolling 
process, the reasonable approximation provided by the 

conventional rolling force formula can no longer meet the 
requirements [17]. Some researchers have begun to apply data 
analysis methods to strip breakage modelling in recent years 
[18]. The data collected in production, such as friction 
conditions, roll pressure, and temperature, often vary greatly, 
so theoretical analysis is challenging, and it is complicated to 
analyse these factors using formulas [19].  

In some models, the researchers integrated rolling principle 
analysis and data analysis methods. First, in data pre-
processing, the relevant features are selected according to the 
principle. Then further data analysis is used to obtain the most 
relevant features of strip breakage, and finally, a model is 
established based on these features [20]. This method was used 
to determine the 20 features that are most relevant to strip 
breakage during cold rolling [21]. 

The author of this paper also used this method to establish 
a strip breakage analysis and prediction model in the previous 
study [19]. The model is based on the analysis of the existing 
features. According to the various data analysis methods used, 
different features are selected for modelling, and the results are 
compared.  

C. Using the sliding window for time-series data analysis 

In the failure detection research, because the amount of 
failure data is less than that of normal data, a skewed 
distribution exists. A skewed distribution means that there is 
much more data in a specific class in the data set than in other 
classes [22]. This distribution can lead to severe data 
imbalance problems [23]. Simultaneously, since data collected 
in actual production are usually sampling points, not time 
series data, it will bring a lot of inconvenience in the analysis 
process [24]. Therefore, to reduce the amount of data, solve 
the data imbalance problem, and convert the data into time-
series data, the sliding window algorithm is used by some 
researchers. 

The method of combining several specific data in the raw 
data set into a new window to reduce the total amount of data 
is called the window algorithm [25]. When studying 
multivariate time series data, researchers usually integrate 
several continuous data into a new set of windows to better 
study the data's characteristics. These continuous data's 
characteristic values, such as maximum value, minimum value 
and sum, will become the new window's value [26].  

The sliding window algorithm is a method of processing 
and transforming data one by one through a certain window 

Figure 1.    Sliding Window Technique 

 



  

size. As illustrated in Fig.1, assuming that the given window 
size is 3, the window starts from the first element of the data 
group and slides to the right one element at a time. It can be 
found that each element in the raw data will appear three times 
(the window length), so it will reflect the raw data's 
characteristics well [27].  

III. METHODOLOGY 

With the aim of reducing the total amount of data and 
computing time, a sliding window filter is used to filter the data 
further, and model analysis is established based on the 
processed data.  First of all, this article selects the appropriate 
filter based on the actual situation of strip breakage. Then, the 
time series data is classified using a sliding window filter. 
Finally, the RNN-based data analysis model is established and 
evaluated. The flow chart of proposed method is shown in 
Figure 2. 

A. Construction of the sliding window filter 

Usually, the conventional sliding window needs to 
consider all the measured values in the data set. The number 
of windows will change with the window size and window step 
length, which will significantly increase the calculation 
amount. 

Fig.3 is part of the data collected during the cold rolling 
process of a factory. The features shown in the figure are the 
most relevant features of strip breakage based on previous 
studies [28]. Among them, when Fast Stop changes from 0 to 

1, that is, when the red line at the bottom has a sudden change, 
it represents strip breakage. It can be found that before the strip 
breakage occurs, these features have begun to fluctuate 
sharply. According to the failure principle analysis, the 
occurrence of strip breakage is damage to the steady-state, so 
there must be parameter fluctuations. Therefore, the data 
fluctuation size can be used as an index to filter out the data 
most relevant to strip breakage. Similarly, this method can also 
be used in other failure predictions. 

To reduce computing time, solve the data imbalance 
problem, and comprehensively analyse the failure data in the 
manufacturing process, this paper proposes a sliding window 
filter, which can effectively remove data that is not related to 
failure from the raw data and only retains failure related data. 
From this point of view, this filter can be regarded as a binary 
classifier. This classifier divides the data into two categories, 
related and irrelevant, according to selected features. Many 
filter candidates, including statistical measures, such as the 
sample variance (VAR) and length normalised complexity 
estimate (LNCE), are suitable to achieve this goal [29].  

When given a time series 𝑄 =  (𝑞1, . . . ,  𝑞𝑛) with length n, 
VAR and LNCE can be defined as follows: 

𝑉𝐴𝑅(𝑄) =
1

𝑛
∑ (𝑞𝑖 − 𝜇)2𝑛

𝑖=1                                             (1) 

𝐿𝑁𝐶𝐸(𝑄) =
1

𝑛−1
√∑ (𝑞𝑖 − 𝑞𝑖+1)2𝑛−1

𝑖=1                              (2) 

Among them, 𝜇 is the average value of this time series 
data. VAR and LNCE can respectively represent the degree of 
change of the window itself and the difference between it and 
the overall trend. After defining the statistical indicators, the 
statistical results of VAR and LNCE for all training sets can 
be obtained to determine the appropriate range for 
classification. 

Since all windows will be calculated and classified by this 
classifier, to avoid the possible excessive pruning of relevant 
data, a multiplication factor 𝑚 will be introduced in Chapter 
IV, which allows the filter to expand the filtering range. 

 

Figure 2.    Methodology flowchart 

 

Figure 3.    Example of cold rolling process data before strip 

breakage (ibaAnalyzer) 



  

B. Classifying time series data using sliding window filter 

  After determining the filter index, the time series data 
were screened, first, converting the data collected in 
production into windows and then filtering each set of data and 
preliminarily classifying them into relevant and irrelevant. 
After that, by comparing the size of the two sets, the 
appropriate multiplication factor 𝑚 was determined. 

C. Modelling strip breakage based on RNN 

This study uses the Recurrent Neural Network (RNN) 
algorithm to establish a data analysis model to verify the 
proposed methodology's effectiveness. RNN is a recurrent 
neural network that takes sequence data as input, recursively 
in the direction of sequence evolution, and all nodes (cyclic 
units) are connected in a chain [30]. Because RNN can retain 
the recent memory of input data and fully mine the information 
of multivariate time series data, it is widely used in time series 
processing [21]. 

IV. CASE STUDY 

 The data for this case study was provided by a high-silicon 

electrical steel production factory. In the plant's cold rolling 

process, the steel strip is rolled back and forth five times 

through a reversible rolling mill. Since this process will 

reduce the thickness of high silicon steel by 90%, strip 

breakage often occurs. The factory engineer marked the coil 

data where the strip breakage occurred. The author of this 

conference paper has used some data analysis methods to 

analyse the data and established a model that can be used to 

predict strip breakage in the previous study [21]. However, 

since the methods used are relatively rudimentary, and the 

sliding window does not entirely solve the data imbalance 

problem, these experiments are only for reference. 

 The purpose of establishing this experiment is to prove that 

the sliding window filter can reduce the computing time of 

model building and improve the data imbalance problem. 

With the aim of quantifying the decrease in computing time, 

this study compared the time it takes to train a model using 

the RNN-based algorithm with and without the filter. Also, 

this article introduces the area under the ROC curve (AUC) to 

evaluate the improvement effect of the filter on the data 

imbalance problem. This indicator is widely used to compare 

and evaluate the data imbalance of models [31].  

  As mentioned above, Fast Stop can be used to determine 

whether a strip breakage has occurred. However, since this 

article aims to establish a failure prediction model, the data 

that the established model needs to predict should be before 

the failure occurs. To achieve this, the sampling points within 

0.5 seconds before the strip breakage occurs is marked as the 

Pre-Snap point, and a model for analysing the Pre-Snap data 

is constructed. 

A. Data collection and description 

The data used in this case study is the actual production 
data collected by Production Data Acquisition (PDA) 
equipment. PDA is a collection system that can collect more 
than 1,000 cold rolling parameters, including setting values, 
operating variables and variables in the production process. 
These data are collected 100 times (100 sampling points) per 
second in real-time. 

Although the collected data contains more than 1,000 
process variables in the cold rolling process, according to the 
previous study [21], 11 variables that are most relevant to cold 
rolling have been selected, as shown in Table 1. 

B. Data pre-processing 

The collected data is the raw time-series data from the PDA 
system directly. These raw data need to transfer into windows 
before applying the sliding window filter. In each coil of steel 
strip, all the data in the 5 seconds before the stirp breakage 
happens is collected. As mentioned earlier, each set of data 
contains 500 sampling points, and 50 of them are marked as 
Pre-Snap points. This experiment collected 137 coils during 
the year 2017 and 2018. Among these coils, 100 were used as 
the training set, and the remaining were used as the test set. 

        First, the sliding window algorithm is applied to the raw 
data. This article compares the windows obtained by setting 
the window length from 5 to 500. After comparing different 
window length settings, the imbalance problem of the new 
window data, and the degree of response to the raw data 
characteristics, 200 was chosen as the window length. After 
applying the sliding window algorithm, 50 sets of windows 

Variable Name Description 

Entry Strip Speed(m/min) Speed of steel strip entry 

Exit Strip Speed(m/min) Speed of steel strip left 

Exit Gauge Deviation(mm) 
At the exit of the machine, the thickness 

deviation of the steel coil 

Eccentricity trim(mm) 
Correction parameters used to keep the 

roller circular 

Servo Total Load Feedback Pressure on steel coil 

Front Capsule Force (Raw) Force on the strip coil of the front capsule 

Back Capsule Force (Raw) Force on the strip coil of the back capsule 

LR Tension 
The tension of the strip on the left side of 

the machine 

RR Tension 
The tension of the strip on the right side 

of the machine 

Fast Stop 
Machine emergency stop status indication 
1: Emergency stop 0: Normal operation 

Measured Slip (%) 
Displacement ratio between strip coil and 

machine 

Sum The sum of each feature in the window 

Mean The average of each feature in the window 

Min The minimum of each feature in the window 

Max The maximum of each feature in the window 

Median 
When the feature values are arranged in order of size, 

the middle value 

Std The standard deviation of each feature 

 SELECTED VARIABLES  

 

 WINDOW FEATURES 

 



  

contain Pre-Snap points, marked as Pre-Snap data, and 251 
windows do not contain this point and are marked as Normal 
data. Also, to use the conventional machine-learning algorithm 
to build models, this article extracts window features. This 
paper extracts six window features that best represent raw data 
characteristic, as shown in Table 2. 

Two different window sets are established, filtered and 
unfiltered, to study the sliding window filter's effect on the 
model.  

The first set of windows will pass through the sliding 
window filter, and the 𝑉𝐴𝑅 and 𝐿𝑁𝐶𝐸  of each roll of steel 
strip data(marked as 𝑉𝐴𝑅1 and 𝐿𝑁𝐶𝐸1)  and in each window 
(marked as 𝑉𝐴𝑅2  and 𝐿𝑁𝐶𝐸2 )  are calculated, respectively. 
Since VAR and LNCE can respectively reflect the fluctuation 
difference between windows and raw data, it is necessary to 
synthesise the two indices for judgment. 

If the VAR and LNCE of the window are more significant 
than the raw data set, these window data are considered to be 
related to strip breakage. Otherwise, they are irrelevant to strip 
breakage. 

However, because the windows that can pass through this 
filter are too few in the application process, there is an 
excessive pruning problem. Therefore, this article introduces 
multiplication factor 𝑚 to increase the amount of data passing 
through the filter. Since this experiment selected 11 various 
features, it was found that when multiple features are filtered, 
the amount of data passing through the filter will be reduced. 
This article compares the total amount of data obtained when 
different numbers of features pass the filter and finally 
determines that when any three or more features can pass the 
filter, the data is retained. After comparing the filtering 
performance of the filter under different parameters, 0.8 is 
selected as the value of 𝑚. When 𝑚 is less than 0.8, the filter 
cannot filter irrelevant data. When 𝑚 is greater than 0.8, the 
filter will also remove part of the Pre-Snap data. 

Finally, the filtering rules used to determine the filter group 
data are as follows: 

𝑉𝐴𝑅2 > 𝑚 × 𝑉𝐴𝑅1                                                            (3) 

𝐿𝑁𝐶𝐸2 > 𝑚 × 𝐿𝑁𝐶𝐸1                                                       (4) 

   The ratio of Pre-Snap windows to Normal windows is 
50:251 in the raw data. After applying the filter, this ratio is 

reduced to 6802:17927. At the same time, the overall data 
volume has been reduced by nearly 40%. The second set of 
windows did not pass the filter and was directly used for 
modelling. 

C. Experiments 

In order to study the influence of the filter on the model, 
two experimental scenarios are designed in this Case Study. 
The first experimental scenario is based on conventional 
machine learning algorithms, using unfiltered and filtered data 
to build predictive models and compare various indicators of 
these models. The second scenario of experiments use RNN-
based algorithms to build models, and the performances are 
evaluated. 

In the first scenario, this article uses three conventional 
base classifiers to build models, which are J48, IBk and 
NaiveBayes. Besides, four ensemble classifiers, Random 
Forest, Bagging, AdaBoost and Vote, are also used to build 
models. Random Forest is the sub-model algorithm of 
Adaboost and Vote, which is the best algorithm selected based 
on previous experiments. 

In the second scenario, three RNN-based algorithms, 
RNN, LSTM, and GRU, are used to build predictive models. 
The advantage of RNN is that it can directly analyse the raw 
time-series data. However, since the current experiment data 
comes from multiple rolls of different steel strips, it is 
necessary to perform sequence to vector conversion on these 
data before they can be put into RNN for modelling. Each 
window data is regarded as a vector, and the overall data is 
analysed. The RNN model's EPOCH is set to 200, and the 
BATCH SIZE is set to 128 to better compare the improvement 
of computing time after applying the filter. 

D. Results and discussions 

The results of various data analysis models are shown in 
Table 3. It can be found that when analysing the windows after 
applying the filter, for most conventional machine learning 
algorithms, the data imbalance problem has been improved to 
a certain extent. The AUC of these models has been improved 
to varying degrees. At the same time, it can also be found that 
the time spent on training the model has been significantly 
reduced. This improvement is apparent in the construction of 
the RNN-based models. 

Data 

Entry 

Training 

scheme 
Algorithm ACC AUC 

Computing 

Time 
Data Entry 

Training 

scheme 
Algorithm ACC AUC 

Computing 

Time 

Raw 

Sliding 

Windows  

Extracted 

features + 

conventional 

base classifier 

J48 0.796 0.704 2.08s 

Filtered 

Windows  

Extracted 

features + 

conventional 

Base classifier 

J48 0.767 0.621 1.55s 

IBk 0.815 0.619 63.84s IBk 0.718 0.647 21.98s 

NaiveBayes 0.759 0.719 0.26s NaiveBayes 0.748 0.739 0.12s 

Extracted 

features + 

ensemble 

learning 

Random 

Forest 
0.856 0.820 8.44s 

Extracted 

features + 

ensemble 

learning 

Random 

Forest 
0.819 0.844 4.73s 

Bagging 0.821 0.790 6.49s Bagging 0.754 0.782 3.37s 

AdaBoost 0.872 0.817 8.54s AdaBoost 0.820 0.832 4.63s 

Vote 0.860 0.819 8.16s Vote 0.812 0.840 4.47s 

Time window + 

RNN-Based 

model 

RNN 0.886 0.813 7451.21s 
Time window 

+ RNN-Based 

model 

RNN 0.873 0.853 3325.30s 

LSTM 0.912 0.819 7324.86s LSTM 0.906 0.846 3168.13s 

GRU 0.906 0.835 7550.92s GRU 0.886 0.886 3360.21s 

 RESULTS OF THE EXPERIMENTS 

 



  

However, it can be found from the results that the accuracy 
of these models has been partially reduced. There are two 
main reasons. Firstly, the filter reduces the amount of overall 
data, leading to a decrease in accuracy. The second is that the 
amount of data used in this experiment is not large enough, so 
this change in the amount of data has an obvious 
manifestation in the model's performance. This accuracy 
decrease is acceptable, considering the use of filters to 
improve the modelling rate. 

Moreover, it should be noted that for the RNN-based 
model, the accuracy drop caused by the sliding window filter 
is minimal. Since conventional machine learning algorithms 
usually require a short computing time, the sliding window 
filter cannot achieve a good performance improvement effect 
for models based on these algorithms. This filter is more 
effective for algorithms similar to RNN, whose accuracy is 
less affected by the total amount of data and has a long 
computing time. 

V. CONCLUSION 

In this work, a sliding window filter is proposed, which can 
improve the construction of failure prediction models. This 
filter compares the fluctuations of the window data and the 
original data, filters out the window data that is most relevant 
to the fault, and eliminates irrelevant data, thereby reducing 
computing time and improving data imbalance. 

The final test results show that this filter can effectively 
reduce the modelling process's computing time and improve 
most algorithms' data imbalance problem. For conventional 
machine learning algorithms, this method is not very 
practical. These algorithms have a relatively short operation 
time, and for some algorithms, the data imbalance problem 
after filtering is even more severe. For RNN-based 
algorithms, this filter has an excellent effect. It dramatically 
reduces the computing time and improves the data imbalance 
problem and does not cause a significant drop in accuracy. 

In future work, comparison and evaluation of more filter 
methods are planned to find a sliding window filter that is 
more suitable for the failure prediction model. 
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