919 research outputs found

    High-speed communication circuits: voltage control oscillators and VCO-derived filters

    Get PDF
    Voltage Controlled Oscillators (VCO) and filters are the two main topics of focus in this dissertation.;A temperature and process compensated VCO, which is designed to operate at 2 GHz, and whose frequency variation due to incoming data is limited to 1% of its center frequency was presented. The test results show that, without process changes present, the frequency variation due to a temperature change over 0°C to 100°C is around 1.1% of its center frequency. This is a reduction of a factor of 10 when compared to the temperature variation of a conventional VCO.;A new method of designing continuous-time monolithic filters derived from well-known voltage controlled oscillators (VCOs) was introduced. These VCO-derived filters are capable of operating at very high frequencies in standard CMOS processes. Prototype low-pass and band-pass filters designed in a TSMC 0.25 mum process are discussed. Simulation results for the low-pass filter designed for a cutoff frequency of 4.3 GHz show a THD of -40 dB for a 200 mV peak-peak sinusoidal input. The band-pass filter has a resonant frequency programmable from 2.3 GHz to 3.1 GHz, a programmable Q from 3 to 85, and mid-band THD of -40 dB for an 80 mV peak-peak sinusoidal input signal.;A third contribution in this dissertation was the design of a new current mirror with accurate mirror gain for low beta bipolar transistors. High mirror gain accuracy is achieved by using a split-collector transistor to compensate for base currents of the source-coupled

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    Integrated Distributed Amplifiers for Ultra-Wideband BiCMOS Receivers Operating at Millimeter-Wave Frequencies

    Get PDF
    Millimetre-wave technology is used for applications such as telecommunications and imaging. For both applications, the bandwidth of existing systems has to be increased to support higher data rates and finer imaging resolutions. Millimetrewave circuits with very large bandwidths are developed in this thesis. The focus is put on amplifiers and the on-chip integration of the amplifiers with antennas. Circuit prototypes, fabricated in a commercially available 130nm Silicon-Germanium (SiGe) Bipolar Complementary Metal-Oxide-Semiconductor (BiCMOS) process, validated the developed techniques. Cutting-edge performances have been achieved in the field of distributed and resonant-matched amplifiers, as well as in that of the antenna-amplifier co-integration. Examples are as follows: - A novel cascode gain-cell with three transistors was conceived. By means of transconductance peaking towards high frequencies, the losses of the synthetic line can be compensated up to higher frequencies. The properties were analytically derived and explained. Experimental demonstration validated the technique by a Traveling-Wave Amplifier (TWA) able to produce 10 dB of gain over a frequency band of 170GHz.# - Two Cascaded Single-Stage Distributed Amplifiers (CSSDAs) have been demonstrated. The first CSSDA, optimized for low power consumption, requires less than 20mW to provide 10 dB of gain over a frequency band of 130 GHz. The second amplifier was designed for high-frequency operation and works up to 250 GHz leading to a record bandwidth for distributed amplifiers in SiGe technology. - The first complete CSSDA circuit analysis as function of all key parameters was presented. The typical degradation of the CSSDA output matching towards high frequencies was analytically quantified. A balanced architecture was then introduced to retain the frequency-response advantages of CSSDAs and yet ensure matching over the frequency band of interested. A circuit prototype validated experimentally the technique. - The first traveling-wave power combiner and divider capable of operation from the MHz range up to 200 GHz were demonstrated. The circuits improved the state of the art of the maximum frequency of operation and the bandwidth by a factor of five. - A resonant-matched balanced amplifier was demonstrated with a centre frequency of 185 GHz, 10 dB of gain and a 55GHz wide –3 dB-bandwidth. The power consumption of the amplifier is 16.8mW, one of the lowest for this circuit class, while the bandwidth is the broadest reported in literature for resonant-matched amplifiers in SiGe technology

    CMOS Data Converters for Closed-Loop mmWave Transmitters

    Get PDF
    With the increased amount of data consumed in mobile communication systems, new solutions for the infrastructure are needed. Massive multiple input multiple output (MIMO) is seen as a key enabler for providing this increased capacity. With the use of a large number of transmitters, the cost of each transmitter must be low. Closed-loop transmitters, featuring high-speed data converters is a promising option for achieving this reduced unit cost.In this thesis, both digital-to-analog (D/A) and analog-to-digital (A/D) converters suitable for wideband operation in millimeter wave (mmWave) massive MIMO transmitters are demonstrated. A 2 76 bit radio frequency digital-to-analog converter (RF-DAC)-based in-phase quadrature (IQ) modulator is demonstrated as a compact building block, that to a large extent realizes the transmit path in a closed-loop mmWave transmitter. The evaluation of an successive-approximation register (SAR) analog-to-digital converter (ADC) is also presented in this thesis. Methods for connecting simulated and measured performance has been studied in order to achieve a better understanding about the alternating comparator topology.These contributions show great potential for enabling closed-loop mmWave transmitters for massive MIMO transmitter realizations

    A Low-Power BFSK/OOK Transmitter for Wireless Sensors

    Get PDF
    In recent years, significant improvements in semiconductor technology have allowed consistent development of wireless chipsets in terms of functionality and form factor. This has opened up a broad range of applications for implantable wireless sensors and telemetry devices in multiple categories, such as military, industrial, and medical uses. The nature of these applications often requires the wireless sensors to be low-weight and energy-efficient to achieve long battery life. Among the various functions of these sensors, the communication block, used to transmit the gathered data, is typically the most power-hungry block. In typical wireless sensor networks, transmission range is below 10 meters and required radiated power is below 1 milliwatt. In such cases, power consumption of the frequency-synthesis circuits prior to the power amplifier of the transmitter becomes significant. Reducing this power consumption is currently the focus of various research endeavors. A popular method of achieving this goal is using a direct-modulation transmitter where the generated carrier is directly modulated with baseband data using simple modulation schemes. Among the different variations of direct-modulation transmitters, transmitters using unlocked digitally-controlled oscillators and transmitters with injection or resonator-locked oscillators are widely investigated because of their simple structure. These transmitters can achieve low-power and stable operation either with the help of recalibration or by sacrificing tuning capability. In contrast, phase-locked-loop-based (PLL) transmitters are less researched. The PLL uses a feedback loop to lock the carrier to a reference frequency with a programmable ratio and thus achieves good frequency stability and convenient tunability. This work focuses on PLL-based transmitters. The initial goal of this work is to reduce the power consumption of the oscillator and frequency divider, the two most power-consuming blocks in a PLL. Novel topologies for these two blocks are proposed which achieve ultra-low-power operation. Along with measured performance, mathematical analysis to derive rule-of-thumb design approaches are presented. Finally, the full transmitter is implemented using these blocks in a 130 nanometer CMOS process and is successfully tested for low-power operation

    Time-based, Low-power, Low-offset 5-bit 1 GS/s Flash ADC Design in 65nm CMOS Technology

    Get PDF
    Low-power, medium resolution, high-speed analog-to-digital converters (ADCs) have always been important block which have abundant applications such as digital signal processors (DSP), imaging sensors, environmental and biomedical monitoring devices. This study presents a low power Flash ADC designed in nanometer complementary metal-oxide semiconductors (CMOS) technology. Time analysis on the output delay of the comparators helps to generate one more bit. The proposed technique reduced the power consumption and chip area substantially in comparison to the previous state-of-the-art work. The proposed ADC was developed in TSMC 65nm CMOS technology. The offset cancellation technique was embedded in the proposed comparator to decrement the static offset of the comparator. Moreover, one more bit was generated without using extra comparators. The proposed ADC achieved 4.1 bits ENOB at input Nyquist frequency. The simulated differential and integral non-linearity static tests were equal to +0.26/-0.17 and +0.22/-0.15, respectively. The ADC consumed 7.7 mW at 1 GHz sampling frequency, achieving 415 fJ/Convstep Figure of Merit (FoM)

    Robust Design With Increasing Device Variability In Sub-Micron Cmos And Beyond: A Bottom-Up Framework

    Full text link
    My Ph.D. research develops a tiered systematic framework for designing process-independent and variability-tolerant integrated circuits. This bottom-up approach starts from designing self-compensated circuits as accurate building blocks, and moves up to sub-systems with negative feedback loop and full system-level calibration. a. Design methodology for self-compensated circuits My collaborators and I proposed a novel design methodology that offers designers intuitive insights to create new topologies that are self-compensated and intrinsically process-independent without external reference. It is the first systematic approaches to create "correct-by-design" low variation circuits, and can scale beyond sub-micron CMOS nodes and extend to emerging non-silicon nano-devices. We demonstrated this methodology with an addition-based current source in both 180nm and 90nm CMOS that has 2.5x improved process variation and 6.7x improved temperature sensitivity, and a GHz ring oscillator (RO) in 90nm CMOS with 65% reduction in frequency variation and 85ppm/oC temperature sensitivity. Compared to previous designs, our RO exhibits the lowest temperature sensitivity and process variation, while consuming the least amount of power in the GHz range. Another self-compensated low noise amplifiers (LNA) we designed also exhibits 3.5x improvement in both process and temperature variation and enhanced supply voltage regulation. As part of the efforts to improve the accuracy of the building blocks, I also demonstrated experimentally that due to "diversification effect", the upper bound of circuit accuracy can be better than the minimum tolerance of on-chip devices (MOSFET, R, C, and L), which allows circuit designers to achieve better accuracy with less chip area and power consumption. b. Negative feedback loop based sub-system I explored the feasibility of using high-accuracy DC blocks as low-variation "rulers-on-chip" to regulate high-speed high-variation blocks (e.g. GHz oscillators). In this way, the trade-off between speed (which can be translated to power) and variation can be effectively de-coupled. I demonstrated this proposed structure in an integrated GHz ring oscillators that achieve 2.6% frequency accuracy and 5x improved temperature sensitivity in 90nm CMOS. c. Power-efficient system-level calibration To enable full system-level calibration and further reduce power consumption in active feedback loops, I implemented a successive-approximation-based calibration scheme in a tunable GHz VCO for low power impulse radio in 65nm CMOS. Events such as power-up and temperature drifts are monitored by the circuits and used to trigger the need-based frequency calibration. With my proposed scheme and circuitry, the calibration can be performed under 135pJ and the oscillator can operate between 0.8 and 2GHz at merely 40[MICRO SIGN]W, which is ideal for extremely power-and-cost constraint applications such as implantable biomedical device and wireless sensor networks

    Analysis of the high frequency substrate noise effects on LC-VCOs

    Get PDF
    La integració de transceptors per comunicacions de radiofreqüència en CMOS pot quedar seriosament limitada per la interacció entre els seus blocs, arribant a desaconsellar la utilització de un únic dau de silici. El soroll d’alta freqüència generat per certs blocs, com l’amplificador de potencia, pot viatjar pel substrat i amenaçar el correcte funcionament de l’oscil·lador local. Trobem tres raons importants que mostren aquest risc d’interacció entre blocs i que justifiquen la necessitat d’un estudi profund per minimitzar-lo. Les característiques del substrat fan que el soroll d’alta freqüència es propagui m’és fàcilment que el de baixa freqüència. Per altra banda, les estructures de protecció perden eficiència a mesura que la freqüència augmenta. Finalment, el soroll d’alta freqüència que arriba a l’oscil·lador degrada al seu correcte comportament. El propòsit d’aquesta tesis és analitzar en profunditat la interacció entre el soroll d’alta freqüència que es propaga pel substrat i l’oscil·lador amb l’objectiu de poder predir, mitjançant un model, l’efecte que aquest soroll pot tenir sobre el correcte funcionament de l’oscil·lador. Es volen proporcionar diverses guies i normes a seguir que permeti als dissenyadors augmentar la robustesa dels oscil·ladors al soroll d’alta freqüència que viatja pel substrat. La investigació de l’efecte del soroll de substrat en oscil·ladors s’ha iniciat des d’un punt de vista empíric, per una banda, analitzant la propagació de senyals a través del substrat i avaluant l’eficiència d’estructures per bloquejar aquesta propagació, i per altra, determinant l’efecte d’un to present en el substrat en un oscil·lador. Aquesta investigació ha mostrat que la injecció d’un to d’alta freqüència en el substrat es pot propagar fins arribar a l’oscil·lador i que, a causa del ’pulling’ de freqüència, pot modular en freqüència la sortida de l’oscil·lador. A partir dels resultats de l’anàlisi empíric s’ha aportat un model matemàtic que permet predir l’efecte del soroll en l’oscil·lador. Aquest model té el principal avantatge en el fet de que està basat en paràmetres físics de l’oscil·lador o del soroll, permetent determinar les mesures que un dissenyador pot prendre per augmentar la robustesa de l’oscil·lador així com les conseqüències que aquestes mesures tenen sobre el seu funcionament global (trade-offs). El model ha estat comparat tant amb simulacions com amb mesures reals demostrant ser molt precís a l’hora de predir l’efecte del soroll de substrat. La utilitat del model com a eina de disseny s’ha demostrat en dos estudis. Primerament, les conclusions del model han estat aplicades en el procés de disseny d’un oscil·lador d’ultra baix consum a 2.5GHz, aconseguint un oscil·lador robust al soroll de substrat d’alta freqüència i amb característiques totalment compatibles amb els principals estàndards de comunicació en aquesta banda. Finalment, el model s’ha utilitzat com a eina d’anàlisi per avaluar la causa de les diferències, en termes de robustesa a soroll de substrat, mesurades en dos oscil·ladors a 60GHz amb dues diferents estratègies d’apantallament de l’inductor del tanc de ressonant, flotant en un cas i connectat a terra en l’altre. El model ha mostrat que les diferències en robustesa són causades per la millora en el factor de qualitat i en l’amplitud d’oscil·lació i no per un augment en l’aïllament entre tanc i substrat. Per altra banda, el model ha demostrat ser vàlid i molt precís inclús en aquest rang de freqüència tan extrem. el principal avantatge en el fet de que està basat en paràmetres físics de l’oscil·lador o del soroll, permetent determinar les mesures que un dissenyador pot prendre per augmentar la robustesa de l’oscil·lador així com les conseqüències que aquestes mesures tenen sobre el seu funcionament global (trade-offs). El model ha estat comparat tant amb simulacions com amb mesures reals demostrant ser molt precís a l’hora de predir l’efecte del soroll de substrat. La utilitat del model com a eina de disseny s’ha demostrat en dos estudis. Primerament, les conclusions del model han estat aplicades en el procés de disseny d’un oscil·lador d’ultra baix consum a 2.5GHz, aconseguint un oscil·lador robust al soroll de substrat d’alta freqüència i amb característiques totalment compatibles amb els principals estàndards de comunicació en aquesta banda. Finalment, el model s’ha utilitzat com a eina d’anàlisi per avaluar la causa de les diferències, en termes de robustesa a soroll de substrat, mesurades en dos oscil·ladors a 60GHz amb dues diferents estratègies d’apantallament de l’inductor del tanc de ressonant, flotant en un cas i connectat a terra en l’altre. El model ha mostrat que les diferències en robustesa són causades per la millora en el factor de qualitat i en l’amplitud d’oscil·lació i no per un augment en l’aïllament entre tanc i substrat. Per altra banda, el model ha demostrat ser vàlid i molt precís inclús en aquest rang de freqüència tan extrem.The integration of transceivers for RF communication in CMOS can be seriously limited by the interaction between their blocks, even advising against using a single silicon die. The high frequency noise generated by some of the blocks, like the power amplifier, can travel through the substrate, reaching the local oscillator and threatening its correct performance. Three important reasons can be stated that show the risk of the single die integration. Noise propagation is easier the higher the frequency. Moreover, the protection structures lose efficiency as the noise frequency increases. Finally, the high frequency noise that reaches the local oscillator degrades its performance. The purpose of this thesis is to deeply analyze the interaction between the high frequency substrate noise and the oscillator with the objective of being able to predict, thanks to a model, the effect that this noise may have over the correct behavior of the oscillator. We want to provide some guidelines to the designers to allow them to increase the robustness of the oscillator to high frequency substrate noise. The investigation of the effect of the high frequency substrate noise on oscillators has started from an empirical point of view, on one hand, analyzing the noise propagation through the substrate and evaluating the efficiency of some structures to block this propagation, and on the other hand, determining the effect on an oscillator of a high frequency noise tone present in the substrate. This investigation has shown that the injection of a high frequency tone in the substrate can reach the oscillator and, due to a frequency pulling effect, it can modulate in frequency the output of the oscillator. Based on the results obtained during the empirical analysis, a mathematical model to predict the effect of the substrate noise on the oscillator has been provided. The main advantage of this model is the fact that it is based on physical parameters of the oscillator and of the noise, allowing to determine the measures that a designer can take to increase the robustness of the oscillator as well as the consequences (trade-offs) that these measures have over its global performance. This model has been compared against both, simulations and real measurements, showing a very high accuracy to predict the effect of the high frequency substrate noise. The usefulness of the presented model as a design tool has been demonstrated in two case studies. Firstly, the conclusions obtained from the model have been applied in the design of an ultra low power consumption 2.5 GHz oscillator robust to the high frequency substrate noise with characteristics which make it compatible with the main communication standards in this frequency band. Finally, the model has been used as an analysis tool to evaluate the cause of the differences, in terms of performance degradation due to substrate noise, measured in two 60 GHz oscillators with two different tank inductor shielding strategies, floating and grounded. The model has determined that the robustness differences are caused by the improvement in the tank quality factor and in the oscillation amplitude and no by an increased isolation between the tank and the substrate. The model has shown to be valid and very accurate even in these extreme frequency range.Postprint (published version

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d
    • …
    corecore