1,731 research outputs found

    Cache Hierarchy Inspired Compression: a Novel Architecture for Data Streams

    Get PDF
    We present an architecture for data streams based on structures typically found in web cache hierarchies. The main idea is to build a meta level analyser from a number of levels constructed over time from a data stream. We present the general architecture for such a system and an application to classification. This architecture is an instance of the general wrapper idea allowing us to reuse standard batch learning algorithms in an inherently incremental learning environment. By artificially generating data sources we demonstrate that a hierarchy containing a mixture of models is able to adapt over time to the source of the data. In these experiments the hierarchies use an elementary performance based replacement policy and unweighted voting for making classification decisions

    Rethinking Consistency Management in Real-time Collaborative Editing Systems

    Get PDF
    Networked computer systems offer much to support collaborative editing of shared documents among users. Increasing concurrent access to shared documents by allowing multiple users to contribute to and/or track changes to these shared documents is the goal of real-time collaborative editing systems (RTCES); yet concurrent access is either limited in existing systems that employ exclusive locking or concurrency control algorithms such as operational transformation (OT) may be employed to enable concurrent access. Unfortunately, such OT based schemes are costly with respect to communication and computation. Further, existing systems are often specialized in their functionality and require users to adopt new, unfamiliar software to enable collaboration. This research discusses our work in improving consistency management in RTCES. We have developed a set of deadlock-free multi-granular dynamic locking algorithms and data structures that maximize concurrent access to shared documents while minimizing communication cost. These algorithms provide a high level of service for concurrent access to the shared document and integrate merge-based or OT-based consistency maintenance policies locally among a subset of the users within a subsection of the document – thus reducing the communication costs in maintaining consistency. Additionally, we have developed client-server and P2P implementations of our hierarchical document management algorithms. Simulations results indicate that our approach achieves significant communication and computation cost savings. We have also developed a hierarchical reduction algorithm that can minimize the space required of RTCES, and this algorithm may be pipelined through our document tree. Further, we have developed an architecture that allows for a heterogeneous set of client editing software to connect with a heterogeneous set of server document repositories via Web services. This architecture supports our algorithms and does not require client or server technologies to be modified – thus it is able to accommodate existing, favored editing and repository tools. Finally, we have developed a prototype benchmark system of our architecture that is responsive to users’ actions and minimizes communication costs

    ROVER: a DNS-based method to detect and prevent IP hijacks

    Get PDF
    2013 Fall.Includes bibliographical references.The Border Gateway Protocol (BGP) is critical to the global internet infrastructure. Unfortunately BGP routing was designed with limited regard for security. As a result, IP route hijacking has been observed for more than 16 years. Well known incidents include a 2008 hijack of YouTube, loss of connectivity for Australia in February 2012, and an event that partially crippled Google in November 2012. Concern has been escalating as critical national infrastructure is reliant on a secure foundation for the Internet. Disruptions to military, banking, utilities, industry, and commerce can be catastrophic. In this dissertation we propose ROVER (Route Origin VERification System), a novel and practical solution for detecting and preventing origin and sub-prefix hijacks. ROVER exploits the reverse DNS for storing route origin data and provides a fail-safe, best effort approach to authentication. This approach can be used with a variety of operational models including fully dynamic in-line BGP filtering, periodically updated authenticated route filters, and real-time notifications for network operators. Our thesis is that ROVER systems can be deployed by a small number of institutions in an incremental fashion and still effectively thwart origin and sub-prefix IP hijacking despite non-participation by the majority of Autonomous System owners. We then present research results supporting this statement. We evaluate the effectiveness of ROVER using simulations on an Internet scale topology as well as with tests on real operational systems. Analyses include a study of IP hijack propagation patterns, effectiveness of various deployment models, critical mass requirements, and an examination of ROVER resilience and scalability

    Building a flexible web caching system.

    Get PDF
    Web caching is a technology that has demonstrated to improve traffic on the Internet. To find out how to implement a Web caching architecture that assures improvements is not an easy task. The problem is more difficult when we are interested in deploying a distributed and cooperative Web caching system. We have found that some cooperative Web caching architectures could be unviable when changes on the network environment appear. This situation suggests that a cooperative Web caching system could get worst access to Web objects. However in this paper we present an architecture that combines the best of several Web caching configurations that we have previously analyzed. Our architecture gives basic ideas for implementing a cooperative Web caching system using groups of HTTP proxy servers which can improve access to remote Web objects regardless of the changes that might occur on the network environment (changes that could produce modifications in Web object validation policies and/or types of caching communication).Peer Reviewe

    Routing and caching on DHTS

    Get PDF
    L'obiettivo della tesi e' quello di analizzare i principali meccanismi di caching e routing implementati oggigiorno nelle DHT piu' utilizzate. In particolare, la nostra analisi mostra come tali meccanismi siano sostanzialmente inefficaci nel garantire un adeguato load balancing tra i peers; le principali cause di questo fenomeno sono individuate nella struttura, eccessivamente rigida, adottata dalle DHT e nella mancanza di correlazione tra meccanismi di routing e di caching. Viene quindi proposto un diverso overlay, organizzato in base a una struttura ipercubica, che permetta di adottare un algoritmo di routing piu' flessibile e di sviluppare due meccanismi di caching e routing strettamente interconnessi. In particolare, l'overlay ottenuto riesce a garantire che ogni nodo subisca un carico al piu' costante, con una taglia di cache costante e una complessita' di routing polilogaritmica nel caso peggior
    • 

    corecore