
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

6-28-2007

Rethinking Consistency Management in Real-time
Collaborative Editing Systems
Jon Anderson Preston

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Preston, Jon Anderson, "Rethinking Consistency Management in Real-time Collaborative Editing Systems." Dissertation, Georgia
State University, 2007.
https://scholarworks.gsu.edu/cs_diss/18

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

RETHINKING CONSISTENCY MANAGEMENT IN REAL-TIME

COLLABORATIVE EDITING SYSTEMS

by

JON A PRESTON

Under the Direction of Sushil K Prasad

ABSTRACT

Networked computer systems offer much to support collaborative editing of

shared documents among users. Increasing concurrent access to shared documents by

allowing multiple users to contribute to and/or track changes to these shared documents is

the goal of real-time collaborative editing systems (RTCES); yet concurrent access is

either limited in existing systems that employ exclusive locking or concurrency control

algorithms such as operational transformation (OT) may be employed to enable

concurrent access. Unfortunately, such OT based schemes are costly with respect to

communication and computation. Further, existing systems are often specialized in their

functionality and require users to adopt new, unfamiliar software to enable collaboration.

This research discusses our work in improving consistency management in

RTCES. We have developed a set of deadlock-free multi-granular dynamic locking

algorithms and data structures that maximize concurrent access to shared documents

while minimizing communication cost. These algorithms provide a high level of service

for concurrent access to the shared document and integrate merge-based or OT-based

consistency maintenance policies locally among a subset of the users within a subsection

of the document – thus reducing the communication costs in maintaining consistency.

Additionally, we have developed client-server and P2P implementations of our

hierarchical document management algorithms. Simulations results indicate that our

approach achieves significant communication and computation cost savings. We have

also developed a hierarchical reduction algorithm that can minimize the space required of

RTCES, and this algorithm may be pipelined through our document tree. Further, we

have developed an architecture that allows for a heterogeneous set of client editing

software to connect with a heterogeneous set of server document repositories via Web

services. This architecture supports our algorithms and does not require client or server

technologies to be modified – thus it is able to accommodate existing, favored editing and

repository tools. Finally, we have developed a prototype benchmark system of our

architecture that is responsive to users’ actions and minimizes communication costs.

INDEX WORDS: Real-time Collaborative Editing, Dynamic Hierarchical Locking,

Heterogeneous Architecture, Collaboration, Consistency,

Distributed System, Peer-to-peer

RETHINKING CONSISTENCY MANAGEMENT IN REAL-TIME

COLLABORATIVE EDITING SYSTEMS

by

JON A PRESTON

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2007

Copyright by

Jon A Preston

2007

Rethinking Consistency Management in Real-time Collaborative Editing Systems

by

Jon A Preston

 Major Professor: Sushil K Prasad

Committee: Xiaolin Hu

 Melody Moore Jackson

 Rajshekhar Sunderraman

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2007

To my wife, Jennifer; children: Joshua, Micah, Lillian, and Eric;

parents; and family – you are my joy.

v

Acknowledgements

A task as monumental a doctoral degree may only come to fruition as a result of

consistent encouragement and support of many people. First and foremost, I thank my

family and, most notably, my wife Jennifer for travailing with me through this arduous

task – you’re the best! It wouldn’t have happened without your love and constant

support. Certainly, my parents deserve much praise and thanks for always encouraging

me and training me in the way I should go. Russ Shackelford and Melody Moore

Jackson were instrumental in supporting me in my Bachelors and Masters studies, and I

appreciate their support and leadership in guiding me to continue my research in

computing. I also thank the Computer Science faculty at Georgia State and especially

my committee members – Raj Sunderraman, Xiaolin Hu, Melody Moore Jackson, and

my advisor and mentor Sushil Prasad; I am a better researcher and student of computing

because of you. I thank my fellow students within the program at Georgia State and the

DiMoS research group for their feedback and insightful questions; my work is better for

your influence. And special thanks to Jeff Chastine – through it all, your friendship

supported and motivated me to finish this work. I would also like to thank Jan Towslee

for encouraging me to begin my PhD work; she was an amazing mentor and a lady of

the finest caliber. I also thank the administration and my colleagues at Clayton State

University. Most sincerely, I thank God for gifting me with my talents; I continuously

refine them to Your glory.

vi

Table of Contents

Acknowledgements ..v

List of Figures ...x

List of Tables . .. xiv

List of Abbreviations ...xv

CHAPTER 1 INTRODUCTION ..1

1.1. Motivation ..2

1.2. Current State of the Art ..5

1.3. Limitations of Current Technology ...7

1.4. Problem Statement and Research Goals ..9

1.5. Contributions and Significance ..10

1.6. Organization of the Thesis ...11

CHAPTER 2 BACKGROUND ...14

2.1. Collaborative Editing Systems ...14

2.2. Architectures Supporting Collaborative Editing Systems17

2.3. Concurrency Control Policies ..25

2.4. Convergence, Causality-preservation, and Intention-preservation31

2.5. Operational Transformation ...32

2.6. Discussion and Existing Systems ..36

CHAPTER 3 AN OPEN SYSTEMS APPROACH TO RTCES48

3.1. Supporting Various Client Technologies ...50

vii

3.2. Supporting Various Server Technologies ..52

3.3. Translation of Events ...55

3.4. Heterogeneous Architecture ...57

3.5. Validation ...62

3.6. Discussion and Related Work ..78

3.7. Summary ..80

CHAPTER 4 ENABLING RELAXED CONSISTENCY TO REDUCE RTCES

COSTS ..82

4.1. Modeling Document Structure via a Document Tree83

4.2. Maximizing Owned Space and Caching ..86

4.3. Data Structures and Algorithm Overview ..90

4.4. Lock Request ...92

4.5. Lock Release ..96

4.6. Correctness and Efficiency Analysis ...98

4.7. Simulation with Exclusive Locking ...106

4.8. Discussion ..112

4.9. Summary ..115

CHAPTER 5 INTEGRATION WITH OT ..116

5.1. Generalized Operational Transformation ..117

5.2. Validating the OT Integration via Simulation ...119

5.3. Discussion and Related Work ..136

5.4. Summary ..138

viii

CHAPTER 6 PEER-TO-PEER DOCUMENT MANAGEMENT139

6.1. Extending the Client-Server Algorithms ...140

6.2. Lock Request ...143

6.3. Editing Content and Modifying the Structure of the Tree145

6.4. Lock Release ..146

6.5. User Movement within the Document Tree ...149

6.6. Correctness and Efficiency Analysis ...150

6.7. Locating the Peer and Ownership ..158

6.8. Replication, Congestion, and Fault Tolerance ...160

6.9. Simulation and Results ..163

6.10. Summary ..167

CHAPTER 7 HIERARCHICAL REDUCTION AND INTENTION

PRESERVATION ..169

7.1. Reduction ...169

7.2. Hierarchical Reduction ..174

7.3. Intention Preservation ..176

7.4. Modeling the Peer ..180

7.5. Simulation and Results ..181

7.6. Related Work ...185

7.7. Summary ..187

CHAPTER 8 PROTOTYPE SYSTEMS ...188

8.1. Simulation-based Software Architectural Design Process188

ix

8.2. Replacing Models with Actual Components ...190

8.3. Implementing the Server ..191

8.4. Implementing the Client ..194

8.5. Discussion and Related Work ..196

8.6. Summary ..199

CHAPTER 9 CONCLUSIONS AND FUTURE WORK ...200

9.1. A Systematic View of Real-time Collaborative Editing Systems201

9.2. Future Work ...203

BIBLIOGRAPHY ..204

x

List of Figures

Figure 1: Centralized and Replica Document State Management Approaches 6

Figure 2: Ordered Broadcast Ensures Convergence ... 16

Figure 3: Distributions of Models, Views, and Displays .. 23

Figure 4: A Web Services-based Collaborative Editing Architecture 24

Figure 5: Pessimistic Concurrency Control .. 27

Figure 6: Optimistic Concurrency Control ... 29

Figure 7: The Need for Operation Transformation – State Convergence 33

Figure 8: RTCES Development Growth: 1989-2006 [12] .. 37

Figure 9: RTCES Document Types Supported: 1989-2006 [12]...................................... 38

Figure 10: Mark and Retrace .. 39

Figure 11: Integrating Collaboration into IDEs (Jazz) ... 41

Figure 12: The DistEdit Approach of Adding Collaboration to Existing Applications ... 42

Figure 13: The CoWord Approach to Adapting Single User Applications to RTCES 43

Figure 14: Generalized Collaborative Architecture .. 44

Figure 15: Collaboration via in SubEthaEdit .. 45

Figure 16: Viewing Changes Made By Users – a SubEthaEdit Report 46

Figure 17: Heterogeneous Architecture .. 50

Figure 18: Parsing a Microsoft Word Document into a Document Tree 52

Figure 19: Layering the Lock Proxy and Web Service API atop Existing CMS 53

Figure 20: Mapping Client Events Directly to Each Other... 55

Figure 21: Mapping Client Events to an Intermediate Meta Event Language 56

Figure 22: Architecture Components .. 57

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381491
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381493
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381495
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381496
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381507
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381510
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381511
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381512

xi

Figure 23: Events in the Architecture ... 60

Figure 24: The DEVS Atomic Model ... 64

Figure 25: The DEVS Coupled Model ... 65

Figure 26: Simulation Configuration (shown with Lock Proxy) 66

Figure 27: DEVSJAVA Simulation of Lock Proxy .. 67

Figure 28: A Simple Real-time Collaborative Editor Using DirectX 9 73

Figure 29: IM/Chat Communication Costs ... 74

Figure 30: Communication Costs for DirectX 9 P2P RTCES Prototype 76

Figure 31: Synchronize Communication Cost for Varying Content Size 77

Figure 32: Mapping a Document to a Document Tree ... 84

Figure 33: Path Finding in the Document Tree .. 85

Figure 34: Supporting Multiple Readers and Writers ... 87

Figure 35: Distributing the Current Document State across Multiple Users 89

Figure 36: Original Document Tree State ... 94

Figure 37: ObtainLock with No Demotion ... 94

Figure 38: ObtainLock that Results in Demotion ... 95

Figure 39: RemoveLock(u1, i) - u2 lock on node k is promoted to node d 97

Figure 40: Promotion across multiple levels is permissible ... 98

Figure 41: The OBTAINLOCK Algorithm .. 101

Figure 42: The REMOVELOCK Algorithm ... 102

Figure 43: Supporting Functions .. 103

Figure 44: The OBTAINLOCK Operation without Demotion ... 105

Figure 45: The OBTAINLOCK Operation with Demotion .. 105

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381513
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381514
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381515
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381516
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381522
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381523
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381524
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381525
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381526
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381527
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381528
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381529
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381530
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381531
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381532
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381533
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381534
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381535

xii

Figure 46: Agent Behavior States and Actions ... 108

Figure 47: Communication Efficiency of Dynamic Lock Algorithm 109

Figure 48: Lock Success Decreases with Increased Collaboration Density 111

Figure 49: Two Extreme Cases of Document Tree Structure ... 114

Figure 50: Modeling the Client in DEVSJAVA ... 121

Figure 51: Modeling the Server in DEVSJAVA .. 123

Figure 52: The Connecting Network Model in the DEVSJAVA Simulation Viewer 124

Figure 53: Dynamic Operational Transformation Cost as Collaboration Increases 128

Figure 54: Edit Behaviors and Communication Efficiency .. 129

Figure 55: Edit Behavior and Communication Efficiency – 3 Users 130

Figure 56: Edit Behavior and Communication Efficiency – 9 Users 131

Figure 57: Edit Behavior and Communication Efficiency – 18 & 27 Users 132

Figure 58: The Client-Server Lock Management Model .. 142

Figure 59: The P2P Lock Management Model ... 143

Figure 60: Peer-to-Peer Lock Request .. 144

Figure 61: Peer-to-Peer Lock Release .. 148

Figure 62: Three Cases of a User Moving from v to u ... 150

Figure 63: P2P OBTAINLOCK Algorithm .. 152

Figure 64: P2P RemoveLock Algorithm .. 154

Figure 65: P2P Supporting Algorithms... 156

Figure 66: Replication of the Top of the Document Tree and Localized Management

Below ...161

Figure 67: OO Model of the P2P Document Management System 164

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381536
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381539
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381548
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381549
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381550
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381551
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381552
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381553
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381554
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381555

xiii

Figure 68: Balancing the Workload of Document Management among Peers 166

Figure 69: Pure OT vs. Hierarchical OT Communication Costs 167

Figure 70: The Reduction of a History Buffer .. 173

Figure 71: Hierarchical Reduction .. 175

Figure 72: Semantic Intention is Violated .. 178

Figure 73: The Components of the Peer ... 180

Figure 74: The Reduce Algorithm Decreases OT Computation Costs 183

Figure 75: A Hierarchical View of History Buffers [57] .. 186

Figure 76: Simulation-Driven Design Process ... 190

Figure 77: Simulation Connection to Real Server via the OutConnection Model 192

Figure 78: Web Service Implementation of Server API in ASP.NET 193

Figure 79: Implementation of Visualizing the Document Tree State 194

Figure 80: The Implementation of the Client Editor .. 195

Figure 81: Adjustable Conflict Resolution [58] .. 197

Figure 82: CES Document Profiling [94] ... 198

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381560
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381561
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381562
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381563
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381566

xiv

List of Tables .

Table 1 - Comparing Transparent and Aware Collaborative Systems 21

Table 2: RTCES Developed by Year [Chen 2006] ... 36

Table 3: Lock Proxy Simulation Configurations .. 69

Table 4: Lock Proxy Simulation Results .. 70

Table 5: Mapping User Actions to CES Document Tree Events 100

Table 6: Dynamic Lock (Exclusive Writer) Simulation Results 110

Table 7: Document Structure Types ... 126

Table 8: Client/Document Configurations .. 127

Table 9: Simulation Results – Communication Costs with Structures 1-3 133

Table 10: Simulation Results – Communication Costs with Structures 4-6 134

Table 11: Simulation Results – Communication Costs with 18 and 27 Users 135

xv

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programmer’s Interface

CCI Convergence, Causality preservation, and Intention preservation

CES Collaborative Editing System

CMS Configuration Management System

COT Context-based Operational Transformation

CSCW Computer Supported Cooperative Work

CVS Concurrent Versioning System

DEVS Discrete Event Simulation

DN Document Narrative

DOM Document Object Model

EIC External Internal Coupling

EOC External Output Coupling

HB History Buffer

HCI Human-Computer Interaction

IC Internal Coupling

IDE Integrated Development Environment

IM Instant Message

MVSD Multi-Version, Single Display

OP Operation

OT Operational Transformation

P2P Peer-to-Peer

xvi

RCS Revision Control System

RST Rhetorical Structure Theory

RTCES Real-time Collaborative Editing System

SCCS Source Code Control System

SCM Software Configuration Management

TTF Tombstone Transformation Function

VSS Visual Source Safe

1

CHAPTER 1

INTRODUCTION

Imagine a scenario in which a geographically distributed team can work together,

sharing ideas, collaboratively editing a shared document in real-time, and interacting as

closely and productively as a team of workers within the same room. This is one of the

goals of the field of Computer Supported Collaborative Work (CSCW) and in particular

the subfield of Collaborative Editing Systems (CES). CES may be synchronous (real-

time) or asynchronous in coordinating the collaboration among users; in either case,

managing a repository of the shared documents, maintaining consistency among replicas

of the documents, and resolving concurrent and potentially conflicting changes to the

shared documents is of central concern.

Enhancing communication and collaboration is one of the increasingly popular

uses of modern computing technology; we observe that computing technologies are ever

more user-centric and allow multiple users to work collaboratively to solve modern,

interdisciplinary and complex problems facing the world today. We note that

productivity software tools (document authoring, email, Web site management, etc.)

increasingly focus on supporting collaboration among multiple users – a welcome

addition to their core functionality.

However, the current state of CES research uses ever increasingly complex

algorithms to achieve convergence, causal preservation, and intention preservation (see

[66], [90], and [131] as examples) and still have limited capacity in achieving intention

preservation. Additionally, these systems that are replica-based in supporting

concurrency control are costly with respect to communication and computation.

2

Therefore there exists an opportunity to view Real-time Collaborative Editing Systems

(RTCES) systematically – moving beyond OT algorithms and focusing in how viewing

the system as a whole may uncover new opportunities for optimizations and new

approaches to solving the problem of CCI.

This research explores areas of RTCES that can be improved to be more scalable

in supporting larger collaborations (as measured by the size of the documents being

shared as well as the number of users within the collaboration). Our research revisits the

idea of using locking and intelligently cache operations when possible to reduce

communication and computation costs. First, we developed an open systems approach

that supports existing client and server technologies. Next, we formally developed our

theoretical work in hierarchical locking algorithms and data structures to support

caching operations and managing concurrency among the users in client-server and P2P

scenarios. Third, we integrate current best practices in Operational Transformation (OT)

research into our theoretical work. Finally, we extend our simulation results indicating

the viability of our approach into prototypes of client and server technologies to support

our approach into RTCES.

This chapter presents the motivation of our research, the current state of the art

and its limitations, and then we present our problem statement, goals, and contributions

of this dissertation. We conclude this chapter with a discussion of the organization of

the remainder of the dissertation.

1.1. Motivation

CSCW and specifically RTCES and CES have a rich history of research and

significant contributions in various fields since the 1980s [43][44] [119]. These systems

3

remain collaboration-centric as the computing system merely supports the activity at

hand [87]. The following are select example domains in which our research in RTCES

applications that correspond to research questions to be addressed in this work.

Software Engineering: at the heart of software systems development is the

coordination of various developers, project managers, documents, and source code [88].

While much work within software engineering involves decomposing large systems into

subsystems that can be developed in parallel [96][100][154], much work related to

coordination remains a vital part of a software system development project [53][92].

Managing ever-changing project artifacts such as requirements, plans, test documents,

and system models involves coordinating access to either a centralized document

repository or a distributed, replicated document repository; with this comes the

concomitant consistency management practices [92]. Developers of a software system

must be informed of changes not only to the source code but also the foundational

project definition documents (requirements, designs, plans, etc.) [99][101]. Awareness

of what other users are doing within the system as well as a view of what documents

other users are accessing helps avoid conflicting changes and coordinate the

development effort [101]. Coordination among developers can be formal or informal

and is often driven/defined by the software engineering processes employed with the

project [40][147]. Central to the ability to collaborate on documents is the ability to

work within a group and coordinate group effort. In a traditional software engineering

setting, these activities entail project task scheduling, status reporting (and meetings),

and inter-group communication [33][52]. Recently, there has been an increase in

commercial interest in the field of integrating collaboration mechanisms into integrated

4

development environments [7][14][81], validating that this area of research has interest

in the commercial sector.

Collaborative Document Development: moving from the specific field of

Software Engineering, we can generalize to document sharing and collaborative editing

as a joint task among multiple authors either co-located or distributed geographically

[52]. Additionally, users may wish to edit the shared document synchronously (at the

same time) or asynchronously (at different times) [145]. Collaborative document editing

involves a high level of interactivity among users, and ensuring rapid response time to

changes in the document and maintaining a familiar look-and-feel (allowing use of

users’ favorite, existing editors) are paramount design goals for any collaborative

document editing system [86][100]. As an example of the need for such collaboration,

consider a large research proposal authored by faculty from many different universities.

There has been an increase in recent commercial development of collaborative document

management systems in recent years, validating that this area of collaborative editing

system research is becoming commercially viable [42][81]. While these systems

demonstrate some problems in the field of collaborative document development have

been solved, other research problems remain open.

Computer Aided Design (CAD): another field that we note would benefit from

computer assisted collaboration is design. CAD systems have long supported designers

develop schematics, renderings, and other design-related documents. Recent studies in

CSCW also support the idea that the design process can benefit from collaborative

editing [32]. What is most interesting about this particular field of CES is that modern

CAD systems store the documents being edited as objects with layering, so it is believed

5

that the concurrency control employed in CAD systems must manage collections of

objects within the document that are not necessarily spatially structured but are rather

structured via grouping. For example, all of the electrical wiring (the electrical objects

collection/layer) of a building schematic could be locked by one user for editing while

all of the flooring (the flooring objects collection/layer) could be locked by another user

for editing. We specifically address this domain of CAD because it offers an

opportunity to manage concurrent access to collections of objects within a document that

are not necessarily spatially related [157], and our algorithms and models generated in

this work easily accommodate this non-spatial organizational structure.

1.2. Current State of the Art

Real-time collaborative editing systems allow multiple users to synchronously

edit a shared document in a geographically-distributed environment. In such an

environment, there are two approaches in managing the document state as shown in

Figure 1. The shared document is either centralized at one location within the

collaboration or a distributed replica/copy model may be used wherein each user

maintains a local copy of the shared document. Current RTCES research utilizes the

distributed replica approach in order to maintain high local responsiveness.

6

Because the current approach in RTCES research is to utilize a replicated

architecture, concurrent changes are possible among the users; as a result, concurrency

control algorithms must be adopted to ensure the document replicas remain consistent.

CCI – convergence, causality preservation, and intention preservation (defined in detail

in Section 2.4) – is the current benchmark standard by which RTCES are judged to be

correct; thus if a RTCES achieves CCI, then it is said to be correct. Operational

transformation (defined in detail in Section 2.5) is the most prevalently researched way

to achieve CCI. Briefly, OT involves transforming operations that are created by a

remote user that are to be replayed on a local copy of the document; once transformed,

the operation may then be enacted on the local replica to achieve the intended result on

the document. Without OT, the remote operation, when replayed locally, may not have

the same effect as when it was enacted on the remote copy of the document.

Figure 1: Centralized and Replica Document State Management Approaches

Server

User

User

User
User

User

User

Replicas of the

document at each client Document state managed centrally

7

1.3. Limitations of Current Technology

This section discusses the limitations of current RTCES architectures and

concurrency management techniques.

RTCES Architectures: while the focus of RTCES research has traditionally been

on algorithms to better achieve CCI via OT, some research has developed architectural

support for RTCES. The client editing and server repository technologies and the

connecting network of the collaborative system are for the most part assumed and little

work has been done to investigate how these technologies work together to support

RTCES. The work of Li and Li [68] focus on supporting heterogeneous client

technologies to work together by transforming operations into client technology-neutral

“meta” operations that can be incorporated into varied client editing technologies. But

this heterogeneous approach has not been extended to server technologies necessary for

managing document repositories. Additionally, there has been work to differentiate

aware and transparent sharing of documents and workspaces/desktops [2][3], and even

some commercial products have emerged from this research [80]. Unfortunately, these

architectures employ interaction interleaving, only allowing one user to “control” the

cursor and concurrency is not supported. [12] performed an evaluation of RTCES

technologies currently developed and being developed (both by academia, industry, and

hobbyists), but this work did not perform an analysis of the architectural structure of

these systems; it would be fruitful to compare each of these systems to see what

architectural components support the collaboration.

Concurrency Management: whether the collaborative system employs a

centralized or replication-based approach to managing document state, concurrent access

8

to the shared document must be managed. As mentioned in the previous section,

Operation Transformation (OT) is the most popular way to ensure consistency among

copies of a shared document in RTCES that employ replication of document state, but

OT is costly with regard to computation and communication. Whenever an operation is

generated by a user, this operation is broadcast to all other users within the collaboration

and replayed locally after being transformed by the other users. Since almost all

existing OT solutions view operations at the keystroke level (i.e., the user inserts or

deletes a character), the number of messages and the processing of these messages in the

RTCES can grow quickly. [57] allows for operations to occur semantically higher than

simple characters, but their approach fixes the depth of the document tree – imposing

rigid constraints on what operations may be performed – and all operations are still

broadcast to all users. Additionally, a history of operations must be maintained at each

user’s copy requiring storage space for all operations that have been performed in the

collaboration; this history of operations is called a “history buffer.”

Alternatively, in a centralized approach to document state management, locking

may be employed to avoid concurrency problems of the shared document, but such

locking techniques as round-robin, token-based, and exclusive locking all reduce

concurrent access to the document because only one user may edit the document at any

given time. Some systems such as Coven [16] and COOP/Orm [73] attempt to increase

concurrent access by reducing the size of the lock (to the sub-file level), but the lock

does not adjust in size dynamically with regard to what other users are doing in the

collaboration. POEM [71] utilizes the hierarchical nature of software code to lock at a

9

sub-file level, but the methods must be defined a priori by the user (contextually-costly

overhead), and again the locks remain fixed in size.

Further, while there has been some preliminary work in examining how semantic

structure contained within the shared document can be used [56], no work has been done

to investigate how history buffers may be consolidated (reduced) at opportune or

predefined times; nor has any research examined how operations stored at one level

within the hierarchy of the document may be transformed and combined into operations

operational transformation applied within

1.4. Problem Statement and Research Goals

In this dissertation we have focused on the following goals in an effort to solve

some of the limitations addressed in the previous section:

1. Investigate how an open systems RTCES architecture may support existing client

technologies that connect with existing server technologies with an emphasis on

extending legacy server/repository technologies and supporting clients’ preferred

editing technologies.

2. Revisit the feasibility of utilizing locking to support concurrency management

such that communication and computation costs may be reduced when compared

to current replication and non-locking approaches.

3. Examine opportunities to leverage semantic knowledge of a document’s

structure to better achieve intention preservation, apply operations more

intelligently at semantically-aware levels within the document, and reduce the

10

size of the history buffers needed to manage operations within sections of the

shared document.

4. Study how the natural structure of RTCES may be supported via a peer-to-peer

(P2P) approach that may increase reliability and avoid performance bottlenecks

at a single server.

5. Develop prototype implementations of the client and the server technologies we

develop that validate our theoretical approach is viable and easily supported in

actual, usable tools.

1.5. Contributions and Significance

We have made the following contributions to the field of RTCES in this

dissertation work:

1. An open systems architecture: we have developed an architecture that allows

existing client technologies to connect via Web services API to existing server

technologies. Our architecture enables clients to continue to use their preferred

editing tools with hooks that capture events and translate them into recognizable

messages for others within the collaboration to respond to. Further, our

architecture allows existing server repositories of documents to host

collaborative editing sessions and manage clients’ connections.

2. Theoretical algorithms and data structures to support dynamic locking: we have

developed a set of algorithms and data structures to support dynamic,

hierarchical locking that maximizes the space owned by a user to increase

caching and reduce communication costs in a RTCES. We developed client-

11

server and P2P versions of these algorithms and data structures that are validated

empirically via simulation.

3. Integration of OT best practices and improved CCI: further, we have integrated

best practices of OT techniques into our dynamic locking approach such that

concurrent editing of a shared document is supported while minimizing the costs

relative to an OT-only approach. Additionally, our approach is semantically

aware, so we are able to apply operations intelligently and achieve better

intention preservation within a RTCES.

4. Prototype client and server technologies: finally, we have developed a functional

client editor that connects to a functional Web service API server. These

technologies implement our theoretical developments and show that our

approach is easily integrated into usable tools for clients to use.

1.6. Organization of the Thesis

The remainder of this dissertation is organized as follows.

Chapter 2 introduces the reader to the background for the research including

collaborative editing systems, various architectural approaches to supporting

collaboration, locking policies, the CCI model, operational transformation, and existing

systems within the field of RTCES.

Chapter 3 introduces the open systems architectural approach we developed to

support a heterogeneous collection of client and server technologies. We present our

architectural components and the research that validates this approach to real-time

collaborative editing systems.

12

Chapter 4 presents the algorithms and data structures we developed to support

relaxed/lazy consistency via hierarchical, dynamic locking on a document tree. We

discuss how documents may be modeled as trees, why it is advantageous to maximize

the space a user locks within a document, and then present the lock request and lock

release algorithms. We discuss our initial simulation results demonstrating that such an

approach may reduce communication costs associated with a RTCES, present the

correctness and efficiency of these algorithms, and conclude with a discussion of related

work.

Chapter 5 extends the research developed in Chapter 4 by showing how our

relaxed consistency approach may integrate existing OT algorithms to support

concurrent writers and better achieve CCI. We present the improved versions of our

approach, and simulation results validating this approach are also presented.

Chapter 6 extends the client-server algorithms of Chapters 4 and 5 into P2P

algorithms and data structures. Results of the simulation presented in this chapter

demonstrate that this P2P approach is effective in load balancing work among peers and

avoiding a single point of failure and bottleneck in processing user actions. We also

present a discussion of the correctness and efficiency of our algorithms.

Chapter 7 presents our work in reducing history buffers hierarchically at various

depths within the document tree. As a result of this reduction approach, we are able to

explore opportunities for better intention preservation. We present simulation results

that show how the history buffers are distributed among the peers managing the

document tree.

13

Chapter 8 presents our work in developing prototypes of client and server

technologies and the simulation design approach we utilized. These implementations are

based upon our previous theoretical work and demonstrate the viability of our approach.

The process of moving from models of both the client and the server to fully

implemented versions of the client and server technologies is also presented.

Finally, Chapter 9 presents conclusions of this dissertation work and discusses our

future research direction.

14

CHAPTER 2

BACKGROUND

In Chapter 1, RTCES was identified as an active area of research and important

field in the future of collaborative and distributed computing. Consequently, the goals

of this research focus on viewing RTCES in a systematic way, addressing opportunities

for improving architectural structures that support RTCES and reducing communication

and computation costs associated with RTCES by addressing fundamental, theoretical

algorithms in achieving CCI. To establish a basis by which to evaluate our

contributions, we begin by discussing the past work within the field of RTCES research.

This chapter presents an overview of collaborative editing systems with an emphasis on

real-time collaborative editing systems; we then present the existing architectural

approaches to support RTCES and concurrency control policies used in these

architectures; next, we define CCI and OT and present current OT approaches; finally,

we conclude with a discussion of existing systems – both prototype and commercial.

2.1. Collaborative Editing Systems

Collaborative editing systems may be asynchronous or synchronous (real-time).

In an asynchronous collaborative editing system, users collaborate at different times on

shared documents. Real-time collaborative editing systems allow users to concurrently

share a common document, make changes to this shared document, and have their

changes distributed to other users within the system.

Because responsiveness and usability are key components to a real-time

collaborative editing system, researchers in RTCES have adopted a replicated approach

15

to RTCES architectures; under this approach, the document is copied to each user’s

machine, and the users interact with their local copy of the document. When a change

(operation) is made to the document, this operation is broadcast to all other users within

the collaboration, and the operation is enacted on each user’s local copy.

To enable concurrent access in a distributed collaborative system, we must either

centralize the storage of the document being edited onto a server and have “thin” clients

that merely relay user input/changes, or copy the document being edited onto the clients

and coordinate the changes made to the document by all the users (essentially ensuring

cache consistency). A centralized approach has proven to be too costly with regard to

communication costs and lacks adequate responsiveness typical of an interactive

application [39]. Consequently, distributed approaches are typically employed in CES.

Assuming a multi-user system employs replication to allow multiple users access

to a shared document, we must ensure that the replicated document state is consistent

among the users. If all users are allowed to make local changes to their copies of the

document, these changes could be broadcast to the other users and the changes

“replayed” on the local copies to ensure consistency. Unfortunately, the ordering of the

replayed changes is not preserved, and consequently the replicated copies of the

document become unsynchronized. To ensure consistency among the replicas of the

document, some form of concurrency must be employed.

Ordered broadcast protocols may be used to ensure proper ordering of changes to

the shared document. But this approach requires that all changes be sent to a central

controlling server and local changes cannot be affected until the server responds to the

client making the change; consequently, the response time of such systems is typically

16

not appropriate for interactive systems. Additionally, such broadcast protocol

approaches require that the changes are operationally-transformed to the client’s current

document state to preserve user intention [100]. As Figure 2 demonstrates, the state of

the document only converges when concurrent changes are broadcast and ordered in the

same total ordering on all clients or else executing A then B on Site 1 and B then A on

Site 2 would result in a different state at the different sites and may have unintended

results.

Figure 2: Ordered Broadcast Ensures Convergence

Because of the interactive nature of collaborative editing systems, traditional

transaction-based and pessimistic locking schemes typically employed in database

systems are often not appropriate as they are best employed in a batch environment

where rollbacks are permissible. Alternatively, most collaborative editing systems

employ some form of optimistic concurrency control in an effort to improve interactive

responsiveness.

17

2.2. Architectures Supporting Collaborative Editing Systems

[82] performed one of the earliest studies on design for combining synchronous

and asynchronous group editing and discovering components of both types of systems.

Therein, a model of cooperative work as applied to the task of collaborative writing

suggests that mechanisms to support communication among participants and the sharing

of a common artifact/document are critical for the success of the CES. While there has

been other research to focus on the HCI side of CES (such as communication,

awareness, and presence), because this work is focused on systems-level research

regarding RTCES such as communication and computation costs savings and improving

consistency within a RTCES, this section will focus on such systems-level issues within

the scope of RTCES architectures.

Transparent collaborative systems are so named because the applications that are

being shared among multiple users have no idea of the collaboration - the collaborative

interface acts as an intermediary buffer for the application and receives all users' input

and relays these interactions to the application; when the application responds and

adjusts its output, the collaborative system/agent relays this information to all users'

computers such that all users see the same interface. The advantage of such transparent

systems is that they can be integrated into most single-user applications without the need

to recompile or edit the original application.

Aware collaborative systems are so named because the collaborative interface is

embedded within the application itself and the system’s core interface and operations

support synchronization and distribution/sharing of the system’s content. These systems

are defined as aware because the application is “aware” that the content is being shared

18

and the interface of the system enables such sharing. While there are many benefits of

embedding the collaboration within the application, the disadvantage is that the source

of the application must be available and the collaborative API (synchronization, mutex,

etc.) must be tightly coupled within the application. This is often not possible, thus the

need for transparent systems.

Application sharing and transparency are two different approaches to

collaborative systems. Application sharing involves either centralizing the application's

execution and distributing the input and output (display) among user machines or

creating a replicated, homogenous architecture in which each user runs the same

application across a network; with either model, the user is constrained to use the same

application as all other users in the collaborative environment. Even in heterogeneous

application sharing environments, considerable concerns must be overcome in

supporting the capture, communication, and replication of users' actions as discussed in

the previous section.

In comparison, transparency-based systems allow users to share applications

without modifying the original program. Transparencies originally involved screen

sharing technologies in which the user would share the entire screen to other users.

These systems evolved into sharing only specific windows or applications, rather than

the entire screen, and are best represented by the X windows protocol.

Under conventional collaborative transparent system, concurrency is not possible

- only one user is able to input to the application at any given time; while this is

appropriate for presentations and shared meetings, this is too limiting for collaborative

software development. "Floor control" is the term used to define which user has access

19

to the input stream (mutex), and this is needed to ensure that event interleaving is

avoided.

One promising concept of being able to merge the best of transparent and aware

collaborative systems is the modern object-oriented concept of reflection [69][115]. If a

developer wanted to transform a single-user application into a collaborative multiple-

user application but did not have access to the source code, then through reflection, the

developer could extend the program and add the communication/synchronization API

into the system externally via reflection. Unfortunately, this approach does require a

high-level knowledge of the internals of the single-user system, and even without access

to the original source code, in-depth knowledge of the internals of the system is often

required.

An alternative approach would be to design systems that allow users to establish

relationships to objects within the system and extend the collaborative software to

support such relationships [69]. Of course, the prerequisite of this type of system would

be that the collaborative API be built into the current system and that the system

supports extension by allowing the user to establish relationships between objects. Li

and Patrao’s model exhibits such an interface by viewing the elements of the

collaborative interaction as objects that support emergent sharing and distributed

referential integrity. Such objects inherit common attributes and provide a generalized

API for modification such that these modifications (small differentials) can be broadcast

to the users of the system and tracked; this avoids the more costly low-level messaging

(transparency-based) system wherein all display information is broadcast.

20

Li and Li [68] discuss current advances in the area of transparencies that should

support spontaneous application sharing (i.e. a user can use a single-user application and

then later decide to publish/share the application to another user) and support

heterogeneous clients and independent views. Additionally, the issue of "late comers"

needs to be addressed in modern collaborative environments: how can the system bring

new users that were not present at the beginning of the session up to speed quickly; OS

hooks such as the Microsoft Windows API provides such capabilities that allow

collaborative transparencies to record sessions for replay on future, late arriving clients.

Begole et al [2][3] discuss a synchronous methodology for providing a

"transparent" collaboration system that works in coordination with existing applications.

This system is different from other existing collaboration transparencies in that it avoids

the "conventional" centralized architecture that require that only one person interact with

the system at any given time (single token-based mutex). One difficulty that is avoided

in such single-controller transparent collaborative systems is that of interaction

interleaving; since only one user can “control” the cursor, then interactions cannot be

interleaved incorrectly (i.e. the input is by definition sequential in nature and no

undesired overlap is possible.

Four attributes are useful in comparing aware and transparent collaborative

systems [3] as shown in Table 1.

21

Table 1 - Comparing Transparent and Aware Collaborative Systems

 Transparency Aware

Concurrent Work Single Multiple

WYSIWIS Strict Relaxed

Group Awareness Little Detailed

Network Usage High Low

These attributes are defined as:

 Concurrent work: Does the system allow for multiple users to provide input

simultaneously, or is only one user able to provide input at any given time?

 WYSIWIS: All users should see the same state at all times; What You See Is What

I see.

 Group Awareness: How much detail does the system provide with regard to what

other users in the system are doing and what section of the document they are

viewing? Some systems simply provide a pointer/cursor showing the current

“location” of the other users; other systems provide thumbnails and more detailed

views.

 Network Usage: How much network bandwidth is consumed and needed by the

system? In aware systems, operations are typically all that is communicated (and

these messages are small), whereas in transparent systems typically rely upon

centralized server architectures and broadcast display change information (quite

large).

22

Aware collaborative systems consume less bandwidth, allow for concurrent work,

more easily provide flexible WYSIWIS interfaces, and allow for more inherently robust

group awareness. Transparency-based collaborative systems are useful in situations

where the developer needs to create a collaborative system based upon a single-user

application but does not have access to the underlying code base of the single-user

system; transparency-based systems often consume more system resources and require a

centralized server model, but they are often the only option in some circumstances.

Another model to define CSCW systems is Patterson’s [116] that defines

groupware into four levels: display (renders the application to the user), view (contains

the application's logical presentation), model (the application's state and internal

information), and file (the persistent information of the application). Based upon these

four levels, three different variations can be described. The shared model is one in

which the different users each have their own displays and views, but the model and file

levels are combined in a centralized server. The shared view is one in which each user

has a separate file, model, view, and display, but the models and views utilize

communication mechanisms to ensure consistency. The hybrid model is one in which

the file and model are centralized and shared on a server, but the system allows for

different views and displays (and views are coordinated via communication to ensure

consistency). These configurations are displayed in Figure 3.

23

Other modern models include the window system and coordination

agent/subsystem that communication to the presentation and functional core aspects of

the model. Based upon this view, the system can be central (contain server that

maintains all state), direct communication (a peer-to-peer system), hybrid (combination

of server and peer-to-peer), asymmetrical (in which the server resides on a user's

machine), and multiple servers (in which there is a hierarchy of servers and

communication layers) [116]. Of course, other permutations of the placement of these

CES components are possible, and a goal of modern CSCW architectures is to

accommodate modular components that can accommodate a wide range of computation,

data management, communication, and application components [142]. To increase

reuse of CES components, Geyer et al [35] advocate aggregating components in an

Figure 3: Distributions of Models, Views, and Displays

File Model

Display

View

User 1 User N

…

Display

View

Shared Model

Display

View

User 1

Shared View

File

Model

Display

View

User N

File

Model

 …

File Model

Display

View

User 1 User N
…

Display

View

Hybrid Model

24

object-centric architecture and allowing each CES component to control access, rights,

etc. This model is similar to a Web-services approach, and coordination among such

objects is critical to achieve successful utilization of the components. Mehra et al [79]

propose such a Web Services-based architecture as shown in Figure 4.

Figure 4: A Web Services-based Collaborative Editing Architecture

A "Distributed Version Control System" (DVCS) is one in which version control

and software configuration control is provided across a distributed network of machines.

By distributing configuration management across a network of machines, one should see

an improvement in reliability (by replicating the file across multiple machines) and

25

speed (response time). Load balancing can be another benefit of distributed

configuration management. Of course, if file replication is employed, then we must

implement a policy whereby all copies of the file are always coherent [64].

In order for distributed configuration management to work efficiently, the fact

that the files/modules are distributed across multiple computers on the network must be

transparent to the developer/user. The user should not be responsible for knowing where

to locate the file he/she is seeking. Rather, the system should be able to provide an

overall hierarchical, searchable view of the modules present in the system; the user

should be able to find their needed module(s) without any notion of where it physically

resides on the network [73][74].

2.3. Concurrency Control Policies

Since a shared set of objects reside at the heart of any collaborative system, some

mechanism must be in place to coordinate the activities of the multiple users within the

system. Traditionally in collaborative editing, one of two approaches is taken with

regard to coordination: pessimistic concurrency control or optimistic concurrency

control.

Configuration management systems (and CSCW systems) typically take one of

two approaches with regard to locking: optimistic or pessimistic locking. In the

optimistic approach, users are free to edit in a more parallel fashion, but conflict occurs

at the merge point when two sets of edits must be merged together and changes brought

together (to avoid losing work and ensuring that changes in one file have not adversely

affected changes in the other file) [78]. In the pessimistic approach, users must obtain a

26

lock on a document before being able to edit it; this can reduce the parallel nature of

development since at most one user can edit the document at any time.

Real-time collaborative editing systems avoid the merge problem by immediately

broadcasting edits to all other users within the system; in this way, all users’ copies of

the shared document are kept reasonably up-to-date. The concomitant problem with this

approach is that communication costs are significant. Additionally, since local changes

could be made at one user’s machine before the changes on another user’s machine is

received and processed, to ensure that the operation is “replayed” locally correctly, some

form of transformation may be necessary.

This section discusses mechanisms to manage concurrent access to shared

documents including pessimistic locking, optimistic locking, and sub-file level locking.

Pessimistic-lock based SCM systems such as RCS, VSS, and SCCS do not allow

for multiple users to concurrently modify the artifact; thus by locking at the file level,

these SCM systems can reduce concurrency in developing documents [19].

These systems pessimistically assume that users within the system will desire to

edit the same object at the same time and that such edits will be destructive or cause

problems. Since this is a shared resource/object, consistency and causality are

important. Notice the similarity to causal memory, shared memory, and cache

coherency in distributed systems research.

Pessimistic coordination policies are typically implemented using a “check in”

and “check out” API. Users may gain access to an unused document by issuing a

“check out” request; the document is then locked for that user, and no other user may

access the document. When a user has completed any edits to a checked out document,

27

he may issue a “check in” request, returning the document to the repository with any

changes made to the local copy.

Since only one user has access to the shared document at any given time, the

problem of multiple versions of the same document within the system is avoided. Thus,

no two users can have writable copies checked out at the same time. Updates to the

repository occur upon a “check in” command, and the old copy of the document is

overwritten with the new copy of the document. Often, differentials are saved so that

“undo” or “revert to old version” commands are possible. Figure 5 illustrates this.

One major limitation of the pessimistic coordination policy is the lack of

concurrency in the distributed environment; since only one user can access each shared

document at a time, then concurrency of collaboration may be inhibited. A few

solutions to this problem exist:

User 1 User 2

Document

A

Checks out A

Checks in A’

The differential is saved

Edits A → A’

Checkout denied

until A’ is

checked in

Figure 5: Pessimistic Concurrency Control

28

First, one can reduce the size of the code placed into each atomic element within

the repository. Since each element (document) within the repository contains less code,

the probability of two users requesting the same document may be reduced. This is akin

to breaking up a large file into smaller files, each of which may be checked out

concurrently without being inhibited by the pessimistic locking policy. Of course, it

may not always be possible to create small documents within the repository, and a

highly-desired document may inhibit concurrency regardless of its size.

Second, configuration management repositories may allow users to check out

“read only” copies of an already-checked-out document. I.e., if one user already owns a

document, other users may view (but not edit) the contents of this document. Such a

local copy could be used within local users’ workspaces for “what if” editing without

corrupting the original, master copy. If such local changes are deemed relevant to the

master copy, the user can later check out the master and incorporate these changes.

SCM systems such as CVS employ optimistic locking. This coordination policy

assumes optimistically that users will not need to access the same resource at the same

time frequently [76][89], thus this policy promotes increased concurrency among

collaboration at the cost of potential problems in inconsistency in the shared documents

and loss of causal access. Such a policy is indicative of and seems to work well in an

“agile development” environment where communication and productiveness trump

tools, processes, and planning [88].

Optimistic coordination systems are typically implemented using awareness

within the system such that users are made aware of each others’ activities. Awareness

is defined as “an informal understanding of the activity of others that provides a context

29

for monitoring and assessing group and individual activities” [146]. In such a system,

synchronous updates occur immediately when an edit occurs (akin to a write through

cache policy in distributed shared memory systems). Consequently, all users have a

current copy of any shared document and no check-in and check-out is needed because

any document a user is editing is by definition checked out (and perhaps checked out

simultaneously by many users) [88]. Figure 6 illustrates the optimistic coordination

policy.

Such awareness-based optimistic systems rely upon users to coordinate and avoid

collisions in edits to the shared document. According to current CSCW research, this

seems to work reasonably well in smaller work groups, but does not scale well to larger

collaborations among many users [88]. Two proposed reasons for this include the

limited amount of cognitive information users may process simultaneously and the

inherent dichotomy of informal coordination and formal, process-driven coordination.

User 1 User 2

Document

A

Accesses A

Changes to A

and A’ are

immediately

coordinated

Edits A →

A’

Accesses A

Edits A’ →

A’’

Figure 6: Optimistic Concurrency Control

30

Consequently, optimistic coordination policies work well in smaller collaborative

environments with fewer users when self-coordination is accomplished by the users of

the system. Alternatively, algorithms to resolve disparate versions of the documents in

real-time may be employed if the coordination of changes is to be made automatic;

approaches such as operation transformation (OT) [132] as discussed later in this chapter

can be used to ensure convergence of all copies of the document.

Many software configuration management (SCM) systems managed locks at the

source file level within the repository. Examples include RCS, SCCS, VSS, CVS, and

Subversion [Subversion] and view the file as the unit on which to manage locks. But it

is often advantageous to allow for finer granular locking to enhance concurrent access,

increase reuse through aggregation of artifacts, and easy convergence/merging of

disparate versions [17][35]. Given that many edits by users in a software engineering

project are localized and only change a small section of the document [97][98], fine-

grain locking at a class/function/method level would be advantageous [16]. Some

systems such as Coven [16] and COOP/Orm [75] allow the lock to be made at a sub-file

level, but these systems’ unit of lock remains fixed in size; the lock does not adjust in

size dynamically with regard to what other users are doing in the collaboration. Another

system (POEM) utilizes the hierarchical nature of software code to lock at a sub-file

level, but the methods must be defined a priori, and again the locks remain fixed in size

[71].

31

2.4. Convergence, Causality-preservation, and Intention-preservation

If mutual exclusion (locking) is not guaranteed as the mechanism for ensuring

consistency control, then another alternative technique must be adopted to ensure that

changes made by concurrent users are preserved.

Sun et al [132] proposed the most widely adopted standard for consistency

maintenance in real-time cooperative editing systems when defining the CCI model.

This model ensures convergence, causality-preservation, and intention-preservation.

Convergence: when the same set of operations have been executed at all local

copies, then the local copies will all have the same content/state.

Causality-preservation: for operations O1 and O2, if O1 O2 then O1 precedes (is

executed before) O2 at all local copies.

Intention-preservation: executing an operation O does not change the effects of

executing operations O1…On where O1…On are independent of O. Further, the effects

of executing O at any local copy is the same as the intention of O (i.e. the intention is the

same across all copies).

Wang et al [156] build upon the CCI model and inject the notion of semantic

consistency. This work proposes three levels of consistency in their model: operational

consistency, content (syntactic or intention) consistency, and semantic consistency.

While this model acknowledges that the CCI model ensures consistency control, the new

3-level model addresses the fact that semantic knowledge within the document could

allow for different ordering of operations (violating causality-preservation) and allowing

for the omission of some operations (violating convergence in that not all operations

32

must be executed) while still maintaining the syntactic and semantic intention of the

users.

Currently, the CCI model is the standard by which to measure the correctness of a

RTCES. The first two requirements (convergence and causality-preservation) have been

achieved, but intention-preservation is still an open problem.

2.5. Operational Transformation

Operational transformation (OT) is a mechanism which seeks to achieve CCI.

This section presents an overview of the approach and focuses on how causality-

preservation and convergence are achieved via OT. We also present relevant concepts

such as integration algorithms, transformation functions, and transformation properties.

Since a RTCES is a distributed system in which various sites are performing

operations, either a centralized or a replicated state approach must be adopted to share

the document being edited, and if a replicated approach is adopted, we must have some

way to ensure CCI. When an operation occurs at a client’s copy (site), four events occur

[90]:

1. The operation is performed locally

2. The operation is broadcast to all other sites

3. The other sites receive the incoming operation

4. The other sites execute/replay the received operation

In a distributed system such as one adopting a replica based approach to RTCES,

all operations have either causal relation (order) or concurrent relation with any other

operation [65]. Vector timestamps can be used to establish correct causal ordering for

33

causally related operations, but convergence is not so easily achieved among concurrent

operations since the state of different sites changes when operations are performed and

“replaying” an incoming remote operation may no longer be valid. OT is an approach to

overcome this problem and achieve convergence based upon transforming incoming

operations to the locally modified state. Figure 7 demonstrates the need to transform

operations to ensure convergence among all sites within the collaboration. Two

concurrent operations can be executed in a different order on two different sites’ copies.

As a result, when an operation is received, the state of shared object at the receiving site

may be changed relative to the state where the operation had been created. Thus,

executing this operation in its original form on a receiving site does not ensure the

copies converge.

Figure 7: The Need for Operation Transformation – State Convergence

Causality preservation can be achieved by using a state vector that is generated

when the operation is created [112][114] as follows. Assume that n is the number of

sites, and sites are identified by integers 1 to n. Each site n maintains an n-tuple state

34

vector SVn. Initially SVn[i] = 0, for 1 ≤ i ≤ n. After site n executes an operation created at

site i, the site timestamps its sequence number is increased by one such that SVn[i] =

SVn[i] + 1. Further, let O be an operation generated at site k and let SVo be the last

timestamped state vector, which is transferred to other sites with O. We can say that O

is causally ready to be executed at site l (k ≠ l) with a state vector SVl if the following

conditions are true:

(1) SVo[k] := SVl[k] + 1

(2) SVo[i] ≤ SVl[i], for 1 ≤ i ≤ n and i ≠ k.

To preserve causality, if an operation is not causally ready, then it must be

delayed until both of the above conditions are true. Holding on to these non-ready

operations necessitates a queue of waiting operations. Further, since operations may

need to be undone at a future time, a history buffer must also be maintained.

Having discussed causality-preservation, we now turn our attention to

convergence. To achieve convergence among all replicated states of the shared

document OT defines two main components: the OT integration algorithm and the OT

transformation function.

The OT integration algorithm is responsible for receiving the incoming operations

from remote sites, distributing locally-generated operations to remote sites, and

executing the operations on the site’s document state. This component is essentially a

distribution/communication and execution engine, and it invokes the transformation

function as needed.

The OT transformation function makes up the bulk of active OT research. [29]

defined a transformation function T to be a function that takes as parameters two

35

concurrent operations, op1 and op2 where op1 and op2 must be defined on a same state S.

The function T returns a new operation T(op1, op2) that is equivalent to op1 (has the

same effects) but is defined on the state S’, where S’ is the state resulting when

performing op2 on state S.

[113] further refined the requirements of correctness of a RTCES in achieving

CCI and demonstrated the sufficiency of TP1 and TP2, two transformation properties that

must be met in order to preserve causality and achieve convergence in replicas within a

RTCES. These properties are defined as:

TP1 For every pair of concurrent operations op1 and op2 defined on the

same state, the transformation function T satisfies TP1 property if

and only if:

where denotes the sequence of operations containing

followed by ; and where denotes equivalence of the two

sequences of operations

TP2 For every three concurrent operations op1, op2 and op3 defined on

the same state, the transformation function T satisfies TP2 property

if and only if:

TP1 guarantees that the state generated at one site performing op1 and then op2

(after op2 has been transformed relative to op1’s resultant state) will be the same as the

state generated at another site performing op2 and then op1 (after op1 has been

transformed relative to op2’s resultant state). TP2 guarantees equality of the states at

36

different sites if op3 is performed after an equivalent transformation; this property

ensures that once two sites achieve equivalence (after TP1), they will remain equivalent

and cannot affect the resultant state after transformation on a future operation (op3).

2.6. Discussion and Existing Systems

This section discusses an overview of the field of RTCES systems that have been

developed since the field’s inception in 1989 and some of the most current systems that

support modern RTCES techniques. As shown in Table 2 [12], there have been

numerous RTCES systems developed since 1989 when the field of RTCES research

began. Most of these systems have been developed in the United States and half have

been developed as a result of academic research.

Table 2: RTCES Developed by Year [Chen 2006]

 RTCES Year RTCES Year RTCES Year

GROVE 1989 GroupGraphics 1995 CoPowerPoint 2004

Aspects 1990 JointEmacs 1996 CoWord 2004

DistEdit 1990 LICRA 1997 DocSynch 2004

MultimETH 1990 REDUCE 1997 JotSpot Live 2004

CoMedia 1991 Col.AutoCad 1998 Tendax 2004

GroupIE 1991 Flex JAMM 1998 ACE 2005

MACE 1991 CoDiagram 2000 Gobby 2005

Ensemble 1992 GRACE 2000 InstaColl 2005

GroupDesign 1992 Presence-AR 2000 Java Studio 2005

GroupDraw 1992 CollabCAD 2001 Moonedit 2005

SEPIA 1992 ICT 2002 Scratchpad 2005

CoDraft 1993 Groove 2002 Writely 2005

ConversionBoard 1993 LeoN 2003 Sigsoft 2006

Iris 1993 LiveDrive 2003 SynchroEdit 2006

SASSE 1993 Subethaedit 2003 Syntext 2006

ShrEdit 1993 Chalks 2004 G.SpreadSheet 2006

37

There has been a steady increase in the number of RTCES developed since 1989’s

introduction of the GROVE system [29]. As Figure 9 shows, there is a consistent

interest in the field of developing RTCES, and this interest is supported by our

experiences when talking with colleagues about such collaborative tools – the question

is almost universally raised: “Where can I get something like this to support my group in

collaborating together?”

Figure 8: RTCES Development Growth: 1989-2006 [12]

While there was an initial surge of RTCES development in the early 1990s, the

pace of development cooled from the mid 90s until its resurgence in the early 2000s –

with the rise of Web-based systems.

Additionally, as shown in Figure 9, the document technologies supported in

RTCES research since 1989 have been: text documents (no structure), rich text

documents (with formatting such as fonts and graphics – this also includes presentation

No. of RTCES developed since 1989

0

10

20

30

40

50

60

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

38

and spreadsheet document types), vector graphics documents, and structured documents

(plain text documents with embedded bitmap graphics images). There has been a clear

rise in the interest of rich text documents since 2001, and plain text document RTCES

continue to be popular as this document type is most prevalent in consistency

maintenance and OT algorithmic research.

Figure 9: RTCES Document Types Supported: 1989-2006 [12]

According to [12], there have been only five Web-based RTCES developed in the

past 3 years (2004-2006); these systems focus on supporting rich-text editing and utilize

the new Asynchronous JavaScript and XML (AJAX) technology for their

implementations.

While it is common that these Web-based RTCES are associated with Wikis

given the collaborative nature of Wikis, it is important to note that Wiki technology

utilizes version control and differentials that support asynchronous editing – allowing

No. of RTCES per document type

0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

Text

Rich Text

Vec. graphics

Structured doc.

39

users to modify a shared document and “check in” their changes once their edits have

been completed [26] and not in real-time.

A recent approach to ensuring consistency when utilizing a distributed, replicated

groupware system is through a “mark and retrace” approach [45]. In this approach,

when a new operation from another editor arrives at the local copy of the document, the

document’s address space (state) is analyzed relative to the efficient/inefficient marked

states as shown in Figure 10. Mark and retrace is similar to the tombstone function

approach of [90].

Figure 10: Mark and Retrace

[20] presents work that allows for the extension of operational transformation

techniques to be applied not only to linear text but also to tree-based

XML/SGML/HTML documents. The SGML notion of a “grove” of data is utilized and

the CCI model is adhered to [134]. Others [132] have applied the techniques of OT to

40

more complex data structures required in word processors. In this approach, termed

multi-version, single-display (MVSD), multiple versions of the objects’ states are stored

internally and only one version of the object state is displayed to the user; users may

then select the correct version desired. The multi-version approach is also employed in

[140] within the domain of graphic editing systems, and the challenge of this approach

remains achieving semantic consistency rather than syntactic consistency [156].

IRIS is a project that supports CSCW and CES through the use of optimistic

concurrency control and multicast for communication; this project supports synchronous

and asynchronous collaboration but does not offer specific conflict resolution algorithms

(instead, resolution is left up to the users as in CVS and RCS). Private local edits can be

made and selectively published (with conflict resolution possibly needed), but no

algorithms to handle such events are presented [63].

Concerning notification mechanisms, others have examined how to ensure that

users of the system are kept up-to-date with respect to asynchronous editing (not real-

time, concurrency management). Work such as [121] and [36] present customizable

notification mechanisms by which users may be notified when a document is changed

through a variety of interfaces.

Existing IDEs such as Eclipse [27] and Visual Studio [149] provide the ability to

extend the IDE and add new functionality. Jazz is one such project that adds the

capability of CES into the Eclipse IDE. Jazz supports awareness, communication (via

chat and annotations) and coordination (informal via communication – not through

concurrency control mechanisms) as shown in Figure 11 [13].

41

Figure 11: Integrating Collaboration into IDEs (Jazz)

Existing applications such as CoWord and CoPowerPoint [158], and CoStarOffice

[122] all allow multiple users to coordinate shared authoring of a document, but each of

these systems employ an architecture that only allows a homogeneous collection of

client applications. Further, CoStarOffice requires explicit, token-based turn taking for

coordination.

When attempting to achieve multi-user collaboration, systems have taken existing

single-user applications and modified them such that they can serve as a multi-user

editing system. DistEdit [62] is one such system that integrates additional multi-user

capabilities into an existing single-user editing system. Others include CoWord and

CoPowerPoint [158], CoStarOffice [122], and CoOpenOffice [136].

42

Figure 12: The DistEdit Approach of Adding Collaboration to Existing Applications

Notice in Figure 12 the original editing application components such as

control/user interface, screen manager, and document data structures remain untouched;

the update routines are modified to map to primitives that are broadcast to other editors

and update the local copy of the document [62].

43

The CoWord and CoPowerPoint projects are similarly structured in leveraging

existing single-user applications with a collaborative adaptor and core collaborative

engine hooked into the existing application to provide for the collaboration functionality

[158], as shown in Figure 13.

Figure 13: The CoWord Approach to Adapting Single User Applications to RTCES

Additionally, it is advantageous to utilize existing applications that are familiar to

users. These applications can be augmented to be utilized in a collaborative

44

environment, allowing users to retain their favored applications while still allowing for

collaboration [68]. They also allow for heterogeneous collection of client editors in their

architecture by providing an event capture-reduction-reproduction mechanism; in this

methodology, events are captured and reduced to meta-events, then they are replayed by

transforming/reproducing them on the client editor. In this way, multiple users can use a

heterogeneous set of editors and still collaborate on a shared document [22]. In this

case, as shown in Figure 14, the single application contains single-user semantics and

rendering (displaying the state to the user); collaboration can be injected into this single-

user application by hooking collaboration semantics that receive a “copy” of the user

editing commands. These commands are processed and distributed to other copies of

the single-user application.

Figure 14: Generalized Collaborative Architecture

45

Another current, viable RTCES system is the SubEthaEdit system as shown in

Figure 15. This system runs on the Mac OS and features many usability and awareness

features of other CES editors. SubEthaEdit allows users to connect to a central server

and collaborate in real time. This system shows presence information about each user

(labeled as Locate Participants and Control Access in Figure 15) [127]. This system,

like others such as Google Docs [37], Groove [42], and SharePoint [81], does not ensure

true CCI as the level of coordination and state management uses some form of

asynchronous (lock based) coordination and require explicit “check in” of the shared

document to update remote states; thus some form of merge reconciliation is required to

synchronize states if two collaborators change the same content.

Figure 15: Collaboration via in SubEthaEdit

46

Figure 16: Viewing Changes Made By Users – a SubEthaEdit Report

Many CES have adopted similar visualizations to SubEthaEdit’s

change/modification log [94] to assist users in tracking how changes are made. While

useful, these change logs and reports are for post collaboration used (i.e., they show the

changes some after they occur).

Historically, OT research has sought to achieve both TP1 and TP2, but TP2 has

been elusive/difficult to achieve until recently when it was solved via the TTF [90].

While TP1 and TP2 are necessary and sufficient to achieve convergence and causality

preservation, intention preservation is still an active research area in the field of RTCES.

Unfortunately, the current OT approaches do not scale for a large number of

operations and a large number of users. Since all operations must be broadcast to all

users (except for the originating user of the operation), this approach is costly with

47

respect to communication. Additionally, we assume that the number of operations

performed in the collaboration is relative to the number of users within the collaboration,

thus the total number of operations that must be sent across the network is relative to

O(n
2
) where n is the number of users within the collaboration.

Further, OT is costly with respect to the total memory required in storing the

history buffers among all clients. The history buffers at each user’s site must be large

enough to accommodate the arrival of a highly-delayed operation arriving at a user’s site

such that this “late arriving” operation can be correctly applied in causal order. Thus OT

approaches assume a highly-connected, synchronous editing environment where

messages are not significantly delayed (or lost) when in transit across the network. If

significant delay occurs on the network or if operations are not sent quickly to all users’

sites, then the history buffers may grow significantly large, and consistency will not be

achieved… and system performance and the collaboration will decay rapidly. As a

result, our research goal is to improve RTCES beyond current OT-based systems.

48

CHAPTER 3

AN OPEN SYSTEMS APPROACH TO RTCES

Given that many users have their own favorite editing software on the client side

and there are many existing server-side repositories that contain documents, it is

advantageous to create a system that can support the use of these existing technologies.

Users are often hesitant to adopt new collaborative tools that don’t have the same feature

set or familiarity of their current tools [64]; as a result, we strive to provide a means by

which a heterogeneous collection of existing client and server side technologies may be

interconnected within a Collaborative Editing System such that user can retain the use of

their favored tools and connect to the plethora of existing server repositories.

We note that many feature-rich editing systems such as OpenOffice, Microsoft

Office, and various integrated development environments (IDEs) such as Borland’s

JBuilder, Microsoft Visual Studio, and Sun’s NetBeans have a large existing user base.

Likewise, many configuration management systems (CMS) and document repositories

such as RCS, VSS, and CVS are currently implemented worldwide and store a large

collection of documents.

Our work brings these existing client and server technologies together in an open-

systems architecture that allows users to retain their favored tools and leverage on

existing document servers through the use of Web-services. [4][79][160] discuss Web-

service-based approaches similar to our system but their systems are coupled to specific

tools (IDEs) whereas our approach allows for the integration of any IDE, CMS, and

communication tools; consequently, our architecture is more flexible.

49

Central to our motivation is the need to allow users to synchronously and

asynchronously edit documents. When accessing documents synchronously, users

typically are made aware of other users in the system [46]. Our architecture handles the

negotiation of awareness and concurrent access transparently to the users such that they

can focus on the work at hand without being hindered by check-in and check-out level

minutiae.

Figure 17 demonstrates the approach of our architecture in allowing varied

technologies to connect and work together in a CES. On the client side, different

document editors such as Microsoft Word, notepad, Open Office, etc. can be used by

different clients within the CES, yet each has a listener entity that translates local

changes to the shared document to be replayed by other clients on their chosen

applications. Similarly, the Web services API provides a consistent interface by which

clients may request files for check-in and check-out; the specific server technology

remains hidden, so it does not matter if CVS, VSS, or another CMS technology is

adopted. To achieve heterogeneity among the clients, it is necessary that a client

application listener be employed that can detect changes to the document, translate these

changed into an application-independent format, and then send these changes to other

clients via the server-side coordination Web service.

50

The remainder of this chapter is organized as follows: we first present how

various client technologies may coordinate in a RTCES, and then present how various

server technologies may coordinate in a RTCES. We then discuss how events on the

clients must be translated from one client technology to another if a heterogeneous set of

clients technologies is to be supported. Next, we present the overall heterogeneous

architecture that combines the client and server technologies via Web services and

discuss the event flow within the architecture. We present validation of our architectural

approach via simulation and prototype implementation. Finally, we conclude with a

discussion and summary.

3.1. Supporting Various Client Technologies

In order to support an existing client editing tool, two approaches are applicable:

either transparency or aware collaboration technology. As previously discussed, it is

CVS

VSS

CMS

IDE

(JBuilder,

VStudio,

etc.)

Doc Editor

(Word,

notepad, etc.)

F
in

e-
g
ra

in

lo
ck

m
an

ag
er

F
in

e-
g
ra

in

lo
ck

m
an

ag
er

F
in

e-
g
ra

in

lo
ck

m
an

ag
er

C
li

en
t

A
p
p
li

ca
ti

o
n

L
is

te
n
er

C
li

en
t

A
p
p
li

ca
ti

o
n

L
is

te
n

er

W
eb

 S
er

v
ic

es
-P

ro
v
id

ed
 C

o
re

 F
u
n
ct

io
n
al

it
y

Notification

(Email, IM, etc.)

 N

et
w

o
rk

…

…

…

Figure 17: Heterogeneous Architecture

51

difficult to support transparency within collaboration because all events (at the OS level)

must be captured and the collaborative system has no knowledge of what these events

mean within the context of the application; rather, the system is just capturing,

broadcasting, and replaying system-level mouse click and key press type events. As a

result, we focus on aware collaboration technology in which hooks may be connected to

existing client editing applications and attain more knowledgeable events such as

insertions, deletions, etc.

To create such an aware collaborative hook, it is necessary to enumerate the

features (edit events) that are to be shared and supported within the collaboration.

Triggers that are fired when such events are raised must be written such that when these

edit events occur, the client hook may intercept the edit event and act accordingly. The

response could simply pass the edit event to the existing client editor, but additionally, it

could sent messages to a server to request write access to the section of the document the

user is attempting to write to or broadcast the edit event to other users within the

collaboration. We do not prescribe what must occur within these triggers, but do

demonstrate the necessity of the triggers in supporting the client technologies.

To demonstrate that we can implement the client hooks necessary for an open-

architecture system that supports any type of client, we developed a program that parses

Microsoft Word documents into our hierarchical document tree data structure; in this

case, we parse the document into paragraphs, sentences, and words using Word’s

internal document object model (DOM). This program’s functionality is demonstrated

in Figure 18 where a Microsoft Word document has been parsed into the tree view

displayed in the middle of the application and is shown graphically in the right of the

52

application. In this example, the atomic level of parsing is the word, so words appear as

leaves within the document tree, and the non-leaf, structural nodes represent the

assimilation of the words into sentences, then sentences into paragraphs, and paragraphs

into the entire document (at the root).

Figure 18: Parsing a Microsoft Word Document into a Document Tree

While not a complete solution, this brief prototype does show that the document

object model (DOM) within Microsoft Office products such as Microsoft Word can be

parsed into its semantic structure. Of particular interest in this prototype is that such

semantic structure can be gleaned from even a closed-system and the proprietary format

of Microsoft.

3.2. Supporting Various Server Technologies

Given that many different server repositories are currently in use and consist of a

large set of documents, it would be advantageous to be able to connect to these existing

53

technologies without the need to adopt a new, specialized system specific in supporting

RTCES. Additionally, since there is a variety of technologies current in use, any

architecture to support RTCES should take into account that it must support a

heterogeneous collection of server technologies. To support these various, existing

server technologies, we propose adding an architectural layer on top of the existing

server repository that insulates the particular implementation from the client users. In

this way, a standard API may be defined that all clients may make use of – enabling

check in, check out, optimistic concurrency, pessimistic concurrency, subscription and

notification upon changes to documents within the repository, and other such features.

Supporting multiple repositories has been proposed and implemented by [85] and others,

and our approach also utilizes a Web service interface by which clients may connect –

realizing the open-systems approach of our proposed architecture. This process or

layering additional API and features atop the existing server technologies is shown in

Figure 19.

Figure 19: Layering the Lock Proxy and Web Service API atop Existing CMS

RTCES Web Service API

Lock Proxy

Existing Configuration
Management System API

VSS RCS CVS Etc.

Existing Web API

Wiki Frontpage SharePoint Etc.

Operating
System
Calls

File
System

54

In Figure 19, the existing CMS, Web-based, and OS file system appear at the

lowest level (pink) and have publicly accessible APIs at the next level up (blue). We

add a lock proxy one layer higher (orange) that implements dynamic, hierarchical

locking to increase concurrent access and manage computation and communication costs

(see Chapter 4). To ensure that these services are accessible regardless of the client

technology being employed, we adopt a Web service front-end (show in purple) atop the

lock proxy. The lock proxy must connect to each server technology and map a subset of

the RTCES events that the server previously provided (document check in, document

check out, etc.) to the server API comments. For example, a document check in

command issued within the RTCES would have to map to the CVS “ci” command if the

server technology managing the shared document was CVS. On the other hand, some

RTCES events would not pass down the layers to the existing server technology; client

cursor movement and individual lock request and release commands would be handled

in at the lock proxy layer without need to pass them further down. Thus the number of

events to map to the existing server technology is limited and tractable.

The result of our approach is a server-side solution that insulates/hides the

implementation details of the particular server technology employed so that any number

of client technologies may make use of the documents in the servers’ repositories.

Additionally, the added capabilities of the dynamic locking are added atop the server

without having to have access to the internal implementations of the server technologies

(i.e., no code-level access or recompilation is required to add the new capabilities).

55

3.3. Translation of Events

While supporting an “aware” set of homogeneous client tools proves challenging

because triggers must be written for each edit event that we would like to capture and

respond to, the difficulty in supporting heterogeneous clients is even greater. In a

heterogeneous environment, the client hooks must be written for each client technology

to be supported in the system, but additionally, a mapping from each client technology

edit event to each other client technology event must be written. It is no longer

sufficient to simply transmit the operations occurring locally to remote clients because

the remote client may not employ the same editing technology as the local user.

For example, if an event X is triggered at client C1 using technology T1, this event

X must be mapped to Xi such that Xi achieves the same intention (results in the same

document state) on Ti that X achieved on T1 when replayed for each technology Ti (i.e.,

 Ti T, where T = the set of heterogeneous technologies employed by the users in the

collaboration). This is undesirably complex and O(T
2
) as depicted in Figure 20.

Figure 20: Mapping Client Events Directly to Each Other

Denotes mapping a

set of edit events

from Ti to Tj

56

A better approach would be to receive an edit event from the client application

and translate this event into a “meta” language representing the intention of the event on

the shared document within the RTCES. From this meta language, the event could be

translated into a specific command for a target client technology. This is more efficient

and only requires O(T) triggers to be written; further, it is more scalable in that when a

new client technology is to be supported, none of the other client hooks need to be aware

of the new technology – they still translate into the meta language and from there, the

meta language translation tool can translate the event into the new client technology

format. This process is depicted in Figure 21.

The downside of taking this centralized meta-language approach to translating the

events from technology to technology is that it does require an additional computational

step when compared to direct technology-to-technology translation because of the

intermediate meta format. If it proves too costly/slow to move between the intermediate

meta format, it is possible to implement direct translations for the most common client

technologies and have the translation bypass the intermediate in these time-critical (and

perhaps more common) situations.

Figure 21: Mapping Client Events to an Intermediate Meta Event Language

Denotes mapping a

set of edit events

from Ti to M or

from M to Ti

where M = Meta

event language and

Ti is an editing

client tool

57

3.4. Heterogeneous Architecture

Having discussed how various heterogeneous client and server components may

be supported within a RTCES, we now integrate them into a proposed architecture.

The Client Application Listener component connects to existing client

applications such as MS Word and IDEs like JavaBeans so that users may use their

preferred methods of editing. The role of this component is to listen to change events

that occur within the application (edits to the document) and cache (if desired) and

send on these changes to the server coordinating the collaborative editing among

other users. This component also receives update notifications from the server and

sends the changes to the client application, thus maintaining consistency among all

users collaborating together.

Existing Client

Application

(Word, JavaBeans, etc.)

Client

Application

Listener

Web

Service

Fine-Grain

Lock Manager

Existing Server

Repository

(VSS, CVS, etc.)

Notification

Mechanism

EDITING

CLIENT DOCUMENT REPOSITORY

SERVER

Email, IM, etc.

Figure 22: Architecture Components

58

Second, the Web Service component provides an API for traditional CMS

systems (check-in and check-out, etc.) as well as an API for managing changes

among the users that are collaborating together (insert, delete, move, etc.). This

component also provides an API by which users can subscribe to receive synchronous

and asynchronous notification when a document has been changed.

Third, the Fine-Grain Lock Manager component acts as a proxy that checks-

out and checks-in documents from the existing server repository (such as CVS, VSS,

etc.). This component receives check-in and check-out events from the Web Service

component and processes and executes these requests via the existing server

repository. This component provides the ability to manage artifacts at a finer

granularity (viewing an artifact as a collection of sub-artifacts); as an example, a user

can edit page one of a shared artifact at the same time another user is editing page

two. This component tracks who is currently working on each artifact in the server

repository and is thus able to “push” these changes to the necessary clients. The

addition of the fine-grain lock manager proxy to the server machine allows for the

addition of fine-grain check in and check out of artifacts. This lock manager

intercepts messages from the network and processes them accordingly. The lock

manager maintains a set of artifacts that have been checked out from the server; this

stored database of artifacts also contains information about subsections within the

artifacts. This subsection management allows a client to check out only a subsection

of an artifact and allows other clients to check out other subsections. Consequently,

the lock manager will only check in an artifact if there are no clients accessing the

artifact. Assuming pessimistic locking, a check out request is only passed to the

59

server from the lock manager if there are no other clients currently accessing the

subsection being requested.

The result of this additional lock manager is that each artifact may be checked

out simultaneously by different clients so long as the clients are accessing disjoint

subsections of the artifact. Notice in this scheme, no change is required to the existing

CMS system; the addition of multi-granular locking is transparent to the existing

CMS system. Furthermore, if the existing configuration management system does

not support replication of the files among multiple clients, then our approach adds this

capability by checking the files out and in via lock manager; thus the existing CMS is

only aware of one user (the lock manager) and the lock manager is then responsible

for coordination among the clients.

Fourth, the Notification Mechanism component is responsible for passing on

any events that the user has requested notification of (document change, check-out,

etc.) to the users’ preferred email, IM, etc. This component receives the event from

the Web Service component and sends the notification to the client. Clients may

subscribe for notification when changes are made (even if they are not currently

editing the document); thus the system supports synchronous and asynchronous

collaboration.

In summary, heterogeneous editors are able to coordinate by sending messages

to the server via an established API. Since the server provides the common API, any

client IDE can connect if it utilizes this API. The server propagates changes to other

users and maintains consistency among all users’ copies of the artifact as needed.

60

The system tracks who is currently working on each artifact in the server repository

and is thus able to “push” these changes to the necessary clients.

The following 11 events are illustrated in Figure 23. When a change event occurs

in the client’s document editing application, a state update message (user edit of artifact)

is sent (1) to the Client Application Listener. The Client Listener receives the update

message and caches the change (2). When the cache must be flushed (when the cache is

full or when another user enters the document as a reader), changes are sent (3) to the

Web Service on the server via the network. The Web Service receives the updates and

sends (4) them to the Fine-Grain Lock Manager to be processed. Upon receipt of a

check-out or check-in message, the Fine-Grain Lock Manager updates its data store of

users that must be notified of the change and may also send (5) the check-out or check-

Figure 23: Events in the Architecture

Existing Client

Application

(Word, JavaBeans, etc.)

Client

Application

Listener

Web

Service

Fine-Grain

Lock Manager

Existing Server

Repository

(VSS, CVS, etc.)

1

3

4

2

5

6

7

11

9

Notification

Mechanism

8

10

EDITING

CLIENT
DOCUMENT REPOSITORY

SERVER

Email, IM, etc.

61

in message to the existing Server Repository. The Server Repository (an existing CMS

or document server) processes the check-in or check-out and confirms (6) update of the

artifact to the Fine-Grain Lock Manager. The Fine-Grain Lock Manager notifies (7) the

Web Service component that the change has been committed (the check-in or check-out

has succeeded). For each client subscribed for notification concerning this document

being changed, the Web Service component sends (8) a message to the Notification

Mechanism (which will notify the client). Additionally, the Web Service component

selectively broadcasts (9) via the network change notifications to each client interested

in the change (and client currently reading the document being modified). The Client

Application Listener will receive the update notification (10) and cache it if the user is

not currently viewing the updated section. When the client views the changed section of

the document, the Client Application Listener flushes the update cache to the Client

Application (11); this maintains consistency as the user views the content of the shared

document.

The aforementioned architectural components enable heterogeneous client and

heterogeneous server technologies to interact within a RTCES – allowing clients to use

their preferred tools and enabling RTCES to work with legacy server repositories. The

Web service approach acts to insulate the specific server implementations from the

clients, and the client hooks facilitate interoperability among varied client technologies;

further, the architecture supports subscription-based and asynchronous notification

mechanisms for users that are interested on per-event awareness of changes within the

RTCES.

62

3.5. Validation

To validate our approach and determine the communication costs associated with

such a distributed architecture, we implemented two studies. The first verified what we

believed intuitively that locking documents at a sub-file level would increase concurrent

access to the shared documents via a lock proxy. The second verified that

communication costs are reasonable to support such an open architectural approach.

First, we discuss the background of the DEVS formalism used in the first simulation

(and the simulation later described in Section 5.2) in modeling the components within

our architecture; we then discuss our simulation in validating how adding a lock proxy

improves concurrent access to files within legacy CMS; finally, we present our work in

measuring communication costs associated with various events within the architecture.

3.5.1. Introduction to DEVS

The Discrete Event System Specification (DEVS) is a formalism for discrete

event systems [161] and is the basis for the DEVS Java [162] simulation package used

for validating our open systems architectural approach to RTCES; we also use the

DEVS Java package for later simulations in this research (as described in Section 5.2).

Formally, DEVS is a tuple:

where

X is the set of input values

S is the set of states

Y is the set of output values

63

δint : S → S is the internal transition function

δext : Q × X → S is the external transition function,

 where Q = {(s,e) | s S, 0 ≤ e ≤ ta(s)} is the total state set and e is the

time elapsed since the last transition

λ : S → Y is the output function

ta : S → R+ is the set of positive reals including 0 and ∞

Consequently, we can use DEVS to create models that reflect state transitions

based upon internal (based upon internal timings) and external (based upon receiving

inputs/messages from other entities) events. Additionally, these models can receive and

generate events, which is easily mapped to an object-oriented implementation.

One of the fundamental classes of DEVS modeling is the atomic model/class

which is defined as M above. In M we have states that the object can exist in, and based

upon timing events, the model can transition to other states; additionally, the model can

transition to other states based upon receiving an external event/input. When a model

transitions state, it is able to generate an message to be sent as output of the model. The

inputs are received by an atomic model via input ports where

X = {(p, v) | p InPorts, v Xp}, and the outputs are sent out by an atomic model via

output ports where Y = {{(p, v) | p OutPorts, v Yp}. The atomic model is shown in

Figure 24.

64

Another fundamental class of DEVS modeling is the coupled model which is

defined as N below.

where X and Y are the same as previously defined and D is the set of the component

names where d D, d is an instance of M or N (i.e., is an atomic or coupled model).

EIC, EOC, and IC are couplings between models as shown in Figure 25 where EIC is

External Input Coupling, EOC is External Output Coupling, and IC is Internal Coupling.

These various couplings are also shown in Figure 25. The Select entity is a tie-breaking

function when two events are generated at the same simulation time.

Figure 24: The DEVS Atomic Model

In
 P

o
rt

s

O
u
t

P
o
rt

s

States

…

…

Atomic M

65

Coupled models may be combined to created hierarchical models to any arbitrary

depth as needed in handling the complexity of the models being simulated.

In summary, DEVS is a powerful modeling framework in which to create models

of any level of complexity to handle discrete events and maintain state information on a

per-model/object basis. Having provided background to the DEVS framework, we turn

our attention to its use to simulate our architectural approach to RTCES.

3.5.2. Adding a Lock-Proxy to a CMS

To validate our architecture and experimentally determine whether a lock proxy

approach could improve concurrency, we simulated two configurations of our

architecture – one in which the lock proxy was absent (as in a traditional distributed

repository) and one in which the lock proxy was present (as serving to implement fine-

granular locking). We utilized the discrete event DEVS Java simulation framework for

this study [162].

Figure 25: The DEVS Coupled Model

Atomic M1 Atomic M2
in out

out out

in

in

EIC
IC EOC

Coupled N

66

Both simulations connected numerous clients to a set of servers hosting CMS

(document repositories) through a network. Clients simulated users requesting

documents, editing a document once owned, and returning the document to the

repository when the edits were completed (checking the document back in).

The second simulation configuration was identical to the first except that this

system added a lock proxy component to the server that intercepted document requests

from clients and processed these requests as a proxy to the server; this component is

shown as a dashed box in Figure 26 to denote that it was not present in the original

simulation configuration. The client edit behaviors were the same in both simulations.

These simulation configurations are illustrated in Figure 26; note that if the lock

manager was not present, the Web Services API would communicate directly with the

document repository (CMS).

…

…

Client 1

Client 2

Client N

Network
CMS 1

Web

Service

API

Lock

Proxy

Server 1

CMS M

Web

Service

API

Lock

Proxy

Server M

Figure 26: Simulation Configuration (shown with Lock Proxy)

67

Figure 27 shows the architecture implemented in the DEVS Java simulation

package. The simulation was designed so that client users and servers could be added

easily upon initial configuration; the lines connecting the components denote discrete

event message paths within the simulation (i.e. requests for check in and check out,

success or fail messages from the server, etc.), thus that the entire collaborative editing

system was modeled accurately. In Figure 27, the lock manager component is shown

and labeled as “middleware.”

Figure 27: DEVSJAVA Simulation of Lock Proxy

68

On the left side in Figure 27, you see a set of clients that represent the users in the

CES; we did not specify which editing software/applications the clients were using – we

simply send the check-out and check-in requests denoting that the clients desire to edit

(check-out) and are done with editing (check-in). The network entity connects he clients

to the servers. On the right side of Figure 27, you see a set of servers; we allow the set

of documents to be spread over a heterogeneous set of servers, thus each server

publishes a Web Service API that standardizes how clients may request check-ins and

check-outs of documents. Notice that it is transparent to the clients as to whether the

server is running any particular configuration management software (RCS, CVS, VSS,

etc.). The connecting lines in Figure 27 denote the message paths from clients through

the network, from the network to the servers, and internally within the servers’ Web

Services API to the lock manager/proxy and then to the existing/legacy CMS. Also note

that the lock manager/proxy was only present in the section version of the simulation; it

was left out in the first version of the simulation to see if the addition of this proxy

improved check-out fail rates.

There are three types of clients in the simulation: random, clustered, and hybrid.

These clients represent the broadest range of edit patterns among users/editors within a

collaborative editing session. The random client has a high probability (90%) of

selecting a new random artifact from the repositories from the full range of all of the

documents. The clustered client is programmed to exhibit a localization policy in that it

remains within a close proximity to a single document. We achieve this by sequentially

numbering the documents, so this client checked out documents numerically close to its

69

currently preferred document. The hybrid client is programmed as a mixture of the

clustered and random client behaviors – behaving like each of them 50% of the time.

The simulation was run in nine configurations for each of the two versions of the

simulation (for a total of 18 runs). Table 3 shows the various configurations. The

number of iterations is defined by the number of iterations for which the simulation was

run (all time advances). The client distributions denote how many of each type of client

(random, clustered, and hybrid) were in the system when the simulation was run; for

example, for test 1, there was one client of each of the three types. The repository

distributions denote how many artifacts existed at each server and how many servers

existed in the system; for example, in tests 1-4, there was one artifact at server 1, two

artifacts at server 2, and one artifact at server 3.

Table 3: Lock Proxy Simulation Configurations

Client Distribution

(# per type)

Repository Distribution

(# Artifacts at each Server)

Test Iterations Random Clustered Hybrid S1 S2 S3 S4 S5 S6 S7 S8 S9

1 500 1 1 1 1 2 1 0 0 0 0 0 0

2 500 3 0 0 1 2 1 0 0 0 0 0 0

3 500 0 3 0 1 2 1 0 0 0 0 0 0

4 500 0 0 3 1 2 1 0 0 0 0 0 0

5 500* 1 1 1 10 20 10 0 0 0 0 0 0

6 500 10 10 10 30 50 80 30 30 40 40 100 100

7 5000 10 10 10 30 50 80 30 30 40 40 100 100

8 2500 10 10 10 15 25 40 15 15 20 20 50 50

9 5000 1 1 1 1 2 1 0 0 0 0 0 0

* Test 5 for the fine-grain version was run to 5000 iterations to obtain lock failures

70

Table 4: Lock Proxy Simulation Results

As shown in Table 4, check-out fail rates for the simulation configuration without

the fine-grain locking ranged from 2% (test 5) up to 32.75% (test 1). Check-out fail

rates for the simulation configuration with the fine-grain locking ranged from 0.75%

(test 5) up to 11.67% (test 2).

In all configurations, the version of the simulation that contained the fine-grain

lock manager significantly outperformed the other version (without the lock manager) in

reducing the number of check-out failures (collisions). The minimum improvement

when adding the fine-grain locking in reducing check-out failures occurred in test 2

(50% improvement), and the maximum improvement occurred in test 1 (78%

improvement). The average improvement in reducing check-out failure as a result of

adding the fine-grain locking was 67%.

This study has shown that the hypothesis behind adding middleware to existing

repository management systems is sound and that fine-grain management of artifacts via

proxy does improve the reduction of failed check-outs (collisions) among multiple users

in a distributed collaborative system.

 Check-out Fail Rate

Test Without Lock Proxy With Lock Proxy Improvement

1 32.75% 7.27% 78%

2 23.33% 11.67% 50%

3 26.92% 6.38% 76%

4 19.64% 7.02% 64%

5 2.00% 0.75% 63%

6 16.39% 5.81% 65%

7 7.91% 2.62% 67%

8 9.08% 2.99% 67%

9 26.55% 7.24% 73%

71

In all test scenarios, dramatically fewer check-out failures occurred in the fine-

grain locking version of the simulation as compared to the initial version of the

simulation without fine-grain locking. This is as expected as the middleware, fine-grain

version of the simulation effectively increases the number of artifacts (via subsections of

the artifacts) that clients are able to simultaneously check out; this is due to the fact that

checking out a subsection of an artifact does not preclude another client from checking

out a different subsection of the same artifact.

Additionally, this study shows that the number of failed check-outs is related to

the relative density of clients when compared with artifacts; note that test 1 and 5 differ

only in the number of artifacts stored in the server machines (by a factor of 10). The

check-out fail rate decreases dramatically as the number of artifacts is increased. This is

as expected since the clients have a wider range of artifacts from which they may select.

The results also indicate that the improvement in moving from the initial

simulation to the fine-grain enabled simulation is comparable regardless of the number

of iterations to which the simulation is run. This claim is supported by examining the

comparable improvements between test 6 and test 7 (in which only the iterations was

changed).

The results indicate that the concurrency is maximized at some number of

artifacts relative to the number of clients. Examining the difference between test 7 and

test 8, the decrease in the number of artifacts by 50% does not show any appreciable

difference in the improvement rate. Consequently, we may infer that both of these tests

had a sufficiently large set of artifacts from which the clients could make use of such

that the check-out failure rate was not affected by the reduction in the number of

72

artifacts. It is interesting to note that the improvement rate is still significant when the

lock manager is added, even though the number of artifacts is large enough to handle the

client requests well in both simulation configurations.

3.5.3. Measuring Communication Costs

The second study we performed to validate our architecture involves measuring

the communication cost associated with keeping users notified with the RTCES. In this

study, we implemented a simple client editor that communicated with other users within

the RTCES using a P2P networking approach. The client editor allowed the users to

share a common document and chat via an instant message (IM) window.

The system was implemented in C# with DirectX 9 using peer-to-peer

networking. The visual interface provides the users the ability to edit the collaborative

space, send text chat messages, and log all interactions with the shared space.

The peer-to-peer aspect of the system is particularly interesting; no centralized

server acts as a single point of communication bottleneck or failure, and in this system,

the host is able to migrate if the original peer host leaves the session.

73

Figure 28: A Simple Real-time Collaborative Editor Using DirectX 9

The system is I/O bound, so communication time dominates. Though other

messages are sent and managed by the DirectX 9 code for establishing connections and

joining, there are only six types of data packets that are we send in this system:

(1) JOIN - A peer has joined and is added to each existing peers’ local list of peers

(i.e., the peers now “know” about the new user/peer).

(2) LEAVE – A Peer leaves the P2P collaboration and must be removed from each

existing peers’ local list of peers (i.e., the peers now “know” the peer has left).

(3) SYNCH - A peer requests the current state of the shared document, and the host

responds with the current state of the shared document.

(4) CHAT - A peer has placed content into the chat window and sends this content.

The chat content is sent to all peers. This message type does not deal with shard

editing.

74

(5) POSITION - A peer has updated its position (line owned) in the shared content

window, and the new position is sent to all peers. This update changes the mutex

for each peer (i.e. each peer tracks what other peers “own”).

(6) MODIFICATION - A peer has made a modification to the shared content, and the

modification event is sent to all peers. Each peer must then update its local copy

to ensure all copies are synchronized to include the modification.

Figure 29, Figure 30, and Figure 31 summarize the communication costs for

simulations using various numbers of peers and different events/messages. High

(100mbps) and low bandwidth (33.6kbps with 2% packet loss) tests were executed with

reasonable/usable communication latency due to the system’s low communication

overhead.

Figure 29: IM/Chat Communication Costs

75

The results shown in Figure 29 demonstrate the communication cost (in bytes) for

sending chat/IM content between the peers. In this scenario, a user entered 10, 20, 40,

or 80 bytes of content in to a communication chat box and then press a “send” button.

The content typed would be then distributed to all peers. As expected, as the number of

peers increases, the communication cost to distribute the message to the peers also

increases. The number of packets sent in each event in this chat experiment is equal to

2(n-1) where n is equal to the number of peers in the system; this is as expected since the

originator (the peer that generated the message) does not send itself the message, and

each peer requires a send and an acknowledgement packet across the network. Also as

expected, as the size of the message increases, the communication cost to distribute the

message to the peers also increases since more total packets must be sent to all peers.

When using a low bandwidth (33.6kbps with 2% packet loss) network simulator, the

communication time was equal to approximately 55(n-1) milliseconds where n is equal

to the number of peers in the system. This shows that, overall, the communication

delay and total packets sent is small with little overhead for the communication of the

chat/IM content – representing an efficient messaging system within this DirectX 9

implementation of our P2P architecture for a RTCES.

76

Figure 30: Communication Costs for DirectX 9 P2P RTCES Prototype

Figure 30 shows the communication cost (in milliseconds) for the five non-chat

events/message types. The most costly of these are the join and leave messages where a

user enters or leaves the RTCES; as the number of peers increases, as expected, it

becomes more costly to notify all the other peers upon a join or leave event and have

them update their internal data structures and communication channels to the peers

within the system. It is important to note that the most common events –

synchronization, position updating (i.e., a user moves to another section of the

document), and modification (i.e., a user has made a change to the section they own) –

do not incur a large communication cost. The position and modify events generate a cost

of 2(n-1) packets and the synchronize event generates a cost of 2(n-1)+c packets where n

is equal to the number of peers in the system and c is content size / 1000 (i.e., the

number of packets to send the content itself), and the time cost is approximately 55(n-1)

Communication Costs

0

500

1000

1500

2000

2500

3000

3500

4000

2 Peers 3 Peers 5 Peers 9 Peers

Number of Peers

C
o

m
m

u
n

ic
a
ti

o
n

 T
im

e
 (

m
s
)

Join

Synch

Position

Modification

Leave

77

milliseconds. Thus again, overall, the communication delay and total packets sent is

small with little overhead for the synchronize, position, modify, enter, and leave events

– representing an efficient messaging system within this DirectX 9 implementation of

our P2P architecture for a RTCES.

Figure 31: Synchronize Communication Cost for Varying Content Size

Figure 31 shows the communication cost/latency (in milliseconds) for

synchronizing a peer with new content. This occurs when a peer enters a section that is

“stale” within its local copy (i.e., not current with another peer’s copy) and must be

notified of the most current content. In this simplistic implementation, the

synchronization request is broadcast to all peers, thus as expected, the communication

cost increases with respect to the number of peers within the system. The synchronize

event generates a cost of 2(n-1)+c packets where n is equal to the number of peers in the

system and c is content size / 1000 (i.e., the number of packets to send the content

Communication Cost: 166 byte vs. 3166 byte

Shared Content Synchronize

0

100

200

300

400

500

600

700

2 3 5 9

Number of Peers

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 (
m

s
)

166 byte

3166 byte

78

itself), and the time cost is approximately 55(n-1) milliseconds. As expected, as the

number of peers increases, the time to synchronize increases. Additionally as expected,

as the size of the content to be synchronized increases, the time to synchronize increases.

In the most costly scenario with 9 peers synchronizing 3166 bytes of content, the

effective communication time to broadcast the request to all peers and receive a response

was 652 milliseconds. This shows that synchronizing content among peers is reasonable

with respect to the number of packets communicated and time to complete the

synchronization.

3.6. Discussion and Related Work

The open systems architecture presented in this chapter demonstrates that

heterogeneous client and heterogeneous server technologies may be combined to support

RTCES as well as asynchronous collaborative editing. Hooks may be added to existing

client editing software to listen for edit events that should be sent to other users within

the collaboration; and a Web service front-end may be placed atop existing server

repositories to create a unified API to clients of these server-side tools.

Others in the RTCES community have proposed and even developed

collaborative hooks into existing applications; we see CoWord as a real-time

collaborative extension to Microsoft Word [138] and CoPowerPoint [158] as a real-time

collaborative extension to Microsoft PowerPoint, and we see that this technique may be

extended to open systems applications as well in CoStarOffice [122][136]. But the

problem in all of these homogeneous systems is that a function to respond to the edit

event and transmit it to each user within the collaboration must be written for each edit

event in the existing client tool; given that there are many edit events and many paths to

79

execute the same edit event in existing client editing tools, it is quite difficult to cover all

features. As a result, these previous systems have only implemented a small subset of

the features within their respective products. Our work is not so much seeking to

replicate what has already been done, but rather we demonstrate an overall architecture

by which these existing techniques and technologies can be incorporated into a larger

system supporting users of various client technologies

Further, heterogeneous clients may also be connected collaboratively in real-time

editing [68], and the problem of covering features within the client tool is exacerbated in

that now each feature must be covered for each client in the heterogeneous set of clients,

but also there must be a mapping/translation of edit events in each client tool to every

other client tool.

Our proposed lock proxy may be added to legacy repositories and CMS to extend

their capabilities in supporting asynchronous collaboration and a sub-file level locking

such that more than one user may edit a shared document if the sections being edited by

the different users do not overlap (i.e., the sections are distinct). Other systems such as

Coven [16] and COOP/Orm [75] also allow the lock to be made at a sub-file level, and

the POEM system [71] utilizes the hierarchical nature of software code to lock at a sub-

file level; one of the shortcomings of these systems and a limitation present in our

simulation in this chapter is that the unit of locking is fixed in size and is not adjustable.

For example, if two users wanted to edit different parts of the first section of a shared

document, all of the previous systems and our simulation would not be able to

accommodate both users – only one would have write access. But if the amount of the

shared document was not fixed in size and could dynamically adjust to accommodate

80

users at various semantic levels within the document, then concurrent access could be

maintained while still avoiding synchronization of all edit events (OT type consistency

maintenance). This dynamic locking will be presented in the next chapter and is the

continuation of our work.

One presupposition that the RTCES research community makes is that a

replication of the shared document on each client’s site is necessary given the network

latency and to preserve responsiveness of the editor for the local user. But our research

in this area indicates that even for moderately sized collaborations of up to 9 users, the

communication latency was reasonable even when simulating a 33.6kbps with 2%

packet loss network speed. As a result, we believe investigating RTCES that employ

intelligent locking is merited.

3.7. Summary

Because the RTCES research community has primarily adopted a replicated

approach with OT-based consistency management for sharing a common document,

communication costs and the time needed to achieve consistency have not been

previously addressed. It is assumed that high local response time is more critical and

that consistency among the replicas may be delayed. Additionally, with a few

exceptions, the RTCES community has not adequately addressed the opportunities for

an open systems approach with regard to integrating existing client and server

technologies. Our approach as presented in this chapter demonstrates that not only is

such an open systems based architecture viable, the communication costs and latencies

in supporting non-replicated (i.e., round-trip) consistency approaches for RTCES are

sufficiently low. Better still, if the overall number of messages needed to ensure

81

consistency can be kept small, then the communications costs of our architecture will

outperform existing OT-based solutions. Thus, we focus the next phase of this research

in adopting hierarchical locking techniques on document trees such that we can

minimize the total messages required to ensure consistency within a RTCES. The next

chapter details this next phase of our research.

82

CHAPTER 4

ENABLING RELAXED CONSISTENCY TO REDUCE RTCES COSTS

Having established a viable open-systems architecture for RTCES, we now focus

on reducing communication and computation costs associated with traditional OT-based

consistency approaches. OT approaches are costly in that all operations are immediately

broadcast to all users within the collaboration, thus in effort to reduce costs in an

RTCES, we adopt a more relaxed consistency model in which not all users within the

RTCES have the most current copy of the document – rather, all users have the most

current copy of the section of the document they are viewing (i.e., the visible/focused

portion of the document is always current on a user-by-user basis). By relaxing the

consistency constraint within the RTCES, we are able to reduce communication and

computation costs while at the same time improve the intention preservation of users.

We agree with [28] that conflicts are a “naturally-arising side effect of the

collaborative process” and “will occur simply because of the semantics of multi-user

applications.” Further we agree with [47] that “temporary inconsistencies are necessary

to achieve good performance” within collaborative editing systems. Our approach is

motivated by noting that some distributed systems such as DNS that allow lazy

updating and temporal inconsistencies through “eventual consistency” [144]. Thus, at

various points in time, the copies of the document are not consistent, but the distributed,

managed copy of the document in its entirety is correct and preserves user intention;

further, we record ownership and change history sufficient to recreate the entire

document as needed (i.e., when a user wishes to view any specific section). These

changes will be communicated and replayed among local copies as the users move about

83

and view new sections, and changes can also be sent among the users (moving changes

up the tree – minimizing communication costs) at specified intervals if desired

[109][110]. Selective multicast is employed to improve communication cost [70].

This chapter presents our research in relaxed consistency and caching utilizing a

document tree residing on a server with client editors connecting to the server for

document state changes and lock/unlock requests. We first discuss our approach in

modeling a document as a tree in Section 4.1 and discuss the benefits of maximizing the

space within the tree that a user owns in Section 4.2. We then present our data

structures and algorithms in Sections 4.3 through 4.5. The complete listing of the

algorithms is presented in Section 4.6 with an analysis of correctness and efficiency.

We present the simulation results that validate our approach in Section 4.7. Finally, we

conclude with a discussion and summary in Sections 0 and 4.9 respectively.

4.1. Modeling Document Structure via a Document Tree

Traditionally, research within CES has viewed documents to be a linear sequence

of data; consequently, OT and other techniques to ensure the CCI model [134] are

designed to work on linear content. More recently, others have proposed leveraging the

semantic structure of the document and viewing it as a hierarchy [59][60][104] [Ignat

2002]. Operations to ensure CCI are more efficient when applied to sections of a

hierarchical document as opposed to the entire document, and the system is better able

to handle context-specific consistency/intention preservation [57][137].

Because any section of a document may contain any number of text elements

(paragraphs, sentences, etc.) and may contain any number of sub-sections, we generalize

our previous algorithms [103] for inserting and removing locks from the collaborative

84

space to work within an n-ary tree data structure that is representative of a shared

document.

We extend this view of the document as a hierarchical structure; in addition to

better achieving context-specific consistency preservation, we can reduce

communication and computational costs. Based upon the semantic structure of the

document, the document may be broken up into sections, subsections, paragraphs,

sentences, words, etc. If the document being shared is a CAD drawing, it may be broken

into layers, objects, etc. If the document is programming source code, it may be broken

into classes, components, methods, blocks, etc. Thus we do not have any preconceived

notion of what the sections of the document contain, nor do we require any specific

depth/level of decomposition. Our approach works well with a variety of document

structures. Note that the document tree consists of internal nodes that represent

structure, and all document content resides at leaf nodes.

The path finding algorithm of Rao and Kumar [111] uses binary encoding to

uniquely identify a path from a vertex n to a vertex v. Since we do not mandate a binary

tree structure, we extend this algorithm to support a mechanism for correctly identifying

Figure 32: Mapping a Document to a Document Tree

Title (tartif)

Paragraph A (pa)

 Title A1 (ta1)

 Paragraph A1 (pa1)

 Paragraph A11 (pa11)

 Paragraph A12 (pa12)

Paragraph A2 (pa2)

Paragraph A3 (pa3)

Paragraph B (pb)

…

tartif pa

pb

ta1

pa1

pa2

pa3

pa11

pa12

85

the path from vertex n to a vertex v in an n-ary tree. We do this by defining node

identifiers and a function NEXTINPATH(N, V) from n to v as follows.

First, let E denote the identifier of a vertex v. E then defines a path p from the

root to a vertex v; E consists of a string of d entities, where d is the depth of v. If the

root is desired, then E = “” (empty string) since the root is at depth 0 (d=0). Each entity

in E specifies which sub-tree to follow in the path to v. Consequently, the cardinality of

d must be equal to the branching factor of the vertex with the largest set of children (i.e.

|d| = maximum branching factor of the tree). Assume d = {d1, d2, d3, … dn}, where n =

|d|. If the path p contains the edge from vertex vk to the i
th

 child/sub-tree of vk (where vk

is a vertex at depth k), then the (k+1) entity of E = di (i.e. traverse into the i
th

 sub-tree of

vk).

Using as an example, in Figure 33, a path from the root n to vertex k may be

defined by Ek = “241”, and the path from the root n to vertex h may be defined by Eh =

“26”.

Figure 33: Path Finding in the Document Tree

 a b

6

 c d e f g h i j

 k l m

 n

86

Thus we uniquely identify each vertex in the tree, and the identifying string for

each vertex defines a path from the root to the vertex that can be found in O(1) and may

traverse any path in O(h) where h is the height of the tree.

While this identifying scheme requires more memory than the simpler binary

identification of Rao and Kumar, it is more flexible in that it works with n-ary trees.

Given a tree depth of Dt and a maximum branching factor of Bt, the largest identifier

required for any vertex would occur at a leaf node at depth Dt, be represented by Bt*Dt,

and consist of
tt

BD
2

log* bits. Additionally the memory required to represent the

entire tree is
tD

i

i

t
B

0

, which is quite reasonable given that the branching factor of the

document tree is defined by the largest number of subsections within any section, and

the depth is defined as the “deepest” subsection of the document.

4.2. Maximizing Owned Space and Caching

It is advantageous to maintain a lock on the largest sub-tree that is permissible; by

maximizing the sub-tree that any user owns, we minimize the communication costs of

the system by utilizing caching. For example, if a user ui owns the entire tree (the entire

document), then all changes to the document can be stored locally in the user’s cache. A

lock on a sub-tree rooted at node ni is permissible for user ui so long as no other user has

a lock on any node within the tree rooted at node ni. If another user uj enters the system

and requests a section of the document, then the section of the tree owned by user ui is

reduced to accommodate the insertion of user uj (if possible). Only that portion of the

tree that had been modified (marked dirty cache) by ui that are part of the sub-tree now

owned by uj must be sent to uj; the other portion of ui’s cache remains local to ui.

87

The dynamic lock management algorithms focus on granting a user exclusive

access for writing to the section of the shared document. In addition to supporting

dynamic, exclusive writer locks, the system also supports multiple, simultaneous readers

for a section of the document. It is permissible to allow multiple users to view the

changes being made by another user, and thus the n-ary tree used to manage the write

locks of the document is also used to manage the viewing positions of all users within

the document.

For example, if a collaborative editing session included five users, U = {u1, u2, u3,

u4, u5}, where u1 was editing Section 1, u2 was editing Section 2, u3 and u4 were viewing

Section 1, and u5 was viewing Section 2, this would be stored in the n-ary tree, shown in

Figure 34.

If we adopt such a cache based approach, then broadcasting all changes is not

required (an improvement over existing OT approaches). We may communicate only to

other readers/writers within the changed node. Additionally, readers need not perform

Figure 34: Supporting Multiple Readers and Writers

2

1 2 3

writing:

 u1

reading:

 u3 and u4

writing:

 u2

reading:

 u5

88

OT since they are not editing (they can’t have any local changes on which to transform

the new operation) and we can reduce the number of clients that need to perform OT

(bound by the writers within the node). These are significant communication and

computation improvements over existing OT systems. Further, our approach affords

opportunities where we may decrease the history buffer (HB) size. This can be done

when inverse operations (where inverse is denoted as ¬) are applied and a policy of

flushing the previous operations is approved (i.e. we don’t need to “undo” the operation

and its inverse operation). In this case, Op + ¬Op allows removal of Op from HB (and

avoiding placing the ¬Op into the HB at all). Additionally, we may reduce the history

buffer size by consolidating multiple operations into single, semantically-higher-order

operation within the tree; this can occur upon reduction or promotion as explained later

in this chapter.

Central to our approach is the ability to employ lazy consistency in which

portions of the document are current at only a subset of all users’ copies. In this regard,

we allow some portions of the copies of users to be “stale” and inconsistent (i.e., we

allow operations on other users’ copies to not immediately be sent/communicated to

other users). We avoid the problem of the user being affected by this by tracking where

the user is in the document and caching changes (not communicating these changes) if

the user is not editing/viewing the space in which the change occurred.

The impact of this is that each user has the most current (and correct) content for

the space within the shared document that they are interested in, but we minimize

communication and computation costs by not having to immediately broadcast all

89

changes to all users. Visually, we can view the overall document’s correct (most

current) state as being distributed among potentially many users as shown in Figure 35.

In Figure 35, the black area shows the section of the document that has been

modified and cached locally among the user(s) that are currently writing in that section

of the document. To compile the current state of the entire document, we can query

each user and reconstruct the document according to the equation:

Where Dtotal = the most current state of the entire document, Di = the state of the

document for section i (managed by some set of users), and = the changes that have

been made (history buffer) at section Di.

Figure 35: Distributing the Current Document State across Multiple Users

90

4.3. Data Structures and Algorithm Overview

Once established, the document tree is utilized to manage ownership of

subsections within the document. Rather than locking the entire document, lock

granularity is adjustable, ranging from the entire document (ownership marked at the

root of the tree) to an atomic level (ownership marked at a leaf node in the tree). The

size of a subsection is not specified within our algorithms, thus it is scalable to

accommodate the semantic structure of the document being edited, similar to [93].

We allow many readers to be present within the same node within the document

tree, and we define reading state based upon the visible frame within client editor (i.e.,

the client is assumed to have read access to any section visible within the client’s editor

view space – what portion of the document can be viewed within the client’s editor).

We may exclude multiple writers and adopt an exclusive write policy, denying other

clients from writing to the locked section. Alternatively, multiple writers may be

allowed within a node when exclusive writing is not desired, and this policy is defined

on a per-node and per-client basis; in this case, we may adopt OT-based consistency

maintenance among all writers sharing a section of the document represented by the

node in the document tree. Thirdly, we can demote a lock if a client does not wish to

share ownership of a larger section of the document and prefers to relinquish a portion

of the owned space so that the original owner locks a portion of the document while the

new, requesting client owns another, non-overlapping portion of the document. This

demotion policy is also established on a per-node and per-client basis.

Rather than blocking other users from editing, lock granularity is adjusted via

demotion of the lock down in the tree until the conflict among users is resolved.

91

Additionally, when a user leaves a section of the document and makes it available to

other users, conflict among users is potentially reduced; as a result, our algorithm

automatically promotes the lock to a higher level within the document tree – maximizing

the amount of the document owned for the remaining user. The OBTAINLOCK and

RELEASELOCK operations are the central algorithms. These algorithms traverse the

document tree in a top-down fashion and are guaranteed to be deadlock free.

Each node in the document tree maintains a color (white, black, or grey) to denote

whether it is available, currently being written to by another user, or if two or more users

are editing sub-trees, respectively. Ownership (black coloring) of a vertex v by user u

implies that u owns v and the sub-tree rooted at v, and is the only user that may edit node

v or its sub-tree. If a node is white, no user owns (is currently writing) to that section of

the document. Additionally, each node n in the tree maintains a numeric value that

denotes how many nodes in the sub-trees of n are colored black. This is defined as the

grey-count of the node n. This value is useful in determining if the node can be colored

white or grey when a request to delete a user occurs and promotion is enabled (as

explained later).

A grey node v maintains references to the node’s children (sub-trees);

additionally, if there exists at least one black child node of v, then v also maintains a

reference to the first black child node. The black child nodes of v (b1, b2, … bk, where k

= number of black child nodes of v) are linked together using a doubly-linked list. As an

example, the black children of v are {b, a, f, d, c}.

All algorithms work from top-to-bottom via handshake locks to avoid deadlock;

since we maintain a reference from the first black sibling up to its parent, this handshake

92

lock must hold two nodes at a time (a node v and a child of v). Thus as these algorithms

traverse down the tree, the handshake lock will obtain a lock on v, then on u, where u is

a child of v; it is not necessary to release the lock on v immediately, but before obtaining

a lock on a child of u, the lock on v must be released. The OBTAINLOCK and

REMOVELOCK algorithms run in O(d) time where d is the depth of the document tree

(i.e., d is the number of hierarchies in the document tree). For most documents, d is

small; for example, if a document was structured into sections, subsections,

subsubsections, paragraphs, sentences, and words, then the document tree would have a

height of 7 (including the root).

4.4. Lock Request

The basic idea behind the OBTAINLOCK algorithm is to traverse the tree from top

to bottom toward the desired leaf node along an insertion path and eventually obtain a

lock on either an ancestor node that represents the largest sub-tree that contains the

requested leaf node, or else on the leaf node itself.

A user requests a section of the document to which he wants to write, and the

system attempts to obtain a lock on that section of the document. The OBTAINLOCK

algorithm works from top-to-bottom by examining nodes in the path from the root to the

destination node. As it traverses this path, if a white node is found, then the lock request

succeeds and the node becomes owned by the requesting user (and painted black). If a

grey node is found, it continues down. If a black node is reached, then we need to

demote (push down) this black node (its current owner/user), turn this node into grey

thus making room for the new insert request to continue down.

93

Demotion works by moving the ownership of that user (and the black coloring)

down the tree hierarchy while ensuring that the leaf node needed by that user is

contained within the sub-hierarchy. If the black node reached is an “atomic” node, then

we can’t demote any further, and the insert operation fails (i.e., edit request is denied).

Alternatively, if desired, optimistic concurrency control techniques such as OT may be

employed at this atomic level; by keeping a list of writers, a selective multicast of all

changes within this atomic section could be made to all writers, limiting the computation

and communication cost to a subset of all users within the smaller section of the

document.

As we traverse down the path from the root to the destination node, we increase

the grey-count of each grey node in the path by one; this is required as we are inserting a

new black node into the tree down the path and the grey-count is responsible for

tracking how many nodes are painted black below a grey node. It is optimistically

assumed that the insert will succeed, but if the insert fails, then we must “undo” the

artificially-inflated grey-counts along the path from the root to the destination node. We

“undo” this failed insert by invoking the REMOVELOCK method (which reduces the grey-

count of the grey nodes in the path from the root to the destination node by one).

When an OBTAINLOCK request is successfully fulfilled, we have two cases – (1)

there was no contention and no demotion, and thus a white node is painted black, or (2)

there was contention and this contention is resolved via demotion and by adjusting node

coloring. Let’s begin by starting with the document tree state as shown in Figure 36.

94

In the first case (no demotion), a white node must be painted black, and the

newly-painted black node must be added into the black sibling list of the grey, parent

node. Assuming h was to be painted black, i.e. OBTAINLOCK(u1, h) was invoked, then

Figure 37 shows the result of painting h black and adding h as the head of the sibling list

(if the document state was initially as represented by Figure 36).

Figure 37: ObtainLock with No Demotion

7

6 v

b f d a c h
g e

i j k

Figure 36: Original Document Tree State

6

5 v

b f d a c h g e

i j k

95

In the case where an OBTAINLOCK operation requires the lock contention be

resolved via a demotion of the lock, we must adjust the black sibling list to reflect the

demotion of the lock. Additionally, we must link the two nodes now painted black.

Beginning with the document tree state shown in Figure 37, if OBTAINLOCK(u2, k)

was invoked and node d had previously been locked when u1 had requested node i (i.e.

node d’s original request reference is i), then the u1’s lock on node d will be demoted to

node i, and then u2 will acquire a lock on k. When this occurs, node d should no longer

be in the black sibling list of its parent, node v. Thus we modify the OBTAINLOCK

algorithm to remove this node whose lock was demoted from the black sibling list by

joining the adjacent siblings of the node. Additionally, black sibling links must be

established for the two black nodes that result from the demotion (nodes i and k in this

example). The result for this example would be that node c and node f are now joined

and node i and node k are now joined, as shown in Figure 38.

Figure 38: ObtainLock that Results in Demotion

8

7

2

v

b f d a c
h

g e

i j k

96

4.5. Lock Release

The REMOVELOCK algorithm works from top-to-bottom via handshake locks to

avoid deadlock. As the path from the root to the node to be released is traversed

downward, the grey-count for all nodes painted grey is decreased by one until a grey

node with a grey-count of one (after decrementing) is encountered; when this occurs, a

promotion is needed to ensure that the sibling of the to-be-unlocked node owns the

largest sub-tree possible. This is the same behavior as the binary-tree based

REMOVELOCK algorithm [103]. The only modification that must be made to

accommodate an n-ary tree is that when promotion occurs, then the newly-promoted

node v must be added into the black-sibling list of v’s parent.

When an REMOVELOCK request is fulfilled that necessitates a promotion, the node

who’s grey count has been reduced to one must be painted black and must be added into

the black sibling list of the grey, parent node. Assuming in Figure 5 that the lock on

node i was to be removed (i.e. REMOVELOCK(u1, i) was invoked), then Figure 6 shows

the result of promoting the lock held on node j to node d and adding node d into sibling

list.

The order that the black sibling nodes appear in the list is not significant as we

only use this list to maintain adjacent siblings so that we know immediately which

sibling to promote. Notice in the example shown in Figure 5, if the lock to be removed

is associated with node i, then we know immediately without incurring a search cost that

the lock associated with node k is the node to promote because node i and node k are

marked as black siblings. Since promotion will only occur when there are two siblings

(one of which no longer requires a lock and the other is associated with the lock to

97

promote) order among the black siblings is not significant within the list. Consequently,

when promotion does occur, we can simply place the node associated with the newly-

promoted lock at the front of the black sibling list. Assuming we begin with the

document tree state shown in Figure 38, if a REMOVELOCK(u1, i) is invoked, then the

lock u2 has on node k should be promoted to node d. Node d is then added into the front

of the black sibling list. The result of this promotion is shown in Figure 39.

It is possible for a situation to arise in which removal of a lock removes

contention and the remaining user should be promoted through multiple levels within the

tree. Figure 40 shows such a scenario, and as demonstrated, our algorithm handles this,

promoting the remaining lock to maximize the portion of the document owned by the

remaining user.

Figure 39: RemoveLock(u1, i) - u2 lock on node k is promoted to node d

7

6

v

b f d a c h g e

i j k

98

When promotion is required during a REMOVELOCK action, we must have a way

of efficiently resolving which sibling should be promoted (the remaining sibling); a

brute force method could traverse all siblings until the remaining black node is found,

but this is inefficient and requires O(n) work where n is the number of siblings (the

maximum branching factor of the tree). Alternatively, we can maintain a back-sibling

and forward-sibling reference for each node, linking the black siblings together in a list

to maintain a subset of all the siblings; this subset consists of all nodes colored black

(e.g., a, b, c, d, f, and h as shown in Figure 39).

4.6. Correctness and Efficiency Analysis

To demonstrate that our methods OBTAINLOCK and REASELOCK are sufficient to

cover the activities that users perform within a CES, we identify a set of user actions

within a CES and map these actions to events within our tree-based system. This

Figure 40: Promotion across multiple levels is permissible

2

2

2

n

o p

i j k

m

n

o p

i j k

m

REMOVELOCK(u1, i)

u2
u1

u2

99

mapping is demonstrated in Table 5. Note that if a lock is requested (via the

OBTAINLOCK event) and the user already owns the lock, then no server

request/communication is required. It is only when a user attempts to edit a section

without having previously edited that section (i.e. the section is not owned by the user)

that a request for the lock is required.

Note that these document tree events listed below support exclusive locking, but

they also support multiple writers (where a lock request will never fail). In the case

where multiple writers are allowed to own a section, care must be taken when the

section is deleted, split, or two sections are combined where at least one of the sections

to be combined are owned by other users. In these cases, coordination between the users

can be enacted such that all users agree upon the action (delete, split, join), or a priority-

based scheme could be adopted where a high-priority user may enact the action after the

other lower-priority users’ locks are revoked and reestablished. The document tree

structure changes would need to be broadcast to all affected users and their locks

reestablished after the structural changes have been completed. In the case where

operations were performed concurrent to the structural changes, these operations could

be transformed and replayed once the structural changes were completed.

100

Table 5: Mapping User Actions to CES Document Tree Events

User Action CES Document Tree Events

Enter the CES Place user as a reader in the default section of the document

Exit the CES Remove the user from the CES and flush the user cache

Modify content

within section A
 OBTAINLOCK for section A

 If not successful, deny the edit

Move from

section A to

section B

 RELEASELOCK on section A

 Place user as a reader in section B

Delete section A OBTAINLOCK for section A

 If successful, remove section A from tree

Create section A Create a new node A and insert it into the tree

Combine section

A and section B
 OBTAINLOCK on section A

 OBTAINLOCK on section B

 If either fail, release any successfully obtained lock and deny

the request

 Else merge sections A and B in the tree (removing section B

and RELEASELOCK on B)

Split section A

into sections A

and A’

 OBTAINLOCK on section A

 If not successful, deny the edit

 Else create a new node A’ as a sibling of A, move specified

content from A into A’

We designed the OBTAINLOCK and RELEASELOCK operations such that the

document tree is accessed only in a top-to-bottom, pipelined fashion; we do this to avoid

race conditions. We enforce the policy that nodes must be accessed in a top-down

manner such that we only access and modify the tree data structure in the following

path:

 Acquire a lock for the parent node

 Acquire a lock for the child node

 Release the lock for the parent node

101

This “handshake lock” technique, as employed by [111], ensures that a race

condition on concurrent access to the tree data structure is avoided. As a result, our

operations may be executed concurrently while maintaining their correctness.

The full presentation of the algorithms appears below in Figure 41 through Figure

43. Note that these algorithms are presented to show intent; the actual implementations

feature an iterative/loop-based solution that employs a top-to-bottom, handshake-lock as

the paths from the root to the desired nodes are traversed.

Figure 41: The OBTAINLOCK Algorithm

OBTAINLOCK(w, ui)

 if w.owner ≠ ui

 RECURSEOBTAINLOCK (ROOT, w, ui)

RECURSEOBTAINLOCK(n, w, ui)

if n.color = white

 then SETLOCK(n, ui, w)

 LINKSIBLINGS(n.parent, n, n.parent.firstBlackChild)

else if n ISATOMIC

 then RECURSEREMOVELOCK (ROOT, w, ui)

 return failure

else if n.color = grey

 then n.greyCount = n.greyCount + 1

 RECURSEOBTAINLOCK(NEXTINPATH(n, w), w, ui)

else b = NEXTINPATH(n, w)

 a = NEXTINPATH(n, n.originalRequest)

 REMOVEFROMSIBLINGLIST(n)

 SETLOCK(a, n.owner, n.originalRequest)

 n.color = grey

 n.greyCount = 2

 if a ≠ b

 then SETLOCK(b, ui, w)

 LINKSIBLINGS(n, a, b)

 else RECURSEOBTAINLOCK(a, w, ui)

102

Since the RECURSEOBTAINLOCK traverses from the root down to a leaf (or stops

earlier if a white or black node is reached), this algorithm must traverse O(h) nodes,

where h equals the height of the document tree. The work involved at each node is O(1)

since the work in processing an individual node involves updating references/pointers,

coloring, and grey count (integer) values. It is possible upon a lock request failure that

the RECURSEREMOVELOCK function will be invoked, but this RECURSEREMOVELOCK (as

discussed below) runs in O(h), thus it is not asymptotically greater than the existing O(h)

work for the OBTAINLOCK algorithm. Thus the overall cost for the OBTAINLOCK

algorithm is O(h).

Similarly, the RECURSEREMOVELOCK traverses from the root down to a leaf (or

stops earlier if a grey or black node is reached), this algorithm must traverse O(h) nodes,

where h equals the height of the document tree. The work involved at each node is O(1)

Figure 42: The REMOVELOCK Algorithm

REMOVELOCK(w, ui)

 if w.owner = ui

 then RECURSEREMOVELOCK(ROOT, w, ui)

RECURSEREMOVELOCK(n, w, ui)

 if n.color = black and n.owner = ui

 then REMOVEFROMSIBLINGLIST(n)

 UNSETLOCK(n)

 else if n.color = grey

 then n.greyCount = n.greyCount – 1

 if n.greyCount = 1

 then a = FINDELIGIBLEPROMOTION(n, w)

 SETLOCK(n, a.owner, a.originalRequest)

 LINKSIBLINGS(n.parent, n, n.parent.firstBlackChild)

 else if n.greyCount = 0 // removal occurs before delayed promotion

 then UNSETLOCK(n)

 else RECURSEREMOVELOCK(NEXTINPATH(n,w), w, ui)

103

since the work in processing an individual node involves updating references/pointers,

coloring, and grey count (integer) values. Upon promotion, the

FINDELIGIBLEPROMOTION function must be called, but it continues the traversal down

the tree from the point where the promotion may occur, thus its work is also O(h). Thus

the overall cost for the REMOVELOCK algorithm is O(h).

Figure 43: Supporting Functions

REMOVEFROMSIBLINGLIST(n)

 n.previousSibling.nextSibling = n.nextSibling

 n.nextSibling.previousSibling = n.previousSibling

 if n.previousSibling ≠ NIL

 then n.parent.firstBlackChild = n.nextSibling

n.previousSibling = NIL

n.nextSibling = NIL

FINDELIGIBLEPROMOTION(n, w)

 traverse from n to w until black node (a) is found

 if a.nextSibling.color = black

 then return a.nextSibling

 else if a.previousSibling.color = black

 then return a.previousSibling

 else return a

SETLOCK(w, ui, r)

w.color = black

w.owner = ui

w.originalRequest = r

LINKSIBLINGS(n, a, b)

 n.firstBlackChild = a

 a.previousSibling = NIL

 a.nextSibling = b

 b.previousSibling = a

UNSETLOCK(w)

w.color = white

w.owner = NIL

w.originalRequest = NIL

104

The supporting functions REMOVEFROMSIBLINGLIST, SETLOCK, LINKSIBLINGS,

and UNSETLOCK are invoked by the RECURSEREMOVELOCK and RECURSEOBTAINLOCK

functions. We present them here in Figure 43 to show that they all run in O(1) since

they only update attributes of the nodes. The supporting function

FINDELIGIBLEPROMOTION requires traversing down the path to the desired node to find

the first black node along the path, thus it runs in O(h); but we note that this function is

only invoked when a grey count is reduced to 1 when the RECURSERELEASELOCK

function is running; when this occurs, some number of nodes have already been

traversed, and the FINDELIGIBLEPROMOTION function must only process the remaining

nodes below the reached node whose grey count is now equal to one. Thus the total

number of nodes visited in the combination of the RECURSERELEASELOCK and

FINDELIGIBLEPROMOTION functions is ≤ h, where h is equal to the height of the

document tree.

It is important to note that nodes within the sub-trees not along the path from the

root to the destination – shown as the sub-trees α and β in Figure 44 and as the sub-tree

α Figure 45 – are unaffected by the OBTAINLOCK operation. This improves the

concurrent operations that are able to be performed on the tree (i.e., pipelining the

operations from the top/root of the tree down. This is critical in ensuring that the lock

request and release operations may be executed efficiently on the server without

significant delay in responding to the clients making the requests.

Further, in the case of demotion for OBTAINLOCK as shown in Figure 45, the only

modification to leaves occurs in increasing the grey count along the path from t to v and

moving the ownership of u2 to the sibling of the newly-acquired node (w in this

105

example) when resolving conflict. If OT is adopted at a node, then no demotion is

required and all sub-trees within the document (α and β in the preceding figure

examples) remain unaffected.

Figure 45: The OBTAINLOCK Operation with Demotion

t

α

w

v

OBTAINLOCK(w, u1)

t

α

w

v

u2

u2

x x

u1

Figure 44: The OBTAINLOCK Operation without Demotion

t

α

w

v

OBTAINLOCK(w, u1)

t

α

w

v

β β
u1

106

4.7. Simulation with Exclusive Locking

This section presents our work in validating our theoretical algorithms presented

earlier in this chapter. Because the intent behind our algorithms was to reduce

communication costs when compared with existing OT strategies, we first discuss

message costs associated with traditional, “pure” OT solutions, and then present

simulation we utilized to measure the efficiency of our algorithms with respect to

communication costs.

Past and present research in CES focus on the computational cost of ensuring the

CCI model and assume that distributed views of the shared document are updated at the

atomic user action level (i.e. character insertion and deletion); we refer to [45], [66], and

[134] as exemplars. These OT-based systems send a network message (packet) upon

each edit/write of any user to all other users within the CES (via broadcast). In contrast,

our system caches changes locally and only distributes these changes when:

1. The writer makes a change and there are readers within the subsection, selectively

multicasting to all readers within the subsection

2. Another user enters a document section as a reader, sending this cached

subsection’s contents to the new reader

3. Demotion occurs and the cache on the now un-owned section(s) must be flushed,

sending the modified subsection’s contents to the server

4. A user changes position within the document or leaves the CES, releasing the lock

and sending the subsection’s contents to the server.

In addition to the communication being sent among users as a result of the events

1-4 listed, there is also a communication cost incurred to keep the clients aware of which

107

section of the document they own. OBTAINLOCK and RELEASELOCK requests are passed

to the server based upon the users’ actions. Because each client tracks which portion of

the document that he owns (so as to cache changes within any subsection owned), any

client whose lock has been modified by the server (as a result of a promotion or

demotion) must be notified of the lock’s modification. Note that race conditions are not

possible among the clients’ local lock data because only the server distributes these

updates.

To validate the communication effectiveness of our dynamic locking algorithms,

we implemented the algorithms and then ran discrete-event simulations which varied the

number of users/agents as well as varied the structure of the shared document to capture

communication and computation costs. Figure 46 illustrates the agent behavior states

and actions modeled; the probability of the action being initiated at each time slice is

denoted in parenthesis along each transition. These action probabilities are useful to

obtain a mixture of reading and writing events within the simulations. Each

configuration of the simulation was run such that each agent generated 1000 actions

based upon the state diagram (Figure 46). To more clearly compare communication

costs between our dynamic locking approach and an OT approach, within these

simulations we do not allow for multiple writers.

108

The results from these simulations and the comparison to the OT-based

communication costs are provided in Figure 47 and Table 6. The communication cost

utilizing our approach is significantly less than the communication cost incurred by an

OT-based system, and the communication cost improvement increases as the ratio of

agents to sections within the document increases (as the collaboration becomes more

“dense”). It is also important to note that lock/write failure is possible in the dynamic

locking, but for all simulation scenarios in which the number of agents was less than half

the number of document sections, no less than 64% of write attempts were successful.

Of course, these write failures may be eliminated by incorporating OT at the atomic

level within our document tree and using selective multicast among all writers within the

shared subsection.

Figure 46: Agent Behavior States and Actions

Not In

CES

Reading

Writing

Move to Another Section (20)

E
n
te

r
C

E
S

 (
1
0
0
)

Modify (60)

Make Modification (20)

No Action (20)

N
o
 A

ct
io

n
 (

6
0
)

Move to Another Section (20)

109

Figure 47: Communication Efficiency of Dynamic Lock Algorithm

As the data show, the efficiency of our dynamic, hierarchical locking algorithms is

pronounce and we achieve a significant communication cost reduction when compared

to existing OT techniques that employ global broadcast of all events. Further, as the

collaboration density increases (i.e., the ratio of clients to the number of sections in the

document increases), the communication savings of our algorithms over OT approaches

becomes more pronounced – achieving as much as a 96.6% communication costs

savings. Of course, as shown in Table 6, this efficiency gain comes at the cost of

preventing some users from writing to sections of the shared document from time to

time; this exclusive write policy is less than optimal.

0%

5%

10%

15%

20%

25%

30%

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

D
yn

am
ic

 C
o

m
m

u
n

ic
at

io
n

 E
ff

ic
ie

n
cy

(D
yn

am
ic

 C
o

m
m

u
n

ic
at

io
n

 /
 O

T
C

o
m

m
u

n
ic

at
io

n
)

Collaboration Density

Communication Cost of
Dynamic Locking / OT Communication Cost

14 Atomic Sections

28 Atomic Sections

110

Table 6: Dynamic Lock (Exclusive Writer) Simulation Results

Configuration Communication

Agents

Atomic

Sections

Write

Events

Dynamic Lock (DL) Messages

OT

Messages

DL / OT

Messages

DL

Write

Success

Rate

Client

to

Server

Server

to

Client

(P/D)

Writer

to

Readers

TOTAL

3 14 770 88 242 61 391 1540 25% 74.3%

6 14 1227 122 428 263 813 6135 13% 64.4%

9 14 1760 121 505 708 1334 14080 9.5% 61.6%

12 14 2004 144 615 1050 1809 22044 8.2% 56.7%

15 14 2542 154 731 1509 2394 35588 6.7% 55.8%

27 14 3434 92 856 4115 5063 89284 5.6% 46.0%

4 28 1004 108 326 53 487 3012 16% 73.3%

11 28 2349 253 775 425 1453 23490 6.2% 64.7%

18 28 3526 278 1040 1283 2601 59942 4.3% 62.2%

25 28 4530 289 1257 2430 3976 108720 3.7% 58.3%

32 28 5023 245 1381 3640 5266 155713 3.4% 52.8%

Client to Server: Transitioning from writer to reader necessitates flushing

cached modifications to server

Server to Client: P = Promotion; D = Demotion; lock update sent to client

(adjust lock position/status)

Writer to Readers: Incremental changes made by writer selectively multicast to

readers within subsection

OT Messages: # of write events * (# agents – 1) (since we multicast to all

agents other than the originating writer)

DL Write Success Rate: # successful modifications to document accomplished / total

modifications attempted (only for the DL simulation since OT

write success rate is by definition 100%)

111

Figure 48: Lock Success Decreases with Increased Collaboration Density

As expected and as shown in Figure 48, as collaboration density increases, the

chance of successfully acquiring a lock decreases. This is intuitive in that the

collaboration density is the measure of contention for atomic nodes.

In conclusion, the results obtain in our simulation of the client-server algorithms

that employ dynamic, hierarchical locking are able to significantly reduce the

communication costs when compared to an OT approach while allowing for an

improvement in concurrent access when compared to a pessimistic locking approach

that only allows one user to access the document at a time.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 0.5 1 1.5 2

Lo
ck

 S
u

cc
e

ss
 R

at
e

Collaboration Density (# Clients / # Atomic Sections)

Lock Success Rate vs. Collaboration Density

14 Atomic Sections

28 Atomic Sections

112

4.8. Discussion

One may expect the lock success rate to be higher than shown in our study since

contention should be reduced when some users are in a reading state; further, if the

collaboration density is 1.0, then there should be a section for each user, thus lock

success rate should be approximately 100%. We explain or reduced success rate in

noting that in our modeling of clients’ movement, clients begin in a “starting” section

when they are added into the simulation; from there, when they move to another section,

they determine a differential to the right or the left in the set of leaf nodes – moving

earlier or later in the document. Thus as their movement progresses, if they enter the

beginning (left-most leaf) or the end (right-most leaf) of the document, then they will

have an increased probability of remaining in these positions. This could be solved by

introducing the notion of the leaves “wrapping” such that the left-most leaf is adjacent to

the right-most leaf. While this might be logical from a data structure perspective, it is

not intuitive when modeling the document as a tree since the beginning of the document

(left-most leaf) is not logically adjacent to the end of the document (right-most leaf).

Thus another approach is needed to increase the lock success rate, and we focus on that

in the next phase of our research in adding selective, localized OT to the document tree.

The structure/shape of the document tree also has an effect on the communication

costs of our algorithm. The probability of promotion/demotion is related to the average

branching factor of the document tree. If there is an imbalance in the branching factor of

sub-trees, then the long chain of low-branching-factor paths “compress” and are not

counted in promotion/demotion (i.e. clients will tend to cluster more often relative to

each other, and consequently promotion/demotion will not be as likely).

113

If a tree is tall but narrow (small average branching factor), promotion/demotion

will occur infrequently as contention remains high since there are not many branching

points afforded in the document. This occurs when a document is structured such that

there are few major sections but many subsections within the few sections.

Similarly, if a tree is short and wide (large average branching factor), then

promotion/demotion will occur infrequently, as contention remains high since there are

not many branching points afforded in the document. This occurs when a document is

structured such that there are many major sections but not many subsections with these

sections.

If we define:

Dl = number of leaves in document tree

Dmh = document mean height = Sum of heights of a leaves / Dl

Then these two extreme cases are shown below in Figure 49 where Dmh ≈ h and

when Dmh ≈ 1. In these cases, conflict between users is more likely and caching is less

likely to occur.

114

To achieve a decrease in communication (i.e. increase localization and caching),

clients will remain more often within their own sub-trees and move within their owned

space without conflict with other users. This reduction in conflict occurs more often

under clustered editing patterns where clients tend to cluster their edits around a single

point; this reduction in conflict occurs less often under random editing patterns where

clients move around the entire document (thus increasing the probability of entering an

already-owned sub-tree and necessitating a demotion and a concomitant cache flush).

Further, if the tree is balanced and deep with many branching paths throughout the tree

(i.e., when the average branching factor is high), then more caching will be enabled and

less promotion and demotion will occur. Of course, this assumes a uniform distribution

of users within the document; certainly, if the users (or a subset of users) congregates

within a small set of sections within the document (i.e., there is a portion of the

document that the users are focused on), then the contention will increase within this

Figure 49: Two Extreme Cases of Document Tree Structure

Dmh ≈ h

Dl

Dmh ≈ 1

Dl

115

portion of the document and the lock success rate would be small since only one user

could edit each section.

4.9. Summary

While existing RTCES replication-based approaches offer a high rate of

responsiveness to the user, the nature of the replication of the document state

precipitates a need for consistency management such as OT. Unfortunately, broadcast-

based approaches such as OT incurr a significant communication and computation cost.

We have shown that revisiting the idea of locking is beneficial in reducing the

communication and computation costs if the locks are dynamic and hierarchical. We

have presented efficient algorithms for such hierarchical lock management that

maximize caching of changes local to the client writer while still allowing for a

reasonable level of concurrent access to the shared document. Unfortunately, as our

simulation has shown, if an exclusive write policy is enacted at the atomic/leaf level

within the document tree, this cost savings comes at the cost of rejecting some clients

from being able to edit an already-owned section of the shared document. Thus, in the

next chapter, we present our work in resolving this problem by integrating existing OT

algorithms into our dynamic, hierarchical lock based approach such that all clients may

write to any document section at any time, yet still retain the cost savings associated

with our improved caching.

116

CHAPTER 5

INTEGRATION WITH OT

Having established that dynamic locking shows promise in reducing

communication costs within a RTCES, we focus our attention now on solving the

problem of write failures (blocking a user from editing the document if another user

currently owns the section). We overcome this by adopting OT within nodes within the

document tree; OT may be applied at any depth within the document tree. The

algorithms for managing locks and integrating existing OT algorithms presented herein

are complimentary, superior to the current best practices of existing OT algorithms over

linear document representations, and significantly reduce the computational and

communication costs. Further, this approach enables better intention preservation than

existing OT algorithms. We achieve the performance improvement of [60] with the

added improvement of avoiding bottlenecks associated with a centralized approach. As

pointed out by [45], [58] and [66], the performance of OT algorithms degrades as the

size of the document increases, so it is advantageous to minimize the size of the space in

which OT is employed; our approach achieves this minimization by applying OT at leaf

nodes within the tree and propagating these changes up the tree efficiently and allows

peers to efficiently locate the peer who has the correct, up-to-date copy of the section of

the document rapidly. Further, these algorithms are generalized and make no

assumptions about the document’s content or type and are effective on any document

type – text, word processing, CAD, source code, etc.

This chapter expands our previous client-server lock management work by

examining how OT may be integrated into our dynamic locking algorithms such that all

117

users are always able to edit their copy of the document while avoiding costly global

messaging. We show how our updated architecture and algorithms have been simulated

using the DEVSJAVA package at the client and server, and then demonstrate the

efficiencies achieved by our approach relative to existing OT algorithms. In scenarios

featuring clustered editing, large document, and a large number of users, our system

incurs up to 80% less communication cost than existing pure OT systems. Additionally,

we discuss how our simulation design process has allowed us to simulate both client and

server and then begin progress to a functional implementation of both client and server

technologies – better achieving an efficient implementation of our algorithms and ideas

based upon our empirical simulation results. The scalability of our approach is a

significant contribution to the field in that no other RTCES has been tested with such a

large number of clients (as many as 27 in our simulations).

Section 5.1 discussed how we generalize OT to handle operations on any object

within the RTCES. Section 5.2 presents the validation of this approach via simulation

and the progression to the realization of a prototype implementation of our models.

Section 5.3 discusses related work, and Section 5.4 provides conclusions.

5.1. Generalized Operational Transformation

Similar to other CES research, we focus on text editing to demonstrate our

techniques of replicating changes among peers and achieving consistency among all

users; certainly our technique is applicable to other document types (CAD, graphics,

objects, etc.), thus when we refer to modifying characters/strings, these could be objects.

The operations that a user may perform to change the document’s content are the

Insert and Delete primitives as defined in the GOT (Generic OT) algorithm [133]:

118

Insert[S, P]: insert string S at position P

Delete[N, P]: delete N characters started from position P

When representing the document as a linear string of text, P represents an index

into the document. [60] extends these primitives to include the level within the

document to apply the insertion/deletion – injecting the notion of context such that the

string is inserted within a specific level of the document tree; one of the limitations of

[60] is that the document is arbitrarily established to contain 4 levels of granularity

(document tree height = 4): paragraph, sentence, word, and character.

We extend these OT primitives to be more generalized and flexible in

incorporating changes made to any level within the document tree. As a result, the

change is made relative to the semantic context of the change. More generally, these

primitives may be expressed as:

Insert[O, V, P]: insert object O within node V at position P

Delete[O, V, P]: delete object O within node V at position P

Our generalized approach correctly implements GOT-defined primitives (i.e.,

there is a mapping from our primitives to the GOT primitives) as follows. If the

document resides in a single node (as is the case of linear OT), then V becomes the

entire document. In the case of an insert operation, O becomes the string to insert.

Similarly, in the case of a delete operation, O represents the N characters to delete (i.e.,

O = {c1, c2, …, cn} where ci = the i
th

 character beginning at position P).

As examples of the correctness of this approach, consider that O could be a

character being inserted into a word if node V represents a word; O could be a word

being deleted if node V represents a sentence; O could be a sentence being inserted into

119

a section if node V represents a section; etc. Consequently, we may employ Insert and

Delete at any level within the tree to incorporate large or small changes depending upon

the context. Since OT algorithms work with the Insert and Delete primitives, we may

adopt any previously-defined OT algorithm into our system.

5.2. Validating the OT Integration via Simulation

To validate our approach of supporting hierarchical lock management via

document trees and integrating OT into our approach, we extend our initial DEVS Java

simulation [107]. In this simulation, we increase the complexity of how the lock proxy

manages the subsections – using our more complex tree algorithms with OT integrated

at the leaves. The overall structures of the simulation models remain consistent in that

the simulation models consist of a client machine, a network, and a server machine. But

since we now adopt OT at the leaf level, all write requests are satisfied so all users may

concurrently edit any section within the document; the cost of such increased

concurrency is that more messages are generated among the clients and the server, thus

we must measure this increased communication cost and see if our approach is efficient

when compared to existing pure-OT approaches.

5.2.1. The Client Model

The client machine is modeled to act as a state machine that begins outside of the

document, may check out the document and becomes a reader, and then is either reading

or writing to a specified section of the document [105]. When the client requests to

write to a section, a lock request message is sent to the server and the server responds by

notifying the client how much of the document it owns. The client is then free to move

120

within the owned space and make changes, caching these changes locally. If the client

receives a promotion or demotion message from the server, then it adjusts its ownership

space accordingly and flushes its cache as needed. In contrast, if the client is sharing a

section with other clients (via OT), then changes must be communicated immediately to

the other clients.

 The client editing behavior is determined as either random (the client will

randomly move within different sections of the document) or clustered (the client’s

editing will be centered on a point within the document and the client will move within a

small space around that point), and a hybrid that acts as a mix between the random and

the clustered behavior. While more complex editing behavior may be modeled in future

studies based upon examining log files of configuration management system

repositories, these three behavior patterns demonstrate the extremes and a middle

behavior that clients may exhibit.

 The client model maintains a state of either writing or reading and

maintains a current position in the document. The client transitions between reading and

writing according to the editing behavior being simulated (see above). Messages are

sent to the network via an outbound message queue, and messages are received from the

network via an inbound message queue.

Additionally, we created a complex model Proxy Client Generator that allowed us

to quickly create a set of client machines; this was done to make it convenient to change

the client behavior configuration and create multiple clients easily, but it does not affect

the simulation as this complex model does not process messages or transition states.

121

Figure 50: Modeling the Client in DEVSJAVA

5.2.2. The Server Model

The server machine is a complex model that consists of a repository model, a

server, and a lock proxy. The repository is responsible for maintaining a set of

documents/artifacts that can be checked in and out (similar to a standard configuration

management system (CMS) like CVS or RCS). The server is responsible for receiving

check-in and check-out requests and passing them to the repository; thus the server

models a machine that would have a CMS running on it. The lock proxy is responsible

for receiving messages from the network and parsing them to adjust the locks within the

document tree. The lock proxy will only check out and check in a document if needed –

thus it checks out and checks in document via proxy on behalf of the clients and keeps

the server and repository ignorant that any complex management is taking place; as a

result, we show how our dynamic lock management system can be added to existing

122

repositories and easily increase their capabilities. Once checked out, the document is

managed by the lock proxy and lock requests, lock releases, promotion/demotion, and

OT-related messages are handled by the lock proxy and communicated to the clients.

The lock proxy model is the key model of the server machine model; this proxy

model maintains the state of which documents are checked out of the server/repository

models and maintains which users are present in each document and notifies clients

upon promotion and demotion and passes on all OT-related messages to clients.

Additionally, we created a complex model Proxy Repository Generator that

allowed us to quickly create a set of server machines; this was done to make it

convenient to create multiple servers easily, but it does not affect the simulation as this

complex model does not process messages or transition states.

 We use a single server in this research, but our models allow for

distributing the repository of documents across multiple servers as we did in [103].

123

Figure 51: Modeling the Server in DEVSJAVA

5.2.3. The Network Model and Message Types

The network is modeled to receive and send messages to and from the clients and

the server. All messages within the system are modeled as strings with a source,

destination, and payload so that each entity within the simulation knows that the

message is designated for it. For the purposes of this simulation, we assume the time to

transmit a message is consistent from each client and server to all other clients and

servers, but we could easily create a lookup table within the network model to adjust

costs dynamically based upon sender and recipient and bandwidth congestion. But such

fidelity of the network was beyond the scope and interest of this research as we were

interested in the number of messages, not the real-time performance of the network,

especially since the network performance can vary considerably in different RTCES

124

scenarios. The network uses inbound and outbound message queues to receive and send

messages from clients and servers.

Figure 52 shows the models running within the DEVSJAVA Simulation Viewer;

in this figure, there are three clients and one server machine connected via the network

model.

Figure 52: The Connecting Network Model in the DEVSJAVA Simulation Viewer

As the purpose of this simulation is to measure communication costs, we use the

network model to capture all messages being sent to and from the clients. The following

10 message types are captured and measured within the simulation:

1. Document Check-out (CO) – the client would like to check out and become a

reader of a document.

125

2. Document Check-in (CI) – the client is no longer interested in the document and

releases it.

3. Lock Request (LK) – the client wants to write to a section of the document

4. Unlock (ULK) – the client has left the section and no longer needs the ability to

write to it

In response to each of the above messages from a client to the server, the server

may respond that the request succeeded or failed – for a total of eight (8) response types.

 Further, since an existing client who owns a section of a document may

have his lock promoted (moved up in the tree such that the client owns more of the

document) or demoted (moved down in the tree such that the client owns less of the

document), clients may also receive the following messages from the server indicating

their new ownership status:

5. Promotion (P) – informs the user that he now owns more of the document that he

previously owned.

6. Demotion (D) – informs the user that he now owns less of the document that he

previously owned.

Additionally, messages must be passed to clients when a new user is added into

the set of users writing to a section concurrently; these clients must perform OT among

themselves to ensure CCI within the section of the document. Thus we have the

following messages:

7. OT Added (OTA) – signals a user within a section that another user has been

added to the section and future changes must be sent to this new user

126

8. OT Deleted (OTD) – signals a user within a section that a user has left the section

and no longer needs to have changes sent to him

9. OT Join (OTJ) – tells the user requesting a lock that he has been granted write

access to a section that is already using OT; this message contains a list of the

existing users within the section so that the new user can send future changes to

these users

10. OT Modify (OTM) – this message tells a client that the section has been modified

and a local OT must be performed based upon the operation being communicated.

5.2.4. Results

We gathered results from 48 different runs of the simulation while modeling both

the client and the server. There were six different document structures used in the

simulations as shown in Table 7. Varying the structure of the document allows us to

explore how varying the collaboration density (the ratio of users to leaves in the

document structure) affects the messages generated in the simulation. Document

structures 5 and 6 are representative of 4-page and 8-page conference papers

respectively assuming the leaf nodes represent paragraphs.

Table 7: Document Structure Types

Document Structure Number of Leaves Maximum Depth Average Depth

1 4 3 2.75

2 8 4 2.875

3 16 4 2.875

4 48 3 3

5 96 3 3

6 192 3 3

127

There were twelve configurations varying the number of clients and the document

structure as shown in Table 8; for each of these twelve configurations, we ran

simulations using four configurations of clients’ editing behavior configurations: all

random, all clustered, all hybrid, and a uniform distribution among all three types. Thus

there were 48 runs of the simulation total, and each simulation ran for 10,000 iterations.

While running the simulations, all message types were recorded as the clients

made lock requests, updated their states, and notified other clients editing the same

section of the document as defined in Section 5.2.3. As we had previously not utilized

OT at the leaf nodes, we are particularly interested in how much communication

overhead is due to adding OT to our system.

Table 8: Client/Document Configurations

Simulation Configuration Number of Clients Document Structure

1 3 1

2 9 1

3 3 2

4 9 2

5 3 3

6 9 3

7 3 4

8 9 4

9 3 5

10 9 5

11 3 6

12 9 6

We define the percentage of messages dealing with OT out of the total messages

generated to be the Dynamic OT Rate. As shown in Figure 53, as the collaboration

density (as measured by the ration of the number of clients and the number of leaves in

the document) increases, the Dynamic OT Rate increases. Since collaboration density is

128

directly proportional to how often users will share the same space within a document, it

is natural to see the messages related to OT increase as collaboration density increases.

Figure 53: Dynamic Operational Transformation Cost as Collaboration Increases

Since all messages are broadcast to all users other than the originating user in a

pure OT system, we define the number of messages generated in a pure OT system as

WnM
PureOT

)1(

where n is the number of users and W is the number of write requests (the number of

times users modified the document).

Then the relative message overhead, Mo, of our dynamic lock OT system is

defined as

PureOT
M

OTMOTJOTDOTADPULKLK
Mo

129

Note that we do not consider message types LK and ULK since they are the same

in our dynamic system and a pure OT system.

Thus a relative message overhead of 1 reflects the dynamic lock with OT system

incurs the same number of communication cost as a pure OT system. Mo above 1

reflects our system incurs more communication that a pure OT system. Mo below 1

reflects our system incurs less communication than a pure OT system. Thus a lower

value is a reduction in communication costs.

Figure 54 through Figure 57 show how our system employing dynamic locking

and OT at the leaf level compares with using a “pure OT” (defined as broadcasting all

changes to all users) performed with respect to communication for all 48 simulation

configurations. Figure 54 shows all of the data included in Figure 55 and Figure 56 so

that an overall picture can be seen of the data; Figure 55 and Figure 56 show data

specific for 3 and 9 users respectively.

Figure 54: Edit Behaviors and Communication Efficiency

130

From the results presented in Figure 54, it is clear that our system performs better

relative to pure OT when all other variables remain the same and the number of clients

increases (note that odd-even pairs reflect an increase from 3 to 9 in the number of

clients). Additionally, when clients cluster their edit behavior, our system performs

better relative to pure OT; this is intuitive in that the caching benefits of our system are

better utilized when edits are localized/clustered. Further, the trend in Figure 54 shows

that as the size of the document increases, our system increasingly outperforms pure OT.

Figure 55: Edit Behavior and Communication Efficiency – 3 Users

Figure 55 shows that communication costs for our system are better than costs for

an OT-only system for clustered editing behaviors, and our performance improves as the

document size increases. For the random, clustered, and hybrid client series in Figure

55, there were 3 users simulated on documents 1-6. For the uniform editing behavior

series, one user was simulated for each of the three different editing behaviors (random,

131

clustered, and hybrid) for a total of 3 users. Our approach outperformed the OT-only

approach for larger documents (document 6) and when clustered editing behavior was

used. The data associated with Figure 55 appears in Table 9.

Figure 56: Edit Behavior and Communication Efficiency – 9 Users

Figure 56 shows that communication costs for our system are significantly better

than costs for an OT-only system. For the random, clustered, and hybrid client series in

Figure 56, there were 9 users simulated on documents 1-6. For the uniform editing

behavior series, three users were simulated for each of the 3 different editing behaviors

(random, clustered, and hybrid) for a total of 9 users. In all cases other than document

1-3 using random editing behavior, our approach outperformed the OT-only approach,

and the trends as previously discussed of improvement increasing as document size

increases and as clients adopt a clustered editing pattern continue to hold. The data

associated with Figure 56 appears in Table 10.

132

Figure 57: Edit Behavior and Communication Efficiency – 18 & 27 Users

Figure 57 shows that communication costs for our system are significantly better

than costs for an OT-only system. For the random, clustered, and hybrid client series in

Figure 57, there were 18 users simulated on documents 4-6. For the uniform editing

behavior series, nine users were simulated for each of the three different editing

behaviors (random, clustered, and hybrid). In all cases, our approach outperformed the

OT-only approach, and the trends as previously discussed of improvement increasing as

document size increases and as clients adopt a clustered editing pattern continue to hold.

The data associated with Figure 57 appears in Table 11.

133

Table 9: Simulation Results – Communication Costs with Structures 1-3

Doc

ID

Clients Write

requests

Messages TOTALS
OT% MO

R C H LK ULK U D P OTA OTJ OTD OTM DM POT

1 1 1 1 1458 254 241 5 62 59 257 179 194 1719 2970 2916 0.79 1.02

1 3 0 0 955 249 233 5 25 22 311 202 275 1262 2584 1910 0.79 1.35

1 0 3 0 2243 290 276 1 52 50 362 246 301 2969 4547 4486 0.85 1.01

1 0 0 3 864 170 156 4 16 11 243 140 222 1411 2373 1728 0.85 1.37

1 3 3 3 7904 1540 1388 30 7 4 6977 1512 6477 38156 56091 63232 0.95 0.89

1 9 0 0 6615 1646 1422 47 6 3 6645 1594 5918 29020 46301 52920 0.93 0.87

1 0 9 0 8286 909 828 11 8 5 3960 893 3680 38836 49130 66288 0.96 0.74

1 0 0 9 8769 1739 1580 28 10 7 7887 1699 7358 43323 63631 70152 0.95 0.91

2 1 1 1 2070 434 404 5 15 11 610 363 575 3210 5627 4140 0.85 1.36

2 3 0 0 1645 485 456 9 24 20 696 432 654 2541 5317 3290 0.81 1.62

2 0 3 0 2856 385 362 13 37 33 446 315 407 3737 5735 5712 0.86 1.00

2 0 0 3 2049 444 420 7 11 8 615 379 588 3090 5562 4098 0.84 1.36

2 3 3 3 7617 1755 1609 22 14 12 6867 1669 6389 32905 51242 60936 0.93 0.84

2 9 0 0 4557 1370 1276 8 6 3 6704 1311 6360 24070 41108 36456 0.94 1.13

2 0 9 0 7941 1149 1053 15 12 9 5020 1105 4696 37581 50640 63528 0.96 0.80

2 0 0 9 7000 1709 1585 17 6 3 7433 1633 7025 33411 52822 56000 0.94 0.94

3 1 1 1 2942 636 589 9 41 33 651 443 593 3269 6264 5884 0.79 1.06

3 3 0 0 1936 600 554 8 44 37 740 452 691 2660 5786 3872 0.79 1.49

3 0 3 0 3706 539 497 38 58 49 429 333 381 3024 5348 7412 0.78 0.72

3 0 0 3 2746 637 596 17 75 68 750 496 687 3538 6864 5492 0.80 1.25

3 3 3 3 6864 1716 1553 17 18 10 6778 1606 6260 28856 46814 54912 0.93 0.85

3 9 0 0 5817 1888 1724 14 51 43 8304 1761 7737 27053 48575 46536 0.92 1.04

3 0 9 0 10276 1651 1494 28 41 33 5215 1468 4738 37158 51826 82208 0.94 0.63

3 0 0 9 7577 1872 1700 17 35 25 7397 1759 6824 32671 52300 60616 0.93 0.86

134

Table 10: Simulation Results – Communication Costs with Structures 4-6

Doc

ID

Clients Write

requests

Messages TOTALS
OT% MO

R C H LK ULK U D P OTA OTJ OTD OTM DM POT

4 1 1 1 4042 959 859 19 85 70 754 578 671 3806 7801 8084 0.74 0.96

4 3 0 0 2887 960 855 10 59 44 925 666 839 3000 7358 5774 0.74 1.27

4 0 3 0 5489 816 739 118 116 99 547 413 487 3919 7254 10978 0.74 0.66

4 0 0 3 3764 946 849 15 99 83 773 575 691 3493 7524 7528 0.74 1.00

4 3 3 3 8905 2318 2055 28 48 33 6186 2086 5585 26440 44779 71240 0.90 0.63

4 9 0 0 7507 2597 2298 5 52 40 9165 2354 8314 29818 54643 60056 0.91 0.91

4 0 9 0 10850 1841 1656 62 124 107 2990 1457 2693 21092 32022 86800 0.88 0.37

4 0 0 9 9655 2582 2287 29 58 41 7529 2282 6772 32818 54398 77240 0.91 0.70

5 1 1 1 4638 1053 910 59 125 95 669 539 578 3458 7486 9276 0.70 0.81

5 3 0 0 3665 1241 1078 11 159 126 901 693 784 3198 8191 7330 0.68 1.12

5 0 3 0 5473 797 711 194 127 103 405 333 359 2765 5794 10946 0.67 0.53

5 0 0 3 4429 1179 1031 26 160 126 774 603 667 3490 8056 8858 0.69 0.91

5 3 3 3 10308 2698 2325 44 114 84 5371 2141 4675 24558 42010 82464 0.87 0.51

5 9 0 0 8873 3166 2712 9 128 100 8019 2740 6964 26498 50336 70984 0.88 0.71

5 0 9 0 11766 1942 1719 194 184 155 2779 1313 2445 18993 29724 94128 0.86 0.32

5 0 0 9 11154 3024 2598 36 152 120 6495 2526 5612 29134 49697 89232 0.88 0.56

6 1 1 1 4879 1185 1015 680 307 256 439 402 355 2383 7022 9758 0.51 0.72

6 3 0 0 4080 1425 1190 556 259 204 706 592 557 2734 8223 8160 0.56 1.01

6 0 3 0 5494 653 574 1187 193 166 140 140 115 884 4052 10988 0.32 0.37

6 0 0 3 5081 1350 1147 471 332 273 640 540 497 3113 8363 10162 0.57 0.82

6 3 3 3 10300 2830 2357 1803 270 213 3557 1916 2950 16594 32490 82400 0.77 0.39

6 9 0 0 10142 3608 2985 1026 284 228 6195 2729 5175 22052 44282 81136 0.82 0.55

6 0 9 0 13607 1647 1452 2606 207 167 1442 910 1255 9448 19134 108856 0.68 0.18

6 0 0 9 12194 3329 2800 912 262 204 4502 2314 3772 20826 38921 97552 0.81 0.40

135

Table 11: Simulation Results – Communication Costs with 18 and 27 Users

Doc

ID

Clients Write

requests

Messages TOTALS
OT% MO

R C H LK ULK U D P OTA OTJ OTD OTM DM POT

4 18 0 0 13721 4859 4228 9 54 38 35085 4624 31416 111012 191325 233257 0.95 0.82

5 18 0 0 16545 5913 5015 10 115 84 30905 5479 26795 102049 176365 281265 0.94 0.63

6 18 0 0 18677 6709 5508 9 213 160 23236 5929 19414 79898 141076 317509 0.91 0.44

4 0 18 0 20712 3599 3190 94 67 51 10564 3131 9449 72150 102295 352104 0.93 0.29

5 0 18 0 21520 3706 3242 200 120 90 10024 3049 8804 69137 98372 365840 0.93 0.27

6 0 18 0 20098 3321 2929 313 268 223 6373 2464 5689 42411 63991 341666 0.89 0.19

4 0 0 18 17888 4805 4219 25 43 26 28289 4525 25333 124492 191757 304096 0.95 0.63

5 0 0 18 20387 5554 4716 39 119 86 22733 4981 19517 102422 160167 346579 0.93 0.46

6 0 0 18 22004 6164 5142 63 246 190 16434 5179 13786 73302 120506 374068 0.90 0.32

4 9 9 9 26398 6812 5889 67 41 26 49195 6485 43382 222741 334638 686348 0.96 0.49

5 9 9 9 28363 7493 6384 73 117 85 39877 6943 34469 180275 275716 737438 0.95 0.37

6 9 9 9 29303 7933 6655 72 222 167 27577 6869 23497 123515 196507 761878 0.92 0.26

Doc ID – Document Structure ID

Clients R – Random

Clients C – Clustered

Clients H – Hybrid

Write Requests - # times clients modified document

LK – Lock Request

ULK – Unlock (Lock Release)

U – Update Position

D – Demotion

P – Promotion

OTA – OT Add

OTJ – OT Join

OTD – OT Delete

OTM – OT Modify

DM – Messages using Dynamic Locking Algorithm

POT – Messages using Pure OT Algorithm

OT% = (OTA + OTJ + OTD + OTM) / DM

MO – Relative message overhead (DM / POT)

136

5.3. Discussion and Related Work

While there is much literature on OT research such as [66],[134], etc., but the

prior work assumes that the document structure is linear in nature and operates

exclusively on character-level insertion and deletion operations. Prior OT research

supporting rich-text document formats (thus supporting objects) claims that their

approach is generalizable to other non-character insertion and deletions, but all such OT

researchers describe their algorithms in terms of character insert and delete operations;

few discuss the details of supporting other semantic levels of operations. Those that do

support non-linear OT algorithms enforce strict semantic levels and are not flexible to

arbitrary document structures or depths of document trees. For example, [58] discusses

algorithms for merging two different versions of a document by accepting

changes/operations at a word, sentence, or paragraph depth/level; this constraint of only

applying operations at specified levels within the semantic structure is not as broad and

flexible as our generalized approach as presented herein. [57] also demonstrate promise

in managing history buffers in a hierarchical document structure and applying operations

at varying semantic levels within the document; but again the semantic depth at which

the changes are managed are constrained to paragraph, sentence, and word levels.

Further, their approach applies operations from top to bottom, so all operations must

flow through the document tree root – posing a significant bottleneck in processing the

operations. Rather, our approach is flexible in supporting operations at any semantic

depth and begins the process of managing and applying these operations within the leaf

nodes where they occur.

137

Other research has supported XML/HTML type structures in the RTCES [20] and

[59] are notable contributions that allow for editing of structured content; but while

these systems employ semantic knowledge of what an XML element, attribute, their

operations remain rigid relative to specific types of content being modified and are not

generalizable to any object. Additionally, the Draw-Together [56] and other graphics

editing systems have shown promise in managing graphical objects and applying

conflict resolution (OT) for groups of objects. This work is particularly interesting in

that it allows for any set of objects within the shared document to be grouped together

and resolves overlapping sets as defined by different users; for example, if user U1

selects objects O1, O2, and O3 and performs Op1 on them, while user U2 selects objects

U2, U3, and U4 and performs Op2 on them, the algorithms Draw-Together correctly

applies the operations such that the replicas at U1 and U2 converge. While the history

buffer maintained in the Draw-Together algorithm is maintained globally for the entire

document (rather than hierarchically) this research is interesting to and relates to our

research in that it shows that grouping of objects at any arbitrary time is possible, and

further it is possible to achieve CCI after performing concurrent operations on

overlapping groups/sets.

The ability to publish some sections of a collaborative environment and keep

some sections of a collaborative environment private is discussed in [125]. While this is

similar to our caching of locally-performed operations, Souza’s work is more akin to

having a “sandbox” where local changes can be applied for testing out ideas before

publishing them to the shared space – similar to traditional CMS that allow users local

copies of a shared document in an asynchronous fashion.

138

5.4. Summary

In this chapter we have demonstrated that our dynamic, hierarchical locking

approach may successfully integrate existing OT algorithms to allow all clients the

opportunity to write to any section of the shared document, thus resolving the problem

of exclusive write locks as previously presented in Chapter 4. The improved algorithms

presented in this chapter demonstrate that localized OT among a smaller subset of the

total clients can reduce the communication costs dramatically – achieving a significant

decrease in messages sent among clients; our simulation results demonstrate

communication costs savings as much as 80%, and show that such improvement are

achieved over an OT-only approach as the number of clients increases, the number of

sections in the document increases, and when clustered editing behavior is exhibited by

the clients. This chapter has demonstrated that the scalability of our approach is a

significant contribution to the field in that no other RTCES has been tested with such a

large number of clients. While the results presented in the chapter are significant, we

recognize that the client-server model used in our approach results in a potential

bottleneck at the server. As a result, we extend our approach to support peer-to-peer

communication among the users and remove the bottleneck and single point of failure of

the server. These P2P extensions are presented in the next chapter.

139

CHAPTER 6

PEER-TO-PEER DOCUMENT MANAGEMENT

We extend our previous work on centralized document trees by distributing the

lock management among all peers within the CES and allowing the cached changes

(history buffers) to be applied at an arbitrary level in the hierarchical document tree.

These p2p algorithms for managing locks and distributing existing OT algorithms are

complimentary, superior to the current best practices of existing OT algorithms over

linear document representations, and significantly reduce the computational and

communication costs. Further, this approach enables better intention preservation than

existing OT algorithms. We achieve the performance improvement of [60] with the

added improvement of avoiding bottlenecks associated with a centralized approach. As

pointed out by [45], [58] and [66], the performance of OT algorithms degrades as the

size of the document increases, so it is advantageous to minimize the size of the space in

which OT is employed; our approach achieves this minimization by applying OT at leaf

nodes within the tree and propagating these changes up the tree efficiently and allows

peers to efficiently locate the peer who has the correct, up-to-date copy of the section of

the document rapidly. Further, these algorithms are generalized and make no

assumptions about the document’s content or type and are effective on any document

type – text, word processing, CAD, source code, etc.

This chapter begins by discussing the central issues of moving from a client-

server to a P2P architecture and how our algorithms must be modified to support the

new P2P approach. We present the modified lock request algorithm in Section 6.2, how

to handle the user modifications to content and structure of the document tree in Section

140

6.3, the modified lock release algorithm in Section 6.4, and how users may move within

the document in Section 6.5. A discussion of the correctness and efficiency analysis is

presented in Section 6.6. We then discuss the new problem of locating the peer with

which to communicate in Section 6.7, and present the benefits of replication, congestion

avoidance, and fault tolerance in Section 6.8. Finally, we conclude with a summary in

Section 6.10.

6.1. Extending the Client-Server Algorithms

In the client-server architecture, all messages related to lock request and release,

promotion and demotion, and OT join, OT delete, and OT add had to pass to or from the

server; this creates a centralized point of failure and bottleneck with respect to message

processing at the single server. In contrast, a P2P approach may allow each peer to

manage a section of the document tree such that messages (lock request, release, etc.)

pertaining to that portion of the document tree may be handled by that peer while other

peers handle messages pertaining to other portions of the document tree. But in moving

from a client-server to a P2P architecture, we introduce complexity and new problems to

be solved. First, how must our previous client-server lock request and release

algorithms be modified to allow for peers to manage sub-trees within the overall

document tree (i.e., what algorithmic changes must be made with regard to successfully

manage the locks on the document tree)? Second, how can we correctly and efficiently

locate which peer manages the section of the document tree a requesting users is

interested in; since now there is no centralized server to query, before a lock request can

be made, we must locate the peer to which to make the request. Third, how may the P2P

approach improve the scalability (via load balancing and reduction in message

141

congestion) and improve fault tolerance (via replication of portions of the document tree

structure and content among various peers).

Further, given the peer-to-peer nature of this approach, we adopt an adjustable

locking policy that is established on a per-section basis. As a result, users may select

whether to share their active section and allow multiple writers (thus adopting OT or

some other coordination mechanism), choose to disallow other users from entering their

owned section (denying the lock request of other writers wishing to enter the section), or

allow for demotion of their lock to a sub-section to resolve the conflict. The policy

adopted may vary according to any user (i.e., one user may select a sharing policy while

another selects an exclusive lock policy while another selects a demotion policy) and

also very according to which section is active (i.e., a user might adopt an exclusive lock

policy when editing section X, but the same user might adopt a sharing policy when

editing section Y). Of course, global policies based upon user priority, etc. can also be

adopted to “trump” local policies if desired (such that a high-priority user can override

the lock policies of another lower-priority user if desired/needed). Thus the P2P

algorithms discussed in this chapter assume such lock policies are on a per-node basis

and are queried at each node upon a lock request or release.

The preceding client-server approach taken for lock management is shown in

Figure 58 where the server is a central bottleneck and point of failure. The entire

document tree is managed by the server. In this figure, local OT is being applied among

users 3 and 4, but other than this, all communication is handled via the server.

142

In contrast, the P2P approach for lock management discussed in this chapter is

shown in Figure 59. Notice in the P2P model, each user is responsible for managing the

portion of the document tree that is associated with the portion of the document that they

are editing and each peer is able to communicate directly with all other peers in the

system. Local OT is still permissible as demonstrated in the sharing and OT among

users 3 and 4.

Figure 58: The Client-Server Lock Management Model

143

6.2. Lock Request

When a user, U1, enters/initiates the CES, this user is the only user in the system

and consequently has the entire document updated and cached in its computer.

Assuming a locking policy has been adopted and sharing is not permitted, when another

user, U2, enters the system, U1’s portion of the document is reduced to accommodate the

new user such that the contention between U1 and U2 is removed. We assume that U1

and U2 are interested in authoring disparate sections; if U1 and U2 are interested in

editing the same section of the document, then either U2’s request to enter the section

“owned” by U1 can be rejected (a failed write event) or an OT-based multi-writer policy

may be adopted. Figure 60 demonstrates the demotion of U1 from the entire section v

down to the sections denoted by {w1, …, wn} and the injection of U2 at the section

denoted by x. Any changes made so far by U1 to x (denoted by x) must be passed to

Figure 59: The P2P Lock Management Model

144

U2. At this point, U1 contains the most current copy of the sections {w1, …, wn}, and U2

contains the most current copy of section x. Since the x is being transmitted to U2, it is

appropriate to apply reduction to the history buffer at x when such a demotion occurs;

since these nodes are locked by U1, we avoid any form of deadlock in achieving the

messaging to U2.

A user requests a section of the document to which he wants to write, and the

system attempts to obtain a lock on that section of the document. The OBTAINLOCK

algorithm works from top-to-bottom by examining nodes in the path from the root to the

destination node. The correct path is determined by first querying the peer who

manages the root, and then descending further down by following peers’ references to

other peers (see Section 6.7). As it traverses this path, if a white node is found, then the

insert succeeds and the node becomes owned by the requesting user (and painted black).

If a grey node is found, it continues down. If a black node is reached, then we either

adopt an OT strategy if multiple writers are allowed at this node, or we demote (push

down) this black node (its current owner/user), turn this node into grey thus making

room for the new insert request to continue down. Demotion works by moving the

ownership of that user (and the black coloring) down the tree hierarchy while ensuring

Figure 60: Peer-to-Peer Lock Request

v U1 v U1 v U2

w1 wn …

v

x

145

that the leaf node needed by that user is contained within the sub-hierarchy. As in our

previous, centralized algorithms [103][105], we avoid deadlock among peers by

employing handshake locks on parent/child nodes and by always moving downward

through the tree.

6.3. Editing Content and Modifying the Structure of the Tree

Given the structure of the document tree, all content is stored at leaf nodes; all

other nodes act as structural support and represent sections and subsections. When a

user U1 owns a section denoted by node v, then all changes made to the content of the

sections rooted at v are cached locally on U1. Four types of edits/changes may be made

within the system by a user U1:

1. The content of a leaf v may be changed. In this case, U1 modifies some element

of the document that is represented by v. No structure change is made to the tree.

2. U1 removes/deletes a node v. In this case, node v may be either a leaf node or a

non-leaf node. If v is a leaf node, then the entity/content that v stored is deleted

from the tree. If v is a non-leaf node, then v and all of its child nodes are removed

from the tree (denoting a removal of a section and all its subsections). In this

case, it is valid to remove all sub-trees since by definition U1 has write

permissions to node v or the change would be rejected.

3. U1 splits a node v into two nodes, v and v2. In this case, U1 is creating a new

section, paragraph, etc. v2 is added as a sibling to v, some of the content of the

original v is moved to v2, and U1 owns both v and v2.

146

4. U1 creates a new section. This is a modified case of the case 3 in that the new

node v2 is created, except in this case no content is moved from an existing node.

The node v2 is added into the tree and is owned by U1.

In the above cases, no communication is needed between peers – all of the

changes are cached locally. If other users are interested in the sections rooted at v (as

either readers or writers), then any changes made can be selectively multicast to these

other users and an OT can be employed to maintain consistency among all peers

interested in sections rooted at v.

6.4. Lock Release

The REMOVELOCK algorithm also works from top-to-bottom. As the path from

the root to the node to be released is traversed downward, the grey-count for all nodes

painted grey is decreased by one until a grey node with a grey-count of one (after

decrementing) is encountered; when this occurs, a promotion is needed to ensure that the

sibling of the to-be-unlocked node owns the largest sub-tree possible. When a

REMOVELOCK request is fulfilled that necessitates a promotion, the node whose grey

count has been reduced to one must be painted black and must be added into the black

sibling list of the grey, parent node. Since this algorithm works strictly downward along

the tree, we avoid deadlock and are guaranteed to be able to promote the lock if only one

peer remains in the sub-tree.

When a user, U1, leaves a section w of the document and does not plan to return

(or does not plan to return in the near future), it is appropriate to release the lock held by

U1 on w and promote (if possible) another user’s (U2) lock such that the portion of the

document held by U2 is increased. Since U1 is leaving w, there is no contention on w

147

with other users, so if there remains only one user, this user can assume ownership of a

larger portion of the document. Alternatively, it is possible to cache the changes on U1

and update U2’s ownership at a later time (if at all). This would be appropriate in the

case where it is foreseeable that U1 would return to w before any other user desires to

read/write to w.

Let w = changes made by U1 on w. In the case where w is being

communicated from U1 to U2, we guarantee that w represents all changes to w and U1’s

copy of w is up-to-date (i.e., w = the history buffer of w at U1). Consequently, we must

communicate w to another user U2 and replay w on U2’s copy of w to achieve the up-

to-date version of w at U2. This is shown in Figure 61. In this example, U2’s ownership

is being promoted from x to v. As a result, only w needs to be communicated, and we

avoid having to communicate the entire contents of w to U2. x is current since U2 owns

it, and w is now current because w has been “replayed” at U2. Thus U2 contains a

proper and complete, up-to-date version of v since v is defined by w and x (i.e., v is

current because v = w + x and v = w + x). Note that v is easily constructed in

constant time since w and x are independent and do not conflict – thus v is the

concatenation/simple-merge of w and x.

148

Since the w is being transmitted to U2, it is appropriate to reduce the history

buffer at w before such a promotion occurs; even though we are moving up the tree, we

avoid deadlock in achieving the promotion and messaging to U2 by using a window lock

on v, w, and x. Reduction may be applied safely and recursively up to v. Here, when we

state we are “moving up” in the tree, this is logically up; all operations are performed

top-to-bottom using handshake locks and deadlock is avoided.

When w is communicated to U2, U2 may elect to incorporate w into its copy of

w, or if desired, U1’s changes to w (w) may be rejected. This acceptance or rejection of

changes by other users could be done automatically by the system based upon embedded

rules or done explicitly by users as prompted by the system.

When a user, U1, leaves the CES, all of the cached changes are flushed to another

user within the system. The policy of flushing the cache could be set to broadcast the

changes to all peers or send the changes to a single peer (or selectively send specific

sections’ changes to various peers) who would assume ownership of the sections that U1

had previously owned.

Figure 61: Peer-to-Peer Lock Release

v

U2 (v = w + x)

v

U1

v

U2

w

v

x

w x

v

149

6.5. User Movement within the Document Tree

If user Ui is currently editing/present in the section denoted by node v and wishes

to move to the section denoted by node x, then three situations may arise (see Figure

62):

1. Ui owns x; this may arise for two reasons: either Ui owns (i.e., has a lock on) a

node n that is an ancestor of nodes x and v, or the common ancestor n may be

marked grey because Ui owns x and v but another user, Uj, owns a node within the

n-rooted tree. In this case, we move Ui to x without any contention with other

users. Ui can retain the lock on v or release it (user preference), and no

communication is necessary.

2. x is not owned (i.e., colored white). If this is the case, then either Ui can release

its lock on v and acquire the lock on x, or, if desired, Ui can retain its lock on v

and acquire the lock on x (this would be desirable if Ui was entering x

temporarily and knew a priori that he wished to return to v after a brief edit to x).

In this situation, there must exist another user, Uj, that owns another node w

rooted at n since Ui does not own n (case 1); thus n must be colored grey.

3. Another user Uj owns x (or owns a tree which contains x); again, n must be grey

due to the contention between Ui and Uj (and possibly other users). If this is the

case, then Ui must wait for Uj to leave x and release the lock on x – assuming a

single-writer policy is employed at x. Alternatively, if a multi-writer policy has

been adopted at x (i.e., Uj allows other writers within x), then Ui may enter x and

an OT-based coordination policy is adopted among the writers.

150

In cases 1 and 2, no communication is required if the user retains his lock on node

v; in case 1 the user is moving within the user’s currently-owned sub-tree and the move

is permissible and does not conflict with any other user; in case 2 the user is moving to a

white node which implies that no other user was previously in this desired node. In case

3, the history buffer at node x must be communicated to user Ui since Ui now has

entered x and must have the latest state of x.

If the user elects to release his lock on node v, then the cache (history buffer) for

node v will be flushed and communicated to the node that assumes management of v

(which could be the original owner Ui if no promotion occurs in which case no

communication is required; otherwise, the new manager of v will be node promoted as a

result of Ui leaving v and the history buffer (cache) of v must be communicated to the

promoted node).

6.6. Correctness and Efficiency Analysis

Similar to the client-server algorithms for lock management, we designed the P2P

versions of the OBTAINLOCK and RELEASELOCK operations such that the document tree

v x

n n

v x v w

… … …

Ui

Uj Ui Uj Ui

Case 1 Case 2 Case 3

x

n

…

n

v x w

… …

Uj Ui Ui

- OR -

Figure 62: Three Cases of a User Moving from v to u

151

is accessed only in a top-to-bottom, pipelined fashion; we do this to avoid race

conditions. We enforce the policy that nodes must be accessed in a top-down manner.

As a result, our P2P operations may also be executed concurrently while maintaining

their correctness.

The full presentation of the algorithms appears below in Figure 63 through Figure

65. Note that these algorithms are presented to show intent; the actual implementations

feature an iterative/loop-based solution that employs a top-to-bottom, handshake-lock as

the paths from the root to the desired nodes are traversed. These P2P algorithms are

nearly identical to their client-server counterparts except that the communication of the

history buffers (cache) and the reductions are now included.

Herein, we present the algorithms and a discussion of their associated costs in

detail.

152

OBTAINLOCK(w, ui)

 if w.owner ≠ ui

RECURSEOBTAINLOCK (ROOT, w, ui)

RECURSEOBTAINLOCK(n, w, ui)

 if n.color = white

 // destination reached and lock is permissible

 then SETLOCK(n, ui, w)

 LINKSIBLINGS(n.parent, n, n.parent.firstBlackChild)

 else if n ISATOMIC or (n.color = black and not OTENABLED(n))

 // lock failure, so undo grey-count inflation

 then RECURSEREMOVELOCK (ROOT, w, ui)

 return failure

 else if (n ISATOMIC or n.color = black) and OTENABLED(n)

 // lock sharing is permissible, so join and apply OT

 then n = REDUCE(n)

 COMMUNICATE(n , ui)

 replay n at ui’s copy of n

 add ui to n’s distribution engine

 else if n.color = grey

// conflict/destination further in path, so determine next peer to

// communicate with and proceed further down the tree

 then n.greyCount = n.greyCount + 1

 RECURSEOBTAINLOCK(NEXTINPATH(n, w), w, ui)

 else // demotion occurs at a black node

 b = NEXTINPATH(n, w)

 a = NEXTINPATH(n, n.originalRequest)

 REMOVEFROMSIBLINGLIST(n)

 SETLOCK(a, n.owner, n.originalRequest)

 n.color = grey

 n.greyCount = 2

 update distribution engine subscription for nodes a and b

 if a ≠ b

 // conflict resolved, so communicate w to ui

 then SETLOCK(b, ui, w)

 LINKSIBLINGS(n, a, b)

 w = REDUCE(w)

 COMMUNICATE(w , ui)

 replay w at ui’s copy of w

 else // keep looking further down the tree to remove conflict

 RECURSEOBTAINLOCK(a, w, ui)

Figure 63: P2P OBTAINLOCK Algorithm

153

Since the RECURSEOBTAINLOCK traverses from the root down to a leaf (or stops

earlier if a white or black node is reached), this algorithm must traverse O(h) nodes,

where h equals the height of the document tree. The work involved at each node is O(1)

since the work in processing an individual node involves updating references/pointers,

coloring, and grey count (integer) values. It is possible upon a lock request failure that

the RECURSEREMOVELOCK function will be invoked, but this RECURSEREMOVELOCK (as

discussed below) runs in O(h), thus it is not asymptotically greater than the existing O(h)

work for the OBTAINLOCK algorithm. Additionally, if sharing or demotion occurs, then

the reduction algorithm is run and the history buffer must be incorporated into the

requesting user’s copy of the requested node, and this will incur O(b) work where b is

the size of the history buffer. Thus the overall cost for the OBTAINLOCK algorithm is the

cost to update the coloring of at most h nodes (as traversal down the tree occurs) + the

cost of updating the coloring of the siblings of x (which is O(1)) + the cost of reduction

and enacting x on the requesting user’s copy of x – for a total of

O(h + b).

Communication occurs when the lock is granted where there was a previous

owner – either when a black node is reached that has adopted OT sharing or when a

black node is reached and demotion is resolved. In either of these cases, only one

history buffer is communicated to the user requesting the lock, thus the communication

cost for transmitting this cached history buffer is O(b) where b is the size of the single

reduced history buffer communicated. Additionally, as the algorithm traverses down the

tree, peers that managed each of the nodes along the path traversed must handle the lock

request; thus as many as O(h) peers must be involved in resolving the lock request – and

154

this incurs O(h) communications among a pair of peers (between the peer that manages

the node and the requesting peer). Thus the total communication cost in

RECURSEOBTAINLOCK is O(b + h).

RECURSEREMOVELOCK traverses from the root down to a leaf (or stops earlier if a

grey or black node is reached), this algorithm must traverse O(h) nodes, where h equals

Figure 64: P2P RemoveLock Algorithm

REMOVELOCK(w, ui)

 if w.owner = ui

then RECURSEREMOVELOCK(ROOT, w, ui)

RECURSEREMOVELOCK(n, w, ui)

 if n.color = black and n.owner = ui

 // remove the lock, but no promotion is possible at this point

 then REMOVEFROMSIBLINGLIST(n)

 UNSETLOCK(n)

 if OTENABLED(n)

 remove ui from n’s distribution engine

 else if n.color = grey

 then n.greyCount = n.greyCount – 1

 if n.greyCount = 1

 // promotion is possible, so locate the correct remaining sibling

 // and promote it to n after obtaining a window lock on the nodes

then a = FINDELIGIBLEPROMOTION(n, w)

SETLOCK(n, a.owner, a.originalRequest)

LINKSIBLINGS(n.parent, n, n.parent.firstBlackChild)

w = REDUCE(w)

COMMUNICATE(w , a.owner)

replay w at a.owner’s copy of w

 else if n.greyCount = 0

 // removal occurred before delayed promotion

 // so just cleanup lock state

 then UNSETLOCK(n)

 else // keep traversing down the list, reducing grey-count as we go

 // all the while, using the peer-chain to locate the

 // next peer with which to communicate

 RECURSEREMOVELOCK(NEXTINPATH(n,w), w, ui)

155

the height of the document tree. The work involved at each node is O(1) since the work

in processing an individual node involves updating references/pointers, coloring, and

grey count (integer) values. Upon promotion, the FINDELIGIBLEPROMOTION function

must be called, but it continues the traversal down the tree from the point where the

promotion may occur, thus its work is also O(h). Thus the overall cost for the

REMOVELOCK algorithm is O(h). Additionally, if promotion occurs, then the history

buffer must be reduced and incorporated into the promoted user’s copy of the node

being release, and this will incur O(blogb) work where b is the size of the history buffer.

Thus the overall cost for the OBTAINLOCK algorithm is = the cost to update the coloring

of at most h nodes (as traversal down the tree occurs) + the cost of updating the coloring

of the siblings of x (which is O(1)) + the cost of reducing and enacting the history buffer

(x) on the promoted user’s copy of x – which is O(h + blogb).

Communication occurs when either a black node is reached that has adopted OT

sharing (and the releasing user must be removed from the OT user set) or when a black

node is reached and promotion occurs. In the case of the user being removed from the

OT user set on a node, this incurs O(n) communication cost where n is the number of

users in the OT sharing set on the node being released (since all users in the set must be

notified of the user leaving the set). In the case of promotion, one reduced history buffer

is communicated to the user that is promoted, thus the communication cost for

transmitting this reduced history buffer is O(b) where b is the size of the single reduced

history buffer communicated. Additionally, as the algorithm traverses down the tree,

peers that managed each of the nodes along the path traversed must handle the lock

request; thus as many as O(h) peers must be involved in resolving the lock request – and

156

this incurs O(h) communications among a pair of peers (between the peer that manages

the node and the requesting peer). Thus the total communication cost in

RECURSEOBTAINLOCK is O(n + b + h).

The supporting functions FINDELIGIBLEPROMOTION , REMOVEFROMSIBLINGLIST,

SETLOCK, LINKSIBLINGS, and UNSETLOCK implementations and analysis are the same as

presented in Section 4.6. As presented in Section 7, REDUCE runs in O(nlogn) where n

is the size of the history buffer. NEXTINPATH requires O(1) as it only looks down one

Figure 65: P2P Supporting Algorithms

NEXTINPATH(n, w)

Assuming we are currently at node n, determine the next peer in the

communication chain to the destination node w and return this next

peer (i.e., begin communication with the next peer)

COMMUNICATE(n, u)

 Send the history buffer n to the peer/user u

REDUCE(n)

 // Combine operations in n such that

 // the size of n (i.e., # operations) is reduced.

 Sort all operations based upon their position

 Remove all pairs of Op and ¬Op as they have no resultant effect

 Combine all adjacent Insert operations

 Combine all adjacent Delete operations

The following supporting functions remain the same with the client-server

implementations (see Figure 43):

FINDELIGIBLEPROMOTION(n, w)

SETLOCK(w, ui, r)

LINKSIBLINGS(n, a, b)

UNSETLOCK(w)

 REMOVEFROMSIBLINGLIST(n)

157

level to a child of the current node. COMMUNICATE requires O(b) where b is the size of

the history buffer (n) to communicate.

The cost associated with a user editing the content or structure of the document

tree contains 4 cases to be considered as defined in Section 6.3. In case 1, the edits

occur locally, so there is no communication cost and the computation cost equals the

cost of inserting the operation into the history buffer – which is constant time. In cases

2, 3, and 4, these involve modifying the document tree’s structure which incurs constant

computation cost; if there are other peers in v, then these changes incur a communication

cost of a multicast message to the peers in v to update the peers of the structural change

+ a unicast message to the parent of v to denote the deletion or creation operation.

Leaving a section w and retaining ownership on w is equivalent to moving with

multiple-writers (case 3 of as defined in Section 6.5). Most costly would be when a user

leaves a section w and w is transmitted to the user managing the sibling of w (as seen in

Figure 61). In this case, locating the remaining peer (U2 in this example) is achieved in

constant time and no communication since v maintains references to its black and grey

children and there is only one remaining black child (otherwise promotion would not

occur). Updating the coloring of v is also achieved in constant time with no

communication. The dominant cost of this event is defined by transmitting w to U2

(the remaining peer). Thus, the overall computation cost is constant (since we can create

v in constant time) and the communication cost is proportional to a multicast message

to the peers in x (since w must be transmitted to each of them to construct v).

Moving a user Ui from one section v to another section x involves removing the

user from v and inserting the user into x. Optionally, the user may retain ownership on

158

v. The most costly case involves removing and inserting – the combination of the costs

of OBTAINLOCK and REMOVELOCK – for a total of O(h + b).

In existing OT algorithms, all changes are broadcast to all peers within the

system, incurring a substantial communication cost. Even if these changes are cached

locally, transmitting them in batch to other peers to reduce the overhead cost of small-

payload messages incurs a communication cost proportional to the number of operations

performed. The computation cost of OT algorithms is also proportional to the number

of operations that are passed into the OT engine. We improve upon this by localizing

the OT engine to a single node, achieving the performance gains of [66] or [90] but we

also reduce the number of operations performed overall through our propagation

technique outlined earlier in this section; since the REDUCE function aggregates many,

smaller operations into fewer, larger operations, fewer operations must be transmitted to

peers and run through the OT engine. Our REDUCE function combines n operations

performed at v into fewer number of operations to be performed at the parent of v.

Consequently, each time a set of changes made at v is propagated up the document tree,

fewer operations must be implemented at the parent of v.

Note that in the P2P version of FINDELIGIBLEPROMOTION, no communication is

needed with other peers since we remain in the peer who owns the sub-tree rooted at n.

6.7. Locating the Peer and Ownership

It is essential that peers within the system efficiently locate nodes that are

managed by other peers; for example, if user U1 desires to edit node v, user U1 must be

able to determine which other peer in the system holds the up-to-date cached copy of v.

Peers must be able to traverse through the document hierarchy efficiently, and since this

159

tree is distributed among the peers, we employ references at each node that point to the

parent and children of owned nodes. As a result, all grey nodes maintain references to

the peers within the system that manage the grey and black sub-trees; additionally, all

grey and black nodes maintain references to their parents within the hierarchy. We note

that although initially those peers owning/maintaining the root and its close descendants

must handle more navigation traffic, most users will operate at the lower levels, thus

spreading the traffic load over time.

When a user enters or leaves a section, it is possible to adjust the lock/ownership

information of other peers (either demoting them in the case of entering a section or

promoting them in the case of leaving a section). It is essential that the user is able to

locate the peer that holds the node to be promoted or demoted. An algorithm for peer

location such as Chord [126] may be adopted to efficiently locate the peer.

In the case of demotion, and using Figure 60 as an example (when user U2 enters

and user U1’s ownership is reduced to not include x), U2 begins its search for the owner

of the desired node (x) at the root of the document tree or by querying cached peers that

had previously been visited upon descending originally through the tree. There are three

cases at any node: (i) it is painted white, in which case ownership is obtained and U2

obtains maintenance of x; (ii) it is painted grey, in which case this grey node maintains a

reference to all of its grey and black children, and one of these can be followed using a

technique similar to [111]; and (iii) it is painted black, in which case the destination peer

has been found and OT can be employed or demotion can be employed and U2 obtains

maintenance of x.

160

In the case of promotion and using Figure 61 as an example (when a user U1

leaves a node w and contention is removed), the user can immediately locate the peer to

promote, x, as x is the only sibling of w that is black (all others must be white). Thus U1

queries the peer that maintains its parent node (v), and this peer responds by promoting

U2’s ownership to v.

6.8. Replication, Congestion, and Fault Tolerance

As pointed out in [144], reliability and performance are the two primary reasons

for replicating data. When a distributed system such as a RTCES utilizes replicas of the

shared document, local response time (performance) is improved, but communication

costs increase; further, reliability is increased because each user has a copy of the shared

document, so if one user’s replica is lost, the other users may communicate the

document state to restore the session for that user.

We may increase the reliability and fault tolerance by replicating the top portion

of the document tree among all peers (or a subset of peers). For reliability, a few upper

nodes may be replicated (shared) using an OT policy. While this increases the cost in

processing the OBTAINLOCK and REMOVELOCK algorithms (since all peers must perform

OT to maintain consistency regarding the lock states among the shared top portion of

document tree), this approach does overcome the single point of failure of a single

server (or a single peer) managing the root. This replica-based approach for the top of

the tree is visualized in Figure 66. Here, the top two levels of the tree are replicated

among all users in the RTCES, and OT consistency maintenance is applied to ensure

each replica contains the same state for node coloring and ownership. At depth 3 and

below, individual users (user 1 = blue, user 2 = green, user 3 = red, and user 5 = orange)

161

maintain the document tree state and handle specific lock release and request operations

in these sub-trees.

Figure 66: Replication of the Top of the Document Tree and

Localized Management Below

While our initial client-server dynamic locking approach reduces this

communication time, since most messages (all non-OT update messages) pass through

it, the server suffers as a bottleneck for communication. Our motivation in developing

the peer-to-peer version of our dynamic locking algorithms was to avoid this problem by

distributing the work of lock management among the peers. Initially, it would seem that

this work and communication is distributed uniformly among the peers, but the

drawback remains that all messages must be processed from the root down. The grey

counts must be maintained from the root down to ensure proper promotion and

demotion. Thus if a single peer is responsible for managing each node in the tree, some

162

peer must maintain the root and will then become the bottleneck as in the client-server

approach.

To address this problem of congestion and an imbalance of the workload falling

to a single peer who manages the root node, we examine how this workload may be

balanced among multiple peers. Note that in Figure 59 the root is managed by User 1

since User 1 was the first user to enter the RTCES, and unless another policy is adopted

to balance the workload of the root, User 1 will continue to manage the root until he

leaves the RTCES. Thus all OBTAINLOCK and RELEASELOCK requests must pass

through User 1 – creating an imbalance in the workload. We correct this by noting that

it is possible to implement a shifting approach to managing the root as follows. When

an OBTAINLOCK operation is performed, the user requesting the operation begins

managing the nodes along the path in the document tree visited in fulfilling the

OBTAINLOCK operation. But when a RELEASELOCK operation is performed, this implies

that the user is leaving a section and thus it is not advantageous to have the user begin

managing the nodes along the path in the document tree visited in fulfilling the

RELEASELOCK operations. In this manner, we adopt a “most recently requested” policy

in that all nodes ni will be managed by the user who’s OBTAINLOCK request was fulfilled

by passing through ni (i.e., n1, n2, … nk is in the path from the root to nk, where nk is the

desired node or the node at which the lock request is fulfilled).

If such a “most recently requested” policy for lock management is adopted, then

the most consecutive requests a single peer p must serve would be O(n) where n is the

number of peers in the collaboration. This is true because if an OBTAINLOCK request is

handled, then the node acquires a new manager other than p. Only RELEASELOCK

163

requests can be fulfilled and keep the same manager p, and there can be at most n

consecutive RELEASELOCK request since any more would necessitate a lock request (i.e.,

a peer can’t release a lock it doesn’t have). Given the repetitive nature of lock request

and release of users moving from section to section of a document, the workload of

managing the nodes within the document tree should be balanced as the amortized time

a peer manages a node should be approximately equal to the amortized time the other

peers manage the node. We also note that the time a peer manages a node is

proportional to the depth of the node in the document tree (since there are fewer paths

that travel through a node at a greater depth than a node at a more shallow depth). Thus

the root management should change more often than a near-leaf node. This is good

because the workload of more shallow nodes in the tree (closer to the root) is more than

the workload of deeper nodes. As a result, an in particular if users’ editing patters

enable a higher degree of caching (via clustered editing patters), the workload in

managing the distributed P2P version of the document tree should be balanced among

the peers.

6.9. Simulation and Results

The goal of this simulation is to investigate moving from a client-server

architecture for a RTCES that implements our hierarchical, dynamic locking with the

integration of OT to a P2P architecture for a RTCES that implements our hierarchical,

dynamic locking with OT integration. Primarily, we are interested in how this

architectural change affects the work load and if message and computation costs may be

load balanced among the peers/users within the RTCES. Figure 67 shows the OO model

used for the simulation.

164

Figure 67: OO Model of the P2P Document Management System

To validate our P2P distributed document management approach, we

implemented the model of the node and the OBTAINLOCK and REMOVELOCK algorithms.

We modeled three different document trees containing 14, 28, and 56 leaves,

respectively. We simulated concurrent users that were either in a reading or writing

state; additionally, the users could move to a new section of the document (moving their

cursor position), and this new section to which to move was randomly selected. A total

165

of 96 simulation configurations were performed, varying among the three documents

and increasing the number of users from 1 to 32.

The results of the 96 simulation runs are shown in Figure 68. Each column

denotes a set of peers varying from 1 peer (in simulation runs 1-3) to 32 peers (in

simulation runs 94-96). The workload is measured by how many OBTAINLOCK and

REMOVELOCK requests were handled on a per-peer basis, thus each point plotted denotes

how much work a single peer handled. Note that the y-axis is logarithmic to enable the

variance among the peers within the columns to be visible.

If we adopt a first-come policy of node management, then as predicted, one (or a

small few) peers are unfairly burdened with the bulk of the document management.

Notice the high trend line showing the most burdened peer for each simulation run.

When the “most-recent,” balanced approach is adopted, the work is more fairly

distributed among all peers. This is corroborated in that while the total work remains the

same, the variance among the peers for any simulation run decreases when a balanced

approach is adopted (note the increased clustering). Adjacent columns (n, n+1, and n+2

where n is a multiple of 3) denote the different document sizes (14, 28, and 56 leaves);

so, for example, simulation 94 contains the 14-leaf document, simulation 95 contains the

28-leaf document, and simulation 96 contains the 56-leaf document. We observe that

the total workload decreases when the document size increases. This is intuitive in that

if we increase the document size while retaining the same number of peers, then the

opportunity for caching increases under our distributed document management model.

166

Figure 68: Balancing the Workload of Document Management among Peers

Figure 69 shows how our hierarchical distributed document management

approach can reduce the communication costs when compared to a pure OT approach.

The topmost three trend lines show how pure OT performs on various document sizes

(14, 28, and 56 leaves). The ability to cache changes locally and localize OT to a subset

of users sharing the same space within the document dramatically decreases the

communication costs of the RTCES. We note that as the collaboration density (the

average number of peers per section of the document) increases, the communication also

increases; this is as expected since more messages will be sent to maintain consistency

when more than one peer shares a section of the document.

167

Figure 69: Pure OT vs. Hierarchical OT Communication Costs

6.10. Summary

In this chapter we have shown that our client-server algorithms for dynamic lock

management can be extended into a P2P architecture where the workload of handling

the lock requests and lock releases can be distributed among the peers within the

collaboration. The overall algorithms and data structures are similar to the client-server

approach, and we have demonstrated that they are efficient and correct. By utilizing

existing efficient location algorithms such as Chord, we are also able to quickly locate

the peer who is managing the nodes in the document tree. We have removed a central

point of failure at the server and enabled fault tolerance via replication of the top of the

tree, and we have shown that the workload is theoretically distributed fairly among the

168

peers. Our empirical results via simulation demonstrate that our P2P approach is

scalable and the work of managing the document tree is indeed distributed fairly among

the peers.

169

CHAPTER 7

HIERARCHICAL REDUCTION AND INTENTION PRESERVATION

Now that we have developed client-server and P2P document tree management

algorithms and demonstrated how our approach can integrate best-practices of OT, we

turn our attention on how we may better manage the changes (operations) performed by

users within the RTCES. We note that the cost associated with OT increases as the size

of the history buffer increases, so in this chapter we focus on how the size of the history

buffers may be reduced throughout the hierarchical document tree. Additionally, we

identify opportunities to better achieve intention preservation as the history buffers are

propagated up the document tree hierarchy.

Section 7.1 presents the process of reduction of the history buffer and sending

these reduced history buffers up the document tree in a pipeline fashion. Section 7.2

presents the modeling of the node to achieve the reduction process. Section 7.3

discusses how our approach creates opportunities to better achieve intention preservation

– one of the significant open problems in RTCES research. We then present simulation

and results demonstrating how history buffer size can be managed using our reduction

process in Section 7.4. We discuss related work in Section 7.5 and provide a summary

in Section 7.6

7.1. Reduction

Based upon its structure, a document may be broken up into sections, subsections,

paragraphs, sentences, words, etc. If the document being shared is a CAD drawing, it

may be broken into layers, objects, etc. If the document is programming source code, it

170

may be broken into classes, components, methods, blocks, etc. Thus, we assume a

document tree structure without any preconceived notion of what the sections of the

document contain, nor do we require any specific depth/level of decomposition. Our

approach works well with a variety of document structures. The document tree consists

of internal nodes that represent structure, and all document content resides at leaf nodes,

thus users only make changes at leaf nodes within the document tree. Consequently, we

initially employ OT at the leaf node and cache changes made by users, only

communicating changes to other users that are interested (or currently viewing/editing)

the same section. As a result, we minimize the OT computation and communication

costs [75][90]. But as changes are made, the history buffers of leaf nodes grow and

performance of the OT algorithm degrades.

We agree with Oster [90] who recommends “compression of history buffer” at

various key points in time in his Tombstone Transformation Function (TTF). This

reduction is appropriate to keep the size of the history buffer from growing too large and

degrading the performance of the OT integration algorithm. Many operations made

within a section of the document should lend themselves to being consolidated into

fewer, larger operations. As an example, assume the user performs the following series

of operations on section v: Insert[“This”, v, 0], Insert[“ is”, v, 4], Insert[“ a”, v, 7], and

Insert[“ sentence.”, v, 9]. They may be combined into one: Insert[“This is a sentence.”,

v, 0]. By reducing many operations into a granular, single operation, the history buffer

may be minimized, and a larger, single operation may be relayed to other users; overall,

communication cost is reduced by transmitting fewer, longer messages rather than

transmitting many, short messages [90][103].

171

We next address how such “compression/reduction” of the history buffer may be

achieved. TTF preserves the absolute position of all operations and objects being

modified; as a result, operations within the history buffer may be reordered without

modifying the result of the operations. Consequently, this enables us to manipulate the

operations stored in the original history buffer to result in an equivalent modified history

buffer. Let v = the history buffer of a section v, v be the resultant state after

performing v on v, where and v = Reduce(v). Since reduction does not change the

intention of v, v = v + v = v + v , where + denotes the application (or “replay”) of

operations. Thus, we could reorder and reduce the operations while retaining the

intention of the original operations. This reordering is essential as our reduction

algorithm relies upon the equivalence of an initial history buffer to its reordered set of

operations.

As previously noted, users only make changes at leaf nodes within the document

tree. Thus we initially employ OT at the leaf node and minimize the OT computation

cost. The history buffers of leaf nodes will grow as more changes are made, but it

would be advantageous to reduce these and when permissible at certain key times, to

consolidate these into fewer operations that retain the intention of the operations

performed on this section. Since the history buffer is required to assure total causal

ordering in OT algorithms, we cannot reduce the history buffer without knowing that

such a reduction will not later inhibit the OT algorithm; consequently, we may only

reduce a history buffer (v) at node v when

172

1. A user U1, who owns v, leaves v and ownership of v is promoted to another user

U2 (see Section 6.4 and Figure 61). Thus, v may be reduced because all users

have left v and no operations remain that change v.

2. Based upon some event in the CES wherein users wish to accept changes made to

a section and all users in v synchronize (using a barrier) such that all copies of v

residing at the users in v have converged (i.e., all operations have been replayed at

all users in v). This follows a natural divergence-convergence model [28].

All operations contain a position element denoting where in the document the

operation occurs. This position information is any ordinal type, but for simplicity and

without loss of generality, we assume this to be an integer denoting the operation’s

position within the section of the document to which the history buffer applies. Further,

these integers denote positions relative to each other, so we can compare two operations

to see which proceeds and which follows.

Having established that operations’ positions are known relative to each other and

that operations may be reordered without changing their effect, we express the reduction

process as follows:

1. Sort all operations (keyed on position) within the history buffer.

2. Remove all adjacent pairs of Op and ¬Op (since they cancel each other).

3. Combine sets of adjacent insertions and combine sets of adjacent

deletions.

These three steps are visualized in Figure 70. History buffer v denotes the initial

history buffer. 1) shows the history buffer after it has been sorted by position (after step

173

1). 2) shows the history buffer after removing the Op and ¬Op occurrences (the

removed operations are highlighted in red). 3) shows the resultant history buffer after

combining adjacent insertions and deletions and demonstrates that a series of adjacent

insertions can be combined into a larger insertion and a series of adjacent deletions can

be combined into a larger deletion; also note the semantic abstraction from character-

based operations to word-based operations at this step.

Assuming an OT algorithm such as TTF that preserves equivalence in reordered

operations is utilized, then step 1 does not change the resultant state of the document.

Since Op and ¬Op result in no change to the document state, removing pairs of these as

done in step 2 does not change the resultant state of the document. In step 3, we

combine sets of insert and delete operations into larger granular insert and delete

Figure 70: The Reduction of a History Buffer

 D I
“an”, 0 “correct”, 2

 v

1)

2)

3)
Reduced HB can now be

sent to Parent

I
‘c’, 2

I
‘r’, 5

I
‘o’, 3

I
‘r’, 4

I
‘c’, 7

I
‘r’, 4

D
‘r’, 4

I
‘t’, 8

I
‘e’, 6

D
‘a’, 0

D
‘n’, 1

D
‘a’, 0

D
‘n’, 1

I
‘c’, 2

I
‘o’, 3

I
‘r’, 4

I
‘r’, 4

D
‘r’, 4

I
‘r’, 5

I
‘e’, 6

I
‘c’, 7

I
‘t’, 8

D
‘a’, 0

D
‘n’, 1

I
‘c’, 2

I
‘o’, 3

I
‘r’, 4

I
‘r’, 4

D
‘r’, 4

I
‘r’, 5

I
‘e’, 6

I
‘c’, 7

I
‘t’, 8

174

operations that retains the same effect on the document, thus the resultant state of the

document is not changed in step 3.

This algorithm is efficient. Step 1 may be realized using any standard linear

sorting algorithm in O(n) because the keys are bounded by the size of the section; steps

2 and 3 each require one traversal of the set of operations in O(n). Thus, the overall

efficiency of this reduction algorithm is O(n). Considering that the goal is to keep the

history buffers small, n is expected to be small and the runtime of this reduction

algorithm is also reasonable.

Further, since the reduced history buffers are sent up the tree and combined at

semantically-higher levels, we may pipeline the reduction. For example, all history

buffers at the leaf nodes are reduced and sent to the next level up in the tree; then the

history buffer of the parent nodes receive and combined the incoming history buffers

from their child nodes. These are reduced and sent higher, etc. At each level, reduction

can proceed in parallel and the pipelining realized.

7.2. Hierarchical Reduction

When a reduction occurs, it is useful to transmit these semantically “larger”

operations up within the document tree such that these larger operations may be stored

in the history buffers of the ancestor nodes. For example, many insertion and deletion of

words may be reduced to fewer insertion and deletion of sentences. This process of

reduction and transmission up the document tree is demonstrated in Figure 71. In this

example, changes made by U1 to w (w) and changes made by U2 to x (x) are reduced

to w and x respectively and transmitted up the document tree to v. Thus v’s history

175

buffer contains the reduced changes denoted by v. Later, U1 makes more changes to w

(w) and U2 makes more changes to x (x).

The message cost savings of hierarchical reduction is demonstrated when U3

enters x and communicates with U2 for the latest version of x; x at U3 is made current by

transmitting v and x from U2 and applying these operations on U3’s copy of x.

Additionally, U3 has a copy of w (where w’ = w + w), since w was contained in v;

w may be replayed on U3’s copy of w such that these copies of w are only missing

w . Without hierarchical reduction, all individual changes stored in v at U2 would

have to be transmitted and replayed at U3. As a result of hierarchical reduction, fewer

operations must be transmitted and replayed at U3. In existing OT algorithms, all

changes are broadcast to all peers within the system, incurring O(n) communication cost

per operation. Even if these changes are cached locally, transmitting them in batch to

other peers to reduce the overhead cost of small-payload messages incurs a

v v

w x

w

x

w x

U1 U2

v

v = w + x U3 joins at x

v = v + v U2 sends v and x to U3

w x

x

U1

w

v
v

U2

v

x

v

U3 (joins x)

v

x

w is reduced to w and sent to v

x is reduced to x and sent to v

Figure 71: Hierarchical Reduction

176

communication cost proportional to the number of operations performed. The

computation cost of OT algorithms is also proportional to the number of operations that

are passed into the OT engine. We improve upon this by localizing the OT engine to a

single node and decreasing the number of operations performed overall through our

propagation technique. Since the Reduce function aggregates many, smaller operations

into fewer, larger operations, fewer operations must be transmitted to other users and run

through the OT engine.

Further, since the reduced history buffers are sent up the tree and combined at

semantically-higher levels, we may pipeline the reduction. For example, all history

buffers at the leaf nodes are reduced and sent to the next level up in the tree; then the

history buffer of the parent nodes receive and combined the incoming history buffers

from their child nodes. These are reduced and sent higher, etc. At each level, reduction

can proceed in parallel in a pipelining fashion.

7.3. Intention Preservation

Intention preservation has been an elusive problem in RTCES for the past decade.

While OT achieves convergence and causality preservation, intention preservation is not

guaranteed by OT. Thus we turn our attention as to how our approach may address this

open problem in RTCES research. We begin by noting that our approach in maintaining

a document tree representation of the shared document is superior to the linear

representation of the shared document typically employed by OT algorithms; we

substantiate this claim by pointing out that semantic knowledge is captured in the

structure of the document tree – hierarchy implies structure in that like elements are

grouped together, just as this dissertation is grouped into chapters, and all sections

177

within a chapter are logically related, and all subsections within a section are logically

related, and all paragraph within a subsection are logically related, etc.

Having presented the reduction algorithm and established that such reduction may

occur at times when promotion and demotion occurs as well as when users agree it

should occur (at a specified time automatically or at a user-generated synchronization

event), we utilize such reduction to better achieve intention preservation.

When reduction occurs, the operations that occurred and are stored within the

history buffer at one semantic level are reduced into meta-operations and passed up the

document tree to nodes at the next higher semantic level. It is at this point when reduced

operations are brought together at a higher semantic level that we have an opportunity to

examine the operations to see if a semantic violation occurs and if the combined set of

operations creates a problem in ensuring intention preservation. For example, [58]

points out that while locally-correct operations achieve the desired results, when

combined, the resultant shared document may achieve convergence and causality-

preservation, but the combination of the local semantically-correct operations of the two

users results in a semantically incorrect document. As an example consider the

following as shown in Figure 72 which demonstrates that even when the sites’ replicas

converge, the semantic intention is not achieved.

178

We note that when operations are combined via the hierarchical reduction

process, one site’s operation(s) should override and the resultant state should be one of

the two intended states. In other situations, it could be possible that a subset of the

operations should be retained from each site to achieve semantic intention preservation,

so it is not exclusively one or the other site’s operations that should be retained.

It is precisely at the point of reduction in our algorithm that we can detect such a

semantic intention violation. Certainly it is possible to present options to the users and

allow the user to resolve the conflict, but in order to do so automatically, semantic

knowledge of the content being editing must be defined prior to the operations being

performed. While this might seem counter-intuitive (for how can one know the

semantic content of the document before the content is authored), [123] presents recent

work in rhetoric structure theory (RST) that seeks to establish the structure of the

document (referred to as the document narrative or DN) prior to the content of the

Figure 72: Semantic Intention is Violated

Site 1

“The sit dog ran”

Op1 = Delete(“ran”)

“The sit dog”

Op2 = Delete(“The”)

“sit dog”

“dog”

Site 2

“The sit dog ran”

Op3 = Delete(“sit”)

“The dog ran”

“The dog”

“dog”

Op1 → Op2

Op1 || Op3

Op2 || Op3

Site 1 Intention Site 2 Intention

179

document being added. This is described as planning out what the document will

contain and map the structure of the document prior to allowing collaborating authors to

contribute the content of the document. Similar to structured software engineering

where the architecture and design are established before the implementation, DN create

the overall flow of the document prior to its realization and content completion. RST

provides grammatical rules that document must follow, and changes made at different

sites might not violate these RST rules locally, but when changes are combined, a RST

violation may be detected and dealt with appropriately (either through a priority based

scheme, user intervention, or automatically via natural-language processing).

Thus as a result of the reduction process, we enable better intention preservation

(an open problem in CES research). Intention preservation is best achieved at a

semantically-appropriate level [58][60], and after reduction, changes are propagated up a

document tree and accepted or rejected at an appropriate semantic level rather than only

at a character level, a limit of existing OT approaches in achieving intention

preservation. Consequently, in a scenario in which two users each modify a different

word within an incoherent sentence (correcting the semantic problem locally), when

these changes are propagated up the tree, we may automatically detect and correct the

problem or allow for priority-based or user-intervention correction. Since existing OT

algorithms have no semantic/structural knowledge of the document being edited, this

opportunity to check for intention preservation has heretofore not existed. Thus our

approach of utilizing reduction and propagation of operations up the tree improves the

ability to achieve intention preservation.

180

7.4. Modeling the Peer

Now that the reduction algorithm has been articulated, we integrate it into the

nodes within the document tree such that history buffers may be stored at all levels

within the document tree, reduced as desired, and propagated up the tree. The

components that make up the node model to enable hierarchical reduction are shown in

Figure 73.

Peers within the RTCES maintain working, cached copies of portions of the

document. These portions/sections are represented by nodes within the distributed

document tree. In order to correctly process changes being made to the sections of the

document, each node must be able to incorporate input from the local user as well as

input from other peers. An OT engine is needed to apply the transformations to

incoming changes made by remote peers onto the local peer’s copy of the section as well

as any operations that are sent from children of the node when promotion occurs. When

Figure 73: The Components of the Peer

Parent of

v

Distribution

Engine

History Buffer (v)

OT

Engine

Remote

Peer

Node v

Children

of v

Local

User

Reduction

Engine

181

a local user makes a change, this change is stored in the History Buffer (HB) to enable

OT and ensure total causal ordering of changes [132]; these changes are then sent to the

Distribution Engine. It is the responsibility of the Distribution Engine (DE) to track

which peers are readers and writers of node v and need notification when changes are

made to v; additionally, the DE is responsible for handling requests from peers to join

(copy - v must be sent to the peer), demote the local user (split - a portion of v is sent to

the peer and a portion is retained by the local user), and promote (merge - the peer has

left/moved and v and a sibling of v can be merged together at a common ancestor node).

As in existing OT systems, the OT Engine is responsible for receiving incoming changes

made by a peer and applying the OT algorithms to incorporate the changes made by the

peer into the local copy of v; additionally, the OT engine is responsible for incorporating

changes that are propagated up the document tree from children of v. The Reduction

Engine is responsible for converting changes made at the level of v into meta-changes to

be replayed at a higher level in the document tree.

7.5. Simulation and Results

Since the cost of performing OT is dependent upon the size of the history buffer

to which it is applied, it is logical to conclude that if the history buffers can be kept

small, then the computation cost of performing OT can be kept small. One of the

benefits of our reduction algorithm is that when it is performed, the history buffer can be

cleared; this is due to the fact that the intention of the operations being reduced are

stored higher in the document tree (at nodes semantically higher).

182

To validate that the reduction algorithm is beneficial in reducing the computation

cost of performing OT in a RTCES, we simulated various configurations of document

sizes and various numbers of users (increasing the number of users from 1 to 88).

We modeled three different document trees containing 14, 28, and 56 leaves,

respectively. We simulated concurrent users that were either in a reading or writing

state; additionally, the users could move to a new section of the document (moving their

cursor position), and this new section to which to move was randomly selected. The

modeling of the user and the document is the same as described in Section 6.9.

But in order to test the benefits of the reduction algorithm to the OT computation

costs, it is important to ensure that OT is being performed. Since our dynamic lock

management algorithms increase the caching and reduce the necessity of OT, we

increased the number of users in the RTCES for this simulation to a maximum of 88; as

a result, we achieve collaboration densities (the number of users per leaf in the

document tree) to over 6 – which is more than triple than our previous simulation. A

total of 264 simulation configurations were performed, varying among the three

documents and increasing the number of users from 1 to 88. Additionally, we ran each

configuration using no reduction, using minimal reduction only when a promotion or a

demotion occurred, and using reduction upon promotion and demotion as well as any

time a user entered or left an OT set (the users collaborating within a leaf of the

document tree).

The results of the simulation runs are shown in Figure 74. Note that the vertical

axis is logarithmic.

183

Figure 74: The Reduce Algorithm Decreases OT Computation Costs

Clearly, the cost of performing OT is dependent upon the size of the history

buffer to which it is applied. Performing OT where no reduction is applied is most

costly. Performing OT with some reduction (when promotion/demotion occurs) is

advantageous, but the cost of performing OT is minimal when the reduction algorithm

occurs more frequently (upon promotion and demotion and when a user enters or leaves

the OT set).

It is interesting to note that while reduction is advantageous to minimize the

computation costs of OT, we had to perform it more often that when just

promoting/demoting to see the most gains. This is because OT will be performed more

often (and thus be more costly) when the collaboration density is higher; if the

184

collaboration density is low, then users are less likely to need to perform OT (since they

are less likely to be in the same section at the same time). We found that in such a

scenario when collaboration density was higher, promotion and demotion did not occur

as frequently; this is intuitive in that with a higher collaboration density, it is less likely

that any single user remains in a section and is a candidate for promotion; further, in a

high collaboration density environment, most users will have already been demoted to a

leaf by previous users’ entry into the tree, thus demotion is also not likely.

Consequently, we believe it most appropriate to apply reduction when promotion and

demotion occurs as well as when a user enters or leaves a shared section (enters or

leaves an OT set).

It is important to note that while reduction does decrease the computation cost of

OT, the reduction computation cost itself is not significant. As previously defined, the

reduction cost is O(n) where n is the size of the history buffer being reduced. This cost

is equivalent to performing one operation within the same history buffer; thus if we are

willing to incur such a cost for an performing OT on an operation, certainly we are

willing to incur this cost for reduction if such a clear overall OT computation cost

reduction is achieved.

One disadvantage of performing reduction on an OT set is that all users within the

set must perform a 2-phase protocol to synchronize and ensure that no outstanding, non-

implemented operations remain unincorporated into the history buffer before it is

reduced [91]. This does increase the communication among users within the same

section of the document, but the number of users within the same section should be

small if our distributed, hierarchical document tree is utilized. Further, this

185

communication cost is quite small relative to the exorbitant cost of broadcasting all

operations to all users in a pure OT approach.

7.6. Related Work

[57] discusses managing history buffers in a hierarchical document structure and

applying operations at fixed semantic levels within the document (paragraph, sentence,

word, character); further, operations are processed from top to bottom, so all operations

must flow through the document tree root – posing a significant bottleneck in processing

the operations. Rather, our approach is more flexible in supporting operations at any

semantic depth and begins the process of managing and applying these operations within

the leaf nodes where they occur. From there, reduction occurs and the reduced set of

operations (that are meaningful at a higher level semantically) are published up the tree

in a pipeline fashion.

[125] discusses the ability to keep some operations private and publish others,

which is similar to our work is that local changes can be made and unmade without any

other user being made aware of the changes – similar to the process of removing pairs of

Op and ¬Op during the reduction process since no one need be made aware of these self

negating operations.

The adoption of maintaining semantically-aware history buffers is gaining

increased attention in the RTCES research community. [57] utilizes a hierarchical

structure to maintain history buffers and applies OT algorithms at different levels within

the structure (see Figure 75).

186

Figure 75: A Hierarchical View of History Buffers [57]

To justify the need for and the potential benefit of our reduction-based approach,

it was shown in the document edit profiling research of Papadapoulou [94] that there can

be a high amount of operations that nullify each other (such as performing an operations

and then performing the inverse of the operations – i.e., performing a DO operations and

then immediately performing an UNDO operation). The researchers found that marking

such operations as contributions is not necessarily appropriate given the net effect is

essentially no operations performed (no contribution to the collaboration), thus it could

be beneficial to reduce/remove such combinations to better capture a higher-order view

of the document edit profile. This is directly related to and supports our removal of

operations that nullify each other; in our reduction algorithm, step 2 removes such pairs

of Op and ¬Op as they have no net effect on the document state. Consequently, these

non-contributions are removed, and visualizations such as Papadapoulou’s that employ

our approach of reduction would better display accurate contributions.

187

Recently, [131] presented their most current work in expanding the capabilities of

OT by creating an algorithm that maintains the context of an operation when the OT

algorithm is applied utilizing their Context-based Operational Transformation (COT)

algorithm. The COT algorithm utilizes a context vector (which is defined by a set of

operations) that specifies the context under which an operation is performed. While this

approach simplifies solutions to existing CCI problems, it does not solve the intention

preservation problem – as semantic knowledge is required to solve this open problem in

RTCES research.

7.7. Summary

In this chapter we have shown that our P2P algorithms for distributed document

and dynamic lock management can be extended to include hierarchical reduction of

history buffers at each node and at varying depths within the document tree. This

reduction algorithm is successful in decreasing the size of the history buffers and

propagating operations up in the document tree to higher semantic levels. Additionally,

we identify the point at which history buffers are merged together hierarchically (at

these higher semantic levels) as appropriate points in the RTCES at which intention

preservation may be examined as possibly failing; it is at these points that intention

preservation violations may occur (and thus we can query the user as to how to resolve

the violation and/or automate the violation correction). Our empirical results via

simulation demonstrate that our hierarchical reduction approach is viable in reducing the

computation cost of performing localized OT. Now that we have successfully

developed our theoretical RTCES contributions, we focus the next chapter on

implementing prototypes that utilize our approaches.

188

CHAPTER 8

PROTOTYPE SYSTEMS

System test and performance evaluation are essential in a system development to

ensure the system/algorithms under development will not cause major problems when

deployed in the real field and used by real users. This is especially important for

distributed systems, such as RTCES that has a large number of potential users.

Unfortunately, the user-oriented nature of the system prohibits extensive testing and

performance evaluation using real users. In this chapter, we follow a stepwise

simulation-based design process to test/evaluate the system and algorithms under

development. This stepwise design process is motivated by [55] that develops a

simulation-based design process to enable smooth transitions between different design

stages. It aims to support systematic and cost-efficient testing and evaluation for the

distributed collaborative editing systems concerned in this chapter.

This chapter discusses how our simulation design process has allowed us to first

move beyond simulating client and server to begin the progress to a functional

implementation of both client and server technologies – better achieving an efficient

implementation of our algorithms and ideas based upon our empirical simulation results.

8.1. Simulation-based Software Architectural Design Process

The stepwise simulation-based design process includes three steps as shown in

Figure 76. In the first step (a), both the server and clients are modeled as DEVS models;

clients may have different profiles based on knowledge extracted from real user

behavior extracted by analyzing change log files of document repositories. We apply a

189

fast simulation approach wherein events advance the system clock and the simulation

completes as fast as possible. At this stage, different configurations (such as varying the

number of clients and/or client behavior patterns) can be easily setup, and multiple runs

of the simulation may be quickly executed. A key advantage to this approach is that it is

very flexible, and we are able to quickly get results without the need to fully implement

a research server; this allows for testing and evaluation in the very early stages of the

architectural design process. In the second step (b), the server is coded and fully

implemented and run on a dedicated computer; simulated client models interact with the

server through the network. The key advantage is that there is still flexibility for

configuring the tests on the client side, such as having a large number of client models;

this is especially cost efficient as no real users are involved and we can scale the tests

beyond current RTCES testing user levels. In the last step (c), real users use the client

editors to interact with the real server and we collect measurement data. At this stage,

we are able to achieve high fidelity measurement of data because this consists of real

users and the real server.

190

TBA

8.2. Replacing Models with Actual Components

As presented in Chapters 4 through 7, our client and server algorithms effectively

support RTCES while minimizing communication and computation costs. We would

like to move from simulating each (as we have done in the past) to replacing the server

and then replacing the client such that in the end we have fully implemented

technologies to support RTCES. This is the natural progression of the simulation-based

software architectural design process – moving from the models to the actual

implementations.

To realize this goal, we first focus on the server. Porting the algorithms written in

the simulation to an actual Web service is straightforward in that the code must be

removed from the models in response to external events of the model to being in

response to client service calls. There is thus a one-to-one mapping of model event

Server
Model

Client model
with different
client profile

Client model
with different
client profile

(a) Client model
and server model

(b) Client models
interact with real

server

(c) Real users interact
with real server

Figure 76: Simulation-Driven Design Process

191

handler for an external transition function in the DEVS model to an event handler for a

Web service API method invocation. The only extension needed to a traditional Web

service is that we had to make the service state-based so that the document state would

be preserved from call to call; this was trivial in that at the beginning of each method

call, a LoadState function could be invoked by the service to deserialize the document

tree state, and at the end of each method call, a SaveState function could be invoked by

the service to serialize the document tree state.

On the client side, we then replaced the client models with an implementation of a

client editor that supported the reading and writing of a document that also connected to

the server-side Web service API. When the user moves the cursor, the user’s position

within the document tree is updated on the server; when the user edits (modifies) a

section within the document, concomitant lock request and change messages are

generated and sent to the server (and potentially other users in the same section). Lock

promotion and demotion messages are sent to clients as needed to ensure each client

knows what section(s) he owns.

8.3. Implementing the Server

Having modeled both the clients and the server, we turn our attention to the

implementation of the algorithms on the server. We implement the server so that it can

be used in a real-world RTCES, but before employing it in a real-world scenario, we

would like to validate that our simulation results in modeling the server accurately

reflects the real performance that may be achieved when the server is fully implemented.

In this scenario, we keep the client machine as previously modeled. The simulated

server machine is removed and we add a model called OutConnection that sends and

192

receives messages to and from the real server using Web services invocations. The

network is then connected to this new OutConnection model instead of the previous

server machine model.

Figure 77: Simulation Connection to Real Server via the OutConnection Model

No other RTCES research has been able to test their algorithms under a large-

scale scenario with more than a handful of clients. Certainly others have measured

performance of their algorithms with a large set of operations (see [66] for a recent

example), but OT algorithmic studies focus on how quickly the algorithms may run and

the storage capacities required; to date, no RTCES has been systematically tested with a

large number of clients, as it is difficult to bring together so many users necessary for

such a study. The impact of messages across the network has not been adequately

193

measured in RTCES research, thus we address this cost by simulating a large number of

clients connected to a real-world implementation of our server technology. As a result,

we are able to determine how our system’s performance scales as the number of clients

increases.

Figure 78: Web Service Implementation of Server API in ASP.NET

We have also developed visualization tools that display the document tree in a

graphical view and display the state of each node and references among the nodes. This

tool was originally developed to assist in verifying the correctness of our algorithm in

seeing how various actions of users affected the document tree state (i.e., visualizing

locks being promoted and demoted). A snapshot of the visualization of the document

tree state is shown in Figure 79.

194

Figure 79: Implementation of Visualizing the Document Tree State

Any client editing tool that can connect to a Web service API can make use of our

client-server approach to document tree management and hook into the server

technologies developed.

8.4. Implementing the Client

After the Web-services based server is implemented, we began development of a

client application that connects to the server and allows multiple users to edit a shared

document. The cursor position within the editor is tracked, and movement within the

document automatically sends lock request and release messages to the server; as a

result, clients are able to modify the shared document, and changes may be cached until

a demotion message is received or the user leaves the space of the document that he

owns. A preliminary version of this client editor application has been developed and is

displayed in Figure 80. The dominant window (left) is the document’s content, and the

195

tree on the right shows the structure of the document tree based upon the document’s

content; the lower region shows state information such as in which section the cursor

resides and displays messages from the server. The right-hand treeview control shows

the structure of the document tree based upon the document content in the main editing

window.

Figure 80: The Implementation of the Client Editor

196

While simple in nature, this client editing too demonstrates that any existing client

technology can be extended (via hooks or other extension technology) to connect to our

server API, or a new client tool can be developed to connect to the Web service API for

document tree and dynamic lock management.

8.5. Discussion and Related Work

There have been many other systems that have implemented prototypes of

RTCES editors [12], and these have been used to examine the efficiencies and

correctness of various RTCES algorithms – primarily focused on OT-based algorithms

to achieve CCI. Our approach as presented in this chapter has not been so much on

creating new RTCES client and server technologies but rather focused on proving the

viability of our preceding theoretical work in developing dynamic lock management

algorithms to reduce communication and computation costs within a collaborative

editing environment. This has been achieved using the simulation-based architectural

design process – moving from simulated client and server models to implementations of

a client and a server that validates our theoretical work.

Other recent, notable work in the area of prototypes of hierarchical management

of document structures within RTCES include the work of Ignat [58] in allowing users

to adopt merging of shared document content at a word, sentence, or paragraph level.

This adjustable conflict resolution approach is demonstrated in Figure 81.

197

Figure 81: Adjustable Conflict Resolution [58]

Additionally, the work of [94] created visualizations (profiles) of changes made at

various levels within a shared document – visualizing the changes at a word, sentence,

and paragraph level – to provide meta-views of the changes that had been made to a

shared document over time (see Figure 82); this interface provides an overview of the

activity of other users with respect to the number and locality of changes within a text

document.

198

Figure 82: CES Document Profiling [94]

Both of these systems demonstrate that addressing the semantic structure of a

document and how such semantic structure can enhance RTCES is an active area of

research that offers potential and is currently being implemented in prototype systems.

The recent work of [139] shows that prototype systems are also useful in

visualizing and managing the various operation scenarios employed in testing OT

algorithms. Their time-space diagram (TSD) visualization tool allows a user to

construct and manipulate operational scenarios (such as which operations are concurrent

and which are causally-related) to see if CCI is achieved using various OT techniques.

199

8.6. Summary

Having developed an open systems based architecture to support a variety of

client and server technologies within a RTCES, and having developed algorithms that

support hierarchical locking that integrates existing best practices from OT-based

research, we have further developed prototype client and server technologies that

demonstrate the validity of our approach to supporting RTCES. Both our client and

server prototypes presented within this chapter show that our approach is applicable to

supporting scalable RTCES that minimize communication and computation costs.

200

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Computing affords opportunities to enhance communication and collaboration;

with the proper user-centric tools, many users can work together to solve ever more

complex problems facing the world today. Inter- and intra-collaborations among

researchers and business are ever increasing as ever more complex problems require

interdisciplinary foci. Productivity software tools and other computing technologies are

increasingly supportive of collaboration among multiple users, and as the pace of

research and business increases, there will be an increase in the need for and the

opportunities to support synchronous collaboration and editing of shared documents.

This research began by examining assumptions that the RTCES research

community has not yet fully addressed. In doing so, we have begun to explore areas of

RTCES that could be improved to be more scalable in supporting larger documents and

larger communities of users. By focusing on intelligently caching changes and enabling

dynamic hierarchical locking, we retain the highly responsive interactions that users

expect with their local document editing tools. By focusing on integration of existing

best practices with the OT research community, we leverage years of research to ensure

consistency among replicas of the shared document. And by adopting an open systems

approach, we support existing client and server technologies and leverage years of users’

preferences and knowledge base.

We have shown that our dynamic locking algorithms are effective and efficient.

By caching changes and selective multicasting among local writers, we have reduced

communication and computation costs over existing OT broadcast schemes. And by

201

distributing the document state among peers (P2P), we have avoided single server

bottleneck latency and starvation.

9.1. A Systematic View of Real-time Collaborative Editing Systems

The CSCW and RTCES research communities have a rich history of algorithm

and systems development. Ever increasing and effective techniques to achieve CCI

have blossomed from the RTCES community within the past decade, and there shows

much promise for the future of this field. The focus of this research has been to extend

such promising research into a broader scope by integrating a systematic view of

RTCES that includes an inclusive architecture, users’ document replica state

management (and thus caching), and communication and computation cost reduction.

We believe that in looking at the larger picture of the system as a whole, new

opportunities for improvements within the field of RTCES have emerged. Like an

impressionist painting, certainly each brushstroke is vital and contributes to the whole

picture; but by stepping back and viewing the problem from a systematic perspective,

we have been able to see patterns of opportunity such as overall communication and

computation efficiencies and opportunities for better intention preservation that

heretofore have been hidden as the community’s focus has been on paying attention to

specific individual areas of RTCES research. We are pleased that our approach does not

stand in opposition to or compete with the RTCES community’s best practices, but

rather integrate together with existing best practices of OT research in supporting an

overall better system for supporting collaborative editing among multiple users.

In particular, we have achieved the following results:

202

1. An open systems architecture whereby exiting client technologies may connect

with existing server technologies in supporting RTCES. Our approach uses a

subscription model and Web services API to enable legacy and preferred

technologies to be extended to support collaboration on shared documents in real

time. We have empirically validated that the communication costs associated

with our architectural approach are reasonable.

2. Algorithms and data structures that enable dynamic hierarchical locking of a

shared document via a document tree such that users’ changes may be cached

when possible and selectively broadcast when multiple users are within the same

section of the shared document. As a result of our approach, communication and

computation costs are reduced when compared to an OT-only approach.

3. Integration of best-practices within the OT research community such that the

CCI model is better achieved within localized subsets of the total client set and

subsections of the shared document. Our results validate that we can provide

concurrent access to all sections of the document to all users while still reducing

communication and computation costs. Further, since we leverage semantic

structure of the document, we are better poised to achieve intention preservation

among users.

4. An extension of our client-server approach to dynamic, hierarchical lock

management and integrated OT techniques into a P2P approach that distributes

the document and lock state management among all users within the system.

This P2P extension avoids a single point of failure and bottleneck at the server

while improving reliability.

203

5. Preliminary, prototype implementations of both the client and the server

technologies that validate our theoretical approach is viable and easily supported

in actual, usable tools. These tools demonstrate that our algorithms can be

integrated into existing applications or introduced into new applications to be

built that support RTCES.

9.2. Future Work

Having developed a preliminary set of algorithms and approaches in support of

RTCES, we look to how this work may be extended into the future.

Given that our algorithms are deadlock free, we could place the document tree on

a multiprocessor machine and thread out the processing to avoid latency/starvation.

While the focus of this research did not include this line of exploration, it would be

interesting to see how our algorithms could be parallelized onto multiprocessor

machines to achieve better real-time performance of handling the clients’ requests.

It is our hope that our approach to supporting real-time collaboration may be

applied within the distributed national and global research and business communities,

and it is our intention to extend our research presented herein to facilitate collaboration

among researchers. Since the main benefit of our approach is scalability of the number

of users that can collaborate, it is logical that a large-scale research and development

project would be well served by integrating our methods.

204

BIBLIOGRAPHY

[1] Arregui, D., Pacull, F., Willamowski, J.: “Yaka: Document notification and

delivery across heterogeneous document repositories”. In: Proc. of CRIWG'01,

Darmstadt, Germany (2001)

[2] Begole J., Rosson M. B., and Shaffer C. A. Supporting Worker Independence in

Collaboration Transparency. In Proceedings of UIST'98, San Francisco CA, pp.

133-142, 1998.

[3] Begole J., Rosson M. B., and Shaffer C. A. Flexible Collaboration Transparency:

Supporting Worker Independence in Replicated Application-Sharing Systems.

ACM Transactions on Computer-Human Interactions, vol. 6, no. 2, pp. 95-132,

June 1999.

[4] Bharadwaj, V. and Reddy, Y. V. R., “A Framework to Support Collaboration in

Heterogeneous Environments”, SIGGROUP Bulletin, (24) 3, Dec. 2003, pp. 103-

116.

[5] Booch, G. Collaborative Development Environments. Dr. Dobbs Journal, Feb.

2007, pp. 10.

[6] Borghoff U. and Teege G. Application of Collaborative Editing to Software-

Engineering Projects. ACM SIGSOFT, 18(3), pp. 56-64, July 1993.

[7] Borland JBuilder. http://www.borland.com/jbuilder.

[8] Bulgannawar, S. and Vaidya, N. A Distributed K-mutual Exclusion Algorithm.

International Conference on Distributed Computing Systems, pp. 153-160, 1995.

[9] Buszko, D., Lee W., and Helal A. Decentralized Ad-Hoc Groupware API and

Framework for Mobile Collaboration. In Proceedings of ACM 2001

205

International Conference on Supporting Group Work, Boulder, Colorado, pages

5-14, 2001.

[10] Cederqvist, P. “Version Management with CVS”, Available from

info@signum.se, 1993.

[11] Chawathe Y., McCanne S., and Brewer E. RMX: Reliable Multicast in

Heterogeneous Networks. In Proc. IEEE INFOCOM, March 2000.

[12] Chen, D. A Survey of Real-Time Collaborative Editing Systems. In Proceedings

of the Eighth International Workshop on Collaborative Editing Systems. ACM

CSCW 2006, Banff, Canada. November 4, 2006.

[13] Cheng L. et al. Jazz: A Collaborative Application Development Environment. In

Proceedings of OOPSLA'03, Anaheim CA, 102-103, 2003.

[14] Cheng L. et al. Building Collaboration into IDEs. ACM Queue.

December/January 2003-2004. pp. 40-50.

[15] Cheng L. et al. Social Software Development Environments: Collaboration

Within the Development. Dr. Dobb’s Journal. Feb. 2007. pp. 49-54.

[16] Chu-Carroll, M. C. and Sprenkle, S. “Coven: brewing better collaboration through

software configuration management”, Procs. 8th ACM SIGSOFT Intl. Symp. on

Foundations of Software Engineering: twenty-first century applications, Nov. 06-

10, 2000, San Diego, p.88-97.

[17] Chu-Carroll, M. C., Wright, J, and Shields, D. Supporting Aggregation in Fine

Grain Software Configuration Management. SIGSOFT 2002/FSE-10, pp. 99-108.

November 18-22, 2002, Charleston, SC, USA.

206

[18] Chung., G and Dewan, P., “Towards Dynamic Collaboration Architectures”,

Proceedings of the 2004 ACM conference on Computer supported cooperative

work, November 6-10, 2004, Chicago, Illinois, USA. pgs 1-10.

[19] Conradi, R. and Westfechtel, B. Version Models for Software Configuration

Management. ACM Computing Surveys, vol. 30, no. 2, pp. 232-282, June 1998.

[20] Davis, A. H., Sun, C., and Lu, J. Generalizing Operational Transformation to the

Standard General Markup Language. Proceedings of CSCW 2002, New Orleans,

Louisiana, USA. November 16-20. pgs. 58-67.

[21] Dekel, U. and Ross, S. Eclipse as a Platform for Research on Interruption

Management in Software Development. OOPSLA'04 Eclipse Technology

eXchange (ETX) Workshop,Oct. 24-28, 2004, Vancouver, British Columbia,

Canada.Copyright 2004 ACM. pgs. 12-16.

[22] Dewan, P, “Architectures for Collaborative Applications”, Computer Supported

Cooperative Work, Edited by Beaudouin-Lafon, 1999 John Wiley & Sons Ltd,

pgs 169-193.

[23] Dourish, P., “Software Infrastructures”, Computer Supported Cooperative Work,

Edited by Beaudouin-Lafon, 1999 John Wiley & Sons Ltd, pgs 195-219.

[24] Dourish, P. and Bellotti, V., Awareness and Coordination in Shared Workspaces,

in Proceedings of the Conference on Computer Supported Cooperative Work

(CSCW ’92), R. Kraut, Ed. Toronto, Ontario, Canada: ACM Press, 1992, pp. 107-

114.

[25] Drury, J. Developing Heuristics for Synchronous Collaborative Systems. In

Proceedings of CHI'2001, pp. 447-448, March/April 2001.

207

[26] Ebersbach, A. et al. Wiki: Web Collaboration. Springer-Verlag. Berlin

Heidelberg. October, 2005. pp. 9-32, 51-62.

[27] Eclipse. http://www.eclipse.org.

[28] Edwards, W. K. “Flexible Conflict Detection and Management In Collaborative

Applications”, Procs. 10th ACM Symp. on User Interface Softw. and Tech.

(UIST’97). Banff, Canada. Oct. 14-17, 1997.

[29] Ellis, C. A. and Gibbs, S. J. Concurrency control in groupware systems. In

Proceedings of the ACM Conference on the Management of Data 1989, pages

399–407, Portland Oregon, May 1989. ACM.

[30] Eßmann, B; Funke, H: Providing Peer-to-Peer Features to Existing Client-Server

CSCW Systems. In: Chen, Chi-Sheng; Filipe, Joaquim; Seruca, Isabel; Cordeiro,

José editor. : Proceedings of the 7th International Conference On Enterprise

Information Systems (ICEIS 2005), volume 4, S. 271-274, Miami, FL, USA, 24 -

28 May 2005 INSTICC

[31] Estublier, J. Defining and Supporting Concurrent Engineering Policies in SCM.

Proceedings of the Tenth International Workshop on Software Configuration

Management, 2001.

[32] Everitt, K. M, Klemmer, S. R., Lee, R., and Landay, J. A. Two Worlds Apart:

Bridging the Gap Between Physical and Virtual Media for Distributed Design

Collaboration. Proceedings of CHI 2003, April 5–10, 2003, Ft. Lauderdale,

Florida, USA. pgs 553-560.

208

[33] Feiler, P.H. Configuration management models in commercial environments.

TechnicalReport SEI-91-TR-07, Software Engineering Institute, Carnegie Mellon

University, 1991.

[34] Fu, S., Tzeng, N., and Li, Z. Empirical Evaluation of Distributed Mutual

Exclusion Algorithms. International Parallel Processing Symposium '97. 1997.

[35] Geyer, W., Vogel, J., Cheng, L., and Muller, M. Supporting Activity-centric

Collaboration through Peer-to-Peer Shared Objects. In Proceedings of

GROUP'03, Sanibel Island FL, pp. 115-124, November 2003.

[36] Glance, N. et al, Collaborative Document Monitoring. In Proceedings of

GROUP'01, Boulder CO, pp. 171-178, September 2001.

[37] Google Docs and Spreadsheets. http://docs.google.com/

[38] Greenberg, S. and Roseman, M., “Groupware Toolkits for Synchronous Work”,

Computer Supported Cooperative Work, Edited by Beaudouin-Lafon, 1999 John

Wiley & Sons Ltd, pgs 135-168.

[39] Greenberg, S. and Marwood, D. Real time groupware as a distributed system:

Concurrency control and its effect on the interface. In Proceedings of the ACM

conference on Computer-Supported Cooperative Systems, November, 1994, 207-

217.

[40] Grinter, R. E. Using a configuration management tool to coordinate software

development. In Conference on Organizational Computing Systems, pages 168–

177, 1995.

[41] Grinter, R. E. Recomposition: Putting It All Back Together Again. In

Proceedings of CSCW’98, Seattle, Washington, USA, 1998. pgs 393-402.

209

[42] Groove Networks. http://www.groove.net.

[43] Grudin, J. CSCW Introduction. Communications of the ACM, vol. 34, no. 12,

pp. 30-34, December 1991.

[44] Grudin, J. Cscw: History and focus. IEEE Computer, 27(5):19–27, 1994.

[45] Gu, N., Yang, J., and Zhang, Q. Consistency Maintenance Based on the Mark &

Retrace Technique in Groupware Systems. Proceedings of GROUP 2005,

November 6-9, 2005, Sanibel Island, Florida, USA. pgs 264-273.

[46] Gutwin, C. and Greenberg, S., “The Importance of Awareness for Team

Cognition in Distributed Collaboration”, Team Cognition: Understanding the

Factors that Drive Process and Performance, APA Press, Washington, pp. 177-

201.

[47] Handley, M. and Crowcroft, J. Network Text Editor (NTE): A scalable text editor

for the MBone, Procs. ACM SIGCOMM'97, pp. 197-208, Cannes, France, Aug

1997.

[48] Hofte, G. H. T., Working Apart Together: Foundations for Component

Groupware, Telematica Instituut, The Netherlands, ISBN 90-75176-14-7, 1998.

[49] Handley, M. and Crowcroft, J. Network Text Editor (NTE): A scalable text editor

for the MBone, Proceedings of ACM SIGCOMM'97, pp. 197-208, Canne France,

Aug 1997.

[50] Hao M. C., Karp A. H, and Garfinkel D. Collaborative Computing: A Multi-

Client Multi-Server Environment. In Proceedings of COOCS'95, Milpitas CA,

pp. 206-213, August 1995.

210

[51] Harrison W. H., Ossher H., and Sweeney P. F. Coordinating Concurrent

Development. In Proceedings of CSCW'90, 157-168, October 1990.

[52] Herbsleb, J. D., Mockus, A., Finholt, T. A., and Grinter, R. E., An empirical study

of global software development: distance and speed, Proceedings of the 23rd

International Conference on Software Engineering, p.81-90, May 12-19, 2001,

Toronto, Ontario, Canada

[53] Herbsleb, J. D. and Grinter, R. E. Architectures, coordination, and distance:

Conway’s law and beyond. IEEE Software, pages 63–70, 1999.

[54] Horstmann, T. and Bentley, R. Distributed Authoring on the Web with the BSCW

Shared Workspace System. StandardView, vol. 5, no. 1, pp. 9-16, March 1997.

[55] Hu, X. and Zeigler, B.P., “Model Continuity in the Design of Dynamic

Distributed Real-Time Systems”, IEEE Transactions On Systems, Man And

Cybernetics— Part A: Systems And Humans, 35: 6, pp. 867- 878, November,

2005.

[56] Ignat, C., and Norrie, M. Draw-Together: Graphical Editor for Collaborative

Drawing. In Proceedings of CSCW 2006, Banff, Canada, 2006, pp. 269-278.

[57] Ignat, C., and Norrie, M., Flexible Definition and Resolution of Conflicts through

Multi-level Editing, Proceedings of the 2nd International Conference on

Collaborative Computing: Networking, Applications and Worksharing, Atlanta,

Nov., 2006.

[58] Ignat, C-L., and Norrie, M. C., Flexible Merging of Hierarchical Documents,

Procs of the Seventh Intl Workshop on Collaborative Editing, GROUP'05,

Sanibel Island, Florida, Nov., 2005

211

[59] Ignat, C. and Norrie, M.C. Customizable collaborative editor relying on treeOPT

algorithm. In Proc. of the European Conf. of Computer-supported Cooperative

Work, pages 315-324, Sept. 2003.

[60] Ignat, C., and Norrie, M. Tree-based model algorithm for maintaining

consistency in real-time collaborative editing systems, Procs. of the Fourth Intl.

Workshop on Collaborative Editing, Computer Supported Cooperative Work

(CSCW 2002), New Orleans, Nov. 2002.

[61] Ignat, C., Norrie, M., and Oster, G. Handling Conflicts through Multi-level

Editing in Peer-to-peer Environments. Proceedings of the Eighth International

Workshop on Collaborative Editing Systems. ACM CSCW 2006, Banff, Canada.

November 4, 2006.

[62] Knister, M. and Prakash, A., DistEdit: A distributed toolkit for supporting

multiple group editors. In Proceedings of the Third Conference on Computer-

Supported Cooperative Work, pages 343–355, Los Angeles, California, October

1990.

[63] Kock, M. The Collaborative Multi-User Editor Project IRIS, Technical Report

TUM-I9524, University of Munich, Aug. 1995.

[64] Korel, B. et al. Version Management in Distributed Network Environment. In

Proceedings of the 3rd International Workshop on Software Configuration

Management, pp. 161-166, May 1991.

[65] Lamport, L. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558 – 565, Jul. 1978.

212

[66] Li, R., and Li, D., A Landmark-Based Transformation Approach to Concurrency

Control in Group Editors, GROUP’05, ACM Press, pp. 284-293, Sanibel Island,

FL, Nov. 6-9 2005.

[67] Li, D. and Li, R. Preserving Operation Effects Relation in Group Editors.

Proceedings of CSCW’04, November 6-10, 2004, Chicago, Illinois. pp. 457-466.

[68] Li, D. and Li, R. Transparent Sharing and Interoperation of Heterogeneous

Single-User Applications. In Proceedings of CSCW'02, New Orleans LA, pp.

246-255, November 2002.

[69] Li, D. and Patrao, J. Demonstrational Customization of a Shared Whiteboard to

Support User-Defined Semantic Relationships among Objects. In Proceedings of

GROUP'01, Boulder CO, pp. 97-106, October 2001.

[70] Li, D., Zhou, L., and Muntz, R.R., A New Paradigm of User Intention

Preservation in Realtime Coollaborative Editing Systems, In Procs. of the Seventh

Intl. Conf. on Parallel and Distributed Systems, pp. 401-408, Iwate, Japan, July,

2000.

[71] Lin, Y-J. and Reiss, S.P. Configuration management with logical structures. In

Proceedings of the 18th international conference on Software engineering, pages

298–307, Berlin, Germany, 1996. IEEE Computer Society.

[72] Locasto, M. et al. CLAY: Synchronous Collaborative Interactive Environment.

The Journal of Computing in Small Colleges, vol. 17, issue 6, pp. 278-281, May

2002.

[73] Magnusson, B. and Asklund, U. Collaborative Editing – distribution and

replication of shared versioned objects. European Conference on Object Oriented

213

Programming 1995, in Workshop on Mobility and Replication, Aarhus, August

1995.

[74] Magnusson, B. and Guerraoui, R. Support for Collaborative Object-Oriented

Development. International Symposium on Parallel and Distributed Computing

Systems (PDCS'96), Dijon, France, September 1996.

[75] Magnusson, B. Fine-Grained Version Control in COOP/Orm. European

Conference on Computer Supported Cooperative Work 1995, Workshop on

Version Control in CSCW Applications, Stockholm, Sept. 1995.

[76] Magnusson, B., Asklund U., and Minör S. Fine-Grained Revision Control for

Collaborative Software Development. In Proceedings of the 1st ACM SIGSOFT

symposium on Foundations of software engineering, vol. 18, issue 5, pp. 33-41,

December 1993.

[77] Manhart, P. and DaimlerChrysler AG. “A System Architecture for the Extension

of Structured Information Spaces by Coordinated CSCW Services”, Proceedings

of GROUP 1999, Phoenix Arizona USA, pgs 346-355.

[78] Mens, T. A state-of-the-art survey on software merging. IEEE Transactions on

Software Engineering, 28(5), 2002, 449–462.

[79] Mehra, A. et al. Supporting Collaborative Software Design with a Plug-in, Web

Services-based Architecture. Workshop on Directions in Software Engineering

Environments. ICSE 2004. IEEE. Edinburgh, Scotland, UK. May 23-28.

[80] Microsoft Net Meeting. http://www.microsoft.com/windows/netmeeting/

[81] Microsoft SharePoint Services

http://microsoft.com/windowsserver2003/technologies/sharepoint.

214

[82] Miles, V. C., McCarthy, J. C., Dix, A. J., Harrison, M. D. and Monk, A. F.

Reviewing designs for a synchronous-asynchronous group editing environment.

In Computer Supported Collaborative Writing Ed. M. Sharples. Springer-Verlag.

1993. pp. 137-160.

[83] Mills, K. L., “Introduction to the Electronic Symposium on Computer-Supported

Cooperative Work”, ACM Computing Surveys, Vol. 31, No. 2, June 1999.

[84] Molli, P., Skaf-Molli, H., Oster, S., and Jourdain, S. Sams: Synchronous,

asynchronous, multi-synchronous environments, The Seventh Intl. Conf. on

CSCW in Design, Rio de Janeiro, Brazil, September 2002.

[85] Nesterovsky, A. and Nesterovsky, V. SCCBridge.

http://www.nesterovsky-bros.com/html/css2/SCCBridge.htm. 2004

[86] Nickson, R. C. A Taxonomy of Collaborative Applications.

http://hsb.baylor.edu/ramsower/ais.ac.97/papers/nickers.htm.

[87] Norman, D. Collaborative Computing: Collaboration First, Computing Second.

Communications of the ACM. Vol 34, No. 12. December 1991. pgs. 88-90.

[88] O'Reilly, C., A Weakly Constrained Approach to Software Change Coordination.

ICSE 2004: 66-68

[89] O'Reilly, C., P. Morrow, and D. Bustard. Improving Conflict Detection in

Optimistic Concurrency Control Models. In Proceedings of the Eleventh

International Workshop on Software Configuration Management. 2003. Portland,

Oregon. pgs 191-205.

[90] Oster, G., Molli, P., and Urso, P., Tombstone Transformation Functions for

Ensuring Consistency in Collaborative Editing Systems, Proceedings of the 2nd

215

International Conference on Collaborative Computing: Networking, Applications

and Worksharing, Atlanta, Nov., 2006.

[91] Oster, G., Urso, P., Molli, P., and Imine, A. Data Consistency for P2P

Collaborative Editing. In Proceedings of the ACM Conference on Computer-

Supported Cooperative Work - CSCW 2006, Banff, Alberta, Canada, November

2006. ACM Press.

[92] Osterweil, L. Software processes are software too. In Proceedings of the 9th

International Conference on Software Engineering, pages 2–13, Monterey, CA,

1987.

[93] Pacull, F., Sandoz, A., and Schiper, A. “Duplex: A distributed collaborative

editing environment in large scale”, Procs of the ACM Conf. on Computer-

Supported Cooperative Work (CSCW '94), 1994, pp. 165-173.

[94] Papadapoulou, S., Ignat, C., Oster, G., and Norrie, M., Increasing Awareness in

Collaborative Authoring through Edit Profiling, Proceedings of the 2nd

International Conference on Collaborative Computing: Networking, Applications

and Worksharing, Atlanta, Nov., 2006.

[95] Papadapoulou, S. and Norrie, M., Document Profiling to Enhance Collaboration,

8
th

 Intl. Workshop on Collaborative Editing Systems. Banff, Canada, 2006.

[96] Parnas, D. L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058, 1972.

[97] Perry, D. E.., Siy, H. P. and Votta, L. G., “Parallel Changes in Large Scale

Software Development: An Observational Case Study”, International Conference

on Software Engineering 1998, pgs 251-260.

216

[98] Perry, D.E., Siy, H. P., and Votta, L. G., Parallel Changes in Large-Scale

Software Development: An Observational Case Study. ACM Transactions on

Software Engineering and Methodology, 2001. 10(3): p. 308-337.

[99] Pfleeger, S. L. Software Engineering: Theory and Practice. Prentice Hall, New

Jersey, NJ, 1998, pgs 1-34.

[100] Prakash, A. “Group Editors”, Computer Supported Cooperative Work, Edited by

Beaudouin-Lafon, 1999 John Wiley & Sons Ltd, pgs 103-133.

[101] Pressman, R. S. Software Ebgineering, A Practitioner’s Approach: Sixth Edition.

McGraw Hill, Boston, MA, 2005, pgs 596-613 and 739-765.

[102] Preston, J. A. and Prasad, S. K., “Exploring Communication Overhead and

Locking Policies in a Peer-to-peer Synchronous Collaborative Editing System”,

(Poster), ACM Southeast 2005, Kennesaw, GA, 2005.

[103] Preston, J. A. and Prasad, S. K. A Deadlock-Free Multi-Granular, Hierarchical

Locking Scheme for Real-time Collaborative Editing. Proceedings of the 7
th

International Workshop on Collaborative Editing Systems. Sanibel Island, FL,

2005.

[104] Preston, J. A. and Prasad, S. K. “Achieving CCI Efficiently by Combining OT

and Dynamic Locking with Lazy Consistency in a Peer-to-Peer CES”, 8
th

 Intl.

Workshop on Collaborative Editing Systems. Banff, Canada, 2006.

[105] Preston, J. A. and Prasad, S. K. “An Efficient Synchronous Collaborative Editing

System Employing Dynamic Locking of Varying Granularity in Generalized

Document Trees”, Proceedings of the 2nd International Conference on

217

Collaborative Computing: Networking, Applications and Worksharing, Atlanta,

Nov., 2006.

[106] Preston, J. A. and Prasad, S. K., “Synchronous Editing via Web Services:

Combining Heterogeneous Client and Server Technologies”, Proceedings of

CSCW 2006, Banff, Canada, 2006.

[107] Preston, J. A. and Prasad, S. K., “A Web-Services-based Open-System

Architecture for Collaborative Editing Systems”, Fourth International Conference

on Cooperative Internet Computing, Hong Kong, China, 2006.

[108] Preston, J. A., Hu, X., and Prasad, S. K. “Simulation-based Architectural Design

and Implementation of a Real-time Collaborative Editing System,” Proceedings of

the 2007 DEVS Integrative Modeling and Simulation Symposium, Norfolk, VA,

2007.

[109] Qin, X. Delayed Consistency Model for Distributed Interactive Systems with

Real-time Continuous Media, Journal of Software, Vol.13, No.6, pp. 1029-39,

June, 2002, China.

[110] Qin, X., and Sun, C. Recovery Support for Internet-based Real-Time

Collaborative Editing Systems, Proc. Intl. Conf. on Computer Networks and

Mobile Computing , Oct. 2001.

[111] Rao, V. N and Kumar, V. Concurrent Access of Priority Queues. IEEE Trans. on

Comput.. Vol 37, No 12. pp. 1657-65. 1988.

[112] Raynal, M. and Singhal, M. Logical time: capturing causality in distributed

systems. IEEE Computer, 29(2):49 – 56, Feb. 1996.

218

[113] Ressel, M., Nitsche-Ruhland, D., and Gunzenh¨auser, R. An Integrating,

Transformation-Oriented Approach to Concurrency Control and Undo in Group

Editors. In Proceedings of the ACM Conference on Computer-Supported

Cooperative Work - CSCW’96, pages 288–297, Boston, Massachusetts, USA,

November 1996. ACM Press.

[114] Roh, H, Kim, S., and Lee, J. How to design optimistic operations for peer-to-peer

replication. Proceedings of the Joint Conference on Information Sciences 2006.

Taiwan. October 2006.

[115] Roth J. and Unger C. An extensible classification model for distribution

architectures of synchronous groupware. 4th International Conference on

Cooperative Systems. 2000.

[116] Roth, J. and Unger C. Developing synchronous collaborative applications with

TeamComponents. 4th International Conference on Cooperative Systems. 2000.

[117] Sarma, A. and van der Hoek, A., “A Conflict Detected Earlier is a Conflict

Resolved Easier”, Proceedings of the 4th Workshop on Open Source Software

Engineering, Edinburgh, United Kingdom, May 2004.

[118] Sarma, A., Noroozi, Z. and van der Hoek, A., Palantír: Raising Awareness among

Configuration Management Workspaces . In Proceedings of Twenty-Fifth

International Conference on Software Engineering, pp 444-454, May 2003,

Portland, Oregon.

[119] Sarma, A., “A Survey of Collaborative Tools in Software Development”, UCI,

ISR Technical Report, UCI-ISR-05-3, March 2005.

219

[120] Sarma A., Noroozi Z., and van der Hoek A. Palantír: Raising Awareness among

Configuration Management Workspaces. Proceedings of the 25th international

conference on Software engineering, Portland OR, pp. 444-454, May 2003.

[121] Shen, H. and Sun, C. Flexible Notification for Collaborative Systems. In

Proceedings of CSCW'02, New Orleans Louisiana, pp. 77-86, November 2002.

[122] Shen, H. and Cheong, C. T. CoStarOffice: Towards a Flexible Platform-

independent Collaborative Office System. 6
th

 International Workshop on

Collaborative Editing Systems. Chicago, IL, USA, November 6, 2004.

[123] de Silva, N. Narratives to Preserve Coherence in Collaborative Writing.

Proceedings of the Eighth International Workshop on Collaborative Editing

Systems. ACM CSCW 2006, Banff, Canada. November 4, 2006.

[124] de Souza, C. R. B., David, R., and Paul, D., "Breaking the code", moving between

private and public work in collaborative software development, Proceedings of

the 2003 international ACM SIGGROUP conference on Supporting group work,

November 09-12, 2003, Sanibel Island, Florida, USA.

[125] de Souza, C. et al. How a Good Software Practice Thwarts Collaboration – The

Multiple Roles of APIs in Software Development. Proceedings of

SIGSOFT’04/FSE-12, Oct. 31-Nov. 6, 2004. Newport Beach, CA. pp. 221-230.

[126] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord:

A scalable peer-to -peer lookup service for internet applications. In Proceedings

of the ACM SIGCOMM Symposium on Communication, Architecture, and

Protocols (San Diego, CA, U.S.A., Aug. 2001), ACM SIGCOMM, pp. 149-160.

[127] SubEthaEdit. http://www.codingmonkeys.de/subethaedit/

220

[128] Subversion. http://www.tigris.org.

[129] Sun, C. and Chen, D. A Multi-version Approach to Conflict Resolution in

Distributed Groupware Systems, Procs. of the 20th IEEE Intl. Conf. on

Distributed Computing Systems, pp. 316-325, April 10-14, 2000.

[130] Sun, C. and Chen, D. "Consistency Maintenance in Real-Time Collaborative

Graphics Editing Systems," ACM Transactions on Computer-Human Interaction,

vol 9, no 1, March 2002. pgs 1-41.

[131] Sun, D. and Sun, C. Operation Context and Context-based Operational

Transformation. In Proceedings of CSCW 2006, Banff, Canada, November 2006.

pp. 279-288.

[132] Sun, S. and Ellis, C., “Operational Transformation in Real-Time Group Editor:

Issues, Algorithms, and Achievements”, Proceedings of 1998 ACM Conference

on Computer Supported Cooperative Work, Seattle USA, Nov 14-18, pgs 59-68.

[133] Sun, C., Jia, X., Zhang, Y., and Yang, Y. A Generic Operational Transformation

Scheme for Consistency Maintenance in Real-time Cooperative Editing Systems,

In Procs. of Intl. ACM SIGGROUP Conf. on Supporting Group Work, pp. 425-

434, Phoenix, Nov. ,1997.

[134] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D. "Achieving convergence,

causality-preservation, and intention-preservation in real-time cooperative editing

systems," ACM Transactions on Computer-Human Interaction, Vol.5, No.1,

March, 1998, pp.63-108.

221

[135] Sun, C., Jia, X., Zhang, Y., Yang, Y.`` REDUCE: a prototypical cooperative

editing system,'' Proceedings of the 7th International Conference on Human-

Computer Interaction , pp.89-92, San Francisco, USA, Aug. 24-30, 1997.

[136] Sun, C., et al. CoOpenOffice: Converting OpenOffice into a Real-Time

Collaborative Office Suite. Proceedings of the Eighth International Workshop on

Collaborative Editing Systems. ACM CSCW 2006, Banff, Canada. November 4,

2006.

[137] Sun, C. and Sosič, R. ``Optional Locking Integrated with Operational

Transformation in Distributed Real-Time Group Editors,'' In Proceedings of the

18th ACM Symposium on Principles of Distributed Computing. pp.43-52,

Atlanta, GA, USA, May 4-6, 1999.

[138] Sun, D., Xia, S., Sun, C., and Chen, D. "Operational transformation for

collaborative word processing," Proceedings of ACM 2004 Conference on

Computer Supported Cooperative Work, Nov 6-10, Chicago, IL USA. 2004

[139] Sun, C., Xia, S., Guo, J., and Sun, D., Using Time-Space Diagrams for Testing

Real OT Systems, Proceedings of the Eighth International Workshop on

Collaborative Editing Systems. ACM CSCW 2006, Banff, Canada. November 4,

2006.

[140] Sun, C., Yang, Y., Zhang, Y., and Chen, D. ``A consistency model and supporting

schemes in real-time cooperative editing systems,'' Proc. of the 19th Australian

Computer Science Conference, Melbourne, pp.582-591, Jan. 1996.

[141] Sun, C., Zhang, Y., Yang, Y., and Chen, D. `` Distributed concurrency control in

real-time cooperative editing systems,'' Proc. of the 1996 Asian Computing

222

Science Conference, , Lecture Notes in Computer Science, #1179, Springer-

Verlag, Singapore, pp.84-95, Dec. 1996.

[142] Sunderam, V. et al. CCF: Collaborative Computing Frameworks. SC'98: High

Performance Networking and Computing Conference (Orlando, Florida USA).

IEEE. 1998.

[143] Tam, J., and Greenberg, S. (In Press - Accepted May 2005) A Framework for

Asynchronous Change Awareness in Collaborative Documents and Workspaces.

International Journal of Human Computer Studies, Elsevier

[144] Tanenbaum, A. S. and van Steen, M. Distributed Systems: Principles and

Practices. Prentice Hall, New Jersey, 2002, pp. 291-360.

[145] Teege, G. and Borghoff, U. W. Combining Asynchronous and Synchronous

Collaborative Systems. In Proceedings of the 5th International conference on

Human-Computer Interaction, Amsterdam Netherlands, pp. 516-521, 1993.

[146] van der Hoek, A., Heimbigner, D., and Wolf, A. L. A Generic, Peer-to-Peer

Repository for Distributed Configuration Management. Proceedings of the 18th

international conference on Software Engineering, pp. 308-317, May 1996.

[147] van der Hoek, A., Redmiles, D., Dourish, P., Sarma, A., Filho, R. S., and de

Souza, C., “Continuous Coordination: A New Paradigm for Collaborative

Software Engineering Tools”, In Proceedings of the Workshop on Directions in

Software Engineering Environments, pp 29-36,Edinburgh, United Kingdom, May

2004.

223

[148] van der Lingen, R. and van der Hoek, A. “Dissecting Configuration Management

Policies”, Proc. of the International Conference on Software Engineering

Workshops: Software Configuration Management 2001.

[149] Visual Studio. http://msdn2.microsoft.com/en-us/vstudio/default.aspx.

[150] Xia, S., Sun, D., Sun, C., Chen, D. and Shen, H. “Leveraging Single-user

Applications for Multiuser Collaboration: the CoWord Approach”, Proceedings

of the 2004 ACM conference on Computer supported cooperative work, Chicago,

Illinois, USA, 2004. pgs 162-171.

[151] Younas, M. and Iqbal, R. “Developing Collaborative Editing Applications using

Web Services”, The Fifth International Workshop on Collaborative Editing,

ECSCW 2003, Helsinki, Finland, September 15, 2003

[152] Velazquez, M. A Survey of Distributed Mutual Exclusion Algorithms. Colorado

State University Department of Computer Science Technical Report CS-93-116,

September 1993.

[153] Vidot, N. et al. Copies convergence in a distributed real-time collaborative

environment. In Proceedings of CSCW'00, Philadelphia PA, pp. 171-180,

December 2000.

[154] Walpole, J. et al. A Unifying Model for Consistent Distributed Software

Development Environments. In Proceedings of the third ACM

SIGSOFT/SIGPLAN software engineering symposium on Practical software

development environments, pp. 183-190, January 1989.

224

[155] Walter, J. et al. A K-Mutual Exclusion Algorithm for Wireless Ad Hoc

Networks. Principles of Mobile Computing '01. Newport, Rhode Island USA.

2001.

[156] Wang, X., Bu, J., and Chen C. A New Consistency Model in Collaborative

Editing Systems. Proceedings of the 4
th

 International Workshop on Collaborative

Editing. New Orleans, Louisiana, USA, 2002.

[157] Wu, D. and Sarma, R. Dynamic Segmentation and Incremental Editing of

Boundary Representations in a Collaborative Design Environment. Proceedings

of the sixth ACM symposium on Solid Modeling and Applications, Ann Arbor

Michigan, pp. 289-300, May 2001.

[158] Xia, S., Sun, D., Sun, C., Chen, D., and Shi, Y. Supporting Interactive

Presentations with CoPowerPoint. 6
th

 International Workshop on Collaborative

Editing Systems. Chicago, IL, USA, November 6, 2004.

[159] Yang, Y., Sun, C., Zhang, Y, and Jia, X., Real-Time Cooperative Editing on the

Internet, IEEE Internet Computing, pp. 18-25, May/June, 2000.

[160] Younas, M. and Iqbal, R. “Developing Collaborative Editing Applications using

Web Services”, Proceedings of the 5
th

 International Workshop on Collaborative

Editing, Helsinki, Finland, September 115, 2003.

[161] Zeigler, B. P, Praehofer, H., and Kim, T. G. Theory of Modeling and Simulation

(Second Edition): Integrating Discrete Event and Continuous Complex Dynamic

Systems. Academic Press. Amsterdam. 2000.

225

[162] Zeigler, B. P. and Sarjoughian, H.S. “Introduction to DEVS Modeling &

Simulation with JAVA: Developing Component-based Simulation Models”,

Technical Document, University of Arizona. 2003.

	Georgia State University
	ScholarWorks @ Georgia State University
	6-28-2007

	Rethinking Consistency Management in Real-time Collaborative Editing Systems
	Jon Anderson Preston
	Recommended Citation

	tmp.1257870205.pdf.sj9gN

