
Cache Hierarchy Inspired Compression: a Novel
Architecture for Data Streams

Geoffrey Holmes, Bernhard Pfahr inger and Richard K irkby
Computer Science Department

University of Waikato
Private Bag 3105, Hamilton, New Zealand

{ geoff, bernhard, rkirkby} @cs.waikato.ac.nz.

Abstract - We present an architecture for data streams
based on structures typically found in web cache
hierarchies. The main idea is to build a meta level
analyser from a number of levels constructed over time
from a data stream. We present the general architecture
for such a system and an application to classification.
This architecture is an instance of the general wrapper
idea allowing us to reuse standard batch learning
algorithms in an inherently incremental learning
environment. By artificially generating data sources we
demonstrate that a hierarchy containing a mixture of
models is able to adapt over time to the source of the
data. In these experiments the hierarchies use an
elementary performance based replacement policy and
unweighted voting for making classification decisions.

Keywords: Data streams, classification, cache hierarchy.

1 Introduction
 Conventional data mining algorithms operate in
an environment where a model (for example, a set of
rules) is induced from a training set of data instances.
This training set is available in its entirety from the
outset. The learning algorithms that produce a model
from this data typically load all of the data into main
memory and then access each instance one at a time. This
methodology is often referred to as batch learning. A
consequence of this approach is that very few incremental
algorithms have been developed.

The data stream model treats the training data as a
(possibly infinite) stream. In this context there is no
possibility of fitting all the data into memory. The model
inevitably places constraints on what can be achieved and
scaling an algorithm to conform to a data stream is a
significant challenge. The requirements are: the need to
process instances one at a time with only a glance at the
instance (instances cannot be stored); only use available
memory (we cannot swap to disk as this would take too
long); process an instance in a limited amount of time (we
cannot afford to fall behind the rate at which instances
arrive); and finally, be ready to make predictions at any
time.

In such a context it is extremely difficult to fully process
a single instance at a time. One approach to staying in
touch with the stream is to accumulate statistics and then
make decisions only when those statistics reach critical
points, as in Hoeffding trees [1]. An alternative approach
is to slowly build up a knowledge of the stream by
constructing models from accumulations of instances [2].
Both strategies can be accommodated in the architecture
described here.

In the field of Data Communications, web proxy caches
are used to enhance the scalability and performance of the
web by reducing bandwidth demand and increasing the
response time for popular documents. The proxies are
often organised into hierarchies as in the squid system
[3]. In squid the hierarchy is organized in a parent/child
and sibling arrangement. When a cache requests an object
from its parent, and the parent does not have the object in
its cache, the parent fetches the object, caches it, and
delivers it to the child. In addition to the parent-child
relationships there are siblings which are caches at the
same level in the hierarchy, provided to distribute cache
server load.

In a streaming context it would be advantageous to
distribute algorithmic load (classification, regression,
clustering or association rule learning) through some
form of sibling structure. The notion of parent/child
caches is harder to reconcile as the objectives of web
caching and data mining are somewhat different. A parent
could be used to contain older and wiser models, those
that have successfully survived some form of culling
process over time.

Alternatively, parents could be viewed as the agents in a
system that pass on the best models they find for use by
their children.

In data streaming and web caching, training and testing
have to occur simultaneously. The web cache hierarchy
fills up by fetching objects not present in the cache until it
is full. Once full, an object replacement policy is needed
to keep the hierarchy up to date with the needs of its user
community. Replacement policies are typically designed
to optimise a performance metric such as hit rate (the
number of successful retrievals from the cache) or byte
hit rate if object size is a more important factor. Popular

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

policies include Least Recently Used (LRU), replace the
newest object with the oldest object, Least Frequently
Used (LFU) replace the newest object with the least
frequently requested and so on.

In order to replicate such a system in a data stream
context, we need to design a hierarchy, fill it with models
and implement a replacement policy so that the set of
models contained in the hierarchy is current and tuned to
the performance metric that most suits the task at hand. It
is not likely, therefore, that LRU style policies would be
directly adopted.

In this paper we explore the construction of a web cache
inspired architecture for mining data streams. The
intention is to demonstrate the efficacy of the technique
rather than explore the many options that could be tried in
terms of numbers of levels, replacement policies, mining
algorithms and so on.

The paper is structured as follows. In Section 2 we
present the general architecture for the cache hierarchy
inspired compression system (CHIC). We describe the
range of policy decisions that need to be made and the
choices made for this paper. Section 3 discusses the
generation of data and design of experiments to test the
method. Section 4 contains a description of an instance of
the architecture using classification and experimental
results on a collection of real and artificial datasets.
Section 5 discusses related work on committee and non-
committee based classifiers for data streams. Section 6
summarizes the contributions made in this paper.

2 CHIC
 Cache Hierarchy Inspired Compression (CHIC)
is a system for mining data streams based on the idea of
caching models and replacing them continually as the
stream is processed. The hierarchy is constructed from a
number of levels that have four different functions.

It is useful to imagine that each level of the hierarchy is a
buffer of a fixed size. Level zero is unique in that it
contains instances whereas all other levels contain
models.

Level one in the hierarchy is where all the work is done.
Models are continually constructed from the level zero
buffer which is refreshed once a model is constructed and
housed in level one. This process is repeated until level
one is full.

Once level one is full a model is selected for promotion to
level two. Once selected, the level one buffer is cleared of
models and the process resumes. Once level two is full a
model is similarly selected for promotion to level three
and the process resumes. This replacing of models
continues all the way up the hierarchy until the topmost
level is reached. At this level a model must be selected
for ejection from the hierarchy so that the process can
continue to build models from the stream. Of course, it

would be possible to freeze the hierarchy once full so as
to build a meta level analyser slowly over many
instances.

In this paper we choose to reject models from the topmost
level in order to keep the hierarchy up to date, as a web
cache would. In theory this would enable concept drift to
be tracked. Concept drift is another major topic in mining
data streams but we do not attempt to solve this problem
in this paper.

The overall aim of the system is to build a meta level
algorithm from the models in levels one upward. The
general methodology for constructing such a model
containing N levels is as follows:

� Buffering: At level zero fill a buffer with data.
� Model Building: At level one build models and

place them in the buffer, when full promote
models and flush the buffer.

� Containers: At levels two to N-1 adopt models
from the level below, when full promote models
and flush the buffer.

� Topmost: Adopt models from level N-1 but also
discard models so that new ones can be entered.

This basic algorithm requires policies for the promotion
of models between levels and for discarding models from
the topmost level. It also leaves open the question of what
types of model to generate. The hierarchy could be
homogeneous or, as in this paper, it could contain a
mixture of models.

Although the algorithm appears to simply add models to
levels it would be possible and desirable to consider
merging models in some applications, for example,
clustering.

It is important to note that the CHIC architecture is an
instance of the general wrapper idea [11], which allows
us to use any arbitrary batch learning algorithm for
learning from data streams, which is an inherently
incremental problem. Other standard stream learning
algorithms are usually purpose-built incremental versions
of standard batch learning algorithms (e.g. Hoeffding
trees [1]). Using the CHIC architecture we can employ
any off-the-shelf algorithm avoiding expensive
development work.

In order to arrive at a decision with the meta level model
it is necessary to decide how to vote the models. Given
the hierarchical structure it would make sense to weight
the votes on the position in the hierarchy rather than treat
everything as equal. If efficiency is an issue then
decisions could be made on the basis of votes at only the
topmost level using the argument that these are the best
surviving models. In this paper we restrict attention to
unweighted voting, where every model has an equal vote.

The options for promoting models are manifold. Here we
only analyse performance based selection.

3 Exper imental Design
 In this paper we aim to show that the hierarchy
of models is a useful architecture for mining data streams.
To this end we do not attempt to find optimal settings,
policies or combinations of methods that demonstrate
superiority over others.

We have created the simplest manifestation of the
architecture. First, we use classification for testing as it is
the easiest task to evaluate. Second, we learn a mixture of
models at levels one and two. One advantage of this
hierarchy is that the selection mechanism used to
populate the container and topmost levels will then adapt
the mixture of models at the base to the likely data
source.

If we run with a single algorithm such as a tree learner
then performance on data generated from a Bayesian
source will be poor, and vice versa. If the lower levels
contain a mixture of tree and Bayesian learners then those
most suited to the data source will be chosen.

The size of the data buffer, often referred to as chunk
size, at level zero can have an impact on performance. If
it is too small then the classifiers may not have the
capacity to generalize, too large and the cost of the level
one buffer will be too high in terms of keeping up with
the stream. In this paper we use a fixed size data buffer of
1000 instances which we found to be a good compromise
in previous work on large datasets [2].

3.1 Evaluation

Two kinds of evaluation are required for this setting.
First, models must be evaluated against their peers to see
if they need promoting or deleting within/from the
hierarchy. Second, the hierarchy itself must be evaluated
as it evolves.

Peer analysis of models is achieved by analyzing
performance on the next buffer of input. Model
performance statistics are incrementally updated so that
performance can be assessed over longer periods of time
than a single buffer. If this is not done then the estimates
of model performance will be too unstable to be of any
use as models need as much time as possible to show
what they can do.

To assess the performance of the hierarchy as a whole we
employ a general evaluation framework that uses a first
test then train approach to an instance. This is to ensure
that the algorithmic basis for any mining algorithm has
been engineered to suit a real data stream. By testing an
instance before using it for training we are primarily
insisting on incrementality. Performance is also implied
in that a good model will return a prediction in real time
only if the model is not too elaborate and only if it fits in
memory. Thus, a model that fails to comply with the
paradigm will eventually do so by taking too long to

form a prediction. The evaluation methodology is as
follows:

• Initialize working model M to an empty model
• While more instances are available in the stream
• Retrieve next instance I from the stream
• Classify I using M
• Update accuracy statistics S, storing if desired
• Increment M by training with I

A snapshot can be taken at any point during the
evaluation process. These snapshots can be plotted
graphically to produce learning curves. Typically the
statistic of most interest is related to the percentage of
instances that were correctly classified. The resulting
curve is smooth between snapshots because as the
number of processed instances increases, the influence of
a single classification/misclassification on the overall
percentage becomes smaller.

As data order can be a source of concern in data stream
classification, the evaluation method presented here can
be extended to average over many different orderings.
The evaluation algorithm is repeated multiple times, each
time the data is presented in a different order (or in the
case of data generators, an independent set of examples).
The snapshots at each data point are collected together
and averaged between runs. This extension allows
analysis of the variance of the performance over several
data orders. The results presented later in Section 4
(Figure 3) represent averages of five separate orderings. It
should be noted that in all cases there was very little
difference in performance between runs. Thus for these
datasets data order does not appear to be a major issue.

In terms of an actual testing mechanism for the hierarchy,
unweighted voting was used for making classification
decisions. Again this was chosen for simplicity.

3.2 Data Sources

The data sets used in this paper consist of three
synthetically generated and one real dataset.

3.2.1 Random Naïve Bayes

Random Naive Bayes data is generated by first randomly
assigning a weight to each class, and then randomly
assigning properties to the attributes. In the case of
nominal attributes, each nominal label is given a random
weight per class. In the case of numeric attributes a
Gaussian distribution (randomly chosen mean and
standard deviation) is assigned per class.

To generate new instances, a class is first randomly
chosen with likelihood in proportion to the pre-assigned
class weights. Then for each attribute a value is drawn at
random according to the pre-assigned distribution of
values for the particular class.

The Naive Bayes data reported here has five classes, five
nominal attributes (with five labels each) and five
numeric attributes.

3.2.2 Random tree

The random tree data generator works by first
constructing a random tree—at each node an attribute is
chosen at random to split the data, and if the attribute is
numeric, a split point is randomly chosen too. This
process is applied recursively until the desired depth is
reached, at which point a class label is randomly
assigned. If a nominal attribute is used to split then it
cannot be reused in the subtree below it. There is an
optional parameter for a depth at which below there is a
random chance of a node becoming a leaf before the
maximum depth is hit. Once the random tree is complete,
instances are generated by randomly assigning values to
attributes, then traversing the tree to assign the class.

The random tree dataset is generated by a tree that is five
nodes deep, with leaves starting at level three. It has five
nominal attributes (with five labels each), five numeric
attributes and five classes.

3.2.3 Random RBF

Random RBF data is generated by first creating a random
set of centers for each class. Each center is randomly
assigned a weight, a central point per attribute, and a
standard deviation. To generate new instances, a center is
chosen at random taking the weights of each center into
consideration. Attribute values are randomly generated
and offset from the center, where the overall vector has
been scaled so that its length equals a value sampled
randomly from the Gaussian distribution of the center.
The particular center chosen determines the class of the
instance.

For this paper the data contains only numeric attributes as
it is non-trivial to include nominal values. The random
RBF data is generated from 50 centers, has ten numeric
attributes and five classes.

3.2.4 Forest Covertype

One of the largest datasets containing real-world data in
the UCI repository [4] is the Forest Covertype dataset.
This consists of 581,012 instances, 10 numeric attributes,
44 binary attributes and 7 classes.

4 Results

4.1 Specific CHIC Architecture
We conducted experiments for a hierarchy consisting of
six layers, with 16 models per layer. The data is divided
into chunks of size 1000 for training the models. On the
first level, four instantiations of four different learning
algorithms are used to train models. The four learning

algorithms are naive Bayes, decision trees, linear support
vector machines and the support vector machine with
RBF kernel [5]. All algorithms use default parameter
settings, with the exception that for every new RBF SVM
the gamma parameter is randomly selected from the set
{ 1, 4, 16, 64} . Four methods were used to provide
differing bias.

The mechanics of building models follows the outline of
the general architecture with some special features
designed to capture the data source. The evolution of the
models on random tree data for the first 13,000 instances
is depicted in Figure 1. Here N denotes naïve Bayes, J
decision trees, L linear support vector machines and R
nonlinear support vector machines, and – denotes an
empty space.

To begin, 1000 instances are read into the level zero
buffer, and one model of each of the four methods is
installed at level one. The next 3000 instances then leads
to the complete population of level one with four models
for each method. The next 1000 instances then generates
four more models. At this stage two actions are
undertaken. First, the worst four models (one from each
group) are discarded to open up space at level one.
Second, the best four models are promoted to level two.
This gives the picture after 5000 instances. Four models
from the next 1000 instances then fill the spaces created
by the previous deletions. This process continues until
level two is fully populated (after 12,000 instances).

Once level two is full, however, the population of higher
levels is achieved by promoting only the best models.
Thus, after 13,000 instances the four true worst models
from level two are deleted (i.e. not one from each group)
and the best four models, again from any group, are
promoted. This frees eight spaces at level two.

At level one the process continues as before, four models
are deleted (one from each group) and four are promoted
to level two, again one from each group. The general idea
is to maintain the spread of methods at the base levels and
allow the higher levels to best reflect the source of the
data. In Figure 1 this is apparent immediately since the
decision trees are the first selected.

Levels three, four and five operate on the same basis of
deleting and promoting only the best models. The
topmost level has no space to promote models to and so
only deletes the worst four. Figure 2 shows the final
configurations of the six levels for each of the data
sources.

Figure 2 shows how CHIC is able to adapt to the data
source by promoting the best performing models. For
random tree data the higher levels are populated with
decision tree models, naïve Bayes models for the naïve
Bayes source and nonlinear support vector machines for
the RBF data. The most interesting configuration is the
one pertaining to the real dataset covertype. Here a
mixture of linear support vector machines and decision
trees.

The performance of the evolving configurations for each
of the data sources is depicted in Figure 3. Each of the
synthetic datasets processed one million instances. Each
graph in Figure 3 shows a common pattern of learning
quickly and then flattening out after approximately
100,000 instances. For the random tree and naïve Bayes
data sets the concepts are learned almost perfectly.
Clearly, the RBF data is a greater challenge.

after 1000 instances: after 2000 instances:
N---J---L---R--- NN--JJ--LL--RR--

after 3000 instances: after 4000 instances:
NNN-JJJ-LLL-RRR- NNNNJJJJLLLLRRRR

after 5000 instances: after 6000 instances:
N-NNJJ-JL-LLR-RR NNNNJJJJLLLLRRRR
NJLR------------ NJLR------------

after 7000 instances: after 8000 instances:
NNN-J-JJL-LLR-RR NNNNJJJJLLLLRRRR
NJLRNJLR-------- NJLRNJLR--------

after 9000 instances: after 10000 instances:
NN-N-JJJLL-L-RRR NNNNJJJJLLLLRRRR
NJLRNJLRNJLR---- NJLRNJLRNJLR----

after 11000 instances: after 12000 instances:
-NNN-JJJLLL-RR-R NNNNJJJJLLLLRRRR
NJLRNJLRNJLRNJLR NJLRNJLRNJLRNJLR

after 13000 instances:
NN-NJJ-JLL-LRR-R
NNLJNLLRN-L-N-L-
JJJJ------------

Figure 1. Evolution of models on random tree data

It is important to note that all models are able to update
their statistics for all instances processed. This keeps each
model fresh in the hierarchy but does impose a
performance penalty which can slow the down the
architecture’s ability to process the data stream.

random tree random naive Bayes
N-NN-JJJLL-LR-RR -NNNJJ-JLLL-R-RR
NNNNLNNLJLRNNJLR NJJJLLLLRNJJJLLR
JJJJJNNLJJ---JL- NNNNNJJNJJ-NN---
JJJJJJJJJJJJJJJJ NNNNNNNNNNNNNNNN
JJJJ--JJ-JJJJJ-J NNNNNNNN---NNNN-
JJJJJJJJJJJJJJJJ NNNNNNNNNNNNNNNN

random RBF cover type
NNN--JJJLL-LRR-R N-NN-JJJ-LLLR-RR
NNJJLRNJNNJJNJLR NNJJJRJLNRJ---R-
RRJRJJRRRRJRRJJJ LJJLLJLJLJL--N--
RRRRRRRRRRRRRRRR LLLLLLLLLLLLJLLJ
RRRRRRRRRRRRRRRR LLLLLLLLJL-J-L--
RRRRRRRRRRRRRRRR LLLLLLLLLLLLLLLL

Figure 2. Final level configurations

This penalty can be reduced by only updating models
every so often rather than on a per instance basis. We
have not experimented with this approach. It is likely that
this would not perform as well as the approach described
here but may be necessary in applications involving high
speed data streams.

5 Related Work

 In general, work on data streams proceeds in a
number of areas. Mining data streams, query processing,
modelling, and the detection of concept drift have
dominated the literature. Concept drift in particular is a
hot topic. The use of multiple model (ensemble)
techniques over single models is also gaining acceptance
due to their increased performance, efficiency and
potential for parallelization [6].

There are clear parallels between the hierarchical model
presented here and bagging [7]. In a data stream context
there is no need to sample with replacement as there is
not a limited supply of data. Bagging is particularly
robust to noise but generally not as well performing
as boosting.

Boosting in this context could be achieved by boosting
individual models or by building a first model at level one
and then using it to weight incoming instances for the
second model (at level one). This procedure would be
repeated until the level was full.

Work of a similar vein for data sources of fixed size has
been reported in [8] who propose an incremental version
of AdaBoost. Their method retains a fixed-size window
of weak classifiers that contains the k most recently built
classifiers. This makes the method applicable to large
datasets in terms of memory and time requirements.
However, it remains unclear how an appropriate value for
k can be determined.

Street and Kim [9] propose a variant of bagging for
incremental learning based on data chunks that maintains
a fixed-size committee. In each iteration it attempts to
identify a committee member that should be replaced by
the model built from the most recent chunk of data.

Oza and Russell [10] propose incremental versions of
bagging and boosting that require the underlying weak
learner to be incremental. The method is of limited use
for large datasets if the underlying incremental learning
algorithm does not scale linearly in the number of
training instances. Unfortunately, the time complexity of
most incremental learning algorithms is worse than linear.

6 Conclusion
 We have presented a novel architecture for
processing data streams. The architecture operates much
like a web cache in that models are propagated from one
level to another on the basis of a replacement policy. This

architecture is applicable to classification, regression,
clustering and association rule learning.

By employing a mixtures of methods so that the most
appropriate become more plentiful within the higher
levels of the architecture it is possible to demonstrate that
it is possible for the architecture to adapt to the source of
the data.

There are many possibilities for future work on this
project. There are many ways in which the architecture
could be configured. Prediction methodology could also
be varied by using, for example, only the wisest models
(models in the topmost level) to make predictions rather
than using the entire configuration which can be slow.

References

[1] P. Domingos and G. Hulten, “Mining high-speed
data streams” , Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
71-80, 2000.

[2] E. Frank, G. Holmes, R. Kirkby and M. Hall,
“Racing Committees for Large Datasets” , Proc.
International Conference on Discovery Science, 153-164,
2002.

[3] D. Wessels, Squid: The Definitive Guide, O'Reilly,
2004.

[4] C.L. Blake and C.J. Merz, “UCI Repository of
machine learning databases” ,
http://www.ics.uci.edu/~mlearn/MLRepository.html,
University of California, Irvine, Dept. of Information and
Computer Sciences, 1998.

[5] Witten, I.H., Frank, E. Data mining: practical
machine learning tools and techniques. (second ed).
Morgan Kaufmann, San Francisco, CA, 2005.

[6] H. Wang, W. Fan, P. Yu and Jiawei Han, “Mining
Concept-Drifting Data Streams Using Ensemble
Classifiers” , Proc. Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(SIGKDD 2003) 2003.

[7] L. Breiman, “Bagging Predictors” , Machine
Learning Journal,Vol 24, No. 2, 123-140, 1999.

[8] W. Fan, S. J. Stolfo and J. Zhang, “The Application
of AdaBoost for Distributed, Scalable and On-Line
Learning” , Proc. 5th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, 362-366, 1999.

[9] W. Street and Y. Kim, “A streaming ensemble
algorithm (SEA) for large-scale classification” , Proc. 7th
ACM SIGKDD Int. Conf. on Knowledge Discovery in
Databases and Data Mining, 377-382, 2001.

[10] N. Oza and S. Russell, “Experimental Comparisons
of Online and Batch Versions of Bagging and Boosting” ,
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge
Discovery in Databases and Data Mining, 359-364, 2001.

[11] R. Kohavi and G.H. John, “The wrapper approach”
in “Feature Extraction, Construction and Selection: A
Data Mining Perspective” , edited by H. Liu and H.
Motoda, Kluwer Academic, 1998.

 0

 20

 40

 60

 80

 100

 0 250000 500000 750000 1e+06

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Random Tree Data

 0

 20

 40

 60

 80

 100

 0 250000 500000 750000 1e+06

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Random Naive Bayes Data

 0

 20

 40

 60

 80

 100

 0 250000 500000 750000 1e+06

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Random RBF Data

 0

 20

 40

 60

 80

 100

 0 100000 200000 300000 400000 500000 600000

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Covertype Data

 Figure 3. Learning curves for data sets

