
Cache Hierarchy Inspired Compression: a Novel 
Architecture for  Data Streams 

 
 

Geoffrey Holmes, Bernhard Pfahr inger  and Richard K irkby 
Computer Science Department 

University of Waikato 
Private Bag 3105, Hamilton, New Zealand 

{ geoff, bernhard, rkirkby} @cs.waikato.ac.nz. 

 

 

Abstract - We present an architecture for data streams 
based on structures typically found in web cache 
hierarchies. The main idea is to build a meta level 
analyser from a number of levels constructed over time 
from a data stream. We present the general architecture 
for such a system and an application to classification. 
This architecture is an instance of the general wrapper 
idea allowing us to reuse standard batch learning 
algorithms in an inherently incremental learning 
environment. By artificially generating data sources we 
demonstrate that a hierarchy containing a mixture of 
models is able to adapt over time to the source of the 
data. In these experiments the hierarchies use an 
elementary performance based replacement policy and 
unweighted voting for making classification decisions.  
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1   Introduction 
  Conventional data mining algorithms operate in 
an environment where a model (for example, a set of 
rules) is induced from a training set of data instances. 
This training set is available in its entirety from the 
outset. The learning algorithms that produce a model 
from this data typically load all of the data into main 
memory and then access each instance one at a time. This 
methodology is often referred to as batch learning. A 
consequence of this approach is that very few incremental 
algorithms have been developed.  
 
The data stream model treats the training data as a 
(possibly infinite) stream. In this context there is no 
possibility of fitting all the data into memory. The model 
inevitably places constraints on what can be achieved and 
scaling an algorithm to conform to a data stream is a 
significant challenge. The requirements are: the need to 
process instances one at a time with only a glance at the 
instance (instances cannot be stored); only use available 
memory (we cannot swap to disk as this would take too 
long); process an instance in a limited amount of time (we 
cannot afford to fall behind the rate at which instances 
arrive); and finally, be ready to make predictions at any 
time. 
 

In such a context it is extremely difficult to fully process 
a single instance at a time. One approach to staying in 
touch with the stream is to accumulate statistics and then 
make decisions only when those statistics reach critical 
points, as in Hoeffding trees [1]. An alternative approach 
is to slowly build up a knowledge of the stream by 
constructing models from accumulations of instances [2]. 
Both strategies can be accommodated in the architecture 
described here. 
 
In the field of Data Communications, web proxy caches 
are used to enhance the scalability and performance of the 
web by reducing bandwidth demand and increasing the 
response time for popular documents. The proxies are 
often organised into hierarchies as in the squid system 
[3]. In squid the hierarchy is organized in a parent/child 
and sibling arrangement. When a cache requests an object 
from its parent, and the parent does not have the object in 
its cache, the parent fetches the object, caches it, and 
delivers it to the child. In addition to the parent-child 
relationships there are siblings which are caches at the 
same level in the hierarchy, provided to distribute cache 
server load. 
 
In a streaming context it would be advantageous to 
distribute algorithmic load (classification, regression, 
clustering or association rule learning) through some 
form of sibling structure. The notion of parent/child 
caches is harder to reconcile as the objectives of web 
caching and data mining are somewhat different. A parent 
could be used to contain older and wiser models, those 
that have successfully survived some form of culling 
process over time.  
 
Alternatively, parents could be viewed as the agents in a 
system that pass on the best models they find for use by 
their children. 
 
In data streaming and web caching, training and testing 
have to occur simultaneously. The web cache hierarchy 
fills up by fetching objects not present in the cache until it 
is full. Once full, an object replacement policy is needed 
to keep the hierarchy up to date with the needs of its user 
community. Replacement policies are typically designed 
to optimise a performance metric such as hit rate (the 
number of successful retrievals from the cache) or byte 
hit rate if object size is a more important factor. Popular 
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policies include Least Recently Used (LRU), replace the 
newest object with the oldest object, Least Frequently 
Used (LFU) replace the newest object with the least 
frequently requested and so on.  
 
In order to replicate such a system in a data stream 
context, we need to design a hierarchy, fill it with models 
and implement a replacement policy so that the set of 
models contained in the hierarchy is current and tuned to 
the performance metric that most suits the task at hand. It 
is not likely, therefore, that LRU style policies would be 
directly adopted.  
 
In this paper we explore the construction of a web cache 
inspired architecture for mining data streams. The 
intention is to demonstrate the efficacy of the technique 
rather than explore the many options that could be tried in 
terms of numbers of levels, replacement policies, mining 
algorithms and so on.  
 
The paper is structured as follows. In Section 2 we 
present the general architecture for the cache hierarchy 
inspired compression system (CHIC). We describe the 
range of policy decisions that need to be made and the 
choices made for this paper. Section 3 discusses the 
generation of data and design of experiments to test the 
method. Section 4 contains a description of an instance of 
the architecture using classification and experimental 
results on a collection of real and artificial datasets.  
Section 5 discusses related work on committee and non-
committee based classifiers for data streams. Section 6 
summarizes the contributions made in this paper. 

2   CHIC 
 Cache Hierarchy Inspired Compression (CHIC) 
is a system for mining data streams based on the idea of 
caching models and replacing them continually as the 
stream is processed. The hierarchy is constructed from a 
number of levels that have four different functions. 
 
It is useful to imagine that each level of the hierarchy is a 
buffer of a fixed size. Level zero is unique in that it 
contains instances whereas all other levels contain 
models. 
  
Level one in the hierarchy is where all the work is done. 
Models are continually constructed from the level zero 
buffer which is refreshed once a model is constructed and 
housed in level one. This process is repeated until level 
one is full.  
 
Once level one is full a model is selected for promotion to 
level two. Once selected, the level one buffer is cleared of 
models and the process resumes. Once level two is full a 
model is similarly selected for promotion to level three 
and the process resumes. This replacing of models 
continues all the way up the hierarchy until the topmost 
level is reached. At this level a model must be selected 
for ejection from the hierarchy so that the process can 
continue to build models from the stream. Of course, it 

would be possible to freeze the hierarchy once full so as 
to build a meta level analyser slowly over many 
instances. 
 
In this paper we choose to reject models from the topmost 
level in order to keep the hierarchy up to date, as a web 
cache would. In theory this would enable concept drift to 
be tracked. Concept drift is another major topic in mining 
data streams but we do not attempt to solve this problem 
in this paper.  
 
The overall aim of the system is to build a meta level 
algorithm from the models in  levels one upward. The 
general methodology for constructing such a model 
containing N levels is as follows: 
 

� Buffering: At level zero fill a buffer with data. 
� Model Building: At level one build models and 

place them in the buffer, when full promote 
models and flush the buffer. 

� Containers: At levels two to N-1 adopt models 
from the level below, when full promote models 
and flush the buffer.  

� Topmost: Adopt models from level N-1 but also 
discard models so that new ones can be entered. 

 
This basic algorithm requires policies for the promotion 
of models between levels and for discarding models from 
the topmost level. It also leaves open the question of what 
types of model to generate. The hierarchy could be 
homogeneous or, as in this paper, it could contain a 
mixture of models. 
 
Although the algorithm appears to simply add models to 
levels it would be possible and desirable to consider 
merging models in some applications, for example, 
clustering.   
 
It is important to note that the CHIC architecture is an 
instance of the general wrapper idea [11], which allows 
us to use any arbitrary batch learning algorithm for 
learning from data streams, which is an inherently 
incremental problem. Other standard stream learning 
algorithms are usually purpose-built incremental versions 
of standard batch learning algorithms (e.g. Hoeffding 
trees [1]). Using the CHIC architecture we can employ 
any off-the-shelf algorithm avoiding expensive 
development work. 
 
In order to arrive at a decision with the meta level model 
it is necessary to decide how to vote the models. Given 
the hierarchical structure it would make sense to weight 
the votes on the position in the hierarchy rather than treat 
everything as equal. If efficiency is an issue then 
decisions could be made on the basis of votes at only the 
topmost level using the argument that these are the best 
surviving models. In this paper we restrict attention to 
unweighted voting, where every model has an equal vote. 
 
The options for promoting models are manifold. Here we 
only analyse performance based selection. 



3   Exper imental Design 
 In this paper we aim to show that the hierarchy 
of models is a useful architecture for mining data streams. 
To this end we do not attempt to find optimal settings, 
policies or combinations of methods that demonstrate 
superiority over others.  
 
We have created the simplest manifestation of the 
architecture. First, we use classification for testing as it is 
the easiest task to evaluate. Second, we learn a mixture of 
models at levels one and two. One advantage of this 
hierarchy is that the selection mechanism used to 
populate the container and topmost levels will then adapt 
the mixture of models at the base to the likely data 
source. 
 
If we run with a single algorithm such as a tree learner 
then performance on data generated from a Bayesian 
source will be poor, and vice versa. If the lower levels 
contain a mixture of tree and Bayesian learners then those 
most suited to the data source will be chosen. 
 
The size of the data buffer, often referred to as chunk 
size, at level zero can have an impact on performance. If 
it is too small then the classifiers may not have the 
capacity to generalize, too large and the cost of the level 
one buffer will be too high in terms of keeping up with 
the stream. In this paper we use a fixed size data buffer of 
1000 instances which we found to be a good compromise 
in previous work on large datasets [2]. 

3.1   Evaluation 

Two kinds of evaluation are required for this setting. 
First, models must be evaluated against their peers to see 
if they need promoting or deleting within/from the 
hierarchy. Second, the hierarchy itself must be evaluated 
as it evolves.  
 
Peer analysis of models is achieved by analyzing 
performance on the next buffer of input. Model 
performance statistics are incrementally updated so that 
performance can be assessed over longer periods of time 
than a single buffer. If this is not done then the estimates 
of model performance will be too unstable to be of any 
use as models need as much time as possible to show 
what they can do. 
 
To assess the performance of the hierarchy as a whole we 
employ a general evaluation framework that uses a first 
test then train approach to an instance. This is to ensure 
that the algorithmic basis for any mining algorithm has 
been engineered to suit a real data stream. By testing an 
instance before using it for training we are primarily 
insisting on incrementality. Performance is also implied 
in that a good model will return a prediction in real time 
only if the model is not too elaborate and only if it fits in 
memory. Thus, a model that fails to comply with the 
paradigm will eventually do so by taking too long to  

form a prediction. The evaluation methodology is as 
follows: 
 

• Initialize working model M to an empty model  
• While more instances are available in the stream  
• Retrieve next instance I from the stream  
• Classify I using M 
• Update accuracy statistics S, storing if desired 
• Increment M by training with I 

 
A snapshot can be taken at any point during the 
evaluation process. These snapshots can be plotted 
graphically to produce learning curves. Typically the 
statistic of most interest is related to the percentage of 
instances that were correctly classified. The resulting 
curve is smooth between snapshots because as the 
number of processed instances increases, the influence of 
a single classification/misclassification on the overall 
percentage becomes smaller. 
 
As data order can be a source of concern in data stream 
classification, the evaluation method presented here can 
be extended to average over many different orderings. 
The evaluation algorithm is repeated multiple times, each 
time the data is presented in a different order (or in the 
case of data generators, an independent set of examples). 
The snapshots at each data point are collected together 
and averaged between runs. This extension allows 
analysis of the variance of the performance over several 
data orders. The results presented later in Section 4 
(Figure 3) represent averages of five separate orderings. It 
should be noted that in all cases there was very little 
difference in performance between runs. Thus for these 
datasets data order does not appear to be a major issue.  
 
In terms of an actual testing mechanism for the hierarchy, 
unweighted voting was used for making classification 
decisions. Again this was chosen for simplicity.  
 
 

3.2   Data Sources 
 
The data sets used in this paper consist of three 
synthetically generated and one real dataset. 
 
3.2.1   Random Naïve Bayes 
 
Random Naive Bayes data is generated by first randomly 
assigning a weight to each class, and then randomly 
assigning properties to the attributes. In the case of 
nominal attributes, each nominal label is given a random 
weight per class. In the case of numeric attributes a 
Gaussian distribution (randomly chosen mean and 
standard deviation) is assigned per class.  
 
To generate new instances, a class is first randomly 
chosen with likelihood in proportion to the pre-assigned 
class weights. Then for each attribute a value is drawn at 
random according to the pre-assigned distribution of 
values for the particular class.  
 



The Naive Bayes data reported here has five classes, five 
nominal attributes (with five labels each) and five 
numeric attributes. 
 
3.2.2   Random tree 
 
The random tree data generator works by first 
constructing a random tree—at each node an attribute is 
chosen at random to split the data, and if the attribute is 
numeric, a split point is randomly chosen too. This 
process is applied recursively until the desired depth is 
reached, at which point a class label is randomly 
assigned. If a nominal attribute is used to split then it 
cannot be reused in the subtree below it. There is an 
optional parameter for a depth at which below there is a 
random chance of a node becoming a leaf before the 
maximum depth is hit. Once the random tree is complete, 
instances are generated by randomly assigning values to 
attributes, then traversing the tree to assign the class.  
 
The random tree dataset is generated by a tree that is five 
nodes deep, with leaves starting at level three. It has five 
nominal attributes (with five labels each), five numeric 
attributes and five classes. 
 
3.2.3   Random RBF 
 
Random RBF data is generated by first creating a random 
set of centers for each class. Each center is randomly 
assigned a weight, a central point per attribute, and a 
standard deviation. To generate new instances, a center is 
chosen at random taking the weights of each center into 
consideration. Attribute values are randomly generated 
and offset from the center, where the overall vector has 
been scaled so that its length equals a value sampled 
randomly from the Gaussian distribution of the center. 
The particular center chosen determines the class of the 
instance.  
 
For this paper the data contains only numeric attributes as 
it is non-trivial to include nominal values. The random 
RBF data is generated from 50 centers, has ten numeric 
attributes and five classes. 
 
3.2.4   Forest Covertype 
 
One of the largest datasets containing real-world data in 
the UCI repository [4] is the Forest Covertype dataset. 
This consists of 581,012 instances, 10 numeric attributes, 
44 binary attributes and 7 classes.           

4   Results 
 
4.1   Specific CHIC Architecture 
We conducted experiments for a hierarchy consisting of 
six layers, with 16 models per layer. The data is divided 
into chunks of size 1000 for training the models. On the 
first level, four instantiations of four different learning 
algorithms are used to train models. The four learning 

algorithms are naive Bayes, decision trees, linear support 
vector machines and the support vector machine with 
RBF kernel [5].  All algorithms use default parameter 
settings, with the exception that for every new RBF SVM 
the gamma parameter is randomly selected from the set 
{ 1, 4, 16, 64} . Four methods were used to provide 
differing bias. 
 
The mechanics of building models follows the outline of 
the general architecture with some special features 
designed to capture the data source. The evolution of the 
models on random tree data for the first 13,000 instances  
is depicted in Figure 1. Here N denotes naïve Bayes, J 
decision trees, L linear support vector machines and R 
nonlinear support vector machines, and – denotes an 
empty space. 
 
To begin, 1000 instances are read into the level zero 
buffer, and one model of each of the four methods is 
installed at level one.  The next 3000 instances  then leads 
to the complete population of level one with four models 
for each method. The next 1000 instances then generates 
four more models. At this stage two actions are 
undertaken. First, the worst four models (one from each 
group) are discarded to open up space at level one. 
Second, the best four models are promoted to level two. 
This gives the picture after 5000 instances. Four models 
from the next 1000 instances then fill the spaces created 
by the previous deletions. This process continues until 
level two is fully populated (after 12,000 instances). 
 
Once level two is full, however, the population of higher 
levels is achieved by promoting only the best models. 
Thus, after 13,000 instances the four true worst models 
from level two are deleted (i.e. not one from each group) 
and the best four models, again from any group, are 
promoted. This frees eight spaces at level two.  
 
At level one the process continues as before, four models 
are deleted (one from each group) and four are promoted 
to level two, again one from each group. The general idea 
is to maintain the spread of methods at the base levels and 
allow the higher levels to best reflect the source of the 
data. In Figure 1 this is apparent immediately since the 
decision trees are the first selected.  
 
Levels three, four and five operate on the same basis of 
deleting and promoting only the best models. The 
topmost level has no space to promote models to and so 
only deletes the worst four. Figure 2 shows the final 
configurations of the six levels for each of the data 
sources. 
 
Figure 2 shows how CHIC is able to adapt to the data 
source by promoting the best performing models. For 
random tree data the higher levels are populated with 
decision tree models, naïve Bayes models for the naïve 
Bayes source and nonlinear support vector machines for 
the RBF data. The most interesting configuration is the 
one pertaining to the real dataset covertype. Here a 
mixture of linear support vector machines and decision 
trees. 



The performance of the evolving configurations for each 
of the data sources is depicted in Figure 3. Each of the 
synthetic datasets processed one million instances. Each 
graph in Figure 3 shows a common pattern of learning 
quickly and then flattening out after approximately 
100,000 instances. For the random tree and naïve Bayes 
data sets the concepts are learned almost perfectly. 
Clearly, the RBF data is a greater challenge.  
 

after 1000 instances: after 2000 instances: 
N---J---L---R--- NN--JJ--LL--RR-- 
 
after 3000 instances: after 4000 instances: 
NNN-JJJ-LLL-RRR- NNNNJJJJLLLLRRRR 
 
after 5000 instances: after 6000 instances: 
N-NNJJ-JL-LLR-RR NNNNJJJJLLLLRRRR 
NJLR------------ NJLR------------ 
 
after 7000 instances:  after 8000 instances: 
NNN-J-JJL-LLR-RR NNNNJJJJLLLLRRRR 
NJLRNJLR-------- NJLRNJLR-------- 
 
after 9000 instances: after 10000 instances: 
NN-N-JJJLL-L-RRR NNNNJJJJLLLLRRRR 
NJLRNJLRNJLR---- NJLRNJLRNJLR---- 
 
after 11000 instances: after 12000 instances: 
-NNN-JJJLLL-RR-R NNNNJJJJLLLLRRRR 
NJLRNJLRNJLRNJLR  NJLRNJLRNJLRNJLR 
 
after 13000 instances: 
NN-NJJ-JLL-LRR-R 
NNLJNLLRN-L-N-L- 
JJJJ------------ 

 
Figure 1.  Evolution of models on random tree data 

 
It is important to note that all models are able to update 
their statistics for all instances processed. This keeps each 
model fresh in the hierarchy but does impose a 
performance penalty which can slow the down the 
architecture’s ability to process the data stream.  
 

random tree  random naive Bayes 
N-NN-JJJLL-LR-RR -NNNJJ-JLLL-R-RR 
NNNNLNNLJLRNNJLR NJJJLLLLRNJJJLLR 
JJJJJNNLJJ---JL-  NNNNNJJNJJ-NN--- 
JJJJJJJJJJJJJJJJ NNNNNNNNNNNNNNNN 
JJJJ--JJ-JJJJJ-J  NNNNNNNN---NNNN- 
JJJJJJJJJJJJJJJJ  NNNNNNNNNNNNNNNN 
 
random RBF   cover type 
NNN--JJJLL-LRR-R   N-NN-JJJ-LLLR-RR 
NNJJLRNJNNJJNJLR   NNJJJRJLNRJ---R- 
RRJRJJRRRRJRRJJJ   LJJLLJLJLJL--N-- 
RRRRRRRRRRRRRRRR  LLLLLLLLLLLLJLLJ 
RRRRRRRRRRRRRRRR  LLLLLLLLJL-J-L-- 
RRRRRRRRRRRRRRRR  LLLLLLLLLLLLLLLL 

 
Figure 2. Final level configurations 

This penalty can be reduced by only updating models 
every so often rather than on a per instance basis. We 
have not experimented with this approach. It is likely that 
this would not perform as well as the approach described 
here but may be necessary in applications involving high 
speed data streams. 

5   Related Work 

 In general, work on data streams proceeds in a 
number of areas. Mining data streams, query processing, 
modelling, and the detection of concept drift have 
dominated the literature. Concept drift in particular is a 
hot topic. The use of multiple model (ensemble) 
techniques over single models is also gaining acceptance 
due to their increased performance, efficiency and 
potential for parallelization [6].  
 
There are clear parallels between the hierarchical model 
presented here and bagging [7]. In a data stream context 
there is no need to sample with replacement as there is 
not a limited supply of data. Bagging is particularly 
robust to noise but generally not as well performing  
as boosting.  
 
Boosting in this context could be achieved by boosting 
individual models or by building a first model at level one 
and then using it to weight incoming instances for the 
second model (at level one). This procedure would be 
repeated until the level was full. 
 
Work of a similar vein for data sources of fixed size has 
been reported in [8] who propose an incremental version 
of AdaBoost. Their method retains a fixed-size window 
of weak classifiers that contains the k most recently built 
classifiers. This makes the method applicable to large 
datasets in terms of memory and time requirements.  
However, it remains unclear how an appropriate value for 
k can be determined.   
 
Street and Kim [9] propose a variant of bagging for 
incremental learning based on data chunks that maintains 
a fixed-size committee.  In each iteration it attempts to 
identify a committee member that should be replaced by 
the model built from the most recent chunk of data.  
 
Oza and Russell [10] propose incremental versions of 
bagging and boosting that require the underlying weak 
learner to be incremental.  The method is of limited use 
for large datasets if the underlying incremental learning 
algorithm does not scale linearly in the number of 
training instances.  Unfortunately, the time complexity of 
most incremental learning algorithms is worse than linear. 

6   Conclusion 
 We have presented a novel architecture for 
processing data streams. The architecture operates much 
like a web cache in that models are propagated from one 
level to another on the basis of a replacement policy. This 



architecture is applicable to classification, regression, 
clustering and association rule learning.  
 
By employing a mixtures of methods so that the most 
appropriate become more plentiful within the higher 
levels of the architecture it is possible to demonstrate that 
it is possible for the architecture to adapt to the source of 
the data. 
 
There are many possibilities for future work on this 
project. There are many ways in which the architecture 
could be configured. Prediction methodology could also 
be varied by using, for example, only the wisest models 
(models in the topmost level) to make predictions rather 
than using the entire configuration which can be slow. 

 
References 
 
[1] P. Domingos and G. Hulten, “Mining high-speed 
data streams” , Proc. ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
71-80, 2000. 

[2] E. Frank, G. Holmes, R.  Kirkby and M. Hall, 
“Racing Committees for Large Datasets” , Proc. 
International Conference on Discovery Science, 153-164, 
2002. 

[3] D. Wessels, Squid: The Definitive Guide, O'Reilly, 
2004. 

[4] C.L. Blake and C.J. Merz, “UCI Repository of 
machine learning databases” , 
http://www.ics.uci.edu/~mlearn/MLRepository.html, 
University of California, Irvine, Dept. of Information and 
Computer Sciences, 1998. 

[5] Witten, I.H., Frank, E. Data mining: practical 
machine learning tools and techniques. (second ed). 
Morgan Kaufmann, San Francisco, CA, 2005. 

[6] H. Wang, W. Fan, P. Yu and Jiawei Han, “Mining 
Concept-Drifting Data Streams Using Ensemble 
Classifiers” , Proc. Ninth ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining 
(SIGKDD 2003) 2003. 

[7] L. Breiman, “Bagging Predictors” , Machine 
Learning Journal,Vol 24, No. 2, 123-140, 1999. 

[8] W. Fan, S. J. Stolfo and J. Zhang, “The Application 
of AdaBoost for Distributed, Scalable and On-Line 
Learning” , Proc. 5th ACM SIGKDD Int. Conf. on 
Knowledge Discovery and Data Mining, 362-366, 1999. 

[9]  W. Street and Y. Kim,  “A streaming ensemble 
algorithm (SEA) for large-scale classification” , Proc. 7th 
ACM SIGKDD Int. Conf. on Knowledge Discovery in 
Databases and Data Mining, 377-382, 2001. 

[10]  N. Oza and S. Russell, “Experimental Comparisons 
of Online and Batch Versions of Bagging and Boosting” , 
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge 
Discovery in Databases and Data Mining, 359-364, 2001. 

[11] R. Kohavi and G.H. John, “The wrapper approach” 
in “Feature Extraction, Construction and Selection: A 
Data Mining Perspective” , edited by H. Liu and H. 
Motoda, Kluwer Academic, 1998. 

 



 0

 20

 40

 60

 80

 100

 0  250000  500000  750000  1e+06

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Random Tree Data

 

 0

 20

 40

 60

 80

 100

 0  250000  500000  750000  1e+06

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Random Naive Bayes Data

 

 0

 20

 40

 60

 80

 100

 0  250000  500000  750000  1e+06

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Random RBF Data

 

 0

 20

 40

 60

 80

 100

 0  100000  200000  300000  400000  500000  600000

per
cen

t co
rrec

t

number of instances processed

Learning Curve for Covertype Data

 

       

      Figure 3. Learning curves for data sets 


