
Building a Flexible Web Caching System

Víctor J. Sosa Sosa, Gabriel González S.,

Centro Nacional de Investigación y Desarrollo

Tecnológico

Interior Internado Palmira S/N, Cuernavaca,

Morelos, México. 62490

{vjsosa, gabriel}@cenidet.edu.mx

Leandro Navarro

Universitat Politècnica de Catalunya (UPC)

Jordi Girona, 1-3, D6-105, Campus Nord .

Barcelona, Spain. E-08034

leandro@ac.upc.es

Abstract

Web caching is a technology that has demonstrated to

improve traffic on the Internet. To find out how to

implement a Web caching architecture that assures
improvements is not an easy task. The problem is more

difficult when we are interested in deploying a distributed

and cooperative Web caching system. We have found that
some cooperative Web caching architectures could be

unviable when changes on the network environment
appear. This situation suggests that a cooperative Web

caching system could get worst access to Web objects.

However in this paper we present an architecture that
combines the best of several Web caching configurations

that we have previously analyzed. Our architecture gives

basic ideas for implementing a cooperative Web caching
system using groups of HTTP proxy servers which can

improve access to remote Web objects regardless of the

changes that might occur on the network environment
(changes that could produce modifications in Web object

validation policies and/or types of caching

communication).

1. Introduction

The idea behind Web caching consists in getting Web

objects close to clients at a low cost. Cooperating proxy

caches are a group of caches that share cached objects and

collaborate with each other to do the same work as a single

Web cache. The benefits of having a cooperative caching

system has been analyzed in [12],[6],[1]. Basically, the

construction of a cooperative Web cache system requires

the analysis of four major topics. They are briefly

described next:

Cooperative caching system organization: How to define

a cache topology.

Hierarchy: Caches are located at different network levels.

In most cases it is assumed that inferior levels in the

hierarchy have better quality of service. They have a

parent-son relationship. A son cache is located at inferior

levels in the hierarchy, and when a son cache needs a Web

object, the son cache asks its parent cache for it. The

request goes up in the hierarchy until finding the Web

object needed in a parent cache or in the original Web

server.

Mesh (distributed): There are no intermediate caches

defined by levels, rather there is a single level of caches

where they can cooperate to serve the requests generated

by clients.

Hybrid (mesh/hierarchy): A combination of hierarchy and

mesh.

Web caching communication: How caches are going to

communicate each other. We consider three processes that

are involved in Web caching communication: discovery,

delivery, and dissemination.

Discovery. How do caches find the Web objects? There

are three major approaches: Exhausted query: asking for a

requested object to all sibling caches using a protocol like

ICP (Intercache Communication Protocol). Using digest:

Digest can be interchanged using methodologies such as:

Peer to peer or by a hierarchy. Using hashing: cache

objects can be located in proxy caches defined by a hash

function.

 Delivery. How do caches deliver pages to clients? It could

be using direct connection between the cache containing

the page and the client, delivering copies using a cache

hierarchy, or delivering copies using a cache mesh.

Dissemination. Delivery of Web objects initiated by

original servers.

Consistency strategies: How caches keep “fresh” cached

objects.

Expire. Using predefined expiration dates on Web pages.

TTL0. Verifying consistency every time a hit occurs (time

to live is zero, ttl=0).

TTLA. Time to live is assigned based on the elapsed time

since the last request.

Invalidation. Original server sends an invalidation

message to caches when a Web object update occurs.

Usually this messages is sent via multicast (invalidation

multicast). Some variants of multicast invalidation or a

mix of all previous strategies.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 8:19 from IEEE Xplore. Restrictions apply.

Workload behavior: Behavior of workload can be treated

depending on the participating element: Clients, Proxy-

Caches and Servers. In this case we focus our attention on

proxy-caches workload.

The goal of this work is to show many options for building

a viable Web caching system based on many analyses of

different Web caching configurations. We also propose a

Web caching architecture that takes the best of several

Web caching configuration. The principal goal of this Web

caching architecture is to avoid problems that could make

it unviable when the network behavior changes.

2. Architecture description

This architecture is based on our previous research

[8],[9],[10], which encompasses several studies of Web

cache systems (workloads, consistency strategies, Web

caching communication). The main characteristics of our

architecture are:

1) Web caching organization. Considering the obtained

results in [8],[9],[10], we propose a caching organization

of hybrid type (three level hierarchy in long latencies,

where each level has a mesh, Fig. 1). It has been

demonstrated in [8],[6],[12] that a hybrid organization

offers better results as for access time, bandwidth

consumption in a wide area network (WAN), and scaling

support. Likewise, a three level hierarchy has been

widely accepted [4],[3],[7],[5] because it does not

emphasize the cost of store-and-forward process.

2) Caching communication. As we have mentioned, the

communication in a cooperative caching system takes

places in several processes (discovery, delivery, and

dissemination).

 Discovery process: This process allows for the locating

of requested Web objects within the cooperative caching

system. A very typical mechanism is the exhaustive query

by using ICP messages. However, exhaustive query will

not be used in our architecture, due to the high bandwidth

consumption that it requires [2]. A mechanism for the

construction of directories (metadata) will be used instead.

The construction of such directories will be done

dynamically. When a parent cache receives a request for a

Web object, immediately after the requested Web object

has been sent to its requester cache, a multicast message

is sent to all of the parent cache descendents to notify them

the Web objects that have been requested by the requester

cache. This lets the lower levels of the hierarchy know the

location of these Web objects for further requests. The

caches that will receive such notification are only those

caches that belong to that particular branch in the lower

levels of the hierarchy.

Delivery process: Clients obtain a copy of the requested

Web object through the mesh (caches of the same

hierarchy level –branch-). Those copies have arrived to the

mesh following a route from the original server to the

cache through the hierarchy levels.

Dissemination process: This process takes advantage of

the multicast invalidation mechanism to push updated

Web objects that have been previously requested by the

lower level caches in the hierarchy. This process will be

fully explained next.

3) Consistency mechanism. The consistency mechanism

to be used in this architecture is multicast invalidation, and

it uses what we call life signals. The parent cache sends a

message (multicast message -life signal-) every minute to

the lower level caches to indicate that it is alive (on line).

If a Web object is modified in the original server (one of

those Web objects previously requested), a message is sent

to the lower level caches within the same mesh, to let them

know that such Web object is no longer valid, and that an

updated copy of the Web object should be obtained the

next time the Web object is requested. The same life signal

is used to inform and prevent those caches that did not

contain the Web object from trying to access such a Web

object from an invalid copy.

Dissemination strategy (pushing) through the

consistency mechanism. We have a dissemination strategy

(pushing) where the servers (or parent caches in a

hierarchy) multicast the most popular Web objects (that

have been updated by the original server) to the caches,

before being requested once again. In this architecture, no

global decision is taken concerning the multicasting of a

Web object through the system. Conversely, each cache

and the original server make their own decision on

whether the dissemination should be made or not. To do

this, each cache and the original server keep an access

counter (Xp) for each Web object which in the beginning

is set to 0, along with a dissemination bit that will indicate

whether the Web object must be disseminated or not. If the

dissemination bit is set to 1, that will indicate that the

cache has to disseminate the updated Web object when the

cache issues a life signal to its lower level caches. The

heuristics of this strategy use three positive variables:

, , . If a cache receives an invalidation message for page

P, then the next calculation takes place: XP = XP - . if the

cache receives a request for page P, then we calculate: XP

= XP + . If XP exceeds a threshold (XP >), then the

dissemination bit is set to 1, otherwise a zero is assigned.

Additionally, the lower level caches send a message to

their parent caches each time the page is read. This is done

to keep a knowledge about all read pages within that

branch of hierarchy. The fixed values used within our

architecture are =8, =1, y =2. The approach that we

followed of taking a 1 for each invalidation and of adding

a 2 for each request, is due to the popularity studies made

with some proxi-caches logs that are strongly close to the

Zipf distribution. The Zipf distribution says that the

number of requests for a page (R) is related to its

popularity in this way:

 R(i) = ----------

 i

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 8:19 from IEEE Xplore. Restrictions apply.

where the exponent reflects the popularity skew between

one Web object and another, and the constant defines an

approximation to the number of requests for the most

popular Web object represented by i = 1. For a better

understanding, lets assume that = 1 and that = 100,

then the most popular Web object (in other words, the one

with the position i = 1) will have 100 requests, the Web

object next to it in popularity will have 50 (i = 2), and the

next (i = 3) will be close to 30 and so forth. All this gives

us an idea that the popularity of Web objects follows a

sequence of 2 to 1 for each position in the popularity

index. This helps us to define constants and . The

value comes from studies made in this work, along with

heuristic analysis made in [13].

3. How this web caching architecture was

defined

This Web caching architecture was substantially obtained

using a simulator developed during the time of this work

[10]. This simulator is mainly an extension of the Network

Simulator (NS) [11]. The fundamental research that helps

us to define this architecture could be found in our work

[8], which basically consisted in analyzing the most

studied ways to organize cooperative Web caches like:

hierarchies, mesh and hybrids, combined with the most

studied Web caching consistency strategies. In this work

we tried the following consistency mechanisms: TTL0,

TTLA, M, and some variants of multicast invalidation

mechanism: PSM and APM. PSM (pushing selective

multicast) only pushes the updated Web object when the

number of requests exceeds a threshold defined by (as

mentioned in the previous section). APM (always pushing

multicast) pushes a Web object whenever it is updated.

The configurations mentioned above were implemented in

our simulator. We use workloads that were obtained from

a cache located at the Spanish academic network backbone

managed by the Center of Super Computing of Catalonia

(CeSCa). The simulation stops when it finishes replaying

all the workload. Table 1 describes the workload. The

Web caching architectures that give us the best results in

[8] were the base for our new Web caching architecture

discussed here .

Table 1. Workload characteristics.
Number of requests 3,089,592

Number of Web objects 212,352

Number of clients (approx.) 11,765

Average requests per second 21

Transferred bytes 30GB

Duration 2 days

4. How this architecture works

This section describes how this architecture works. The

Web caching system starts when a client sends a request to

its Web proxy cache (the first cache that is contacted by a

client is called client-cache). The client-cache verifies if it

can respond to the request. If so, the client-cache sends the

requested Web object to the client and the operation is

finished. Otherwise, the client-cache checks if the

requested object is in a sibling cache. A sibling cache is a

cache connected by a mesh at the same branch in a cache

hierarchy (see Fig. 1). Every cache sibling has a digest

where the cached objects in a hierarchy branch are

registered. If the requested Web object is in a sibling

cache (a cache knows that by looking at its digest), the

cache forwards the request to the cache sibling. A copy of

the requested Web object travels to the end client through

the client-cache which keeps a copy of the Web object. If

the requested Web object is not in any cache sibling then

the request is forwarded to the parent cache. The same

process is repeated at each hierarchy level until the

requested Web object is found in a parent cache or in the

original server (if the requested Web object is not found in

the Web caching infrastructure). Every parent cache keeps

a list of pairs {requester_son_cache,

requested_Web_object} which is sent to all its son caches

piggybacking the life signal used in the consistency

mechanism explained before. Every cache receiving that

list includes it in its digest. In that way every son cache is

building its own digest. The list is removed from the

parent cache right after the list has been sent. This reduces

control overhead in parent caches. As we have said before,

every cache digest only has references to Web object

copies stored at the same branch (mesh which the cache

belongs to) in the hierarchy. Likewise, when a Web object

is modified in the original server, the server keeps a list of

modified_Web_objects to be sent piggybacking the life

signal used in the consistency mechanism. Figure 1 shows

an example of our architecture. We can see in Figure 1

with a double line the path that the life signal will take.

Figure 1. A possible scenario using the Web caching

architecture

The life signal is an indicator for son caches that the parent

cache is on line (alive). If a son cache does not receive five

consecutive life signals, then the son cache presumes that

Serve

r

Mes

h

Mes

h

Mes

h

Mes

h

Mes

h

Mes

h Mes

h

Mes

h

Mes

h Mes

h

Mes

h

Mesh

L1

L2

L3

Client Caches

Mesh

Mesh

Mesh

Mesh

Mesh

Siblings

Siblings

Siblings

 L1’s

 parents

L2’s parents

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 8:19 from IEEE Xplore. Restrictions apply.

its parent cache is dead. After that, the son cache

invalidates all the Web objects received by its parent

cache. We allow five missed messages because we wanted

to consider some high network congestion. Every parent

cache (at every hierarchy level) will forward (multicast)

the invalidation message with the life signal if one of its

son caches has the invalidated Web object, otherwise the

parent cache will forward only the life signal. If a Web

object is modified in the original server and the push

mechanism is activated (pushing bit = 1), then the new

Web object will be piggybacked on the life signal. If a

parent cache has not been requested with that Web

object(s), the parent cache will not forward the Web

object(s) but only the life signal.

5. Analysis of this architecture

This section shows some comparative analyses of the Web
caching architecture suggested in this paper. Table 2
summarizes the simulation scenarios. These simulation
scenarios use the workload described in table 1.

Table 2. Scenarios for comparing Web caching
architectures
Identifiers Description

JTTLA0,
JTTLA, JM,
JPSM, JAPM

Hierarchical cooperation architecture (J) using
the following consistency mechanism:
TTLA0, TTLA, M, PSM, APM

DTTLA0,
DTTLA, DM,
DPSM, DAPM

Distributed cooperation architecture (D) using
the following consistency mechanisms:
TTLA0, TTLA, M, PSM, APM

H1TTLA0,
H1TTLA,
H1M, H1PSM,
H1APM

Hybrid cooperation architecture 1 (H1) using
the following consistency mechanism:
TTLA0, TTLA, M, PSM, APM

H2TTLA0,
H2TTLA,
H2M, H2PSM,
H2APM

Hybrid cooperation architecture 2 (H2) using
the following consistency mechanism:
TTLA0, TTLA, M, PSM, APM

ADDTTA0,
ADDTTLA,
ADDM,ADDP
SM, ADDPM

Web Objects Distribution architecture (ADD),
suggested in this paper, using the following
consistency mechanisms: TTLA0, TTLA, M,
PSM, APM

The first that we can see in this analysis is the perceived

response time by clients. Figure 2 shows how the

consistency mechanisms affect every cooperative caching

organization in several ways along the workload on this

simulation scenario (CESCA’s cooperative Web caching

system). We can see that distributed caching cooperation

architecture in this context presents the best results. It is

important to notice that slightly lower in this architecture

we can see the ADD architecture which shows better

results than the others. It was not relevant which

consistency mechanism was used. It is interesting to notice

that when we have TTLA as a consistency mechanism

implemented on a hybrid cooperative Web caching

architecture (H2), response times are good. However, if

the consistency mechanism is changed in this architecture,

the response time increases considerably..

0

50

100

150

200

250

300

350

400

450

TTLA0 TTLA M PSM APM

Consistency Mechanism

H
o

u
rs

Hierarchy

Distributed

H1

H2

ADD

Figure 2. Total response time perceived by clients

Figure 3 shows the bandwidth (BW) consumption of the
inter-cache network and traffic generated to the wide area
network (WAN). It is important to see both traffics in a
separate way because we can see where the bottlenecks are
(if any), and to be aware if our HTTP traffic is yielding
some problems to another type of traffic inside and outside
the inter-cache network.

Figure 3. Bandwidth (BW) consumption inside and

outside of the inter-cache network

Distributed architectures have the highest inter-cache
bandwidth consumption. Conversely, hierarchies have the

lowest inter-cache bandwidth consumption independently

of which consistency mechanism is being used. We can
see in Figure 3 that TTLA0 is the consistency mechanism
which consumes less inter-cache traffic. TTLA0 has a
strong dependence on Web servers outside inter-cache
network because it validates every request that caches
receive for a stored Web object. TTLA0 produces high
WAN traffic. WAN traffic is important because it could be
the reason for variability in client-perceived response time.
If we generate less impact in WAN traffic then it is

BW consumption in inter-caches network

0

2

4

6

8

10

12

TTLA0 TTLA M PSM APM

Consistency mechanisms

G
B

Hierarchy

Distributed

H1

H2

ADD

BW consumption in WAN

0

5

10

15

20

TTLA0 TTLA M PSM APM

Consistency mechanisms

G
B

Hierarchy

Distributed

H1

H2

ADD

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 8:19 from IEEE Xplore. Restrictions apply.

PNC

possible to prevent response time peaks, preventing clients
from perceiving pathological response time. Figure 3
shows ADD architecture with competitive bandwidth
consumption for both inter-cache links and WAN links.
Every consistency mechanism implemented in every
cooperative Web caching architecture was configured
according to mentioned parameters in every original
cooperative Web caching architecture proposal. In Figure
4 the number of received “stale” Web objects by clients is
compared. As we can see, if our interest is getting strong
consistency, the consistency mechanism to be chosen is
TTLA0 (it is not important which type of cache
organization is implemented). PSM will be the next
option.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

TTLA0 TTLA M PSM APM

Consistency mechanisms

Hierarchy

Distributed

H1

H2

ADD

Figure 4. Number of “stale” Web objects received by

clients

We measure the benefit degree (if any) that is produced by

the cooperative caching architecture and its consistency

mechanism compared with a system that does not use

caches. It was taken the sum of the response times

obtained reproducing the trace file in each one of the

systems as a measure of comparison.

0

1

2

3

4

TTLA0 TTLA M PSM APM

Consistency mechanism

S
p

e
e

d
u

p

Hierarchy

Distributed

H1

H2

ADD

Figure 5. Response time speedup of different

configurations (PNC: Proxy No Cache

Figure 5 shows the degree of gain (speedup) obtained by

each cooperative architecture and its respective

consistency mechanism. We have called the architecture

that does not use caches “Proxies No Caches” (PNC). A

speedup equal to 1 indicates that the cooperative caching

architecture and the validation mechanism that it uses is

not generating gains. Speedups greater than 1 mean the

cooperative caching architecture obtains some gains. As

we can see in Figure 5, the best results are in distributed

and ADD architectures, no matter which consistency

mechanism is implemented. They have speedups higher

than 2.5 and 3.5. In Figure 6 all the architectures reviewed

in this work appear contrasting speedups with the

bandwidth consumption that they generate. The proximity

to the ideal mark represents greater benefit with smaller

cost. ADDPSM, ADDAPM, DAPM, DTTLA y H2M

configurations are the best alternatives when the interest is

focused on the network infrastructure. We have done more

experiments scaling all caching architectures to more

caches (for more than 20 caches, these experiments are not

included in this paper). If we scale (including more

caches) the cooperative caching architecture, we can see

that distributed caching architecture was the most affected

in terms of high response time and decreasing speedup.

When a distributed caching architecture grows, the

number of inter-cache messages grows linearly. That

means that the bandwidth consumption grows as well, and

the inter-cache performance goes down.

Figure 6. Speedup vs. BW consumption

6. Conclusions

This paper presents a Web object distribution architecture
which is resilient. That means, if the network behavior
changes, and there is a need to make some changes to the
Web caching architecture to make up the situation, the
changes could be done and Web caching architecture still
offers benefits without considerably affecting the network
resources. The approach that we have implemented was to
evaluate the most popular cooperative cache architectures
combined with the most used consistency mechanisms.
After analyzing the results of these evaluations, we have
built a Web caching architecture that we called ADD. This
caching architecture takes advantage of the best features
detected in other caching architectures. That is why this
caching architecture obtains better performances even if
some changes in configuration have to be done. ADD
architecture is based on a cooperative cache hybrid
organization including an inter-cache Web object
discovery mechanism based on directories (digest). The
ideal consistency mechanism for this architecture is
invalidation multicast with life signaling to keep the state
of parent-son cache links. If some changes in network
behavior occur, it could be necessary to change the

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

Bandwidth consumption (GB)

S
p

e
e

d
u

p

21.29807617
22.15881482
22.41816168
22.37229272
22.37229272
18.47791563
18.3567164
18.27099728
18.28478654
18.28478654
22.5085245
22.49942255
22.8167308
22.71748725
22.71978826
13.2000845
13.41183903
13.12447315
13.07397105
13.0726632
11.4811294
12.22968144
12.2376863
12.14751755
12.14953414

JTTLA0
JTTLA
JM
JPSM
JAPM
DTTLA0
DTTLA
DM
DPSM
DAPM
HTTLA0
HTTLA
HM
HPSM
HAPM
H2TTLA0
H2TTLA
H2M
H2PSM
H2APM
ADDTTLA0
ADDTTLA
ADDM
ADDPSM
ADDAPM

Ideal

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

Bandwidth consumption (GB)

S
p

e
e

d
u

p

21.29807617
22.15881482
22.41816168
22.37229272
22.37229272
18.47791563
18.3567164
18.27099728
18.28478654
18.28478654
22.5085245
22.49942255
22.8167308
22.71748725
22.71978826
13.2000845
13.41183903
13.12447315
13.07397105
13.0726632
11.4811294
12.22968144
12.2376863
12.14751755
12.14953414

JTTLA0
JTTLA
JM
JPSM
JAPM
DTTLA0
DTTLA
DM
DPSM
DAPM
HTTLA0
HTTLA
HM
HPSM
HAPM
H2TTLA0
H2TTLA
H2M
H2PSM
H2APM
ADDTTLA0
ADDTTLA
ADDM
ADDPSM
ADDAPM

Ideal

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 8:19 from IEEE Xplore. Restrictions apply.

consistency mechanism. That situation is not going to be
all that important because we trust the cache system will
still offer some benefits. This is a very important
advantage of this architecture. During this work, we have
developed a reliable simulator which is a useful and
dependable tool for an a priori evaluation of Web caching
architectures and is a good contribution of this paper.

References

[1]S.G. Dykes, C.L., K.A. Robbins, and C.L. Jeffery, “A
Viability Analysis of Cooperative Proxy Caching”, in Proc. of

the IEEE Infocom 2001
[2]"Internet Cache Protocol (ICP) version2" available at:

ftp://ftp.rediris.es/docs/rfc/21xx/2186
[3]Korea National Cache, available at: http://cache.kaist.ac.kr
[4]National Laboratory for Applied Network Research

(NLANR), “Ircache project”,
 available on line at http://ircache.nlanr.net/
[5]Spanish academic network (Red Iris) available at:

http://www.rediris.es/
[6]P. Rodriguez, C. Spanner, and E. W. Biersack, “Web Caching

Architectures: Hierarchical and Distributed Caching”. 4th

International Web Caching Workshop, San Diego, USA. 31st

March –2nd April, 1999
[7]N. G. Smith, “The UK national Web Cache – The state of the

art”, Computer Networks and ISDN System, 28:1407-1414,
1996

[8] V. J. Sosa, L. Navarro, “Influence of the Document
Replication/Validation Methods on Cooperative Web Proxy
Caching Architectures”. Communication Network and
Distributed Systems Modeling and Simulation Conference
CNDS’02 in WMC’02. Pags. 238-245. ISBN: 1-56555-244-
X. San Antonio, Tx. USA

[9]V.J.Sosa, L. Navarro, "A New Environment for Web Caching
and Replication Study", Workshop of distributed and parallel
systems (WSDP'00). University of Santiago. Nov. 13-18
2000. Chile. ISBN 956-7069-53-0. CD-ROM

[10]R. Tewari, M. Dahlin, H. M. Yin, and J. S. Kay, “Design
considerations for distributed caching on the internet”, in
Proc. of the Int’l. Conf. On Distributed Computing Systems
(ICDS’99)

[11]Virtual InterNetwork Testbed Project. Available at:
http://netWeb.usc.edu/vint/

[12]A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin,
and H. Levy, “On the scale and performance of
cooperative Web Proxy caching”, in Proc. of the 17th ACM
Symp. On Operating Systems Principles, Dec. 1999

[13]H. Yu, L. Breslau, and S. Shenker, "A Scalable Web Cache
Consistency Architecture". SIGCOMM99. volume 29,
number 4, October 1999.
http://www.acm.org/sigs/sigcomm/sigcomm99/papers/session
5-1.html

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 7, 2008 at 8:19 from IEEE Xplore. Restrictions apply.

