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Abstract

Web caching is a technology that has demonstrated to 

improve traffic on the Internet. To find out how to 

implement a Web caching architecture that assures 
improvements is not an easy task. The problem is more 

difficult when we are interested in deploying a distributed 

and cooperative Web caching system. We have found that 
some cooperative Web caching architectures  could be  

unviable when changes on the network environment 
appear. This situation suggests that a cooperative Web 

caching system could get worst access to Web objects. 

However in this paper we present an architecture that 
combines the best of several Web caching configurations 

that we have previously analyzed. Our architecture gives 

basic ideas for implementing a cooperative Web caching 
system using groups of HTTP proxy servers which can 

improve access to  remote Web objects  regardless of the 

changes that might occur on the network environment 
(changes that could produce modifications in Web object 

validation policies and/or types of caching 

communication).  

1. Introduction 

The idea behind Web caching consists in getting Web 

objects close to clients at a low cost. Cooperating proxy 

caches are a group of caches that share cached objects and 

collaborate with each other to do the same work as a single 

Web cache. The benefits of having a cooperative caching 

system has been analyzed in [12],[6],[1]. Basically, the 

construction of a cooperative Web cache system requires 

the analysis of four major topics. They are briefly 

described next: 

Cooperative caching system organization: How to define 

a cache topology. 

Hierarchy: Caches are located at different network levels. 

In most cases it is assumed that inferior levels in the 

hierarchy have better quality of service. They have a 

parent-son relationship. A son cache is located at inferior 

levels in the hierarchy, and when a son cache needs a Web 

object, the son cache asks its parent cache for it. The 

request goes up in the hierarchy until finding the Web 

object needed in a parent cache or in the original Web 

server. 

Mesh (distributed): There are no intermediate caches 

defined by levels, rather there is a single level of caches 

where they can cooperate to serve the requests generated 

by clients. 

Hybrid (mesh/hierarchy): A combination of hierarchy and 

mesh. 

Web caching communication: How caches are going to 

communicate each other. We consider three processes that 

are involved in Web caching communication: discovery, 

delivery, and dissemination. 

Discovery. How do caches find the Web objects? There 

are three major approaches: Exhausted query: asking for a 

requested object to all sibling caches using a protocol like  

ICP (Intercache Communication Protocol). Using digest: 

Digest can be interchanged using methodologies such as: 

Peer to peer or by a hierarchy. Using hashing:  cache 

objects can be located in proxy caches defined by a hash 

function. 

 Delivery. How do caches deliver pages to clients? It could 

be using direct connection between the cache containing 

the page and the client, delivering copies using a cache 

hierarchy, or  delivering copies using a cache mesh. 

Dissemination. Delivery of Web objects initiated by 

original servers. 

Consistency strategies: How caches keep “fresh” cached 

objects.

Expire. Using predefined expiration dates on Web pages. 

TTL0. Verifying consistency every time a hit occurs (time 

to live is zero, ttl=0).  

TTLA. Time to live is assigned based on the elapsed time 

since the last request. 

Invalidation. Original server sends an invalidation 

message to caches when a Web object update occurs. 

Usually this messages is sent via multicast (invalidation 

multicast ). Some variants of multicast invalidation or a 

mix of all previous strategies. 
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Workload behavior: Behavior of workload can be treated 

depending on the participating element: Clients, Proxy-

Caches and Servers. In this case we focus our attention on 

proxy-caches workload. 

The goal of this work is to show many options for building 

a viable Web caching system based on many analyses of 

different Web caching configurations. We also propose a 

Web caching architecture that takes the best of several 

Web caching configuration. The principal goal of this Web 

caching architecture is to avoid problems that could make 

it unviable when the network behavior changes.   

2. Architecture description 

This architecture is based on our previous research 

[8],[9],[10], which encompasses several studies of Web 

cache systems (workloads, consistency strategies, Web 

caching communication).  The main characteristics  of our 

architecture are: 

1) Web caching organization. Considering the obtained 

results in [8],[9],[10], we propose a caching organization 

of hybrid type (three level hierarchy in long latencies, 

where each level has a mesh, Fig. 1). It has been 

demonstrated in [8],[6],[12] that a hybrid organization 

offers better results as for access time, bandwidth 

consumption in a wide area network (WAN), and scaling 

support.  Likewise, a three level hierarchy  has been 

widely accepted [4],[3],[7],[5] because it does not 

emphasize the cost of store-and-forward process. 

2) Caching communication. As we have mentioned, the 

communication in a cooperative caching system takes 

places in several processes (discovery, delivery, and 

dissemination).  

    Discovery process: This process allows for the locating 

of requested Web objects within the cooperative caching 

system.  A very typical mechanism is the exhaustive query 

by using ICP messages.  However, exhaustive query will 

not be used in our architecture, due to the high bandwidth 

consumption that it requires [2]. A mechanism for the 

construction of directories (metadata) will be used instead. 

The construction of such directories will be done 

dynamically. When a parent cache receives a request for a 

Web object, immediately after the requested Web object 

has been sent to its requester cache,  a multicast message 

is sent to all of the parent cache descendents to notify them 

the Web objects that have been requested by the requester 

cache. This lets the lower levels of the hierarchy know the 

location of these Web objects for further requests. The 

caches that will receive such notification are only those 

caches that belong to that particular branch in the lower 

levels of the hierarchy. 

Delivery process: Clients obtain a copy of the requested 

Web object through the mesh (caches of the same 

hierarchy level –branch-). Those copies have arrived to the 

mesh following a route from the original server to the 

cache through the hierarchy levels. 

Dissemination process: This process takes advantage of 

the multicast invalidation mechanism to push updated 

Web objects that have been previously requested by the 

lower level caches in the hierarchy.  This process will be 

fully explained next. 

3) Consistency mechanism. The consistency mechanism 

to be used in this architecture is multicast invalidation, and 

it uses what we call life signals. The parent cache sends a 

message (multicast message -life signal-) every minute to 

the lower level caches to indicate that it is alive (on line). 

If a Web object is modified in the original server (one of 

those Web objects previously requested), a message is sent 

to the lower level caches within the same mesh, to let them 

know that such Web object is no longer valid, and that an 

updated copy of the Web object should be obtained the 

next time the Web object is requested. The same life signal

is used to inform and prevent those caches that did not 

contain the Web object from trying to access such a Web 

object from an invalid copy.  

Dissemination strategy (pushing) through the 

consistency mechanism. We have a dissemination strategy 

(pushing) where the servers (or parent caches in a 

hierarchy) multicast the most popular Web objects (that 

have been updated by the original server) to the caches, 

before being requested once again. In this architecture, no 

global decision is taken concerning the multicasting of a 

Web object through the system. Conversely, each cache 

and the original server make their own decision on 

whether the dissemination should be made or not. To do 

this, each cache and the original server keep an access 

counter (Xp) for each Web object which in the beginning 

is set to 0, along with a dissemination bit that will indicate 

whether the Web object must be disseminated or not. If the 

dissemination bit is set to 1, that will indicate that the 

cache has to disseminate the updated Web object when the 

cache issues a life signal to its lower level caches. The 

heuristics of this strategy use three positive variables: 

, , . If a cache receives an invalidation message for page 

P, then the next calculation takes place: XP = XP - .  if the 

cache receives a request for page P, then we calculate: XP

= XP + . If XP exceeds a  threshold  (XP > ), then the 

dissemination bit is set to 1, otherwise a zero is assigned. 

Additionally, the lower level caches send a message to 

their parent caches each time the page is read. This is done 

to keep a knowledge about  all read pages within that 

branch of hierarchy. The fixed values used within our 

architecture are =8, =1, y =2.  The approach that we 

followed of taking a 1 for each invalidation and of adding 

a 2 for each request, is due to the popularity studies made 

with some proxi-caches logs that are strongly close to the 

Zipf distribution. The Zipf distribution says that the 

number of requests for a page (R) is related to its 

popularity in this way:                      

     R(i) = ---------- 

                   i
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where the exponent  reflects the popularity skew between 

one Web object and another, and the constant  defines an 

approximation to the number of requests for the most 

popular Web object represented by i = 1. For a better 

understanding, lets assume that  = 1 and that  = 100, 

then the most popular Web object (in other words, the one 

with the position i = 1) will have 100 requests, the Web 

object next to it in popularity will have 50 (i = 2), and the 

next (i = 3) will be close to 30 and so forth. All this gives 

us an idea that the popularity of Web objects follows a 

sequence of 2 to 1 for each position in the popularity 

index. This helps us to define constants  and . The 

value comes from studies made in this work, along with 

heuristic analysis made in [13]. 

3. How this web caching architecture was 

defined

This Web caching architecture was substantially obtained 

using a simulator developed during the time of this work 

[10]. This simulator is mainly an extension of the Network 

Simulator (NS) [11]. The fundamental research that helps 

us to define this architecture could be found in our work 

[8], which basically consisted in analyzing  the most 

studied ways to organize cooperative Web caches like: 

hierarchies, mesh and hybrids, combined with the most 

studied Web caching consistency strategies. In this work 

we tried the following consistency mechanisms: TTL0, 

TTLA, M, and some variants of multicast invalidation 

mechanism: PSM and APM.  PSM (pushing selective 

multicast) only pushes the updated Web object when the 

number of  requests exceeds a threshold defined by  (as 

mentioned in the previous section). APM (always pushing 

multicast) pushes a Web object whenever it is updated. 

The configurations mentioned above were implemented in 

our simulator. We use workloads that were obtained from 

a cache located at the Spanish academic network backbone 

managed by the Center of Super Computing of Catalonia 

(CeSCa). The simulation stops when it finishes replaying 

all the workload. Table 1 describes the workload. The 

Web caching architectures that give us the best results  in 

[8] were the base for our new Web caching architecture 

discussed here . 

Table 1. Workload characteristics. 
Number of requests 3,089,592 

Number of Web objects  212,352 

Number of clients (approx.) 11,765 

Average requests per second 21 

Transferred bytes 30GB 

Duration 2 days 

4. How this architecture works 

This section describes how this architecture works. The 

Web caching system starts when a client sends a request to 

its Web proxy cache (the first cache that is contacted by a 

client is called client-cache). The  client-cache verifies if it 

can respond to the request. If so, the client-cache sends the 

requested Web object to the client and the operation is 

finished. Otherwise, the client-cache checks if the 

requested object is in a sibling cache. A sibling cache is a 

cache connected by a mesh at the same branch in a cache 

hierarchy (see Fig. 1). Every cache sibling has a digest 

where the cached objects in a hierarchy branch are 

registered. If  the requested Web object is in a sibling 

cache (a cache knows that by looking at its digest), the 

cache forwards the request to the cache sibling. A copy of 

the requested Web object travels to the end client through 

the client-cache which keeps a copy of the Web object. If 

the requested Web object is not in any cache sibling then 

the request is forwarded to the parent cache. The same 

process is repeated at each hierarchy level until the 

requested Web object is found in a parent cache or in the 

original server (if the requested Web object is not found in 

the Web caching infrastructure). Every parent cache keeps 

a list of pairs {requester_son_cache, 

requested_Web_object} which is sent to all its son caches 

piggybacking the life signal used in the consistency 

mechanism explained before. Every cache receiving that 

list includes it in its digest. In that way every son cache is 

building its own digest. The list is removed from the 

parent cache right after  the list has been sent. This reduces 

control overhead in parent caches. As we have said before, 

every cache digest only has references to Web object 

copies stored at the same branch (mesh which the cache 

belongs to) in the hierarchy. Likewise, when a Web object 

is modified in the original server, the server keeps a list of 

modified_Web_objects to be sent piggybacking the life 

signal used in the consistency mechanism. Figure 1 shows 

an example of our architecture. We can see in Figure 1 

with a double line the path that the life signal will take.  

Figure 1. A possible scenario using the Web caching 

architecture

The life signal is an indicator for son caches that the parent 

cache is on line (alive). If a son cache does not receive five 

consecutive life signals, then the son cache presumes that 
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its parent cache is dead. After that, the son cache 

invalidates all the Web objects received by its parent 

cache. We allow five missed messages because we wanted 

to consider some high network congestion. Every parent 

cache (at every hierarchy level) will forward (multicast) 

the invalidation message with the life signal if one of its 

son caches has the invalidated Web object, otherwise the 

parent cache will forward only the life signal. If a Web 

object is modified in the original server and the push 

mechanism is activated (pushing bit = 1), then the new 

Web object will be piggybacked on the life signal. If a 

parent cache has not been requested with that Web 

object(s), the parent cache will not forward the Web 

object(s) but only the life signal.  

5. Analysis of this architecture 

This section shows some comparative analyses of the Web 
caching architecture suggested in this paper. Table 2 
summarizes the simulation scenarios. These simulation 
scenarios use the workload described in table 1.  

Table 2. Scenarios for comparing Web caching 
architectures 
Identifiers Description 

JTTLA0, 
JTTLA, JM, 
JPSM, JAPM 

Hierarchical cooperation architecture (J) using 
the following consistency mechanism: 
TTLA0, TTLA, M, PSM, APM 

DTTLA0,  
DTTLA, DM, 
DPSM, DAPM 

Distributed cooperation architecture (D) using 
the following consistency mechanisms: 
TTLA0, TTLA, M, PSM, APM 

H1TTLA0, 
H1TTLA, 
H1M, H1PSM, 
H1APM 

Hybrid cooperation architecture 1 (H1) using 
the following consistency mechanism: 
TTLA0, TTLA, M, PSM, APM 

H2TTLA0, 
H2TTLA, 
H2M, H2PSM, 
H2APM 

Hybrid cooperation architecture 2 (H2) using 
the following consistency mechanism: 
TTLA0, TTLA, M, PSM, APM 

ADDTTA0, 
ADDTTLA, 
ADDM,ADDP
SM, ADDPM 

Web Objects Distribution architecture (ADD), 
suggested in this paper, using the following 
consistency mechanisms:  TTLA0, TTLA, M, 
PSM, APM 

The first that we can see in this analysis is the perceived 

response time by clients. Figure 2 shows how the 

consistency mechanisms affect every cooperative caching 

organization in several ways along the workload on this 

simulation scenario (CESCA’s cooperative Web caching 

system). We can see that distributed caching cooperation 

architecture in this context presents the best results. It is 

important to notice that slightly lower in this architecture 

we can see the ADD architecture which shows better 

results than the others. It was not relevant which 

consistency mechanism was used. It is interesting to notice 

that when we have TTLA as a consistency mechanism  

implemented on a hybrid cooperative Web caching 

architecture (H2), response times are good.  However, if 

the consistency mechanism is changed in this architecture, 

the response time increases considerably.. 
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Figure 2. Total response time perceived by clients 

Figure 3 shows the bandwidth (BW) consumption of the 
inter-cache network and traffic generated to the wide area 
network (WAN). It is important to see both traffics in a 
separate way because we can see where the bottlenecks are 
(if any), and to be aware if our HTTP traffic is yielding 
some problems to another type of traffic inside and outside 
the inter-cache network.  

Figure 3. Bandwidth (BW) consumption inside and 

outside of the inter-cache network 

Distributed architectures have the highest inter-cache 
bandwidth consumption. Conversely, hierarchies have the 

lowest inter-cache bandwidth consumption independently 

of which consistency mechanism is being used. We can 
see in Figure 3 that TTLA0 is the consistency mechanism 
which consumes less inter-cache traffic. TTLA0 has a 
strong dependence on Web servers outside inter-cache 
network because it validates every request that caches 
receive for a stored Web object. TTLA0 produces high 
WAN traffic. WAN traffic is important because it could be 
the reason for variability in client-perceived response time. 
If we generate less impact in WAN traffic then it is 
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PNC 

possible to prevent response time peaks, preventing clients 
from perceiving pathological response time. Figure 3 
shows ADD architecture with competitive bandwidth 
consumption for both inter-cache links and WAN links. 
Every consistency mechanism implemented in every 
cooperative Web caching architecture was configured 
according to mentioned parameters in every original 
cooperative Web caching architecture proposal. In Figure 
4 the number of  received “stale” Web objects by clients is 
compared.  As we can see, if our interest is getting strong 
consistency, the consistency mechanism to be chosen is 
TTLA0 (it is not important which type of cache 
organization is implemented). PSM will be the next 
option.
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We measure the benefit degree (if any) that is produced by 

the cooperative caching architecture and its consistency 

mechanism compared with a system that does not use 

caches. It was taken the sum of the response times 

obtained reproducing the trace file in each one of the 

systems as a measure of comparison. 
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Figure 5. Response time speedup of different 

configurations (PNC: Proxy No Cache 

Figure 5 shows the degree of gain  (speedup) obtained by 

each cooperative architecture and its respective 

consistency mechanism. We have called the architecture 

that does not use caches “Proxies No Caches” (PNC). A 

speedup equal to 1 indicates that the cooperative caching 

architecture and the validation mechanism that it uses is 

not generating gains. Speedups greater than 1 mean the 

cooperative caching architecture obtains some gains. As 

we can see in Figure 5, the best results are in distributed 

and ADD architectures, no matter which consistency 

mechanism is implemented. They have speedups higher 

than 2.5 and 3.5. In Figure 6 all the architectures reviewed 

in this work appear contrasting speedups with the 

bandwidth consumption that they generate. The proximity 

to the ideal mark represents greater benefit with smaller 

cost. ADDPSM, ADDAPM, DAPM, DTTLA y H2M 

configurations are the best alternatives when the interest is 

focused on the network infrastructure. We have done more 

experiments scaling all caching architectures to more 

caches (for more than 20 caches, these experiments are not 

included in this paper). If we scale (including more 

caches) the cooperative caching architecture, we can see 

that distributed caching architecture was the most affected 

in terms of high response time and decreasing speedup. 

When a distributed caching architecture grows, the 

number of inter-cache messages grows linearly. That 

means that the bandwidth consumption grows as well, and 

the inter-cache performance goes down. 

Figure 6. Speedup vs. BW consumption  

6.   Conclusions 

This paper presents a Web object distribution architecture 
which is resilient. That means, if the network behavior 
changes, and there is a need to make some changes to the 
Web caching architecture to make up the situation, the 
changes could be done and Web caching architecture still 
offers benefits without considerably affecting the network 
resources. The approach that we have implemented was to 
evaluate the most popular cooperative cache architectures 
combined with the most used  consistency mechanisms. 
After analyzing the results of these evaluations, we have 
built a Web caching architecture that we called ADD. This 
caching architecture takes advantage of the best features 
detected in other caching architectures. That is why this 
caching architecture obtains better performances even if 
some changes in configuration have to be done. ADD 
architecture is based on a cooperative cache hybrid 
organization including an inter-cache Web object 
discovery mechanism based on directories (digest). The 
ideal consistency mechanism for this architecture is 
invalidation multicast with life signaling to keep the state 
of parent-son cache links. If some changes in network 
behavior occur, it could be necessary to change the 
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consistency mechanism. That situation is not going to be 
all that important because we trust the cache system will 
still offer some benefits. This is a very important 
advantage of this architecture. During this work, we have 
developed a reliable simulator which is a useful and 
dependable tool for an a priori evaluation of Web caching 
architectures and  is a good contribution of this paper. 
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