5,136 research outputs found

    Generalised additive multiscale wavelet models constructed using particle swarm optimisation and mutual information for spatio-temporal evolutionary system representation

    Get PDF
    A new class of generalised additive multiscale wavelet models (GAMWMs) is introduced for high dimensional spatio-temporal evolutionary (STE) system identification. A novel two-stage hybrid learning scheme is developed for constructing such an additive wavelet model. In the first stage, a new orthogonal projection pursuit (OPP) method, implemented using a particle swarm optimisation(PSO) algorithm, is proposed for successively augmenting an initial coarse wavelet model, where relevant parameters of the associated wavelets are optimised using a particle swarm optimiser. The resultant network model, obtained in the first stage, may however be a redundant model. In the second stage, a forward orthogonal regression (FOR) algorithm, implemented using a mutual information method, is then applied to refine and improve the initially constructed wavelet model. The proposed two-stage hybrid method can generally produce a parsimonious wavelet model, where a ranked list of wavelet functions, according to the capability of each wavelet to represent the total variance in the desired system output signal is produced. The proposed new modelling framework is applied to real observed images, relative to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, and the associated identification results show that the new modelling framework is applicable and effective for handling high dimensional identification problems of spatio-temporal evolution sytems

    A novel gaussian particle swarms optimized particle filter algorithm for the state of charge estimation of lithium-ion batteries.

    Get PDF
    A gaussian particle swarm optimized particle filter estimation method, along with the second-order resistance-capacitance model, is proposed for the state of charge estimation of lithium-ion battery in electric vehicles. Based on the particle filter method, it exploits the strong optimality-seeking ability of the particle swarm algorithm, suppressing algorithm degradation and particle impoverishment by improving the importance distribution. This method also introduces normally distributed decay inertia weights to enhance the global search capability of the particle swarm optimization algorithm, which improves the convergence of this estimation method. As can be known from the experimental results that the proposed method has stronger robustness and higher filter efficiency with the estimation error steadily maintained within 0.89% in the constant current discharge experiment. This method is insensitive to the initial amount and distribution of particles, achieving adaptive and stable tracking in the state of charge for lithium-ion batteries

    Image Outlier filtering (IOF) : A Machine learning based DWT optimization Approach

    Get PDF
    In this paper an image outlier technique, which is a hybrid model called SVM regression based DWT optimization have been introduced. Outlier filtering of RGB image is using the DWT model such as Optimal-HAAR wavelet changeover (OHC), which optimized by the Least Square Support Vector Machine (LS-SVM) . The LS-SVM regression predicts hyper coefficients obtained by using QPSO model. The mathematical models are discussed in brief in this paper: (i) OHC which results in better performance and reduces the complexity resulting in (Optimized FHT). (ii) QPSO by replacing the least good particle with the new best obtained particle resulting in 201C;Optimized Least Significant Particle based QPSO201D; (OLSP-QPSO). On comparing the proposed cross model of optimizing DWT by LS-SVM to perform oulier filtering with linear and nonlinear noise removal standards

    Comparison between RLS-GA and RLS-PSO For Li-ion battery SOC and SOH estimation: a simulation study

    Get PDF
    This paper proposes a new method of concurrent SOC and SOH estimation using a combination of recursive least square (RLS) algorithm and particle swarm optimization (PSO). The RLS algorithm is equipped with multiple fixed forgetting factors (MFFF) which are optimized by PSO. The performance of the hybrid RLS-PSO is compared with the similar RLS which is optimized by single objective genetic algorithms (SOGA) as well as multi-objectives genetic algorithm (MOGA). Open circuit voltage (OCV) is treated as a parameter to be estimated at the same timewith internal resistance. Urban Dynamometer Driving Schedule (UDDS) is used as the input data. Simulation results show that the hybrid RLS-PSO algorithm provides little better performance than the hybrid RLS-SOGA algorithm in terms of mean square error (MSE) and a number of iteration. On the other hand, MOGA provides Pareto front containing optimum solutions where a specific solution can be selected to have OCV MSE performance as good as PSO

    Unscented Particle Filtering Algorithm for Optical-fiber Sensing Intrusion Localization Based on Particle Swarm Optimization

    Get PDF
    To improve the convergence and precision of intrusion localization in optical-fiber sensing perimeter protection applications, we present an algorithm based on an unscented particle filter (UPF). The algorithm employs particle swarm optimization (PSO) to mitigate the sample degeneracy and impoverishment problem of the particle filter. By comparing the present fitness value of particles with the optimum fitness value of the objective function, PSO moves particles with insignificant UPF weights towards the higher likelihood region and determines the optimal positions for particles with larger weights. The particles with larger weights results in a new sample set with a more balanced distribution between the priors and the likelihood. Simulations demonstrate that the algorithm speeds up convergence and improves the precision of intrusion localization

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels
    corecore