534 research outputs found

    Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear Model

    Get PDF
    open4siSustainable control has begun to stimulate research and development in a wide range of industrial communities particularly for systems that demand a high degree of reliability and availability (sustainability) and at the same time characterised by expensive and/or safety critical maintenance work. For heating systems such as HVAC plants, clear conflict exists between ensuring a high degree of availability and reducing costly maintenance times. HVAC systems have highly non-linear dynamics and a stochastic and uncontrollable driving force as input in the form of intake air speed, presenting an interesting challenge for modern control methods. Suitable control methods can provide sustainable maximisation of energy conversion efficiency over wider than normally expected air speeds and temperatures, whilst also giving a degree of “tolerance” to certain faults, providing an important impact on maintenance scheduling, e.g. by capturing the effects of some system faults before they become serious.This paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data driven and physically meaningful nonlinear continuous time model, which represents a test bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model based and data driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.openTurhan, T.; Simani, S.; Zajic, I.; Gokcen Akkurt, G.Turhan, T.; Simani, Silvio; Zajic, I.; Gokcen Akkurt, G

    Adaptive neural network cascade control system with entropy-based design

    Get PDF
    A neural network (NN) based cascade control system is developed, in which the primary PID controller is constructed by NN. A new entropy-based measure, named the centred error entropy (CEE) index, which is a weighted combination of the error cross correntropy (ECC) criterion and the error entropy criterion (EEC), is proposed to tune the NN-PID controller. The purpose of introducing CEE in controller design is to ensure that the uncertainty in the tracking error is minimised and also the peak value of the error probability density function (PDF) being controlled towards zero. The NN-controller design based on this new performance function is developed and the convergent conditions are. During the control process, the CEE index is estimated by a Gaussian kernel function. Adaptive rules are developed to update the kernel size in order to achieve more accurate estimation of the CEE index. This NN cascade control approach is applied to superheated steam temperature control of a simulated power plant system, from which the effectiveness and strength of the proposed strategy are discussed by comparison with NN-PID controllers tuned with EEC and ECC criterions

    Adaptive control of a wave energy converter simulated in a numerical wave tank

    Get PDF
    Energy maximising controllers (EMCs), for wave energy converters (WECs), based on linear models are attractive in terms of simplicity and computation. However, such (Cummins equation) models are normally built around the still water level as an equilibrium point and assume small movement, leading topo or model validity for realistic WEC motions, especially for the large amplitude motions obtained by a well controlled WEC. The method proposed here is to use an adaptive algorithm to estimate the control model in real time, whereby system identification techniques are employed to identify a linear model that is most representative of the actual controlled WEC behaviour. Using exponential forgetting, the linear model can be continuously adapted to remain representative in changing operational conditions. To that end, this paper presents a novel adaptive controller based on a receding horizon pseudo spectral formulation. The paper also demonstrates the implementation of the adaptive controller inside a computational fluid dynamics (CFD)based numerical wave tank (NWT) simulation. The adaptive controller will create the best linear model, representative of the conditions encountered in the fully nonlinear hydrodynamic CFD simulation. Using CFD presents a method to evaluate the adaptive controller within a realistic simulation environment, allowing the convergence and adaptive properties of the present control scheme to be tested. A test case, considering a heaving point absorber, is presented and the adaptive controller is shown to perform well in irregular sea states, absorbing more power than its non-adaptive counterpart. The optimal trajectory calculated by the adaptive model is seen to have a smaller motion and power take-off (PTO)forces, compared to those calculated by the non-adaptive linear control model, due to the increased amount of hydrodynamic resistance estimated by the adaptive model, as identified from the nonlinear viscous CFD simulation

    Enhanced receding horizon optimal performance for online tuning of PID controller parameters

    Get PDF
    In this paper, a new online proportional-integral-derivative (PID) controller parameter optimisation method is proposed by incorporating the philosophy of the model predictive control (MPC) algorithm. The future system predictive output and control sequence are first written as a function of the controller parameters. Then PID controller design is realised through optimising the cost function under the constraints on the system input and output. The MPC based PID online tuning easily handles the constraints and time delay. Simulation results in three situations, changing the control weight, adding constraints on the overshoot and control signal and changing the reference value, confirm that the proposed method is capable of producing good tracking performance with low energy consumption and short settling time

    Constrained Predictive Control of Three-PhaseBuck Rectifiers

    Get PDF
    In this paper, constrained optimal control of a current source rectifier (CSR) is presented, based on a mathematical model developed in Park’s frame. To comply with the system constraints an explicit model-based predictive controller was established. To simplify the control design, and avoid linearization, a disjointed model was utilised due to the significant time constant differences between the AC and DC side dynamics. As a result, active damping was used on the AC side, and explicit Model Predictive Control (MPC) on the DC side, avoiding non-linear dynamics. The results are compared by simulation with the performance of a state feedback control

    Type-2 Fuzzy Control of a Bioreactor

    Get PDF
    Abstract—In this paper the control of a bioprocess using an adaptive type-2 fuzzy logic controller is proposed. The process is concerned with the aerobic alcoholic fermentation for the growth of Saccharomyces Cerevisiae a n d i s characterized by nonlinearity and parameter uncertainty. Three type-2 fuzzy controllers heve been developed and tested by simulation: a simple type-2 fuzzy logic controller with 49 rules; a type-2 fuzzyneuro- predictive controller (T2FNPC); a t y p e -2 selftuning fuzzy controller ( T2STFC). The T2FNPC combines the capability of the type-2 fuzzy logic to handle uncertainties, with the ability of predictive control to predict future plant performance making use of a neural network model of the non linear system. In the T2STFC the output scaling factor is adjusted on-line by fuzzy rules according to the current trend of the controlled process. T h e advantage of the proposed adaptive algorithms is to greatly decrease the number of rules needed for the control reducing the computational load and at same time assuring a robust control

    Malliprediktiivinen säädin Tennessee Eastman prosessille

    Get PDF
    This thesis aims to design a multivariable Model Predictive Control (MPC) scheme for a complex industrial process. The focus of the thesis is on the implementation and testing of a linear MPC control strategy combined with fault detection and diagnosis methods. The studied control methodology is based on a linear time invariant state-space model and the quadratic programming optimization procedure. The control scheme is realized as a supervisory one, where the MPC is used to calculate the optimal set point trajectories for the lower level PI controllers, thus aiming to decrease the fluctuations in the end product flows. The Tennessee Eastman (TE) process is used as the testing environment. The TE process is a benchmark based on a real process modified for testing. It has five units, four reactants, an inert, two products and a byproduct. The control objective is to maintain the production rate and the product quality at the desired level. To achieve this, the MPC implemented in this thesis gives setpoints to three stabilizing PI control loops around the reactor and the product stripper. The performance of the designed control systems is evaluated by inducing process disturbances, setpoint changes, and faults for two operational regimes. The obtained results show the efficiency of the adopted approach in handling disturbances and flexibility in control of different operational regimes without the need of retuning. To suppress the effects caused by faults, an additional level that provides fault detection and controller reconfiguration should be developed as further research.Tämän diplomityön tavoite on suunnitella monimuuttujainen-malliprediktiivinen säädin (MPC) teolliselle prosessille. Diplomityö keskittyy toteuttamaan ja testaamaan lineaarisen MPC strategian, joka yhdistettynä vikojen havainnointiin ja tunnistukseen sekä uudelleen konfigurointiin voidaan laajentaa vikasietoiseksi. Tutkittu säätöstrategia perustuu lineaariseen ajan suhteen muuttumattomaan tilataso-malliin ja neliöllisen ohjelmoinnin optimointimenetelmään. Säätö on toteutettu nk. ylemmän tason järjestelmänä, eli MPC:tä käytetään laskemaan optimaaliset asetusarvot alemman säätötason PI säätimille, tavoitteena vähentää vaihtelua lopputuotteen virroissa. Tennessee Eastman (TE) prosessia käytetään testiympäristönä. TE on testiprosessi, joka perustuu todelliseen teollisuuden prosessiin ja jota on muokattu testauskäyttöön sopivaksi. Prosessissa on viisi yksikköä, neljä lähtöainetta, inertti, kaksi tuotetta ja yksi sivutuote. Säätötavoite on ylläpitää haluttu taso tuotannon määrässä ja laadussa. Tämän saavuttamiseksi tässä diplomityössä toteutettu MPC antaa asetusarvoja kolmelle stabiloivalle PI-säätimelle reaktorin ja stripperin hallinnassa. Säätösysteemin suorituskykyä arvioitiin aiheuttamalla prosessiin häiriöitä, asetusarvon muutoksia ja vikoja eri operatiivisissa olosuhteissa. Saavutetut tulokset osoittavat valitun menetelmän tehokkuuden häiriöiden käsittelyyn ja joustavaan säätöön eri olosuhteissa. Tutkimuksen jatkokehityksenä vikojen vaikutuksen vaimentamiseksi säätöön tulisi lisätä taso, joka havaitsee viat ja uudelleen konfiguroi säätimen sen mukaisesti

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Advanced control strategies for optimal operation of a combined solar and heat pump system

    Get PDF
    The UK domestic sector accounts for more than a quarter of total energy use. This energy use can be reduced through more efficient building operations. The energy efficiency can be improved through better control of heating in houses, which account for a large portion of total energy consumption. The energy consumption can be lowered by using renewable energy systems, which will also help the UK government to meet its targets towards reduction in carbon emissions and generation of clean energy. Building control has gained considerable interest from researchers and much improved ways of control strategies for heating and hot water systems have been investigated. This intensified research is because heating systems represent a significant share of our primary energy consumption to meet thermal comfort and indoor air quality criteria. Advances in computing control and research in advanced control theory have made it possible to implement advanced controllers in building control applications. Heating control system is a difficult problem because of the non-linearities in the system and the wide range of operating conditions under which the system must function. A model of a two zone building was developed in this research to assess the performance of different control strategies. Two conventional (On-Off and proportional integral controllers) and one advanced control strategies (model predictive controller) were applied to a solar heating system combined with a heat pump. The building was modelled by using a lumped approach and different methods were deployed to obtain a suitable model for an air source heat pump. The control objectives were to reduce electricity costs by optimizing the operation of the heat pump, integrating the available solar energy, shifting electricity consumption to the cheaper night-time tariff and providing better thermal comfort to the occupants. Different climatic conditions were simulated to test the mentioned controllers. Both on-off and PI controllers were able to maintain the tank and room temperatures to the desired set-point temperatures however they did not make use of night-time electricity. PI controller and Model Predictive Controller (MPC) based on thermal comfort are developed in this thesis. Predicted mean vote (PMV) was used for controlling purposes and it was modelled by using room air and radiant temperatures as the varying parameters while assuming other parameters as constants. The MPC dealt well with the disturbances and occupancy patterns. Heat energy was also stored into the fabric by using lower night-time electricity tariffs. This research also investigated the issue of model mismatch and its effect on the prediction results of MPC. MPC performed well when there was no mismatch in the MPC model and simulation model but it struggled when there was a mismatch. A genetic algorithm (GA) known as a non-dominated sorting genetic algorithm (NSGA II) was used to solve two different objective functions, and the mixed objective from the application domain led to slightly superior results. Overall results showed that the MPC performed best by providing better thermal comfort, consuming less electric energy and making better use of cheap night-time electricity by load shifting and storing heat energy in the heating tank. The energy cost was reduced after using the model predictive controller
    corecore